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Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals

S. A. Kiselev* and A. J. Sievers
Laboratory of Atomic and Solid State Physics and the Materials Science Center, Cornell University, Ithaca, New York 14853-

~Received 14 August 1996!

The existence of anharmonic localization of lattice vibrations in a perfect three-dimensional diatomic ionic
crystal is established for the rigid-ion model by molecular dynamics simulations. For a realistic set of NaI
potential parameters, an intrinsic localized gap mode vibrating in the@111# direction is observed for fcc and
zinc-blende lattices. An axial elastic distortion is an integral feature of this mode which forms more readily for
the zinc blende than for the fcc structure. Molecular dynamics simulations verify that in each structure this
localized mode may be stable for at least 200 cycles.@S0163-1829~97!03610-2#
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It has been proposed1,2 and numerically demonstrated3

that a large amplitude vibration in a perfect one-dimensio
~1D! lattice can localize because of anharmonicity. More
tailed analytical and numerical investigations of classical
anharmonic chains made possible by simple eigenvalue
erating recursion relations have revealed a variety of sta
intrinsic localized modes with frequencies outside of t
plane wave bands.3–8 Recently quantum mechanical aspe
of intrinsic localized modes ~ILM’s ! have been
considered.9,10 Some progress also has been reported
higher-dimensional classical crystal lattices with simp
nearest-neighbor model interactions.11,12 Particularly impor-
tant has been the recognition that diatomic crystal poten
like the Born-Mayer-Coulomb in 1D produces an intrins
gap mode~IGM! betweenthe optic and acoustic branche
instead of an ILM above the plane wave spectrum.13 The
possibility of IGM’s in 3D anharmonic lattices with realisti
potentials has remained elusive. One approach has bee
focus on crystal surfaces and edges where harmonic loca
tion already plays an important role.14–16

In this paper we demonstrate with molecular dynam
simulations that, for sufficiently large vibrational amplitud
anharmonicity can stabilize an IGM in a 3D uniform d
atomic crystal with rigid ion NaI potential arranged in eith
the fcc or zinc-blende structure. By developing a se
consistent numerical technique for finding an intrinsic loc
ized mode eigenvector, we have been able to show that f
given gap mode amplitude with the same potential that
localization is much stronger for aTd symmetry site when
compared to anOh one.

To construct the stationary localized mode eigenvector
the nonlinear 3D diatomic lattice with long-range intera
tions, we build on techniques which have been used succ
fully to identify 1D anharmonic modes,3 one of which is the
rotating wave approximation. A Fourier extension of th
idea for vibration in a stationary periodic mode with fund
mental frequencyv, which includes the static and secon
harmonic for thei th particle displacementr i(t), is

r i~ t !5 (
n50

2

r i
~n!cos~nvt !, ~1!

wherer i
(0)is the distorted equilibrium position of thei th par-

ticle, and ther i
(n)’s are the time-independent amplitudes
550163-1829/97/55~9!/5755~4!/$10.00
l
-

n-
le

r

ls

to
a-

s

-
-
r a
e

r
-
ss-

t

the different harmonics. The force acting on thei th particle
can also be represented by a similar Fourier series. Su
tuting the coordinate and force Fourier series into the cla
cal equations of motion and equating the terms with differ
harmonics gives a time-independent system of nonlin
equations

Fi
~n!1n2v2mir i

~n!50, n50,1,2. ~2!

The Fourier coefficientsFi
(n) are determined in the usua

way.13

The procedure for finding the anharmonic localized mo
eigenvector relies on first generating a fictitious dynamics
the Fourier amplitudes and then applying a version of
namical simulated annealing.17 The coefficientsr̃ i

(0) , r̃ i
(2) ,

and r̃ i
(1) are now taken to vary with time and obey the fo

lowing fictitious equations of motion:

F̃i
~n!5Fi

~n!1n2v2mi r̃ i
~n!5mi

d2r̃ i
~n!

dt2
, n50,1,2; ~3!

so that dynamical simulated annealing can be used to find
equilibrium values for these quantitiesr i

(0) , r i
(2) , and r i

(1) ,
when all F̃i

(n)(r i
(n)!50. Our iterative procedure to obtain th

eigenvector is as follows.
~i! Guess an initial shape for the gap mode eigenvector

our case we use the mass-defect eigenvector associated
a harmonic gap mode of frequencyv. The rescaled mass
defect gap mode eigenvector gives initial amplitudesr̃ i

(1)

wherer0
(1)5a while r̃ i

(0) , r̃ i
(2) , and the initial velocities are

set to zero.
~ii ! Make a molecular dynamics~MD! time step by solv-

ing Eqs. ~3! and update the quantities,r̃ i
(n)and ther̃̇ i

(n) for
fixed central particle amplitudea. The classical equations o
motion are integrated using the ‘‘leap-frog’’ algorithm18 with
a time step of 1.35 fs.

~iii ! Apply a form of dynamical simulated annealing.17

During a MD simulation run, the oscillatory values of th
kinetic energies of each of these three objectsr̃ i

(n)per particle
for theN particles is monitored.~Each object vibrates aroun
its equilibrium positionr i

(n) .! When the total kinetic energy
of the system of objects passes through its maximal valu

the MD fictitious time evolution, all objects’ velocitiesr̃̇ i
(n)
5755 © 1997 The American Physical Society
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are set to zero. In this way we incrementally move the s
tem closer to its equilibrium configuration.

~iv! After 40 MD steps as described in~ii ! and checking
for condition ~iii ! the intrinsic gap mode frequencyv is up-
dated by solving the single Eq.F0

(1)1v2m0r0
(1)50 for v

with r0
(1)5a.

~v! Verify the correctness and stability of the resulta
IGM eigenvector with a regular MD simulation. Repeat~i!
through ~iv! until the lifetime of the mode remains un
changed when the resultant eigenvector is used as an in
condition for a MD simulation. As long as the frequency
the mode remains in the gap we find the procedure descr
here converges to alocalizedeigenvector. No change in th
results is observed when this procedure is repeated wi
1
2 time step.
To investigate the possibility of a 3D intrinsic gap mo

in ionic crystals we use the tabulated rigid ion potential
NaI from Tables II and IV of Ref. 19. The potential has t
following form:

f~r i j !5
zizje

2

4pe0r i j
1

b

r i j
4 exp@2k~r i j2r 0i j !#2

ci j
r i j
6 2

di j
r i j
8 ,

~4!

FIG. 1. The intrinsic gap mode eigenvector in the NaI crys
with fcc structure. The mode has a relative amplitudea/d50.244
and a relative frequencyv/v150.950. Panel~a! shows the first
harmonic part of the eigenvector. The arrows represent 103 actual
amplitudes for clarity. Panel~b! shows the dc part of the eigenve
tor. The arrows representing the displacements are expanded3
for clarity. Small circles, Na1 ions; large circles, I2 ions. Although
not clear from the figure the magnitudes of the dc distortion for
nearest I- ion shell are the same, consistent with an axial distort
around the@111# axis.
-

t

ial

ed
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with r i j the distance between the ionsi and j , zi andzj are
the61 charges,e0 is the permittivity of vacuum,r 0i j is the
sum of the ionic radii,b andk are parameters determined b
fitting the thermal expansion and isothermal compressibil
ci j and di j are respectively the coefficients for the dipol
dipole and dipole-quadrupole interactions. The lattice c
stant for the fcc structure is chosen to bea56.35 Å, within
1% of the experimental value.20 The calculated TO fre-
quency isvTO52.5131013 rad/s, within 5% of the experi-
mental value of 2.3931013 rad/s.20 The gap between the op
tic and acoustic branches extends fromv152.4131013 rad/s
to v251.4631013 rad/s.

In carrying out the MD calculations on a 216-ion cub
with periodic boundary conditions the method of Sangs
and Dixon21 has been used to evaluate the Ewald sum.
this method the cutoff distance in real space is approxima
half the length,L/2, of the cube~the interaction of the sixth
neighboring shell is counted!, and the reciprocal lattice is
summed with the convergence parameter of 5.6/L.

The resulting intrinsic gap mode eigenvector for the f
NaI crystal is shown in Fig. 1. Panel~a! identifies the first
harmonic part of the vibrational eigenvectorr i

(1) , localized
on a central light Na1 ion and its neighboring shells with th
central Na1 ion vibrating in the@111# direction. The vibra-
tional amplitude of the central Na1 ion to the nearest-
neighbor ~NN! distance,d, r 0

(1)/d5a/d50.244. The gap
mode frequency lies 5.0% below the bottom of the op

l

0

e
n

FIG. 2. The intrinsic gap mode eigenvector for a hypotheti
NaI crystal with zinc-blende structure. The mode has a rela
amplitudea/d50.116 and a relative frequencyv/v150.950. Panel
~a! shows the first harmonic part of the eigenvector. The arro
represent 203 actual amplitudes. Panel~b! shows the dc part of the
eigenvector. The arrows representing the displacements are
panded 403. Small circles, Na1 ions; large circles, I2 ions.



t

rg
d
th
a
or
so
he
re
se

try
ru

er

in
s-
i-

m-
ts

ice
de
in

is
and
able
re-
s.

de
of
fcc

or a
ps
tice

pli-

r
io

fo
re
it

of
c
ons

-

55 5757GENERATION OF INTRINSIC VIBRATIONAL GAP . . .
band. The elastic distortion is characterized by the dc par
the mode’s eigenvectorr i

(0) , which is shown in panel~b! of
Fig. 1.

The above procedure has also been performed on a la
array of particles to insure that the periodic boundary con
tions do not influence the results. In a 1000 ion crystal
IGM with amplitudea/d50.244 has the same eigenvector
shown in Fig. 1 and its frequency differs by 1% from that f
the 216 ions NaI crystal. This frequency difference is as
ciated with a slightly different crystal distortion between t
two cases. The MD simulation test shows that the IGM
mains stable in the large crystal and its lifetime increa
slightly.

In order to investigate the role of point group symme
on the intrinsic gap mode parameters the zinc-blende st

TABLE I. Maximum amplitude in a shell versus shell index fo
Figs. 1 and 2. Both the vibrational amplitude and the dc distort
are given as fractions of the NN distance.

fcc Zinc blende

Shell Vib. amp. dc dist. Vib. amp. dc dist.

0 0.2438 0 0.1156 0.0291
1 0.0119 0.0244 0.0147 0.0220
2 0.0734 0.0074 0.0242 0.0064
3 0.0025 0.0132 0.0005 0.0039
4 0.0149 0.0078 0.0039 0.0038

FIG. 3. The power spectrum of the central particle vibration
an IGM in an NaI crystal with either fcc or zinc-blende structu
The eigenvectors shown in Figs. 1 and 2 are used as the in
conditions for the MD simulations. The solid curve~fcc lattice! is
shifted down by ten decades from the dashed curve~zinc blende!
for clarity. The noise is associated with truncational errors.
of
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e
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ture has also been tested with the same potential.~A local
minimum of the lattice energy occurs at the slightly larg
lattice constant,a57.00 Å.! The IGM eigenvector for 216
particles is shown in Fig. 2. Again the central ion vibrates
the @111# direction. This mode has an amplitude to NN di
tance,r 0

(1)/d5a/d50.116. Again the mode vibrational e
genvectorr i

(1) , is localized on a central light Na1 ion and its
neighboring shells. Note that although the relative mode a
plitude is only one half that of the IGM shown in Fig. 1, i
relative frequency occurs at the same value in the gap~5.0%!
due to the larger elastic distortion in the zinc-blende latt
near the mode center. The maximum vibrational amplitu
and dc distortion for each of the shells of particles shown
Figs. 1 and 2 are given in Table I.

Typical power spectra of the central particle vibration
presented in Fig. 3 for the eigenvectors shown in Figs. 1
2 after about 200 vibrations. These spectra reflect the st
vibration of the IGM at frequencies close to the values p
dicted by Eq.~2! both for the fcc and zinc-blende structure
Note that the vibrational mode for theOh symmetry site
shows a weak third harmonic while the IGM for theTd sym-
metry site shows all harmonics.

Figure 4 shows the IGM frequency versus the amplitu
for the two structures under investigation. The left sets
data are for zinc blende and the right sets are for the
lattice. These results indicate that theTd symmetry site ap-
pears to support more anharmonicity in the sense that f
given vibrational amplitude the frequency of the IGM dro
farther into the forbidden gap and has a larger elastic lat
distortion around the IGM center@compare Figs. 1~b! and
2~b!#.

The general behavior of the IGM frequency versus am

n

r
.
ial

FIG. 4. The frequency of an intrinsic gap mode as a function
normalized amplitude,a/d. The left set of data are for the zin
blende and the right set for the fcc lattice. The numerical soluti
of Eq. ~2! are represented by the solid lines for the@111# and by
dashed lines for the@110# crystal direction. The result of MD simu
lations are given by the open diamonds for the@111# direction and
by open circles for the@110# direction.
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5758 55S. A. KISELEV AND A. J. SIEVERS
tude shown in Fig. 4 is similar for both structures—wit
increasing mode amplitude the frequency drops farther in
the gap. An amplitude threshold is evident. An IGM whic
has its frequency about 5% below the bottom of the opti
band ~corresponding to the middle regions of the curves
Fig. 4! has the longest lifetime of;200–250 vibrational pe-
riods. If its frequency drops farther into the forbidden ga
~;10%! the mode’s lifetime decreases to;100 periods. At
the opposite small amplitude limit its lifetime again de
creases~;40 periods! presumably because of the strong cou
pling between the IGM and the nearby plane waves.

In both systems the elastic distortion associated with t
IGM has lower symmetry than the corresponding poi
group symmetry of the crystal. To recover the full crysta
point group symmetry for this perfect crystal it must be po
sible with a different set of initial conditions to rotate th
IGM about the equilibrium lattice site. To test this idea w
have examined IGM excitations along the three differe
crystal directions. Although a stable IGM mode does n
to

s

-

e
t
l
-

t
t

appear for initial excitation along the@100# direction, the
dashed lines and open circles in Fig. 4 demonstrate tha
both point group symmetries a@110# directed mode can oc
cur. These sets of data support the idea of an interchang
the IGM vibration direction as would be expected, for e
ample, with hindered rotational motion of the excitatio
about the lattice site. This concomitant low-frequency co
ponent of the IGM may provide new experimental ways
excite and identify these nonlinear excitations.
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