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Ab initio calculation of formation and migration volumes for vacancies in Li and Na

U. Breier, V. Schott, and M. Fa¨hnle
Institut für Physik, Max-Planck-Institut fu¨r Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
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The formation, migration, and activation volumes for monovacancies in Li and Na for zero and finite
external pressure are calculatedab initio within the framework of the local-density approximation and theab
initio pseudopotential method. In both materials the activation volumes are smaller than half of the atomic
volume. The approximations involved in the transition-state theory which is the basis for the calculations are
discussed with special emphasis on the limitations of the theory at very high pressure. The results are compared
with experimental data on self-diffusion.@S0163-1829~97!04509-8#
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I. INTRODUCTION

It appears to be widely accepted that monovacancies
an important role for self-diffusion in bcc Li and Na. In bo
materials the simultaneous measurements of thermal ex
sion and of lattice parameters have shown1–3 that vacancies
and not self-interstitials are the dominant atomic defects
thermal equilibrium~self-interstitials could be also exclude
by ab initio calculations4,5 due to the high formation ener
gies!. For the case of Na the atomic jump processes w
studied6 by means of quasielastic neutron scattering an
was concluded that self-diffusion in Na is due to rando
migration of monovacancies and divacancies. Finally, the
tivation energy for self-diffusion via monovacancies in
obtained7,8 by theab initio electron theory agreed very we
with the experimental activation energy for self-diffusion9,10

at least for not too small temperatures, and for Na the co
spondingab initio result8 agreed very well with the smalles
activation energy obtained by fitting the experimen
data11,12 from a wide temperature range by two or three e
ponentials. Nevertheless, there are some peculiarities w
are still under discussion:

~i! Most recently an additional very small activation e
ergy was found by24Na tracer experiments13 below 200 K.

~ii ! In both materials the migration energiesE1V
m obtained

by ab initio calculations within the framework of th
transition-state theory14 are very small@0.0556 0.01 eV for
Li, ~Refs. 7 and 8! and 0.0546 0.01 eV for Na~Ref. 8!#.
While such low values are compatible with the da
obtained15 from experimental phonon dispersion curves,
may be argued16 that forE1V

m /kBT&3 ~which applies to the
high-temperature experiments in Li and Na! the notion of
discrete jumps is no longer valid and the transition-st
theory should fail. However, it has been demonstrated
molecular-dynamics simulations for Na~Ref. 17! and for Zr
~Ref. 18! that even in the case of low migration energies
‘‘static migration energy’’ obtained by the transition-sta
theory agrees well with the ‘‘dynamical migration energy
obtained from the temperature dependence of the vaca
diffusivity in the molecular-dynamics simulations.

~iii ! The kinetic energy factor DK obtained
experimentally11 from the isotope-effect parameter is 0.5
for the case of Na which means that only half of the tra
550163-1829/97/55~9!/5772~6!/$10.00
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lational kinetic energy of the system may be attributed to
jumping atom when it crosses the saddle point. Although t
does not strictly exclude the monovacancy mechanism it
noted that low kinetic form factors would naturally arise f
a self-diffusion mechanism by direct exchange of adjac
atoms. However,ab initio calculations8 yielded activation
energies for the direct exchange in Li and Na which a
about a factor of 3 larger than the experimental activat
energies for self-diffusion.

~iv! The experimental activation volumesVSD obtained
from the pressure dependence of the self-diffusion cons
DSD according to

VSD52kBT] lnDSD/]puT ~1!

are rather small. For Li Hultsch and Barnes19 foundVSD 5
0.28 V0 (V0 5 atomic volume! for temperatures betwee
310 and 350 K and pressures up to 0.7 GPa, whe
Mundy11 obtained for Na for the above-mentioned proce
with the smallest activation energy an activation volume
0.32V0 for temperatures larger than 288 K and pressures
to 0.95 GPa. It was noted16 that for a monovacancy mecha
nism such low activation volumes would be surprising, alb
the monovacancy mechanism cannot be excluded by th
results. Recent measurements of the NMR linewidth20,21 at
room temperature and pressures up to 5 GPa indicate a
crease of the activation volume with increasing pressure,
riving at values of 0.1V0 for Li and 0.175V0 for Na at the
highest available pressures. The question arises whethe
pressure dependence of the activation volume results f
the superposition of two or more diffusion mechanisms an
suppression with increasing pressure of those mechan
with large activation volume, or whether it originates fro
an intrinsic pressure dependence ofVSD for one mechanism.

In the present paper the activation volumes for se
diffusion via monovacancies in Li and Na are calculated
the ab-initio electron theory to investigate whether such l
activation volumes are possible for monovacancies
whether they exhibit an intrinsic pressure dependence.

II. THE TRANSITION-STATE THEORY
FOR THE ACTIVATION VOLUME

In this section we report on the results of the transitio
state theory14,22 for the activation volume of self-diffusion
5772 © 1997 The American Physical Society
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55 5773Ab initio CALCULATION OF FORMATION AND . . .
via monovacancies. Comments on the various assumpt
involved are given in the Appendix. It should be noted th
the transition-state theory is formulated within the fram
work of classical statistical mechanics. We therefore excl
quantum effects of diffusion from the very beginning. This
certainly justified for Na, whereas for Li a contribution o
quantum effects cannot be ruled out strictly.

For the case of a defect mechanism the self-diffusion c
stantDSD entering Eq.~1! may be written as

DSD5ga2ceqG, ~2!

whereg is a geometrical factor,a the lattice constant,ceq is
the concentration of the defect in thermal equilibrium, a
G denotes the jump rate of the defect. Bothceq andG may be
obtained in principle from molecular dynamics simulation
the concentration via a thermodynamic integration meth
for the calculation of the formation free enthalpy,23 and the
jump rate from the mean-square displacement of the ato
Such calculations may be performed based on p
potentials17,18 or by the use ofab initio techniques~for in-
stance, Smargiassi and Madden24 have developed an orbita
free ab initio molecular dynamics method for Na!. We will
use an alternative method for which all quantities may
obtained by static calculations and which is based on
transition-state theory for the determination of the jum
rates. This transition-state theory involves several assu
tions and approximations which may be criticized, especia
at high external pressure~see Appendix!. On the other hand
it provides a simple physical picture of the complex dynam
cal process of vacancy migration and a powerful compu
tional tool which requires much less computational eff
than molecular dynamics simulation. In principle, of cour
the latter method can be used to check the predictions o
transition-state theory if there is enough computer time
obtain the required statistical accuracy, and indeed sev
aspects of the transition-state theory have already been te
by molecular dynamics simulations based
pair-potentials.17,18In the following we will describe in detai
our static calculational method based on the transition-s
theory.

For a monovacancy the concentration is given by

c1V
eq5eS1V

f /kBe2H1V
f /kBT. ~3!

HereS1V
f andH1V

f denote the formation entropy and th
formation enthalpy, respectively, which describe the cha
in entropy and enthalpy when a vacancy is formed, i.e., w
an atom is removed from a regular lattice site and inserte
a typical surface site~‘‘Halbkristall-Lage’’!, with

H1V
f 5E1V

f 1pV1V
f . ~4!

The quantityE1V
f is the vacancy formation energy, an

V1V
f denotes the monovacancy formation volume which

composed of the change in volumeDV1V
f upon total removal

of one atom from the system and the atomic volumeV0
gained when inserting the atom at the typical surface sit

V1V
f 5DV1V

f 1V0 . ~5!
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Within the assumptions of the transition-state theory
defect migration14,22 ~see Appendix! a prescription is given
how to calculate the jump rateG, arriving at

G5 )
j51

3n26

n j~Ṽ
i !/ )

j51

3n27

n j8~Ṽ
s!exp~2H1V

m /kBT!. ~6!

Here then j denote the vibrational frequencies for the sy
tem with the vacancy associated to the initial lattice site~i!,
Ṽi is the equilibrium volume for this state at given tempe
ture T and pressurep, and n is the number of atoms. The
n j8 are the vibrational frequencies of the system around
saddle point (s), i.e., with the jumping atom confined to th
ridge of the potential energyf separating the initial and the
final state of the jump and with the motion of the atom alo
the coordinate responsible for the instability of the sad
point being prevented.Ṽs is the equilibrium volume for this
state and givenp, T. The migration enthalpyH1V

m is given by

H1V
m 5E1V

m 1pV1V
m , ~7!

with the migration energy

E1V
m 5f~Ṽs!2f~Ṽi ! ~8!

and the migration volume

V1V
m 5Ṽs2Ṽi . ~9!

Flynn22 has rewritten Eq.~6! in a form more keeping with
the way experimental analyses are presented,

G5noe
S1V
m /kBe2H1V

m /kBT. ~10!

Here no is an arbitrary frequency~usually taken as the
Debye frequency! and the quantity

S1V
m 5kBlnF )

j51

3n26

n j~Ṽ
i !/S n0 )

j51

3n27

n j8~Ṽ
s!D G ~11!

is called migration entropy. Altogether,DSD is given by

DSD5ga2n0e
2G1V,p

SD /kBT ~12!

with the free enthalpy of activation at constant pressure

G1V,p
SD 5G1V,p

f 1G1V,p
m 5E1V

f 1pV1V
f 2TS1V

f 1E1V
m 1pV1V

m

2TS1V
m . ~13!

The activation volume for self-diffusion via monovaca
cies as obtained from Eqs.~1!, ~12!, and~13! is

V1V
SD5

]G1V,p
SD

]p
5

]G1V,p
f

]p
1

]G1V,p
m

]p
5V1V

f 1V1V
m . ~14!

Obviously, the formation and migration volume define
formally via

V1V
f 52kBT

] lnc1V
eq

]p
uT ~15!

and



e
a
h
r
e
.
te
qs
g
a

tic
rit
to

al
,
ge
a
iz
w

nd

e
.
e

ca

n
r

v
o
b-
ep
-
e
un
th

n
th
p

e

is

ne

en

may
of
the
er
e

by

s of

a-

me
mber
at
qs.

mi-
on-
mi-
en
er-
g
of
en
al-
or-
rce

ant
to

5774 55U. BREIER, V. SCHOTT, AND M. FÄHNLE
V1V
m 52kBT

] lnG

]p
uT ~16!

have indeed the simple physical meaning of the chang
system volume upon formation and migration of the v
cancy, respectively.~In compounds the situation is muc
more complicated; see Ref. 25.! However, it becomes clea
from the Appendix that this holds only for not too larg
pressuresp, i.e.,p/B!1, whereB denotes the bulk modulus
For larger pressures the situation is much more complica
and the formation and migration volume defined via E
~15! and~16! no longer have a simple geometrical meanin
In the high-pressure experiments of Refs. 20 and 21 we h
for p55 GPa the ratiop/B'0.4 ~0.7! for Li ~Na!. Therefore,
the comparison of these experimental results with theore
data from calculations based on the above formulae is c
cal. In our calculations of Sec. IV we confine ourselves
smaller pressures, i.e., 3.4 GPa~2.8 GPa! for Li ~Na! with
p/B'0.3 ~0.4!.

III. CALCULATIONAL PROCEDURE

The calculations are performed within a supercell form
ism, i.e., large supercells containingN sites and one vacancy
respectively, are periodically arranged. For infinitely lar
supercells the properties of an isolated vacancy are
proached. Because in the calculations finite supercell s
are used, the results have to be checked for convergence
respect to the supercell size.

Within the supercell formalism the vacancy formation a
migration energy may be written as

E1V
f 5E~N21,1,V1V!2E~N,O,V!1

1

N
E~N,O,V1V!,

~17!

E1V
m 5Es~N21,1,V1V

s !2E~N21,1,V1V!. ~18!

HereE(N21,1,V1V) is the energy of a supercell at th
volume V1V containing N21 atoms and one vacancy
E(N,O,V) is the energy of a perfect supercell with volum
V5NV0, and the last term of Eq.~17! accounts for the
energy gain due to the insertion of the atom at a typi
surface site. Accordingly,Es(N21,1,V1V

s ) is the energy of
the supercell containingN21 atoms, thereby one atom i
the saddle points, andV1V

s is the volume of the supercell fo
this configuration. The volumesV,V1V , andV1V

s have to be
chosen according to the constraints prescribed for the
cancy formation. For instance,for zero temperature and zer
pressurethey correspond to their equilibrium volumes o
tained directly from a two-step calculation. In the first st
~‘‘structural relaxation’’! the supercell volume is kept con
stant, and the relaxations of the atomic positions is p
formed by moving the atoms around the vacancy or aro
the atom in the saddle point until the forces acting on
atoms are zero. In a second step~‘‘volume relaxation’’! the
system is allowed to shrink or expand homogeneously u
the total energy reaches its minimum. It turned out that
forces on the atoms which reappear after this second ste
very small so that it is not necessary to perform again
structural relaxation. For the vacancy formation it has be
in
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shown~see Ref. 5, and references therein! that the change in
the supercell volume obtained by the volume relaxation
equivalent to the change in volumeDV1V

f of a large but finite
crystal with traction-free surfaces upon total removal of o
atom from the system , i.e.,

DV1V
f 5V1V2NV0 . ~19!

As outlined in Sec. II, the vacancy formation volume th
is given byV1V

f 5DV1V
f 1V0. Accordingly, the vacancy mi-

gration volume for zero temperature and zero pressure
be obtained from the difference in the equilibrium volume
the system with the jumping atom on the one hand in
static, fully relaxed saddle point configuration, on the oth
hand in the static, fully relaxed initial configuration of th
jump.

For nonzero temperature and nonzero pressure, however,
the formation and migration volumes cannot be obtained
static relaxations. Instead, we use the first part of Eq.~14!
and determine the volumes from the pressure derivative
the free enthalpies of formation and migration,

V1V
f 5

]G1V,p
f

]p
, V1V

m 5
]G1V,p

m

]p
. ~20!

Equations~20! may be transformed26,27 to relations more
suitable to supercell calculations,

]G1V,p
f

]p
5

]F1V,V
f

]p
5

]F1V,V
f

]V

]V

]p
, ~21!

]G1V,p
m

]p
5

]F1V,V
m

]p
5

]F1V,V
m

]V

]V

]p
. ~22!

HereF1V,V
f ,m are the free energies of formation and migr

tion under the constraint of a fixed system volume, with

F1V,V
f ,m 5E1V,V

f ,m 2TS1V,V
f ,m . ~23!

Performing the vacancy formation at fixed system volu
means that the lattice constant is reduced because the nu
of sites is increased by one due to the insertion of the atom
the surface. For the supercell calculations according to E
~17!,~18! this means

V1V5
N

N11
V, V1V

s 5V1V . ~24!

In the present paper we calculate the formation and
gration volumes at zero temperature where there is no c
tribution of a pressure-dependence of the formation and
gration entropies. This must be taken into account wh
comparing the results with experimental data which are p
formed at high temperatures. It has been shown by Hardin28

that for finite temperatures the formation volumes
Schottky defects in KCl are significantly overestimated wh
neglecting the entropy contributions. We therefore will c
culate in future the entropy contribution to the vacancy f
mation volume in Na, based on the static calculation of fo
constants.7 It turned out7 that for Li the vacancy formation
entropy could be reliably determined by the force const
method. We therefore think that it should also be possible
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obtain its pressure dependence reliable for the case of
Altogether, it becomes obvious that our procedure allows
determine the activation volume even at finite temperatu
by purely static calculations.

The calculations were performed within the framework
the local-density approximation and theab initio pseudopo-
tential theory~see Refs. 4,5 for the details of the pseudop
tential constructions!. The volume relaxation turned out to b
numerically highly critical because the dependence of
total energy of the supercell on the volume is far from be
smooth for realistic values of the energy-cutoffEc , espe-
cially for the case of Li. This results from the fact that f
fixedEc the number of plane waves changes discontinuou
when changing the system volume. To cope with t
problem29 we do not just consider the energy of a superc
containing the defect, but we substract the energy of a
fect supercell with the same number of sites, the same
ume, the same energy-cutoffEc and the same number ofk
points for the sampling of the Brillouin zone. It turned o
that the difference in energies depends on the volume
much smoother manner than the single energies when u
the sameEc . The single energies of the supercells with t
defect then are obtained by adding to these differences
energy of the corresponding perfect supercell which is
tained from a one-atom supercell calculation for
equivalent5 set ofk points but for much larger energy-cuto
Ec . For finite pressure the calculations are performed
cording to Eqs.~20!–~24!. The derivatives (]E1V,V

f ,m )/(]V)
thereby are approximated by@E1V,V

f ,m (2)2E1V,V
f ,m (1)#/

(V22V1), i.e., they are determined by calculations for tw
volumesV2 andV1 with V22V1 being reasonably small bu
not too small in order to avoid numerical problems. T
derivative (]V)/(]p) is obtained from the binding energ
curveE(V) of the perfect crystal viap(V)52]E(V)/]V.
To check this second type of calculation we have determi
the vacancy formation volume of Na at zero pressure
temperature, once via the volume relaxation and once
cording to Eq.~20!, and the results agreed well.

IV. RESULTS AND DISCUSSION

Tables I and II compile our results for the formation a
migration volumes in Li and Na at zero pressure~from the
volume relaxation! and at non-zero pressure@from Eqs.

TABLE I. Theoretical results~for T 5 0 K! and experimental
results~at finite temperature! for V1V

f , V1V
m , andVSD in Li, in units

of the atomic volumeV0 for a perfect Li crystal.

This paper experiment

p 5 0 p 5 3.4 GPa Ref. 19 Ref. 21
310 K <T< 350 K T 5 300 K
0 <p< 0.7 GPa p 5 4 GPa

V1V
f 0.49 0.36

V1V
m -0.2 -0.06

VSD 0.29 0.30 0.28 0.1
a.
o
s

f

-

e
g

ly
s
ll
r-
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a
ng

he
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c-

d
d
c-

~20!–~24!# as obtained from supercells containing 54 sit
All calculations were performed for 4 Monkhorst-Pack30 k
points. For Li we usedEc 5 8.5 Ry ~16 Ry! for p 5 0 ~3.4
GPa!, for Na we hadEc 5 9 Ry for both pressures. In add
tion, we have performed calculations for a smaller super
containing 16 sites with different sets of energy-cutoffsEc
and numbers ofk points used for the sampling of the Bri
louin zone. From these additional calculations we estim
that the possible error due to the use of a finite supercell s
a finite number ofk points and a finite energy-cutoffEc is
about6 0.05V0. Of course, no estimate of the systema
error due to the use of the local-density approximation c
be given.

We emphasize the following points:
~i! For zero pressure the vacancy formation volume

about 0.5V0 for Li and Na.
~ii ! The migration volume is much smaller than the fo

mation volume~especially for Na!, in agreement with the
general expectation. The migration volumes are nega
both for Li and for Na. Of course the atoms next to t
migrating atom in the saddle point configuration are push
away and this would tend to enlarge the system volume,
this is obviously overcompensated by the relaxation of
further distant neighbors. However, we would not dare
argue that the migration volumes of all bcc metals should
negative.

~iii ! The vacancy activation volume for Li at zero tem
perature and zero pressure is 0.29V0. This compares well to
the experimentally obtained activation volume of 0.28V0
for finite temperature and low pressure.19

~iv! The vacancy activation volume for Na at zero tem
perature and zero pressure is 0.49V0. This is larger than the
experimentally obtained11 activation volume of 0.32V0 for
T.288 K and small pressure.

~v! The vacancy formation volume at zero temperature
drastically reduced by the application of a strong exter
pressure. For Na this yields a strong decrease of activa
volume ~because the migration volume remains very sma!,
in qualitative agreement with the experimental observati
For Li the change in the formation volume is nearly compe
sated by a modification of the migration volume, so that
activation volume remains nearly constant, in contrast to
experimentally observed strong reduction.

To conclude, it has been demonstrated byab initio calcu-
lations that at zero temperature the activation volumes

TABLE II. Theoretical results~for T 5 0 K! and experimental
results~at finite temperature! for V1V

f , V1V
m , andVSD in Na, in units

of the atomic volumeV0 for a perfect Na crystal.

p 5 0 p 5 2.8 GPa Ref. 11 Ref. 21

T.288 K T 5 300 K
0 , p , 0.95 GPa p . 1 GPa

V1V
f 0.5 0.29

V1V
m -0.01 -0.01

VSD 0.49 0.28 0.32 0.175
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self-diffusion via vacancies are indeed smaller than 0.5V0.
Furthermore, it appears that there is an intrinsic pressure
pendence of the formation, migration, and activation v
umes. There are quantitative discrepancies between the
culated zero-temperature vacancy activation volumes and
experimentally obtained finite-temperature activation v
umes for self-diffusion. Part of these discrepancies may a
from the fact that there is an appreciable entropy contribu
at finite temperatures which has been neglected in the z
temperature calculations. For very large external pressur
further origin for the discrepancies may be the fact that
underlying formulae of the statistical mechanics~for in-
stance, the transition-state theory! are no longer strictly
valid. Finally, it must be recalled that the experimenta
obtained pressure dependence of the activation volume c
in principle also arise from the superposition of two or mo
diffusion mechanisms and a suppression with increas
pressure of those mechanisms with large activation volu
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APPENDIX

In this appendix we make some comments on
transition-state theory. The key assumption of this theor
that for a calculation of the classical jump rateG of an atom
it is not necessary to follow explicitly the trajectory of th
atom, but it can be obtained by means of a statistical m
chanics description in the configurational space spanned
the 3n coordinates and the 3n momenta of all the atoms in
the system. This is of course a hypothesis because the p
ability distributions of statistical mechanics are construc
in such a way that they yield the correct thermal average
thermodynamic variables, which does not guarantee that
yield also correct statistical results for dynamical variab
~in addition, it should be noted that the distributions ho
only for a coarse-grained scale in the configurational spa!.
In spite of the resulting ample criticism on the transitio
state theory31,32and the various extensions of the theory a
the development of alternative theories31 it is still success-
fully applied to describe diffusional properties in many sy
tems.

If we prescribe in the experiment the pressurep rather
than the volumeV of the system, we have to supplement t
configurational space by one more degree of freedom, i.e
the volume of the system which may fluctuate in therm
equilibrium. The dynamics of the representative point of
system in the configurational space is determined by
HamiltonianH(p,q,V) consisting of a kinetic partT(p) and
a potential partf(q,V). The initial state of the system befor
the jump is described by a small parti of the configurational
space around a local minimum of the enthal
f(q,V)1pV, for which the considered atom may be asso
ated with one lattice site. The final state after the jump
characterized by a second partf around a local minimum of
the enthalpy. The two minima are separated by a ridge of
enthalpy with an extremum at the saddle points. The jump
rate i to f then is defined as
e-
-
al-
he
-
se
n
o-
a
e

ld

g
e.

s.

e
is

e-
by

b-
d
of
ey
s

-

by
l
e
e

-
s

e

G5 j s /ni , ~A1!

where j s is the flux of the representative point of the syste
from i to f over the ridge of the enthalpy andni is the
probability that the system is in parti of the configurational
space. The quantitiesj s andni are calculated from integral
containing the probability to find the system in an interval
sized3npd3nqdV around (p,q,V) given by

r~p,q,V!d3npd3nqdV

;expF2
H~p,q,V!1pV

kBT
Gd3npd3nqdV. ~A2!

For the integrations we first prescribe a volume, perfo
the integrations over the coordinates for fixed volume a
finally the integrations over all volumes. Because the in
grals are nearly exclusively determined by the partsi ands
of the configuration space around the local extrema of
enthalpy we evaluate the enthalpy for small pressure acc
ing to

f~q,V!1pV5f~V0!1
B

2V0
~V2V0!

2

1pV1
1

2(i v i
2~V!~qi8!2

5f~Ṽ!1
B

2V0
~V2Ṽ!21pṼ

1
1

2(i v i
2~V!~qi8!2. ~A3!

HereV0 is the equilibrium volume atp50, B is the bulk
modulus, theqi8 are normal coordinates, thev i(V) are the
normal frequencies for the system at volumeV, and

Ṽ5V0S 12
p

BD ~A4!

is the equilibrium volume at pressurep. Furthermore, we
assume that for small pressure the frequencies depend
early on the volume,

v i~V!5v i~V0!F12
~V2V0!

V0
g i G'v i~Ṽ0!F12

V2Ṽ0

V0
g i G ,
~A5!

where theg i are Grüneisen’s constants. With the approxim
tions ~A3!–~A5! the integrations required in the transition
state theory may be performed. Assuming in addition
same bulk modulus for the system in statei ands we arrive
at Eqs.~7!–~11! of Sec. II. In contrast to the more heuristic
derivation of these equations for finite pressure in Ref.
our present discussion demonstrates that these equation
the related geometrical interpretation of the formation v
ume defined formally viaV1V

m 52kBT(] lnG)/(]p)uT hold
only for not too strong external pressurep. It should be noted
that the approximations~A3!–~A5! must be performed also
for the calculation of the vacancy concentration for fin
p, so that the same remarks hold for the formation volu
V1V
f .
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It is often argued that the results~7!–~11! of the
transition-state theory~Sec. II! can only be valid if a quasi-
equilibrium state exists with the considered atom near
saddle-point configuration for a time scale much larger th
the inverse Debye frequency, which is certainly unrealis
As a consequence, it was argued that the real migration
ume should be smaller than the one of the transition-s
theory because during the rapid jump event the system is
able to develop the full static relaxation in the saddle po
The physical notion behind this criticism is that the syst
may be subdivided into the considered atom and the
atoms, and that the considered atom initiates the lattice
.

lf,

e

e
n
.
l-
te
ot
t.

st
is-

tortions during its rapid jump. Flynn22 has outlined that this
is not the correct interpretation of the transition-state theo
In this theory the jump process is related to collective flu
tuations of the many-body system, the statistical weights
which are determined by Eq.~A2!. The result~8! for the
migration energy then simply means that only those confi
rations with low excitation energies contribute with statis
cal significance, whereas the other configurations are s
pressed by the very rapidly decreasing exponen
probability distribution. So as long as we believe in the tra
sition state theory~which may be criticized, see above! there
is no space for a time-scale argument.
ol.

n-
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