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Computer model for transient grating experiments and its application to analysis of LiTaG

Heather M. Perry and Thomas P. Dougherty
Department of Chemistry and Physics, Beaver College, Glenside, Pennsylvania 19038
(Received 9 July 1996

A computer program is used to model transient grating experiments where two laser pulses induce a
transient response in the sample and the time evolution of that response is monitored by the diffraction of a
third pulse. The program is designed so that experimental conditions such as spot sizes, excitation angle, probe
angle, relative pump and probe positions, and laser wavelength can be readily varied. The model accommo-
dates acoustic and polariton excitations which travel significant distances during an experiment. This program
is used to simulate and analyze transient grating experimermg-efmmetry polaritons in the ferroelectric
crystal LiTaG;. Previous experiments have used two different detection schemes for the scattered pulse, and
two different models for the optic modes of LiTa@ere proposed. The simulations show that the discrepan-
cies result from an experimental artifact in the heterodyne detection experiments, and both sets of experiments
are consistent with one model for the crystal’s optic mo{86163-182807)02109-7

[. INTRODUCTION dence for a low-frequency relaxational mode. Transient grat-
ing experiments using a heterodyne detection techifjue
With the development of pulsed lasers a wide range ofound instead that two damped harmonic oscillator response
transient grating experiments have become possible. A rdunctions were required at wave vectors near 1000 tm
cent review of time-domain spectroscopy discusses many ag-his was interpreted as evidence of a previously unobserved
p”cations of transient grating Spectroscdpm Crysta”ine 0.95 THz mode. The S|mu|at|0ns beIOW prOVIde an explana—
solids, this technique has been used to study transverse- aH@n for the observed data and demonstrate that all the results
longitudinal-acoustic and optic modes. In liquids, molecularare consistent with the first model for the optic modes of
vibrations, reorientations, and longitudinal-acoustic moded-iTaOs.
have been observed, and transverse-acoustic modes have
been found in glass-forming liquids near the glass transition.
The appropriate experimental conditiofagles between
the excitation beams, excitation and probe spot sizes), etc. All Gaussian wave packets, laser pulses and material ex-
depend on the type of excitation produced. This is particucitations are represented as properly weighted sums of plane
larly true for wave-vector-dependefaispersive excitations;  waves. Notice that representing the excitation in this way
in addition to a dependence of the observed frequency anplaces no restrictions on the type of excitation that can be
decay rate on the grating wavelength, propagation of thenalyzed. For propagating excitatiof@d the laser pulsgs
transient excitation can significantly affect the res@ilts. the frequency and decay rate of each plane wave is a func-
A general computer model for transient grating experi-tion of wave vector. For nonpropagating excitations, the
ments is presented here. It can be used to examine any typane-wave frequency and decay rate are independent of
of material excitation, whether it is propagating or nonpropawave vector. Except for differences in the dispersion of fre-
gating. With this model a range of experimental conditionsquency and decay rate, all excitations are treated in the same
can be rapidly evaluated and an appropriate set of condition®anner.
can be chosen. More importantly, the model can be used for In order to simplify the model and reduce the computation
the analysis of experimental results; it is a powerful tool fortimes required, the transient grating experiment is approxi-
separating experimental artifacts from the physical quantitiesnated in two dimensions. The excitation and probe beam
of interest. wave vectors are restricted to thig plane of a laboratory
To demonstrate the validity and utility of this model, tran- coordinate system and enter and exit the sample through
sient grating experiments dk,-symmetry phonon-polaritons faces of the sample which are parallel to tteplane. The
in LiTaO5 will be simulated. Phonon-polaritons are propa-wave vectors of the transient grating produced are restricted
gating excitations which allow for a thorough test of theto thexy plane as well. This approximation makes all of the
model, and the results of transient grating experiments at kser pulses and the transient grating infinitely large inzhe
wide range of conditions have been publisRetiThe inter-  direction. To reproduce the correct spatial profile in the
pretations of these experiments have produced two fundadirection for the laser pulses and the transient grating, each
mentally incompatible models for the low-frequency of these wave packets would need a distribution of wave-
A;-symmetry optic modes of LiTaQ Impulsive stimulated vectorz components as well. This approximation greatly ac-
scattering(ISS) experiment$* found that the polariton was celerates the calculations and should not significantly affect
well described by a single damped harmonic oscillator rethe results.
sponse function at all wave vectors. However, the anomalous The scattering of one of the probe pulse’s plane-wave
dispersion of the polariton decay rate was interpreted as eveomponents by one of the transient grating’s plane-wave
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components can be calculated by requiring that energy andirection in the following way. The expressions for conser-
momentum be conserved in the scattering event. For experication of energy and conservation of momentum in the
ments in which the indices of refraction for both the probedirection remain as shown in Eqd) and(2a). They com-
and scattered pulses are the sajparallel polarizations or ponent of the wave vector of the scattered Walvgﬁ, is
isotropic sampleand both pulses exit the same face of thecalculated from the following equation:

sample, the conservation of energy requirement can be writ-

ten in terms of the photon wave vectors in @inder these (kiy)?=ki— K&y ()
conditions, the phonon wave vector is determined by th

i 2 _._and the ampli f th red field is proportional
photon wave vectors and scattering angle measured )if alr%l d the amplitude of the scattered field is proportional to

sinc{—(k Sy_z ksy)L}, 4

) ) whereL is the thickness of the sample and
wherek, is the wave-vector magnitude of scattered probe

plane wavek; is the wave-vector magnitude of incident ] sin(x)
probe plane waveyp is the frequency of grating excitation sinax)= vt (5)
plane wave, and %" is for the destruction or creation of a

phonon. The general expression in terms of photon wavd he sinc function is chosen to reproduce the square shape in
vectors in the sample is the y direction imposed by the thin samgieA Gaussian

function for the scattered amplitude,

w
kS: kiizv (16)

ke K

w
nem S (1b) amplitudec e~ (ksy~ksy*/o® (6)

wheren; andn, are the indices of refraction for the incident Was also examined it produces a Gaussian rather than square

and scattered pulses. Conservation of momentum require°§1a.pe to thy cross section of t.he grating, but it gives very
that similar results as the sinc function when the values @nd

o are chosen to produce gratings of similar thicknesses. Note
Kex= Kix = Ol (29  that either a distribution of-momentum components or the
relaxedy-momentum conservation must be used to give a
and finite thickness to the grating. The relaxggnomentum con-
servation method will be used in all examples in this paper.
Ksy=kiy* 0y, (2b) The scattered pulse is calculated by scattering each of the
probe pulse’s plane-wave components off each of the tran-
sient grating’s plane-wave components and summing the
scattered waves. The scattered figld(x,y,t), has the fol-
lowing form:

whereks, is the x component of the scattered probe wave
vector, kg, is they component of the scattered probe wave
vector, k;, is the x component of the incident probe wave
vector, k;,, is they component of the incident probe wave
vector,q, is thex component of the grating wave vecto,

is they component of the grating wave vector, and™ is Cs(x,y,t)=2 Eicog Ky iX+Ksy iy — wit), )

for the destruction or creation of a phonon. Photon wave :

vectors measured in air may be used instead of the valugghere the sum is over all scattered waves. By also calculat-
measured in the crystal when E@a) is applicable. Once jng the following expression,

dx, dy, @, andk; are chosen, there are only two pairs of

solutions fork;, andk;, that satisfy the conservation of en-

ergy and momentum requirements; one corresponds to the Ds(x,y,t)=2i Eisin(Ksxi X+ Ksy,iy — it) ®)
destruction of a phonon and the other to the creation of a
phonon. the amplitude E¢(x,Y,t), and phasegq(x,y,t), of the scat-

In many transient grating experiments, the depth of thdered wave can be determined from
grating(throughout this paper, thedimension is limited by 5
the thickness of the sample, rather than the region of overlap Es=VCs+Ds €)
of the excitation pulses. The LiTaGxperiments modeled .4
below’~® are examples where thin samples limit the depths
of the transient gratings. For these experiments a further ap- D,
proximation is made. The width of the gratifigne x dimen- ps=tan ! C_) (10
sion) is governed by the distribution of thecomponents of s
the excitation wave vectors, but no attempt is made to reproE¢(X,y,t) and ¢4(x,y,t) will be useful for calculating ex-
duce the depth of the gratinghe y dimension with a dis-  perimentally observable quantities below.
tribution ofy components of the excitation wave vectise In the simulations presented here, an impulsive excitation
value ofqg, used for each plane wave dependswohecause is used to initiate the material response. This is an appropri-
of conservation of energy and momentum considerations iate approximation for most transient grating experiments, in-
the excitation proce$sinstead, the depth of the gratifgs- cluding the LiTaQ experiments simulated here. In some
sumed to be the same as the thickness of the sanmple cases, however, it is the time dependence of the excitation
modeled by relaxing conservation of momentum in the that is of interest. For example, in transient thermal grating
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experiments, it is the time-dependent conversion of the eleadhe probe spot size. Therefore, the probe pulse is the sum of
tronic excitation to a thermal excitation which is of nXm plane waves. The final probe parameters are the angle
interest® The transient grating model can be modified toof incidencef), and thex position of the center of the probe
simulate an excitation with any time dependence by approxiat y=0.

mating the excitation with a series of properly weighted im-  The final considerations for modeling transient grating ex-
pulse forces. periments involve the nature of the detection system. For ISS

Finally, the effects of finite probe pulse time resolution experiments, in which only light scattered by the grating
are neglected in the simulations presented below. For the IS®aches the detector, the signal is proportional to the square
simulations, pulse convolution effects can be readily addedyf the electric field at the detector. Since the detector is slow,
but adding pulse convolution to the heterodyne techniqué integrates the time response of the scattered pulse, and the
would slow the calculations significantly. At the wave vec- signal is proportional to the peak value Bf squaredsee
tors of interest for the simulations belovapproximately Eq. (9)]. The detector also integrates in the spatial dimen-
1000 cm}), the period of the polariton oscillation is ap- sions. This is particularly important in cases such as Fig. 3
proximately 1.0 ps, far longer than the probe pulse durationbelow, when the spatial profile of the scattered pulse is not
used in these experiments and pulse convolution effects Gaussian. To handle this situation, the scattered signal is
are not significant. integrated numerically along thedirection. The number of
points used in the numerical integration is an input param-
eter.

For the heterodyne detection methdthoth the inelasti-
cally scattered light from the transient grating and elastically
scattered light from surfaces or defects interfere at the detec-
A. Inclusion of experimental conditions into the model tor. The integrated intensity at the detectogiis a function of

he pulse scattered by the transient grating and the stray
% obe light:

IIl. APPLICATION OF THE MODEL
TO A;-SYMMETRY POLARITONS
IN LiTaO 5

The transient grating used in a simulation is defined usin
several input parameters and a dispersion model for the gra'
ing excitation. In all of the examples presented below, the
wave-vector-dependent sample response is determined from _ |- —(t—ty/7y)?
the model forA;-symmetry polaritons in LiTaQpresented I_f [Epe 0P codwptt ¢p)
in Sec. V B of Ref. 4. This model includes one polar optic 5
mode and a coupled relaxational mode. As shown in Fig. 5 +Ee (/7 coq wet + o) 12dt, (11
of Ref. 4, this model and the more sophisticated model de-
veloped in the same section are indistinguishable in the lowhere w, is the central probe frequency, is the probe
wave-vector regioti~1000 cm 1) where the heterodyne de- pulse durationg, is the probe pulse phase, is the central
tection and ISS transient grating experiments differ mosscattered frequencys is the scattered pulse duratiogy is
dramatically*® The LiTaO, model parameters used are: the scattered pulse phase, @gds the time required for the
0,=0.0379 f§ 1, T,=0.0027 fs!, » =0.0758 fs*, ¢.,=8.5, peak of probe and scattered pulse to travel from the sample
7=0.3 ps, andBY'B'=3.2x10"* fs"2 As noted above, 0 the detector. This expression fbrcan be rearranged to
different models can be readily substituted for this one tdhave the formi =1,+1,, where
examine different materials.

The central grating wave vector is calculated from the 2 [* oty )2
central wavelength of the excitation pulses and the angle l.=E f_ e o/ cog(wpt + ¢p)dt
between the excitation pulsémeasured in air, not in the
sample 6. In the examples below, the central excitation 2 [7 ooty
wave vector is calculated assuming that the index of refrac- +Es fﬁxe o/ cod(wst + pg)dt (123
tion in the sample is the same for both excitation pulses. This
is appropriate for isotropic samples or parallel polarizations, 4
for the excitation pulses. When perpendicularly polarized ex-
citation pulses are used in a birefringent samplg, 6., and
the indices of refraction would be required to calculate the |2=2EpEsf e~ (t-to/m)%g—(t—to/7g)?
central wave vectol? The input value for the widttix di-
mension of the grating is used to select the range of grating
excitation wave vectors and their relative amplitudes. Ex-
perimentally, this value is determined from thelimensions
of the excitation laser pulses. Tleposition of the center of
the grating(at y=0), the number of plane waves used to
describe the grating excitation, and the thickness of the \/7 \[
sample complete the description of the transient grating.

The probe pulse wavelengths are determined from the
central wavelengt,, pulse duratiorr,, and the number of and is the sum of the intensities of the two pulses when
wavelengthsm used to model the pulse. For each wave-considered independently. The heterodyne term or interfer-
length, a distribution of different wave-vector directions is ence effects between the two pulses are contained in the
used. The distribution is determined by the input value forexpression fot,. Evaluating the expression fby gives

X coq wpt+ @) COY wit + o) dt. (12b

The expression fot; is readily evaluated,

(13
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. - tion at the detectofanalogous to what was done for the ISS
| ,=E,EsCoS ¢p— ¢>S)cos(Awto)?e’(A‘“> M, experiment aboveto examine an aspect of the experiment
(143 which is not central to resolving the differences with the ISS

experiments was rejected as too time consuming.

where In all of the simulations of heterodyne detection shown
below, the value fotg in the equation foll, is determined

Aw=wp—ws (14b  py placing the detector 1.0 cm from the sample. While this

and distance is certainly much shorter than what is practical in

the laboratory, the equation fby assumes that the time for
\/;2+—Tz the scattered and stray light to reach the sample are exactly

a=—P S (140 the same. In practice, the exact nature of the light collection

TpTs optics (a combination of lenses and mirrprill have an

When calculating the signal for a simulation, several of thes&ff€ct on the heterodyne signal by causing the two pulses
terms can be neglected as constants. The elastically scattergfth different central frequencigso take different lengths
field E, needs to be constant or the heterodyne experiment Qf time to reach the detector. Since the details of the collec-

impossible.\/ anda are clearly constants, and the exponen—t'on optics used for the heterodyne experiments are not avail-

tial term is nearly constant during an experiment. It is ap-2P€: the simplest case with no optics is used.

proximately equal to one when the excitation and probe
pulses are short compared to the grating oscillation pgebd
small wave vectopsand decreases as the frequency of the In most of the ISS experiment$,cylindrical focusing of
grating excitation increase@t larger wave vectofs This  the excitation pulses was used to produce transient gratings
exponential term reflects one way in which the experimentalvhich are large(1.2 mm in the x dimension. The probe
time resolution affects the observed signal. The remainingulse has an approximately 10 times smaller width and is
terms must be calculated from the modgl [Eq. (9)], the  focused on the center of the grating. By this choice of ex-
amplitude of the scattered field, depends primarily on theperimental conditions, the counter-propagating wave packets
phase matching angle of the probe pulse, the spatial overlegre much longer in the direction of travel than the distance
of the probe and grating and the grating amplitude. The firstraveled before the excitation decays. Similar experimental
cosine term, cdgh,— ¢s), oscillates at the frequency of the conditions have been demonstrated to be effective in elimi-
transient grating respongbut only for propagating excita- nating excitation propagation effects for acoustic gratittgs.
tions like polaritong The values ofp, and¢¢ [Eq.(10)]are  In all of the ISS experiments, no evidence was found for
calculated at the same point in the sample. The second cosia@ything other than a singlgwave-vector dependent
term, co$Awt,), depends on the difference in frequency be-damped harmonic oscillator response at all wave vectors.
tween the two pulses and the time required for the pulses to A series of simulations were produced with the following
travel from the sample to the detector. It will be shown be-set of experimental conditions: grating widtfull width at
low that neitherAw nort, are constant during an experiment. half maximum (FWHM)]=3.3 mm, probe pulse width
Under the conditions of the simulations presented here, thGeWHM)=133 um, probe pulse duratienl00 fs, thex po-
changes iMw are more important than the changeggn sition of the centers of the probe pulse and the initial tran-
In order to calculatavs (and Aw) as accurately as pos- sient grating at the sample are the same, 29 plane waves
sible, the phase of the scattered pulgg, is calculated ap- define the grating(21x11) plane waves define the probe,
proximately 180 times over a 375 fs perigapproximately 2.0 mm sample thickness, and the spatial numerical integra-
twice per cycle of the electric fieldSince this approach is tion of the scattered signal is approximated with 11 points.
time consuming, an additional simplification is made whenWith the excitation and probe pulses at 615 nm, angles of
calculating the signal for this experiment. The initial tran-incidence for the beams at the sample from 0.00134 to 0.049
sient grating formed in these experiments is actually the sumadians were used to simulate 13 different experiments with
of two counter-propagating wave packets, and the probeentral polariton wave vectorg, from 281 to 10 290 crm.
pulse interrogates a region next to and only partially overThree examples with wave vectors near 1000 trtto be
lapping the initial grating position® As the experiment compared with the heterodyne simulations belave shown
progresses, one of the wave packets propagates(émd in Fig. 1. All of the ISS simulations are well fit by a single
eventually out of the probed region and the other leaves thedamped harmonic oscillator; the simulation and fit would be
probed region and has no effect on the scattered signal aftétdistinguishable if both were included in the same figure.
the first 2 ps. The approximation made is to consider only  As a test of the transient grating model and the suitability
the wave packet which propagates into the probe region andf ISS experiments for measuring polariton properties, the
neglects the wave packet which propagates away from th@ave-vector-dependent frequencies and decay ratesy
probe region. Oscillations at twice the polariton frequencyfrom the fits to the simulated experiments are compared in
[observed experimentalliFig. 1, Ref. 5], will not be repro-  Fig. 2 to the polariton dispersion relation used in the model.
duced in the simulations, but the more important beatingrhe excellent agreement is a self-consistency check and in-
pattern(at about 5 psis reproduced. Including both wave dicates that the results of ISS experiments at these conditions
packets can produce distinctly non-Gaussian spatial profilesan be directly related to the polariton response.
on the scattered pulse in the first 1 to 2 ps of the simulations. As a further test of the transient grating model, an ISS
Since the determination abs makes the calculation of the experiment with much smaller spot sizes for the excitation
signal in this case quite lengthy, including a spatial integrapulses was simulated. The results of such an experiment

B. Simulations of ISS experiments
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ISS Simulations W VS. @
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FIG. 1. Simulations ofA\;-symmetry ISS experiments in LiTgO

at three different wave vectors. The material and excitation param- & vs. g

eters are described in the text. At each wave vector, the simulation 1.4+
is well described by a single damped harmonic oscillator response 1 2]
function. For comparison to experimental results, see Fig. 9 of Ref. —
3 and Fig. 2 of Ref. 4. n 1.07
have been publishetiand the signal is dramatically different § 0.8
from what is obtained with wide excitation pulses. The ob- S 0.61
served nonexponential decay of the signal was attributed to ™
wave packet propagation effects. A simulated experiment . 0.4 , _
. .. . . . Dispersion Model
with conditions similar to those used for the data in Fig. 8 of 0.2 Simulated Experiments « <
Ref. 3, is shown in Fig. 3. The simulated data successfully
reproduce the experimentally observed nonexponential de- 0-93 2000 4000 6000 8000 10000
cay. Wave Vector (cm-?)

These simulations indicate that the proposed transient
grating model can reproduce the results of ISS experiments FIG. 2. The wave-vector dependence of the polariton frequency,
in LiTaO; as a function of wave vector and excitation width. », determined from the ISS simulations are compared to the disper-
Since the dispersion relation used in initializing the transiension model for LiTaQ used to produce the simulations (@. The
grating wave packets is the only aspect of the model specifizave-vector dependence of the decay ratitom the simulations
to LiTaO;, any ISS experiment can be simulated with theand dispersion model are shown (in). For comparison to experi-
model as long as an appropriate dispersion relation is substiental results, see Fig. 5 of Ref. 4.
tuted for the one used here.

Large vs. Small Grating

C. Simulations of heterodyne detection experiments

The experimental conditions assumed for these simula-
tions are similar to those reported in Ref. 6: grating width
(FWHM)=250 um, probe pulse widtftFWHM)=250 um,
probe pulse duration100 fs, thex position of the centers of
the probe pulse and the initial transient grating are offset by
260 um, 29 plane waves define the grating1x11) plane
waves define the probe and 2.0 mm sample thickness. With
the excitation and probe pulses at 615 nm, angles of inci-
dence for the pump beams at the sample from 0.00123 to
0.049 radians were used to simulate 16 different experiments
with central polariton wave vectorg from 257 to 10 290
cm 1. The angle of incidence for the probe beam was chosen
to be zero. This choice was suggested by Fig. 1 of Ref. 6.
Another reference suggests a different probe orientdtimt, FIG. 3. Simulations a=1839 cni* with () a 3.3 mm wide
it produces no qualitative difference in the simulations; at airating and(b) a 133 um wide grating are shown. There is no
fixed excitation wave vector, the primary difference observedignificant difference in the observed frequencies for the two simu-
from changing the angle of incidence of the probe is an overttions, but there is a nonexponential decay of the signal for the
all decrease in signal amplitude as the probe angle movasnall grating experiment which is not observed in the large grating
away from the Bragg angle. experiment. Similar polariton wave-packet propagation effects in

In Fig. 4, three simulations of heterodyne detection ex-ISS experiments with small excitation spot sizes have been reported
periments in LiTaQ (using the same wave vectors as thein Fig. 8 of Ref. 3.

(Signal)

in

Time (ps)
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Heterodyne Simulations A (AW vs. g
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0
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'.:IG' 4 _Simulations ofAl-symmetry heterodyne detection ex- FIG. 6. The change idw [Eq. (14b)] during the first 10 ps of a
perlment_s n LiTaQ at three different wave yectors. The material heterodyne detection experime{Aw), is plotted as a function of
anqlexmtathn parametgrs are described |n_the textqABL7 excitation wave vectoq. All experimental parameters except fpr
cm -, a beat!ng pattern in the S|mglated data is seen. For coOMparkie identical to those used to produce the simulations in Fig. 4.
son to experimental results, see Fig. 1 of Ref. 5. Sincewp is constant, all of the time dependencelia is in wg, the

frequency of the inelastically scattered probe pulse. The depen-
three ISS simulations in Fig.)lare shown. As expected, dence ofAw on the excitation/probe delay is the primary cause of
there are pulse propagation effetdamilar to the 1SS experi- the beating patterns seen in the heterodyne detection simulations.
ment in Fig. 3, and the signal oscillates at the polariton
frequency, » (rather than @ as in the ISS experiments derstood by reexamining E¢L439, the function used to cal-
There is one significant difference between these simulationgulate the signal. One of the cosine terms dependa®on
and the ISS simulations in Fig. 1; the signal response cannathich is the difference in frequency between the probe and
be described as a single damped harmonic oscillator at aficattered pulsesy, and w, respectivelyw, is independent
wave vectors. This can be seen by the beating pattern in th@f the time delay between the pump and probe pulsespbut
simulation atq=917 cm ! and in the Fourier transform of is not. ThereforeAw changes during an experiment. Since
this simulation shown in Fig. 5. The experimental resultsws iS one of the variables saved at each time step during a
presented in Figs. 1 and 2 of Ref. 5 show a similar wavesimulation, it is easy to calculai#(Aw), the difference be-
vector dependence, with the most pronounced beating patween the largest and smallest valuesogfcalculated during
tern atq=1010 cm . the first 10 ps of an experiment, as a function of wave vector.

The beating pattern has been cited as evidence of an adhe choice of 10 ps was made to coincide with the duration
ditional transverse-optic phonon at 0.95 T#zThis addi-  of spatial overlap of the probe with the propagating grating
tional phonon cannot be the explanation for the beating patwave packet. As shown in Fig. 8(Aw) peaks at wave vec-
tern observed in the simulationéFig. 4) because the tors where the beating pattern is most pronoungest be-
dispersion model used for LiTaOdoes not include this low 1000 cni?), and it is in this wave-vector region that
mode? The form of the heterodyne simulations can be un-changes in cddwt,) are most significant. At 917 ¢,

Awty changes by approximatelys® in the first 10 ps with
the detector 1.0 cm from the samplg is a function of this
Heterodyne Simulations distance. Note that the magnitude df(Aw) is sensitive to
the grating spot size. Ak=917 cm, increasing the spot
size from the value used in these simulations gB0to 375
um decreased(Aw) by a factor of 3. Doubling the size to
500 um decreased(Aw) by a factor of 30.

In the simulations presented here, changeAdnare the
most significant source of changes in @st;). This would
917 cm-t not necessarily be true if more elaborate signal collection
optics were used. As discussed above, introduction of lenses
and mirrors after the sample invalidates the approximation
that ty, the time required for the pulses to travel from the

qQ = 1963 cm?

o
]

Intensity

g = 281 cm™ sample to the detector, be the same for the scattered and stray
0.0 03 06 09 1.2 1.5 1.8 light. The time required for the scattered light to reach the
Frequency (THz) detector depends on the path the light takes from the sample

to the detector. This path is not independent of the pump-
FIG. 5. Fourier transforms of the simulations in Fig. 4. The probe delay timeA#, the maximum change in the scattering
beating pattern seen in the time-domain simulatiog=a®17 cmv*  angle during the first 10 ps of an experim¢ahalogous to
corresponds to a frequency-domain response with two peaks. Fak(Aw) abovd also peaks at wave vectors below 1000 ¢m
comparison to experimental results, see Fig. 2 of Ref. 5. (Fig. 7). While not significant in these simulations, variation
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A© vs. @ Heterodyne Simulations
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FIG. 7. The change i@, the scattering angle of the probe pulse,

FIG. 8. Simulations of heterodyne detection experiments at

during the first 10_ ps of a h_ete_rodyne detection experir_n@ﬁ,t,is q=917 cm L. For each simulation, all experimental parameters are
plotted as a function of excitation wave vectprAll experimental  jgentical to those used to produce the simulations in Fig. 4 except as
parameters except fay are identical to those used to produce the hoieq helow(a) The size of the grating excitation is increased from
simulations in Fig. 4. The effect akg on the simulations shown 55 »m to 3.3 mm(FWHM). (b) The decay rate of the polariton at

here is quite small, but could be significant if the detector werey) wave vectors is set equal to zefo) Identical to the simulation
moved farther from the sample and a series of lenses and MIMolg q=917 cm L in Fig. 4.

was used to collect the light.

times smaller than the values shown in Figs. 6 and 7. Notice

in 6 could be very important when considering more realisticthat the propagation of the grating wave packet into and out
light collection optics and their effects on the observed sig-of the probed region is clearly observed in Figb)3 but is
nal. not significant in the large grating simulation in FigaB In

While the time dependences AfAw) andAd observed in  the heterodyne experimefifsat wave vectors near 1000
the simulations can explain the observed beating patterns, &m ™', the excitation is sufficiently smalthe range of ex-
is important to understand the physical origins of this behaveited wave vectors is sufficiently larpand the wave-vector
ior. Since the polariton decay rate is a functiongofRefs. 3  dependence of the decay rate is sufficiently large that the
and 4 and a wave packet with finite spatial dimensions mustime dependence &f(Aw) andA# must be considered in the
contain polaritons with a range of wave vectors, it is notanalysis. In contrast, the ISS experiments which used large
always possible to define a wave-packet decay rate. Instea€ixcitations(a narrow range of excitation wave vectodo
the different wave-vector components decay at differennot exhibit these effects at any wave vector.
rates, and the grating wavelength changes as the wave packet
evolves in time. This change in the grating wavelength is
observed in the time dependences\0Aw) andA 6. Experi-
mentally, the magnitudes df(Aw) and A6 depend on the The model presented above successfully reproduces the
central excitation wave vector, the width of the excitationresults of transient grating experiments in LiTg&D a variety
and the dispersion relation for the material excitations. Theof experimental conditions. Since the only aspect of the
dependence on the central excitation wave vegter wave- model specific to LiTa@is the polariton dispersion relation,
length and scattering angle for the excitation pylsiss the model is applicable to transient grating experiments in
shown in Figs. 6 and 7. A simulation of the heterodyne ex-any sample for which the wave-vector dependence of the
periment ag=917 cm ! with the same parameters as beforeexcitation is known or can be estimated.
except for increasing the width of the excitation from 250 In addition, the apparent incompatibility of the ISS and
um to 3.3 mm(decreasing the range of wave vectors ex-heterodyne LiTa@ experiments has been resolved. These
cited is shown in Fig. 8). Comparing to the earlier simu- simulations of the experiments in LiTg@emonstrate that
lation in Fig. 4[and Fig. &)] A(Aw) andA# are reduced by all transient grating experiments, heterodyne experiments
factors of 26 and 16, respectively. This has a dramatic effecand ISS experiments with large and small gratings, are con-
on the simulation; the beating pattern is no longer observedistent with the model foA;-symmetry modes presented in
Unfortunately, it is not possible to perform a heterodyne ex-Ref. 4. An alternative model which includes a resonance at
periment under these conditions. The two counter0.95 THz(Refs. 5 and Bis based on inappropriate analysis
propagating excitation wave packets will decay before theyf the heterodyne detection data. While further study is re-
are spatially separate@the simulation ignores one of the quired, the analysis presented here also raises doubts about
wave packets The dependence of the heterodyne signal orthe interpretation of heterodyne experiments in other
the dispersion relation can be seen in Fit)8In this simu-  materials'?
lation atq=917 cmi %, the conditions are the same as for the It should be noted that the predictions made by the model
simulations in Fig. 4 except that the decay rate of all excita-can be readily tested. The signal observed in heterodyne ex-
tions is set to zero. Once again, the beating pattern disageriments, described by E@l4a, depends on cdlwty).
pears. In this cased(Aw) and Af are approximately 200 The time required for the scattered and heterodyne pulses to

IV. CONCLUSION



55 COMPUTER MODEL FOR TRANSIENT GRATIKS . . . 5785

reach the detectar, can be varied by moving the detector = The model presented here assumes that the grating thick-
position. Doubling the distance from the sample to the deness is determined by the thickness of the sample rather than
tector should double the beating frequency. When performthe spatial overlap of the excitation pulses and that a two-
ing this test, special care must be taken with the light collecdimensional representation of the experiment is sufficient.
tion optics. Equation14@ assumes that the scattered andModifications of the model to simulate experiments on
heterodyne pulses take exactly the same length of time téthick” samples and to produce a three-dimensional simu-
reach the detector. Since the two pulses have different centridtion are currently under investigation.

frequencies, any dispersive optic makes that approximation

myahd. Very small d|ﬁereqces in propagatlpn times are sig- ACKNOWLEDGMENTS
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