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Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals
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(Received 14 August 1996

The existence of anharmonic localization of lattice vibrations in a perfect three-dimensional diatomic ionic
crystal is established for the rigid-ion model by molecular dynamics simulations. For a realistic set of Nal
potential parameters, an intrinsic localized gap mode vibrating ifh&| direction is observed for fcc and
zinc-blende lattices. An axial elastic distortion is an integral feature of this mode which forms more readily for
the zinc blende than for the fcc structure. Molecular dynamics simulations verify that in each structure this
localized mode may be stable for at least 200 cydl66163-18207)03610-2

It has been proposéd and numerically demonstratéd the different harmonics. The force acting on iltle particle
that a large amplitude vibration in a perfect one-dimensionatan also be represented by a similar Fourier series. Substi-
(1D) lattice can localize because of anharmonicity. More de+tuting the coordinate and force Fourier series into the classi-
tailed analytical and numerical investigations of classical 1Dcal equations of motion and equating the terms with different
anharmonic chains made possible by simple eigenvalue gelvarmonics gives a time-independent system of nonlinear
erating recursion relations have revealed a variety of stablequations
intrinsic localized modes with frequencies outside of the
plane wave bands® Recently quantum mechanical aspects FV+n2w?mrW=0, n=0,1,2. 2
of intrinsic localized modes (ILM's) have been ) o ) ) )
considered® Some progress also has been reported fof he 1Fourler coefficientd"" are determined in the usual
higher-dimensional classical crystal lattices with simpleWay- o _ _
nearest-neighbor model interactioi$? Particularly impor- ~ The procedure for finding the anharmonic localized mode
tant has been the recognition that diatomic crystal potential§igenvector relies on first generating a fictitious dynamics for
like the Born-Mayer-Coulomb in 1D produces an intrinsic the Fourier amplitudes and then applying a version of dy-
gap mode(IGM) betweenthe optic and acoustic branches namical simulated annealit.The coefficients”, T2,
instead of an ILM above the plane wave spectfirThe andt™ are now taken to vary with time and obey the fol-
possibility of IGM’s in 3D anharmonic lattices with realistic lowing fictitious equations of motion:
potentials has remained elusive. One approach has been to

focus on crystal surfaces and edges where harmonic localiza-  ~/  _) | 5 5 ~n)_ e B )
tion already plays an important rot&:1® Fr=FR"+n%o mr =m—r, n=012 3

In this paper we demonstrate with molecular dynamics
simulations that, for sufficiently large vibrational amplitude, SO that dynamical simulated annealing can be used to find the
anharmonicity can stabilize an IGM in a 3D uniform di- equilibrium values for these quantitief”, r(®, andr(®,
atomic crystal with rigid ion Nal potential arranged in either when all F{"(r{")=0. Our iterative procedure to obtain the
the fcc or zinc-blende structure. By developing a self-eigenvector is as follows.
consistent numerical technique for finding an intrinsic local- (i) Guess an initial shape for the gap mode eigenvector. In
ized mode eigenvector, we have been able to show that for gur case we use the mass-defect eigenvector associated with
given gap mode amplitude with the same potential that the, harmonic gap mode of frequenay The rescaled mass-
localization is much stronger for &; symmetry site when defect gap mode eigenvector gives initial amplitud&s
compared to aid; one. _ , wherer{Y=a while 71, 12| and the initial velocities are

To construct the stationary localized mode eigenvector fogqt 15 zero.

the nonlinear 3D diatomic lattice with long-range interac- (i) Make a molecular dynamiddID) time step by solv-
tions, we build on techniques which have been used success- ~

fully to identify 1D anharmonic modespne of which is the N9 Egs.(3) and .update the quantitiesi,”)qnd theﬁ”? for
rotating wave approximation. A Fourier extension of thatfixed central particle amplitude. The classical equations of

idea for vibration in a stationary periodic mode with funda- Motion are integrated using the “leap-frog” algorithfwith

mental frequencyw, which includes the static and second & time step of 1.35 fs. _ , 7
harmonic for theth particle displacement(t), is (iii) Apply a form of dynamical simulated annealihg.
During a MD simulation run, the oscillatory values of the

2 kinetic energies of each of these three objaﬂ)qaer particle
r(t)=> rMcognwt), (1)  fortheN particles is monitoredEach object vibrates around
n=0 its equilibrium positionri(“) .) When the total kinetic energy
wherer(%is the distorted equilibrium position of théh par- ~ Of the system of objects passes through its maximal value in
ticle, and theri(“)’s are the time-independent amplitudes of the MD fictitious time evolution, all objects’ velocities"
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FIG. 1. The intrinsic gap mode eigenvector in the Nal crystal FIG. 2. The intrinsic gap mode eigenvector for a hypothetical
with fcc structure. The mode has a relative amplitude=0.244  Nal crystal with zinc-blende structure. The mode has a relative
and a relative frequencw/w,=0.950. Paneka) shows the first amplitudea/d=0.116 and a relative frequenayw, =0.950. Panel
harmonic part of the eigenvector. The arrows represent 46tual (&) shows the first harmonic part of the eigenvector. The arrows
amplitudes for clarity. Panéb) shows the dc part of the eigenvec- represent 28 actual amplitudes. Pané) shows the dc part of the
tor. The arrows representing the displacements are expanded 40eigenvector. The arrows representing the displacements are ex-
for clarity. Small circles, N4 ions; large circles, Tions. Although ~ panded 46&. Small circles, N& ions; large circles, T ions.
not clear from the figure the magnitudes of the dc distortion for the
nearestlion shell are the same, consistent with an axial distortion,

; with r; the distance between the ion&ndj, z; andz; are
around thg111] axis.

the =1 chargeseg, is the permittivity of vacuumr ; is the
sum of the ionic radiib andk are parameters determined by
are set to zero. In this way we incrementally move the sysfitting the thermal expansion and isothermal compressibility,
tem closer to its equilibrium configuration. ci; andd;; are respectively the coefficients for the dipole-
(iv) After 40 MD steps as described i) and checking dipole and dipole-quadrupole interactions. The lattice con-
for condition iii) the intrinsic gap mode frequenayis up-  stant for the fcc structure is chosen to #e6.35 A, within
dated by solving the single E"+w’mor”=0 for @ 194 of the experimental vali8. The calculated TO fre-
with r§”=a. quency iswro=2.51x10" rad/s, within 5% of the experi-
(v) Verify the correctness and stability of the resultantmental value of 2.3810" rad/s?° The gap between the op-
IGM eigenvector with a regular MD simulation. Repé8t  tic and acoustic branches extends fram=2.41x10" rad/s
through (iv) until the lifetime of the mode remains un- to w_=1.46x10" rad/s.
changed when the resultant eigenvector is used as an initial In carrying out the MD calculations on a 216-ion cube
condition for a MD simulation. As long as the frequency of with periodic boundary conditions the method of Sangster
the mode remains in the gap we find the procedure describeghd Dixorf! has been used to evaluate the Ewald sum. For
here converges to lacalizedeigenvector. No change in the this method the cutoff distance in real space is approximately
results is observed when this procedure is repeated with lalf the lengthL/2, of the cubgthe interaction of the sixth
3 time step. neighboring shell is countgdand the reciprocal lattice is
To investigate the possibility of a 3D intrinsic gap mode summed with the convergence parameter ofl5.6/
in ionic crystals we use the tabulated rigid ion potential for  The resulting intrinsic gap mode eigenvector for the fcc
Nal from Tables Il and IV of Ref. 19. The potential has the Nal crystal is shown in Fig. 1. Pané) identifies the first
following form: harmonic part of the vibrational eigenvectdl, localized
on a central light N& ion and its neighboring shells with the
central N& ion vibrating in the[111] direction. The vibra-
B(ri)= Zizj€ +Bexp[—k(r-»—r ._)]_ﬂ_ﬁ tional amplitude of the central Naion to the nearest-
VT dmegry rf OO e neighbor (NN) distance,d, r{Y/d=a/d=0.244. The gap
(4) mode frequency lies 5.0% below the bottom of the optic
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TABLE I. Maximum amplitude in a shell versus shell index for

Figs. 1 and 2. Both the vibrational amplitude and the dc distortion 1.05 ' ' '
are given as fractions of the NN distance. - optic band
fcc Zinc blende 1.00
Shell Vib. amp. dc dist. Vib. amp. dc dist.
0 0.2438 0 0.1156 0.0291 0.95
1 0.0119 0.0244 0.0147 0.0220 8+
2 0.0734 0.0074 0.0242 0.0064 é
3 0.0025 0.0132 0.0005 0.0039 0.90
4 0.0149 0.0078 0.0039 0.0038
band. The elastic distortion is characterized by the dc part of 0.85
the mode’s eigenvectat® , which is shown in panelb) of
Fig. 1.
The above procedure has also been performed on a larger 0-80O 5 : 0'1 0'2 0'3
array of particles to insure that the periodic boundary condi- : ' ) '
tions do not influence the results. In a 1000 ion crystal the o/d

IGM with amplitudea/d=0.244 has the same eigenvector as S _
shown in Fig. 1 and its frequency differs by 1% from that for ~ FIG. 4. The frequency of an intrinsic gap mode as a function of
the 216 ions Nal crystal. This frequency difference is assohormalized amplitudeg/d. The left set of data are for the zinc
ciated with a slightly different crystal distortion between the blende and the right set for the fcc lattice. The numerical solutions
two cases. The MD simulation test shows that the IGM re°f Ed. (2) are represented by the solid lines for 1] and by

mains stable in the large crystal and its lifetime increaseg@shed lines for thE110] crystal direction. The result of MD simu-
slightly lations are given by the open diamonds for 1] direction and

In order to investigate the role of point group symmetryby open circles for th¢110] direction.

on the intrinsic gap mode parameters the zinc-blende struc-
ture has also been tested with the same potenhalocal
0 minimum of the lattice energy occurs at the slightly larger
10 — T lattice constanta=7.00 A) The IGM eigenvector for 216
particles is shown in Fig. 2. Again the central ion vibrates in
4 the[111] direction. This mode has an amplitude to NN dis-
tance,r{M/d=a/d=0.116. Again the mode vibrational ei-
genvector ™, is localized on a central light Naion and its
neighboring shells. Note that although the relative mode am-
plitude is only one half that of the IGM shown in Fig. 1, its
. relative frequency occurs at the same value in the(§0%0
due to the larger elastic distortion in the zinc-blende lattice
near the mode center. The maximum vibrational amplitude
and dc distortion for each of the shells of particles shown in
Figs. 1 and 2 are given in Table I.

Typical power spectra of the central particle vibration is
presented in Fig. 3 for the eigenvectors shown in Figs. 1 and
2 after about 200 vibrations. These spectra reflect the stable
vibration of the IGM at frequencies close to the values pre-
dicted by Eq.(2) both for the fcc and zinc-blende structures.
Note that the vibrational mode for th®, symmetry site
shows a weak third harmonic while the IGM for thg sym-
metry site shows all harmonics.

Figure 4 shows the IGM frequency versus the amplitude
for the two structures under investigation. The left sets of
data are for zinc blende and the right sets are for the fcc
lattice. These results indicate that tlhig symmetry site ap-

FIG. 3. The power spectrum of the central particle vibration for P€ars to support more anharmonicity in the sense that for a
an IGM in an Nal crystal with either fcc or zinc-blende structure. given vibrational amplitude the frequency of the IGM drops
The eigenvectors shown in Figs. 1 and 2 are used as the initifarther into the forbidden gap and has a larger elastic lattice
conditions for the MD simulations. The solid curdiec lattice is  distortion around the IGM centdcompare Figs. (b) and
shifted down by ten decades from the dashed curirc blend¢  2(b)].
for clarity. The noise is associated with truncational errors. The general behavior of the IGM frequency versus ampli-
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tude shown in Fig. 4 is similar for both structures—with appear for initial excitation along thgl00] direction, the
increasing mode amplitude the frequency drops farther intalashed lines and open circles in Fig. 4 demonstrate that for
the gap. An amplitude threshold is evident. An IGM which both point group symmetries[410] directed mode can oc-
has its frequency about 5% below the bottom of the opticgur. These sets of data support the idea of an interchange of
band (corresponding to the middle regions of the curves inthe IGM vibration direction as would be expected, for ex-
Fig. 4 has the longest lifetime of200—250 vibrational pe- ample, with hindered rotational motion of the excitation
riods. If its frequency drops farther into the forbidden gapabout the lattice site. This concomitant low-frequency com-
(~10% the mode’s lifetime decreases 10100 periods. At  ponent of the IGM may provide new experimental ways to
the opposite small amplitude limit its lifetime again de- excite and identify these nonlinear excitations.
crease$~40 period$ presumably because of the strong cou-
pling between the IGM and the nearby plane waves. We thank S. R. Bickham, G. V. Chester, R. H. Silsbee,
In both systems the elastic distortion associated with thand M. P. Teter for helpful discussions. This work is sup-
IGM has lower symmetry than the corresponding pointported in part by Grant Nos. NSF-DMR-931238, ARO-
group symmetry of the crystal. To recover the full crystal DAAH04-96-1-0029, and the MRL central facilities. Some
point group symmetry for this perfect crystal it must be pos-of this research was conducted using the resources of the
sible with a different set of initial conditions to rotate the Cornell Theory Center, which receives major funding from
IGM about the equilibrium lattice site. To test this idea wethe National Science Foundation and New York State, with
have examined IGM excitations along the three differentadditional support from other members of the center’s Cor-
crystal directions. Although a stable IGM mode does notporate Partnership Program.
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