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Evaluation of the BCS approximation for the attractive Hubbard model in one dimension
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and Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
~Received 21 August 1996!

The ground-state energy and energy gap to the first excited state are calculated for the attractive Hubbard
model in one dimension using both the Bethe ansatz equations and the variational BCS wave function.
Comparisons are provided as a function of coupling strength and electron density. While the ground-state
energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of
magnitude, particularly at half-filling. Finite-size effects are also briefly discussed for cases where an exact
solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor
compared to the exact result.@S0163-1829~97!02601-5#
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I. INTRODUCTION

The discovery of high-temperature superconductivity h
motivated a considerable effort over the last decade. In
ticular, many theoretical models have been proposed to
plain both the superconductivity and some unusual nor
state properties.1 As far as superconductivity is concerne
model building has proceeded on at least two paths. The
includes ‘‘realistic’’ model Hamiltonians, often two dimen
sional ~since the CuO2 planes have been deemed to be
essential structure for electron conduction!. The price of such
realism is that exact solutions are impossible, and a me
field or BCS~Ref. 2! solution is required. The second pa
attempts to remedy this deficiency by seeking exact solut
to a restricted class of models, often in one~and more re-
cently in infinite! dimension. These models are often unre
istic and are sometimes exactly solvable only in restric
parameter regimes. Attempts to bridge the gap between t
two modes of theoretical work are becoming more comm
place in recent years. Two examples are spin fluctua
theories, where fluctuation exchange calculations are o
compared to Monte Carlo calculations for the Hubba
model,3 and Hubbard-like models that include occupatio
dependent hopping rates.4 In this latter example BCS calcu
lations have been compared with exact diagonalization s
ies on finite systems.

In these and other examples, comparison of BCS or so
other approximation scheme with exact results has alw
been hampered by some deficiency, often finite-size eff
~one exception is mentioned below!. Yet an exact solution to
the attractive Hubbard model in one dimension has b
available for almost 30 years, via Bethe ansatz techniqu5

In this paper a thorough investigation of the attract
Hubbard model will be presented, using both Bethe ans
techniques and BCS solutions. The study is necessarily
fined to one dimension. It is not yet clear to what exte
conclusions obtained in one dimension carry over to hig
dimensions. Nonetheless, we were encouraged by the re
of Quicket al.,6 who performed a study similar to the prese
one using a model of a one-dimensional electron gas w
pairwise-attractived-function interactions, first solved ex
actly by Gaudin7 and Yang.8 This is a one-parameter mod
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with a dimensionless coupling constant inversely prop
tional to the electron density. Quicket al.6 found that BCS
theory gave an accurate estimate of theground-state energy
over all ranges of the coupling constant. Quantum fluct
tions are most severe in one dimension, and so the agree
should improve as the dimension is increased.

Part of the purpose of the present study is to test
accuracy of BCS theory as ‘‘an interpolation scheme’’9,10

over all coupling strengths. As already noted in Ref. 9, B
theory is exact in the weak- and strong-coupling limits. T
present model hastwo parameters, electron density as wel
as coupling strength, and the question of how well the int
polation scheme works as a function of electron density
addressed. Moreover, the gap to the first excited state
also be calculated, as this quantity provides a much m
revealing test of the BCS approximation than does
ground-state energy.

We begin by outlining the model and the theoretical tre
ments in the following section. For the exact solution we re
on previous work by Lieb and Wu5 and by Bahder and
Woynarovich.11 We mention some trivial but importan
points regarding the solution of the resulting equations,
both the ground-state energy and the excitation gap.
completeness we also outline the BCS solution, which
straightforward. Results are presented in the following s
tion, followed by a summary.

II. FORMALISM

A. Model

The one-dimensional Hubbard Hamiltonian is given by

H52t(
i ,s

~cis
† ci11,s1ci11,s

† cis!1U(
i
ni↑ni↓ , ~1!

where the operatorcis
† (cis) creates~annihilates! an electron

with spins at sitei andnis is the electron number operato
with spins at sitei . The parametert is the hopping rate for
electrons and merely sets the overall energy scale. The
rameterU is negative in the attractive case, so thatuUu/t is a
dimensionless measure of the coupling strength. The sec
parameter is the electron density,n[(1/N)( i ,s^nis&, where
575
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576 55F. MARSIGLIO
N is the number of lattice sites, and the expectation valu
taken with respect to the ground state.

This model has particle-hole symmetry, and so we w
concern ourselves with electron densities less than h
filling. In addition, symmetries exist between the repuls
and attractive Hubbard models, such that5

E~M ,M 8;2uUu!52M uUu1E~M ,N2M 8;uUu!, ~2!

whereE(M ,M 8;uUu) is the ground state energy ofH ~with
U5uUu) with M down spins and M 8 up spins
(M1M 85Ne , the total number of electrons!. The totalz
component of electron spin,Sz , is given by Sz
[1

2(M 82M ). For the ground state,Sz50.

B. Lieb-Wu equations: Finite systems

An exact solution to the Hubbard model was first pr
vided by Lieb and Wu,5 using Bethe ansatz techniques.
particularly enlightening derivation is provided by Suthe
land in Ref. 12. The resulting equations to determine
wave vectors of theNe electrons are

kj5
2p

N
I j1

1

N(
b51

M

u~2sinkj22Lb!, j51,2,3,. . . ,Ne .

~3!

An auxiliary set ofM real numbers, theLa’s, is determined
through the set of equations

(
j51

Ne

u~2sinkj22La!52pJa2 (
b51

M

u~La2Lb!,

a51,2,3,. . . ,M , ~4!

where

u~p![22tan21~2pt/U !, 2p<u,p. ~5!

Here theI j are consecutive integers~half-odd integers! if
M is even~odd!, and theJa are consecutive integers~half-
odd integers! if M 8 is odd ~even!. For the ground state we
choose them to be~separately! clustered around zero~both
negative and positive!. In general, for finite-size systems
their sum@(1/N)(( j I j1(aJa)# doesnot give zero, so that
the total momentum of the ground state in some sector
not zero. For the attractive Hubbard modelM andM 8 are
kept close to one another so that the maximum numbe
electrons with opposite spin can pair to take advantage of
attractiveuUu.

These equations can be iterated to convergence usi
standard Newton-Raphson algorithm,13 although some
damping of solutions and judicious starting points are som
times required. Once thekj have been obtained, the groun
state energy is given by

E522t(
j51

Ne

coskj . ~6!

One way to determine the energy of the first excited stat
to compare the energy of two isolated systems withNe elec-
trons in one andNe12 in the other, with two isolated sys
tems withNe11 in each. This yields the pair binding energ
is

l
lf-

-

e

is
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e

a

-
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eb~Ne!52E~Ne11!2E~Ne!2E~Ne12!. ~7!

Here we have used a single argument for the energy to i
cate the total number of electrons — it is understood t
M andM 8 are either equal~if NE is even! or differ by 1 ~if
Ne is odd!. The single-particle gapD(Ne) is then given by

D~Ne!5e~Ne!/2. ~8!

In this model the gap value is positive forNe even and nega-
tive for Ne odd, so that the overall curvature is in fact no
negative~see the second reference in Ref. 4!. Thus, to calcu-
late the gap value in this manner requires a distinct
between even and odd numbers of electrons, a distinc
which is unfortunately lost in the thermodynamic limi
Nonetheless, finite-size effects can be monitored by incre
ing the system size until convergence is achieved. This
comes quite time consuming, however, for weak coupl
~where large system sizes are required for convergence!, so
that an alternative method is required, as discussed nex

C. Lieb-Wu equations: Bulk limit

As N→`, k and L become distributed throughout th
first Brillouin zone and the real axis, respectively, with de
sity functions r(k) and s(L), respectively.12 The above
equations become the Lieb-Wu integral equations

r~k!5
1

2p
1
cosk

p E
2B

B uUu/4t
~U/4t !21~l2sink!2

s~l!dl,

~9!

with s(l) determined self-consistently from

1

pE2Q

Q uUu/4t
~U/4t !21~l2sink!2

r~k!dk

5s~l!1
1

pE2B

B uUu/2t
~U/2t !21~l2l8!2

s~l8!dl8, ~10!

whereQ andB are determined by the following sum rules

E
2Q

Q

r~k!dk5122s, ~11!

E
2B

B

s~l!dl5
n

2
2s, ~12!

with n[Ne /N and s[Sz /N. Finally the energy per lattice
site is given by

E

N
52uUuS n22sD22tE

2Q

Q

coskr~k!dk. ~13!

Note that we have already utilized Eq.~2! in these equations
hence they apply to an attractive Hubbard model with el
tron densityn and magnetizations. The ground state is given
by s50, so thatQ5p; i.e., the entire Brillouin zone is oc
cupied. These equations converge more easily than do
discrete counterparts given above; i.e., simple iteration
sufficient, and Newton-Raphson~and therefore the inversion
of a large matrix! is not required.
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55 577EVALUATION OF THE BCS APPROXIMATION FOR THE . . .
However, in principle, information concerning the gap
lost, as the distinction between even and odd number
electrons is no longer possible in the bulk limit. Nonethele
Bahder and Woynarovich11 use the trick of applying an ex
ternal magnetic field. Minimization of the energy then det
mines the magnetization as a function of applied field. T
magnetization is zero below a critical value of the field. T
energy associated with this critical field gives the gap in
spin excitation spectrum. It turns out that half this ener
corresponds exactly with the gap as defined by Eqs.~7! and
~8!. This is nota priori necessary, as the spin gap is defin
by flipping a spin with fixed electron number, whereas t
previous gap was defined by changing the number of e
trons in the system.

To determine the gap in the bulk limit, we use a differe
procedure, which initially follows the method outlined
Ref. 11~see their Sec. IV where they carry out an analyti
calculation in the low- and high-density limits!. As already
mentioned, the spin gap can be defined as the energy
quired to flip one spin. Therefore we are interested in
energy difference between thes50 state and thes51/N
state whereN is taken to approach̀ . Since Q5p for
s50, we have from Eq.~11! thatQ5p21/@Nr(p)#, using
the even symmetry ofr(k). Substitution into Eq.~10! yields
one term on the left-hand side which isO(1/N). Further-
more, r(k) can now be eliminated by substituting Eq.~9!
into the remaining integral from2p to p:11
o
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1

2p2E
2p

p uUu/4t
~U/4t !21~l2sink!2

2
2

pN

uUu/4t
~U/4t !21l2

5s~l!1
1

pE2B

B

dl8s~l8!
uUu/2t

~U/2t !21~l2l8!2
. ~14!

To first order in 1/N there is no change in the density fun
tion r(k); however, the same is not true fors(l). To see
this we substitutes51/N into Eq.~12!, and allowB to adjust
(B→B01dB) to the flipped spin~here the subscript 0 sig
nifies the solution fors50). The important point is that the
electron densityn remains constant. Then

dB5
1

2s~B0!
H E

2B0

B0
s~l!dl2

n

2
1
1

N J , ~15!

where again we have utilized the even symmetry ofs(l).
The two first terms within the bracesdo not cancelbecause
there areO(1/N) corrections to the density functions(l).
This is most clearly seen at half-filling, wheredB50 and the
sum rule has apparently changed byO(1/N). Away from
half-filling dB is O(1/N). Substitution of Eq.~15! into Eq.
~14! results in
s~l!5
1

2p2E
2p

p

dk
uUu/4t

~U/4t !21~l2sink!2
2
1

pE2B0

B0
dl8s~l8!

uUu/2t
~U/2t !21~l2l8!2

2
2

pN

uUu/4t
~U/4t !21l21

dB

p
s~B0!

3H uUu/2t
~U/2t !21~l2B0!

2 1
uUu/2t

~U/2t !21~l1B0!
2J , ~16!
ing

ny

he

its
n

where every term except the first on the right-hand side c
tains~explicit or implicit! terms withO(1/N). This equation
is iterated to convergence~with high precision! with some
choice forN ~e.g., N5104 or 105). The equation for the
energy, Eq.~13!, becomes

E

N
52uUu

n

2
2
2t

p E
2p

p

dkcos2kE
2B0

B0
dls~l!

3
uUu/4t

~U/4t !21~l2sink!2
1

uUu24t

N
2dBs~B0!

3H uUu/4
~U/4t !21~B02sink!2

1
uUu/4

~U/4t !21~B01sink!2 J .
~17!

The gap energy is then identified as the coefficient of
1/N term in the energy,

E

N
[
E0

N
1
2D

N
. ~18!
n-

e

The first term on the right-hand side is obtained by solv
the integral equations withN→`, i.e., Eqs.~9!–~13!. Then
the left-hand side is obtained by solving Eqs.~15!–~17! for
N5104,105, etc., until the gap extracted from Eq.~18! has
converged.

D. BCS equations

The derivation of the BCS equations is given in ma
places14 and will not be presented here. They are

15
uUu
N (

k

1

2Ek
, ~19!

with

Ek5A~ek2m2uUun/2!21DBCS
2 ~20!

and ek522tcosk, where the sums are carried out over t
first Brillouin zone (2p,k<p). We use a finite lattice for
simplicity, large enough for the gap to have converged to
bulk limit. An auxiliary equation to determine the electro
number density is also required,
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578 55F. MARSIGLIO
n512
1

N(
k

ek2m2uUun/2
Ek

. ~21!

For a givenuUu andn these equations are iterated to conv
gence to determinem andDBCS. If the chemical potential
lies within the band, then the gap to the first excited sta
D0, is given byDBCS. Otherwise, the gap is defined by th
quasiparticle energy at the bottom of the band, i.e.,

D05H DBCS for m1uUun/2.22t,

A~2t1m1uUun/2!21DBCS
2 for m1uUun/2,22t.

~22!

D0 is to be directly compared to the gap discussed in
previous sections. Finally, the total energy is given by

EBCS

N
5
1

N(
k

ekS 12
ek2m2uUun/2

Ek
D2uUuS n2D

2

2
DBCS
2

uUu
.

~23!

Note that the Hartree term is not required in the BCS g
equations~and is often omitted!, but it provides an importan
contribution to the total energy.

III. RESULTS

A. Ground-state energy

In the dilute limit the BCS solution of the gap equations
exact for all coupling strengths.9 Of course the BCS approxi
mation also reduces to the noninteracting result in the li
of weak coupling, for any electron density. Finally, BC
theory also becomes exact in the limit of strong coupling,
was appreciated for both the electron gas15 and the lattice
gas.9

In Fig. 1 the ground-state energy is shown as a function
electron density for various values ofU. We have shown
some results for repulsiveU ~Ref. 16! along with the ana-
lytical results for U50 @E/N5(24/p)sin(np/2)# and
U5` @E/N5(22/p)sinnp#. Note that agreement is best
weak coupling and in strong coupling, particularly for lo
electron density. Nonetheless, the BCS energy follows
exact result much more closely in the intermediate reg

FIG. 1. The ground-state energy as a function of electron d
sity for various values of the coupling strength, both repuls
(U.0) and attractive (U,0). BCS results are also shown for com
parison.
-

,

e

p

it

s

f

e
e

for this model than appears to be the case for the electron
model.6 In fact a strong coupling expansion shows that t
ground-state energy has corrections of order (t/U)2 in both
the exact and BCS solutions, whereas for the gas mode
BCS solution contained a term linear in the inverse coupl
constant which was not present in the exact solution.6

In Fig. 2 we show the ground-state energy as a function
coupling strengthuUu for half-filling (n51) and quarter-
filling ( n50.5). Here it is clear that the BCS theory is mo
inaccurate for intermediate coupling strength, i.
uUu'bandwidth. Nonetheless, the maximum deviation
rather small, '4%, which occurs at half-filling nea
uUu54t. Thus, on the basis of ground-state energy calcu
tions, BCS theory appears to be a very accurate theory, e
in one dimension. However, in the next subsection we sh
that the BCS result for the energy gap is far less accura

B. Energy gap

The calculation of the energy gap is a much more se
tive test of the accuracy of BCS theory. In Fig. 3 we sho
the gap as a function of electron density for various values
the interaction strengthuUu. As already stated, the BCS ga
is exact in the low-density limit, regardless of the coupli
strength. However, as the electron density increases, the
gapdecreasesfor all coupling strengths, while the BCS ga
(D0) from Eq. ~22! increasesfor all coupling strengths. The
true gap decreases monotonically as a function of elec
density, whereas the BCS gap is in general nonmonoto
exhibiting a maximum at some intermediate electron dens
which is a function of coupling strength. For sufficient
strong coupling, the BCS gap is monotonically increasing,
that the maximum occurs at half-filling. The most serio
errors occur near half-filling, particularly in the weak
coupling limit, where BCS theory vastly overestimates t
value of the gap.

At half-filling certain analytical results can be obtaine
For the true gap we obtain

D~n51!5
uUu
2

22t14tE
0

`dv

v

J1~v!

11evuUu/2t , ~24!

n- FIG. 2. The ground-state energy as a function of the coup
strength for quarter- (n50.5) and half- (n51.0) filling, along with
the BCS results.
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whereJ1(v) is the Bessel function of the first kind of orde
1. This result can be written in a more useful form17

D~n51!5
8t

p (
m51

`
1

2m21
K1S 2pt

uUu ~2m21! D , ~25!

where K1(x) is a first-order modified Bessel function. I
weak coupling this reduces to an exponential contributio

Dweak5
4

p
AuUutexpH 22pt

uUu J . ~26!

In strong coupling the first two terms of Eq.~24! dominate.
The BCS integral can also be performed analytically: W

obtain, at half-filling,

FIG. 3. The energy gapD/t vs electron density for~a!
uUu/t51, ~b! uUu/t52, and~c! uUu/t510. The BCS result~i.e.,D0!
is shown for comparison.
e

2pt

uUu
5

1

A11d2
KS 1

11d2D , ~27!

whered[D0 /4t andK(k)[*0
p/2@1/(A12ksin2u)#du is the

complete elliptic integral of the first kind. Note tha
D05DBCS at half-filling. In weak coupling we obtain

D0~weak!58texpS 2
2pt

uUu D , ~28!

while in strong coupling we have

D0~strong!5
uUu
2

2
2t2

uUu
. ~29!

Thus, the weak coupling BCS gap at half-filling has the
miliar activated form, albeit with incorrect prefactors.
strong coupling the first-order correction~of order unity! is
absent in the BCS solution.

Finally, at zero filling, the exact solution is know
analytically:18

D522t1AS uUu
2 D 21~2t !2, ~30!

and the BCS result is identical. Note that in weak coupli
the dependence onuUu is quadratic.

In Fig. 4 we show the gap as a function of couplin
strength for zero-, quarter-, and half-filling. As alread
stated, for zero filling BCS is exact, while for any nonze

FIG. 4. ~a! The energy gapD/t vs coupling strengthuUu/t for
various electron densities. In~b! we provide an expanded version o
the weak coupling regime.
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580 55F. MARSIGLIO
filling, the deviations are as shown. BCS theory overe
mates the gap by a considerable degree over the entire
pling range shown. Note that the variation of the exact g
with electron density is not significant beyonduUu/t'2, and,
as remarked earlier, monotonically decreases with increa
electron density. The dependence of the BCS gap on
electron density is not monotonic, and beyonduUu/t'3 the
ordering is incorrect. In Fig. 4~b! we show the weak-
coupling regime in greater detail. In this regime the order
with electron density is correct, but BCS theory greatly ov
estimates the gap value, as shown.

C. Finite-size effects

The attractive Hubbard model can be solved in the th
modynamic limit, and therefore, for this study, finite-si
effects do not concern us. However, most models req
some sort of numerical solution, often on small system siz
and are therefore subject to finite-size effects. It is theref
of interest to examine how these effects influence the res
in both the exact and BCS solutions in the present model
some extent the following conclusions can be applied
other models where an exact solution in the bulk limit is n
possible.

To obtain the exact gap it is necessary to solve Eqs.~3!–
~8! for some fixed lattice sizeN. The BCS gap is obtained
from Eqs.~19!–~22!, again for a fixed lattice sizeN. How-
ever, these equations utilize a grand canonical ensembl
that particle number is fixed only in an average sen
through the chemical potential. Thus, all electron densi
are possible~except for certain densities where discontin
ties may arise!; this raises the issue of how applicable the u
of the grand canonical ensemble is for small clusters.
partially address this issue here by using the canonical
semble for clusters with one, two, three, and four electro
This has already been done for a tetrahedral cluster,19 where,
for symmetry reasons, the BCS solution is exact for all p
fillings on a four-site cluster. We use the BCS wave fun
tions

uC2&5(
k
gkck↑

† c2k↓
† u0&,

uC4&5 (
k1

k2.k1

C~k1 ,k2!ck1↑
† c2k1↓

† ck2↑
† c2k2↓

† u0&, ~31!

for two and four electrons, respectively. On a chain of fo
sites these would correspond to quarter- and half-filling.
accomodate odd numbers of electrons we simply add ano
electron, whose momentum then determines the total
mentum of the ground-state wave function. For example,
three electrons,

uC3&q5 (
kÞq

gk8ck↑
† c2k↓

† cq↑
† u0&, ~32!

and the third electron has the important role of blocking
pair from adopting the (q,2q) pair state. Minimization with
respect to the relevant parameters yields equations for
gk or C(k1 ,k2) from which the minimum energy can b
obtained. The gap energy can then be obtained following
i-
ou-
p
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method outlined in Sec. II B. In contrast to the grand cano
cal method for finite systems, this method generates gap
ergies for values of the electron density that are commen
rate with the lattice size.

In Fig. 5 results for the gap are illustrated as a function
density for uUu522t, using all the various methods dis
cussed thus far. The open symbols represent exact solu
for various lattice sizes as indicated in the figure caption. T
gap generally decreases as the lattice approaches the
limit. The same trend is observed in the BCS solutions,
dicated by the various curves. Finally, forN54, the solid
circle indicates the result for quarter-filling from the canon
cal BCS equations.

We have found quite generally that the use of the cano
cal ensemble always improves the ground-state energy, c
pared to that obtained from the grand canonical ensem
This is particularly true for electron densities that correspo
to an odd number of electrons and for low electron densit
In fact the conventional BCS theory is variational with r
spect toH2mN, and not the Hamiltonian alone, so that f
small system sizes this theory giveslower energies than the
true ground-state energies at low electron densities. T
does not violate the variational principle since the BCS wa
function used spans all particle numbers, and BCS the
never gives a lower energy than the true ground-state en
for any particle number. In any event, this distasteful featur
is remedied by the use of the canonical ensemble. Of cou
as the bulk limit is approached these discrepancies disapp

However, the use of the canonical ensembledoes notuni-
versally improve the BCS gap energy for small systems. T
case shown in Fig. 5 shows some improvement. For wea
coupling the improvement is insignificant, while for strong
coupling the result from the canonical solution is poorer th
the grand canonical one.

It should be clear that finite-size effects are significa
only in the intermediate- to weak-coupling regime~the two-
site system reproduces the correct bulk limit in the stro
coupling limit!. For the intermediate-coupling case show
the finite-size results couldmisleadone to believe that the
gap energyincreasesas electron density increases from ze

FIG. 5. The energy gapD/t vs electron density foruUu/t52, for
various chain sizes. The open symbols are from exact results,
lattice size as indicated. The curves are BCS results~using the
grand canonical ensemble! with lattice sizes as indicated. We hav
also indicated the result for quarter-filling forN54 ~solid circle!,
showing an improvement over the grand canonical result.
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This behavior is displayed by the BCS results as well, a
remains a feature of the BCS solution in the bulk limit~solid
line!. However, the true energy gap is a monotonically d
creasing function of electron density. Furthermore, the
always decreases as the bulk limit is approached, so tha
relative error obtained from a finite system study will alwa
underestimate the true error in the bulk limit. The error in t
BCS gap at half-filling, for example, is 20% for a four-si
chain, while in the bulk limit it is 300%. This underestima
worsens for weaker coupling.

Finally, we should note that the finite-size effects on t
ground-state energy are not nearly as severe as just discu
for the energy gap. For example, the ground-state energ
half-filling for N58 differs from the bulk limit by about
1% while the gap value is almost a factor of 3 too large.

IV. SUMMARY

We have carried out an evaluation of BCS theory for
attractive Hubbard model in one dimension. This is certai
the simplest Hamiltonian with many-body interactions f
which an exact solution exists, so that an evaluation in
bulk limit is possible. We hope that the results of this pap
can be used for more complicated Hamiltonians where e
solutions are not possible.

The ground-state energy is very accurately reproduced
the BCS wave function, particularly at low electron den
ties, and for all coupling strengths. In fact the ground-st
energy is least accurate at intermediate coupling strength
half-filling, and here the error is only a few percent. Th
result is encouraging, and ought to improve with increas
dimensionality.
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The energy gap is not so accurately reproduced wit
BCS theory. There is exact agreement in the dilute lim
however, the exact result monotonically decreases with e
tron density while the BCS result increases, at least initia
There is also agreement in the strong-coupling limit, a
BCS theory displays the same activated form in the we
coupling limit, but with an incorrect prefactor. A
intermediate-coupling strength the BCS gap overestima
the true gap typically by a factor of 2 or more. The relati
error decreases~increases! with stronger~weaker! coupling.
Over most of the coupling strength regime the maximu
error occurs at half-filling.

Finally, we have taken advantage of this exactly solva
case to examine finite-size effects. Insofar as these eff
occur in other more complicated models, they can be use
cautionary guidelines in future finite system studies.

The relevance to higher dimensionality remains somew
of an open question. While the accuracy of the BCS grou
state energy is most encouraging, it is also clear from
study that this agreement is not a good indicator of the
curacy of the BCS energy gap. On the other hand, the p
accuracy of the BCS gap in one dimension may well
rectified by proceeding to higher dimension. It is hoped t
future investigations of this issue can utilize this study a
benchmark.
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