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Computer model for transient grating experiments and its application to analysis of LiTaO3
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Department of Chemistry and Physics, Beaver College, Glenside, Pennsylvania 19038

~Received 9 July 1996!

A computer program is used to model transient grating experiments where two laser pulses induce a
transient response in the sample and the time evolution of that response is monitored by the diffraction of a
third pulse. The program is designed so that experimental conditions such as spot sizes, excitation angle, probe
angle, relative pump and probe positions, and laser wavelength can be readily varied. The model accommo-
dates acoustic and polariton excitations which travel significant distances during an experiment. This program
is used to simulate and analyze transient grating experiments ofA1-symmetry polaritons in the ferroelectric
crystal LiTaO3. Previous experiments have used two different detection schemes for the scattered pulse, and
two different models for the optic modes of LiTaO3 were proposed. The simulations show that the discrepan-
cies result from an experimental artifact in the heterodyne detection experiments, and both sets of experiments
are consistent with one model for the crystal’s optic modes.@S0163-1829~97!02109-7#
o
r
a

- a
la
de
h
io

et
cu

a
th

ri
ty
a
n
io
f

fo
tie

n-
s
a
he
at

d
cy

re
lo
ev

rat-
e
nse

ved
na-
ults
of

ex-
lane
ay
be

nc-
he
t of
re-
ame

ion
xi-
am

ugh

ted
e
e

ach
ve-
c-
fect

ve
ave
I. INTRODUCTION

With the development of pulsed lasers a wide range
transient grating experiments have become possible. A
cent review of time-domain spectroscopy discusses many
plications of transient grating spectroscopy.1 In crystalline
solids, this technique has been used to study transverse
longitudinal-acoustic and optic modes. In liquids, molecu
vibrations, reorientations, and longitudinal-acoustic mo
have been observed, and transverse-acoustic modes
been found in glass-forming liquids near the glass transit

The appropriate experimental conditions~angles between
the excitation beams, excitation and probe spot sizes,!
depend on the type of excitation produced. This is parti
larly true for wave-vector-dependent~dispersive! excitations;
in addition to a dependence of the observed frequency
decay rate on the grating wavelength, propagation of
transient excitation can significantly affect the results.2

A general computer model for transient grating expe
ments is presented here. It can be used to examine any
of material excitation, whether it is propagating or nonprop
gating. With this model a range of experimental conditio
can be rapidly evaluated and an appropriate set of condit
can be chosen. More importantly, the model can be used
the analysis of experimental results; it is a powerful tool
separating experimental artifacts from the physical quanti
of interest.

To demonstrate the validity and utility of this model, tra
sient grating experiments onA1-symmetry phonon-polariton
in LiTaO3 will be simulated. Phonon-polaritons are prop
gating excitations which allow for a thorough test of t
model, and the results of transient grating experiments
wide range of conditions have been published.3–6 The inter-
pretations of these experiments have produced two fun
mentally incompatible models for the low-frequen
A1-symmetry optic modes of LiTaO3. Impulsive stimulated
scattering~ISS! experiments3,4 found that the polariton was
well described by a single damped harmonic oscillator
sponse function at all wave vectors. However, the anoma
dispersion of the polariton decay rate was interpreted as
550163-1829/97/55~9!/5778~8!/$10.00
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dence for a low-frequency relaxational mode. Transient g
ing experiments using a heterodyne detection techniqu5,6

found instead that two damped harmonic oscillator respo
functions were required at wave vectors near 1000 cm21.
This was interpreted as evidence of a previously unobser
0.95 THz mode. The simulations below provide an expla
tion for the observed data and demonstrate that all the res
are consistent with the first model for the optic modes
LiTaO3.

4

II. TRANSIENT GRATING MODEL

All Gaussian wave packets, laser pulses and material
citations are represented as properly weighted sums of p
waves. Notice that representing the excitation in this w
places no restrictions on the type of excitation that can
analyzed. For propagating excitations~and the laser pulses!,
the frequency and decay rate of each plane wave is a fu
tion of wave vector. For nonpropagating excitations, t
plane-wave frequency and decay rate are independen
wave vector. Except for differences in the dispersion of f
quency and decay rate, all excitations are treated in the s
manner.

In order to simplify the model and reduce the computat
times required, the transient grating experiment is appro
mated in two dimensions. The excitation and probe be
wave vectors are restricted to thexy plane of a laboratory
coordinate system and enter and exit the sample thro
faces of the sample which are parallel to thexz plane. The
wave vectors of the transient grating produced are restric
to thexy plane as well. This approximation makes all of th
laser pulses and the transient grating infinitely large in thz
direction. To reproduce the correct spatial profile in thez
direction for the laser pulses and the transient grating, e
of these wave packets would need a distribution of wa
vectorz components as well. This approximation greatly a
celerates the calculations and should not significantly af
the results.

The scattering of one of the probe pulse’s plane-wa
components by one of the transient grating’s plane-w
5778 © 1997 The American Physical Society
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55 5779COMPUTER MODEL FOR TRANSIENT GRATING . . .
components can be calculated by requiring that energy
momentum be conserved in the scattering event. For exp
ments in which the indices of refraction for both the pro
and scattered pulses are the same~parallel polarizations or
isotropic sample! and both pulses exit the same face of t
sample, the conservation of energy requirement can be w
ten in terms of the photon wave vectors in air~under these
conditions, the phonon wave vector is determined by
photon wave vectors and scattering angle measured in a!,4

ks5ki6
v

c
, ~1a!

where ks is the wave-vector magnitude of scattered pro
plane wave,ki is the wave-vector magnitude of incide
probe plane wave,v is the frequency of grating excitatio
plane wave, and ‘‘6’’ is for the destruction or creation of a
phonon. The general expression in terms of photon w
vectors in the sample is

ks
ns

5
ki
ni

6
v

c
, ~1b!

whereni andns are the indices of refraction for the incide
and scattered pulses. Conservation of momentum requ
that

ksx5kix6qx ~2a!

and

ksy5kiy6qy , ~2b!

whereksx is the x component of the scattered probe wa
vector,ksy is the y component of the scattered probe wa
vector, kix is the x component of the incident probe wav
vector, kiy is the y component of the incident probe wav
vector,qx is thex component of the grating wave vector,qy
is they component of the grating wave vector, and ‘‘6’’ is
for the destruction or creation of a phonon. Photon wa
vectors measured in air may be used instead of the va
measured in the crystal when Eq.~1a! is applicable. Once
qx , qy , v, and ki are chosen, there are only two pairs
solutions forkix andkiy that satisfy the conservation of en
ergy and momentum requirements; one corresponds to
destruction of a phonon and the other to the creation o
phonon.

In many transient grating experiments, the depth of
grating~throughout this paper, they dimension! is limited by
the thickness of the sample, rather than the region of ove
of the excitation pulses. The LiTaO3 experiments modeled
below3–6 are examples where thin samples limit the dep
of the transient gratings. For these experiments a further
proximation is made. The width of the grating~thex dimen-
sion! is governed by the distribution of thex components of
the excitation wave vectors, but no attempt is made to rep
duce the depth of the grating~the y dimension! with a dis-
tribution of y components of the excitation wave vectors~the
value ofqy used for each plane wave depends onv because
of conservation of energy and momentum consideration
the excitation process!. Instead, the depth of the grating~as-
sumed to be the same as the thickness of the sampl! is
modeled by relaxing conservation of momentum in they
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direction in the following way. The expressions for conse
vation of energy and conservation of momentum in thex
direction remain as shown in Eqs.~1! and ~2a!. They com-
ponent of the wave vector of the scattered wave,ksy8 , is
calculated from the following equation:

~ksy8 !25ks
22ksx

2 ~3!

and the amplitude of the scattered field is proportional to

sincF ~k8sy2ksy!L

2 G , ~4!

whereL is the thickness of the sample and

sinc~x!5
sin~x!

x
. ~5!

The sinc function is chosen to reproduce the square shap
the y direction imposed by the thin sample.7 A Gaussian
function for the scattered amplitude,

amplitude}e2~ksy8 2ksy!
2/s2 ~6!

was also examined; it produces a Gaussian rather than sq
shape to they cross section of the grating, but it gives ve
similar results as the sinc function when the values ofL and
s are chosen to produce gratings of similar thicknesses. N
that either a distribution ofy-momentum components or th
relaxedy-momentum conservation must be used to give
finite thickness to the grating. The relaxedy-momentum con-
servation method will be used in all examples in this pap

The scattered pulse is calculated by scattering each of
probe pulse’s plane-wave components off each of the tr
sient grating’s plane-wave components and summing
scattered waves. The scattered field,Cs(x,y,t), has the fol-
lowing form:

Cs~x,y,t !5(
i
Eicos~ksx,ix1ksy,i y2v i t !, ~7!

where the sum is over all scattered waves. By also calcu
ing the following expression,

Ds~x,y,t !5(
i
Eisin~ksx,ix1ksy,i y2v i t ! ~8!

the amplitude,Es(x,y,t), and phase,fs(x,y,t), of the scat-
tered wave can be determined from

Es5ACs
21Ds

2 ~9!

and

fs5tan21SDs

Cs
D . ~10!

Es(x,y,t) and fs(x,y,t) will be useful for calculating ex-
perimentally observable quantities below.

In the simulations presented here, an impulsive excitat
is used to initiate the material response. This is an appro
ate approximation for most transient grating experiments,
cluding the LiTaO3 experiments simulated here. In som
cases, however, it is the time dependence of the excita
that is of interest. For example, in transient thermal grat
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5780 55HEATHER M. PERRY AND THOMAS P. DOUGHERTY
experiments, it is the time-dependent conversion of the e
tronic excitation to a thermal excitation which is o
interest.8,9 The transient grating model can be modified
simulate an excitation with any time dependence by appr
mating the excitation with a series of properly weighted i
pulse forces.

Finally, the effects of finite probe pulse time resolutio
are neglected in the simulations presented below. For the
simulations, pulse convolution effects can be readily add
but adding pulse convolution to the heterodyne techni
would slow the calculations significantly. At the wave ve
tors of interest for the simulations below~approximately
1000 cm21!, the period of the polariton oscillation is ap
proximately 1.0 ps, far longer than the probe pulse durati
used in these experiments,3–6 and pulse convolution effect
are not significant.

III. APPLICATION OF THE MODEL
TO A1-SYMMETRY POLARITONS

IN LiTaO 3

A. Inclusion of experimental conditions into the model

The transient grating used in a simulation is defined us
several input parameters and a dispersion model for the g
ing excitation. In all of the examples presented below,
wave-vector-dependent sample response is determined
the model forA1-symmetry polaritons in LiTaO3 presented
in Sec. V B of Ref. 4. This model includes one polar op
mode and a coupled relaxational mode. As shown in Fig
of Ref. 4, this model and the more sophisticated model
veloped in the same section are indistinguishable in the
wave-vector region~'1000 cm21! where the heterodyne de
tection and ISS transient grating experiments differ m
dramatically.4,5 The LiTaO3 model parameters used ar
v150.0379 fs21, G150.0027 fs21, vL50.0758 fs21, «8̀58.5,
t50.3 ps, andB1rBr153.231024 fs22. As noted above,
different models can be readily substituted for this one
examine different materials.

The central grating wave vector is calculated from t
central wavelength of the excitation pulsesle , and the angle
between the excitation pulses~measured in air, not in the
sample! ue . In the examples below, the central excitati
wave vector is calculated assuming that the index of refr
tion in the sample is the same for both excitation pulses. T
is appropriate for isotropic samples or parallel polarizatio
for the excitation pulses. When perpendicularly polarized
citation pulses are used in a birefringent sample,le , ue , and
the indices of refraction would be required to calculate
central wave vector.10 The input value for the width~x di-
mension! of the grating is used to select the range of grat
excitation wave vectors and their relative amplitudes. E
perimentally, this value is determined from thex dimensions
of the excitation laser pulses. Thex position of the center of
the grating~at y50!, the number of plane waves used
describe the grating excitation, and the thickness of
sample complete the description of the transient grating.

The probe pulse wavelengths are determined from
central wavelengthlp , pulse durationtp , and the number of
wavelengthsm used to model the pulse. For each wav
length, a distribution ofn different wave-vector directions i
used. The distribution is determined by the input value
c-
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the probe spot size. Therefore, the probe pulse is the sum
n3m plane waves. The final probe parameters are the a
of incidenceup and thex position of the center of the prob
at y50.

The final considerations for modeling transient grating e
periments involve the nature of the detection system. For
experiments, in which only light scattered by the grati
reaches the detector, the signal is proportional to the sq
of the electric field at the detector. Since the detector is sl
it integrates the time response of the scattered pulse, and
signal is proportional to the peak value ofEs squared@see
Eq. ~9!#. The detector also integrates in the spatial dime
sions. This is particularly important in cases such as Fig
below, when the spatial profile of the scattered pulse is
Gaussian. To handle this situation, the scattered signa
integrated numerically along thex direction. The number of
points used in the numerical integration is an input para
eter.

For the heterodyne detection method,5,6 both the inelasti-
cally scattered light from the transient grating and elastica
scattered light from surfaces or defects interfere at the de
tor. The integrated intensity at the detector,I , is a function of
the pulse scattered by the transient grating and the s
probe light:

I5E
2`

`

@Epe
2~ t2t0 /tp!2cos~vpt1fp!

1Ese
2~ t2t0 /ts!

2
cos~vst1fs!#

2dt, ~11!

wherevp is the central probe frequency,tp is the probe
pulse duration,fp is the probe pulse phase,vs is the central
scattered frequency,ts is the scattered pulse duration,fs is
the scattered pulse phase, andt0 is the time required for the
peak of probe and scattered pulse to travel from the sam
to the detector. This expression forI can be rearranged to
have the formI5I 11I 2 , where

I 15Ep
2E

2`

`

e22~ t2t0 /tp!2cos2~vpt1fp!dt

1Es
2E

2`

`

e22~ t2t0 /ts!
2
cos2~vst1fs!dt ~12a!

and

I 252EpEsE
2`

`

e2~ t2t0 /tp!2e2~ t2t0/ts!
2

3cos~vpt1fp!cos~vst1fs!dt. ~12b!

The expression forI 1 is readily evaluated,

I 15Ep
2 tp
2
Ap

2
1Es

2 ts
2
Ap

2
~13!

and is the sum of the intensities of the two pulses wh
considered independently. The heterodyne term or inter
ence effects between the two pulses are contained in
expression forI 2 . Evaluating the expression forI 2 gives
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55 5781COMPUTER MODEL FOR TRANSIENT GRATING . . .
I 25EpEscos~fp2fs!cos~Dvt0!
Ap

a
e2~Dv!2/4a2,

~14a!

where

Dv5vp2vs ~14b!

and

a5
Atp

21ts
2

tpts
. ~14c!

When calculating the signal for a simulation, several of th
terms can be neglected as constants. The elastically scat
field Ep needs to be constant or the heterodyne experime
impossible.Ap anda are clearly constants, and the expone
tial term is nearly constant during an experiment. It is a
proximately equal to one when the excitation and pro
pulses are short compared to the grating oscillation period~at
small wave vectors! and decreases as the frequency of
grating excitation increases~at larger wave vectors!. This
exponential term reflects one way in which the experimen
time resolution affects the observed signal. The remain
terms must be calculated from the model.Es @Eq. ~9!#, the
amplitude of the scattered field, depends primarily on
phase matching angle of the probe pulse, the spatial ove
of the probe and grating and the grating amplitude. The fi
cosine term, cos~fp2fs!, oscillates at the frequency of th
transient grating response~but only for propagating excita
tions like polaritons!. The values offp andfs @Eq. ~10!# are
calculated at the same point in the sample. The second co
term, cos~Dvt0!, depends on the difference in frequency b
tween the two pulses and the time required for the pulse
travel from the sample to the detector. It will be shown b
low that neitherDv nor t0 are constant during an experimen
Under the conditions of the simulations presented here,
changes inDv are more important than the changes int0 .

In order to calculatevs ~andDv! as accurately as pos
sible, the phase of the scattered pulse,fs , is calculated ap-
proximately 180 times over a 375 fs period~approximately
twice per cycle of the electric field!. Since this approach is
time consuming, an additional simplification is made wh
calculating the signal for this experiment. The initial tra
sient grating formed in these experiments is actually the s
of two counter-propagating wave packets, and the pr
pulse interrogates a region next to and only partially ov
lapping the initial grating position.5,6 As the experiment
progresses, one of the wave packets propagates into~and
eventually out of! the probed region and the other leaves
probed region and has no effect on the scattered signal
the first 2 ps.5 The approximation made is to consider on
the wave packet which propagates into the probe region
neglects the wave packet which propagates away from
probe region. Oscillations at twice the polariton frequen
@observed experimentally~Fig. 1, Ref. 5!#, will not be repro-
duced in the simulations, but the more important beat
pattern~at about 5 ps! is reproduced. Including both wav
packets can produce distinctly non-Gaussian spatial pro
on the scattered pulse in the first 1 to 2 ps of the simulatio
Since the determination ofvs makes the calculation of th
signal in this case quite lengthy, including a spatial integ
e
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tion at the detector~analogous to what was done for the IS
experiment above! to examine an aspect of the experime
which is not central to resolving the differences with the IS
experiments was rejected as too time consuming.

In all of the simulations of heterodyne detection show
below, the value fort0 in the equation forI 2 is determined
by placing the detector 1.0 cm from the sample. While t
distance is certainly much shorter than what is practica
the laboratory, the equation forI 2 assumes that the time fo
the scattered and stray light to reach the sample are exa
the same. In practice, the exact nature of the light collect
optics ~a combination of lenses and mirrors! will have an
effect on the heterodyne signal by causing the two pul
~with different central frequencies! to take different lengths
of time to reach the detector. Since the details of the coll
tion optics used for the heterodyne experiments are not av
able, the simplest case with no optics is used.

B. Simulations of ISS experiments

In most of the ISS experiments,3,4 cylindrical focusing of
the excitation pulses was used to produce transient grat
which are large~1.2 mm! in the x dimension. The probe
pulse has an approximately 10 times smaller width and
focused on the center of the grating. By this choice of e
perimental conditions, the counter-propagating wave pac
are much longer in the direction of travel than the distan
traveled before the excitation decays. Similar experimen
conditions have been demonstrated to be effective in eli
nating excitation propagation effects for acoustic grating11

In all of the ISS experiments, no evidence was found
anything other than a single~wave-vector dependent!
damped harmonic oscillator response at all wave vectors

A series of simulations were produced with the followin
set of experimental conditions: grating width@full width at
half maximum ~FWHM!#53.3 mm, probe pulse width
~FWHM!5133mm, probe pulse duration5100 fs, thex po-
sition of the centers of the probe pulse and the initial tra
sient grating at the sample are the same, 29 plane wa
define the grating,~21311! plane waves define the probe
2.0 mm sample thickness, and the spatial numerical inte
tion of the scattered signal is approximated with 11 poin
With the excitation and probe pulses at 615 nm, angles
incidence for the beams at the sample from 0.00134 to 0.
radians were used to simulate 13 different experiments w
central polariton wave vectorsq, from 281 to 10 290 cm21.
Three examples with wave vectors near 1000 cm21 ~to be
compared with the heterodyne simulations below! are shown
in Fig. 1. All of the ISS simulations are well fit by a singl
damped harmonic oscillator; the simulation and fit would
indistinguishable if both were included in the same figure

As a test of the transient grating model and the suitabi
of ISS experiments for measuring polariton properties,
wave-vector-dependent frequenciesv and decay ratesg
from the fits to the simulated experiments are compared
Fig. 2 to the polariton dispersion relation used in the mod
The excellent agreement is a self-consistency check and
dicates that the results of ISS experiments at these condit
can be directly related to the polariton response.

As a further test of the transient grating model, an I
experiment with much smaller spot sizes for the excitat
pulses was simulated. The results of such an experim
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5782 55HEATHER M. PERRY AND THOMAS P. DOUGHERTY
have been published,3 and the signal is dramatically differen
from what is obtained with wide excitation pulses. The o
served nonexponential decay of the signal was attribute
wave packet propagation effects. A simulated experim
with conditions similar to those used for the data in Fig. 8
Ref. 3, is shown in Fig. 3. The simulated data successf
reproduce the experimentally observed nonexponential
cay.

These simulations indicate that the proposed trans
grating model can reproduce the results of ISS experim
in LiTaO3 as a function of wave vector and excitation widt
Since the dispersion relation used in initializing the transi
grating wave packets is the only aspect of the model spe
to LiTaO3, any ISS experiment can be simulated with t
model as long as an appropriate dispersion relation is su
tuted for the one used here.

C. Simulations of heterodyne detection experiments

The experimental conditions assumed for these sim
tions are similar to those reported in Ref. 6: grating wid
~FWHM!5250 mm, probe pulse width~FWHM!5250 mm,
probe pulse duration5100 fs, thex position of the centers o
the probe pulse and the initial transient grating are offset
260 mm, 29 plane waves define the grating,~21311! plane
waves define the probe and 2.0 mm sample thickness. W
the excitation and probe pulses at 615 nm, angles of i
dence for the pump beams at the sample from 0.0012
0.049 radians were used to simulate 16 different experim
with central polariton wave vectorsq from 257 to 10 290
cm21. The angle of incidence for the probe beam was cho
to be zero. This choice was suggested by Fig. 1 of Ref
Another reference suggests a different probe orientation,5 but
it produces no qualitative difference in the simulations; a
fixed excitation wave vector, the primary difference observ
from changing the angle of incidence of the probe is an ov
all decrease in signal amplitude as the probe angle mo
away from the Bragg angle.

In Fig. 4, three simulations of heterodyne detection
periments in LiTaO3 ~using the same wave vectors as t

FIG. 1. Simulations ofA1-symmetry ISS experiments in LiTaO3
at three different wave vectors. The material and excitation par
eters are described in the text. At each wave vector, the simula
is well described by a single damped harmonic oscillator respo
function. For comparison to experimental results, see Fig. 9 of R
3 and Fig. 2 of Ref. 4.
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FIG. 2. The wave-vector dependence of the polariton frequen
v, determined from the ISS simulations are compared to the dis
sion model for LiTaO3 used to produce the simulations in~a!. The
wave-vector dependence of the decay rateg from the simulations
and dispersion model are shown in~b!. For comparison to experi-
mental results, see Fig. 5 of Ref. 4.

FIG. 3. Simulations atq51839 cm21 with ~a! a 3.3 mm wide
grating and~b! a 133mm wide grating are shown. There is n
significant difference in the observed frequencies for the two sim
lations, but there is a nonexponential decay of the signal for
small grating experiment which is not observed in the large gra
experiment. Similar polariton wave-packet propagation effects
ISS experiments with small excitation spot sizes have been repo
in Fig. 8 of Ref. 3.
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55 5783COMPUTER MODEL FOR TRANSIENT GRATING . . .
three ISS simulations in Fig. 1! are shown. As expected
there are pulse propagation effects~similar to the ISS experi-
ment in Fig. 3!, and the signal oscillates at the polarito
frequency,v ~rather than 2v as in the ISS experiments!.
There is one significant difference between these simulat
and the ISS simulations in Fig. 1; the signal response can
be described as a single damped harmonic oscillator a
wave vectors. This can be seen by the beating pattern in
simulation atq5917 cm21 and in the Fourier transform o
this simulation shown in Fig. 5. The experimental resu
presented in Figs. 1 and 2 of Ref. 5 show a similar wa
vector dependence, with the most pronounced beating
tern atq51010 cm21.

The beating pattern has been cited as evidence of an
ditional transverse-optic phonon at 0.95 THz.5,6 This addi-
tional phonon cannot be the explanation for the beating
tern observed in the simulations~Fig. 4! because the
dispersion model used for LiTaO3 does not include this
mode.4 The form of the heterodyne simulations can be u

FIG. 4. Simulations ofA1-symmetry heterodyne detection e
periments in LiTaO3 at three different wave vectors. The mater
and excitation parameters are described in the text. Atq5917
cm21, a beating pattern in the simulated data is seen. For comp
son to experimental results, see Fig. 1 of Ref. 5.

FIG. 5. Fourier transforms of the simulations in Fig. 4. T
beating pattern seen in the time-domain simulation atq5917 cm21

corresponds to a frequency-domain response with two peaks.
comparison to experimental results, see Fig. 2 of Ref. 5.
ns
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derstood by reexamining Eq.~14a!, the function used to cal-
culate the signal. One of the cosine terms depends onDv,
which is the difference in frequency between the probe a
scattered pulses,vp andvs , respectively;vp is independent
of the time delay between the pump and probe pulses, buvs
is not. Therefore,Dv changes during an experiment. Sin
vs is one of the variables saved at each time step durin
simulation, it is easy to calculateD~Dv!, the difference be-
tween the largest and smallest values ofvs calculated during
the first 10 ps of an experiment, as a function of wave vec
The choice of 10 ps was made to coincide with the durat
of spatial overlap of the probe with the propagating grat
wave packet. As shown in Fig. 6,D~Dv! peaks at wave vec
tors where the beating pattern is most pronounced~just be-
low 1000 cm21!, and it is in this wave-vector region tha
changes in cos~Dvt0! are most significant. At 917 cm21,
Dvt0 changes by approximately 3p/2 in the first 10 ps with
the detector 1.0 cm from the sample~t0 is a function of this
distance!. Note that the magnitude ofD~Dv! is sensitive to
the grating spot size. Atk5917 cm21, increasing the spo
size from the value used in these simulations 250mm to 375
mm decreasesD~Dv! by a factor of 3. Doubling the size to
500mm decreasesD~Dv! by a factor of 30.

In the simulations presented here, changes inDv are the
most significant source of changes in cos~Dvt0!. This would
not necessarily be true if more elaborate signal collect
optics were used. As discussed above, introduction of len
and mirrors after the sample invalidates the approximat
that t0 , the time required for the pulses to travel from th
sample to the detector, be the same for the scattered and
light. The time required for the scattered light to reach t
detector depends on the path the light takes from the sam
to the detector. This path is not independent of the pum
probe delay time.Du, the maximum change in the scatterin
angle during the first 10 ps of an experiment@analogous to
D~Dv! above# also peaks at wave vectors below 1000 cm21

~Fig. 7!. While not significant in these simulations, variatio

ri-

or

FIG. 6. The change inDv @Eq. ~14b!# during the first 10 ps of a
heterodyne detection experiment,D~Dv!, is plotted as a function of
excitation wave vectorq. All experimental parameters except forq
are identical to those used to produce the simulations in Fig
Sincevp is constant, all of the time dependence inDv is in vs , the
frequency of the inelastically scattered probe pulse. The dep
dence ofDv on the excitation/probe delay is the primary cause
the beating patterns seen in the heterodyne detection simulatio
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in u could be very important when considering more realis
light collection optics and their effects on the observed s
nal.

While the time dependences ofD~Dv! andDu observed in
the simulations can explain the observed beating pattern
is important to understand the physical origins of this beh
ior. Since the polariton decay rate is a function ofq ~Refs. 3
and 4! and a wave packet with finite spatial dimensions m
contain polaritons with a range of wave vectors, it is n
always possible to define a wave-packet decay rate. Inst
the different wave-vector components decay at differ
rates, and the grating wavelength changes as the wave p
evolves in time. This change in the grating wavelength
observed in the time dependences ofD~Dv! andDu. Experi-
mentally, the magnitudes ofD~Dv! andDu depend on the
central excitation wave vector, the width of the excitati
and the dispersion relation for the material excitations. T
dependence on the central excitation wave vector~the wave-
length and scattering angle for the excitation pulses! is
shown in Figs. 6 and 7. A simulation of the heterodyne
periment atq5917 cm21 with the same parameters as befo
except for increasing the width of the excitation from 2
mm to 3.3 mm~decreasing the range of wave vectors e
cited! is shown in Fig. 8~a!. Comparing to the earlier simu
lation in Fig. 4@and Fig. 8~c!# D~Dv! andDu are reduced by
factors of 26 and 16, respectively. This has a dramatic ef
on the simulation; the beating pattern is no longer observ
Unfortunately, it is not possible to perform a heterodyne
periment under these conditions. The two count
propagating excitation wave packets will decay before th
are spatially separated~the simulation ignores one of th
wave packets!. The dependence of the heterodyne signal
the dispersion relation can be seen in Fig. 8~b!. In this simu-
lation atq5917 cm21, the conditions are the same as for t
simulations in Fig. 4 except that the decay rate of all exc
tions is set to zero. Once again, the beating pattern di
pears. In this case,D~Dv! and Du are approximately 200

FIG. 7. The change inu, the scattering angle of the probe puls
during the first 10 ps of a heterodyne detection experiment,Du, is
plotted as a function of excitation wave vectorq. All experimental
parameters except forq are identical to those used to produce t
simulations in Fig. 4. The effect ofDu on the simulations shown
here is quite small, but could be significant if the detector w
moved farther from the sample and a series of lenses and mi
was used to collect the light.
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times smaller than the values shown in Figs. 6 and 7. No
that the propagation of the grating wave packet into and
of the probed region is clearly observed in Fig. 8~b!, but is
not significant in the large grating simulation in Fig. 8~a!. In
the heterodyne experiments5,6 at wave vectors near 100
cm21, the excitation is sufficiently small~the range of ex-
cited wave vectors is sufficiently large! and the wave-vector
dependence of the decay rate is sufficiently large that
time dependence ofD~Dv! andDu must be considered in th
analysis. In contrast, the ISS experiments which used la
excitations~a narrow range of excitation wave vectors! do
not exhibit these effects at any wave vector.

IV. CONCLUSION

The model presented above successfully reproduces
results of transient grating experiments in LiTaO3 at a variety
of experimental conditions. Since the only aspect of
model specific to LiTaO3 is the polariton dispersion relation
the model is applicable to transient grating experiments
any sample for which the wave-vector dependence of
excitation is known or can be estimated.

In addition, the apparent incompatibility of the ISS an
heterodyne LiTaO3 experiments has been resolved. The
simulations of the experiments in LiTaO3 demonstrate tha
all transient grating experiments, heterodyne experime
and ISS experiments with large and small gratings, are c
sistent with the model forA1-symmetry modes presented
Ref. 4. An alternative model which includes a resonance
0.95 THz~Refs. 5 and 6! is based on inappropriate analys
of the heterodyne detection data. While further study is
quired, the analysis presented here also raises doubts a
the interpretation of heterodyne experiments in oth
materials.12

It should be noted that the predictions made by the mo
can be readily tested. The signal observed in heterodyne
periments, described by Eq.~14a!, depends on cos~Dvt0!.
The time required for the scattered and heterodyne pulse

e
rs

FIG. 8. Simulations of heterodyne detection experiments
q5917 cm21. For each simulation, all experimental parameters
identical to those used to produce the simulations in Fig. 4 excep
noted below.~a! The size of the grating excitation is increased fro
250mm to 3.3 mm~FWHM!. ~b! The decay rate of the polariton a
all wave vectors is set equal to zero.~c! Identical to the simulation
at q5917 cm21 in Fig. 4.
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reach the detectort0 can be varied by moving the detect
position. Doubling the distance from the sample to the
tector should double the beating frequency. When perfo
ing this test, special care must be taken with the light coll
tion optics. Equation~14a! assumes that the scattered a
heterodyne pulses take exactly the same length of tim
reach the detector. Since the two pulses have different ce
frequencies, any dispersive optic makes that approxima
invalid. Very small differences in propagation times are s
nificant because the period of the red light used in
LiTaO3 experiments is about 2 fs. As a result, lenses after
sample can drastically complicate the calculation of the h
erodyne signal.
pt

n
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-
-

to
ral
n
-
e
e
t-

The model presented here assumes that the grating th
ness is determined by the thickness of the sample rather
the spatial overlap of the excitation pulses and that a tw
dimensional representation of the experiment is sufficie
Modifications of the model to simulate experiments
‘‘thick’’ samples and to produce a three-dimensional sim
lation are currently under investigation.
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