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Evaluation of the BCS approximation for the attractive Hubbard model in one dimension
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The ground-state energy and energy gap to the first excited state are calculated for the attractive Hubbard
model in one dimension using both the Bethe ansatz equations and the variational BCS wave function.
Comparisons are provided as a function of coupling strength and electron density. While the ground-state
energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of
magnitude, particularly at half-filling. Finite-size effects are also briefly discussed for cases where an exact
solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor
compared to the exact resyl§0163-18207)02601-3

[. INTRODUCTION with a dimensionless coupling constant inversely propor-
tional to the electron density. Quiak al® found that BCS

The discovery of high-temperature superconductivity hagheory gave an accurate estimate of ¢neund-state energy
motivated a considerable effort over the last decade. In paover all ranges of the coupling constant. Quantum fluctua-
ticular, many theoretical models have been proposed to ex}lons are most severe in one dimension, and so the agreement
plain both the superconductivity and some unusual normaghould improve as the dimension is increased.
state properties.As far as superconductivity is concerned, Part of the purpose of the present study is to test the
model building has proceeded on at least two paths. The fir@iccuracy of BCS theory as “an interpolation scherh&”
includes “realistic” model Hamiltonians, often two dimen- over all coupling strengths. As already noted in Ref. 9, BCS
sional (since the Cu@ planes have been deemed to be thetheory is exact in the weak- and strong-coupling limits. The
essential structure for electron conduciicfhe price of such Present model hatswvo parameterselectron density as well
realism is that exact solutions are impossible, and a mear@s coupling strength, and the question of how well the inter-
field or BCS(Ref. 2 solution is required. The second path Polation scheme works as a function of electron density is
attempts to remedy this deficiency by seeking exact solutiongdddressed. Moreover, the gap to the first excited state will
to a restricted class of models, often in ofzmd more re- @lso be calculated, as this quantity provides a much more
cently in infinite) dimension. These models are often unreal-revealing test of the BCS approximation than does the
istic and are sometimes exactly solvable only in restricted@round-state energy.
parameter regimes. Attempts to bridge the gap between these We begin by outlining the model and the theoretical treat-
two modes of theoretical work are becoming more Commonments in the foIIOWing section. For the exact solution we rely
place in recent years. Two examples are spin fluctuatio® Previous work by Lieb and Wuand by Bahder and
theories, where fluctuation exchange calculations are ofte¥/oynarovich:* We mention some trivial but important
compared to Monte Carlo calculations for the HubbardPoints regarding the solution of the resulting equations, for
model® and Hubbard-like models that include occupation-both the ground-state energy and the excitation gap. For
dependent hopping ratédn this latter example BCS calcu- completeness we also outline the BCS solution, which is
lations have been compared with exact diagonalization stucgtraightforward. Results are presented in the following sec-

ies on finite systems. tion, followed by a summary.
In these and other examples, comparison of BCS or some
other approximation scheme with exact results has always Il. FORMALISM

been hampered by some deficiency, often finite-size effects
(one exception is mentioned belpw et an exact solution to
the attractive Hubbard model in one dimension has been The one-dimensional Hubbard Hamiltonian is given by
available for almost 30 years, via Bethe ansatz technitjues.
In this paper a thorough investigation of the attractive
Hubbard model will be presented, using both Bethe ansatz
techniques and BCS solutions. The study is necessarily con-
fined to one dimension. It is not yet clear to what extentwhere the operatar], (c;,) creategannihilates an electron
conclusions obtained in one dimension carry over to highewith spin o at sitei andn;,, is the electron number operator
dimensions. Nonetheless, we were encouraged by the resultgth spin ¢ at sitei. The parameter is the hopping rate for
of Quicket al.® who performed a study similar to the present electrons and merely sets the overall energy scale. The pa-
one using a model of a one-dimensional electron gas witliameterU is negative in the attractive case, so thal/t is a
pairwise-attractives-function interactions, first solved ex- dimensionless measure of the coupling strength. The second
actly by Gaudif and Yandf This is a one-parameter model parameter is the electron density= (1/N)Z; (n;,), where

A. Model

H:_tiE (CiTO'Ci+1,0'+CiT+1,o'CiO')+UZ niTnil’ (1)
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N is the number of lattice sites, and the expectation value is €p(Ng) =2E(Ne+1) —E(Ng) —E(Ng+2). 7

taken with respect to the ground state. , -
This model has particle-hole symmetry, and so we willHere we have used a single argument for the energy to indi-

concern ourselves with electron densities less than haif¢até the total number of electrons — it is understood that
filling. In addition, symmetries exist between the repulsiveM andM’ are either equalif N is even or differ by 1 (if
and attractive Hubbard models, such that Ne is odd. The single-particle gap (Ne) is then given by

E(M,M’;—|U|)=—M|U|+EM,N=M";|U]), (2 A(Ne) = €e(Ng)/2. 8

whereE(M,M’;|U|) is the ground state energy bf (with In this model the gap value is positive fiig, even and nega-
U=|U|) with M down spins and M’ up spins tive for No odd, so that the overall curvature is in fact non-
(M+M’'=N,, the total number of electronsThe totalz ~ Negative(see the second reference in Ret. Bhus, to calcu-

component of electron spin,S,, is given by S, late the gap value in this manner requires a distinction
=1(M’—M). For the ground state,=0. between even and odd numbers of electrons, a distinction

which is unfortunately lost in the thermodynamic limit.
Nonetheless, finite-size effects can be monitored by increas-
ing the system size until convergence is achieved. This be-
An exact solution to the Hubbard model was first Pro-comes quite time Consuming, however, for weak Coup“ng
vided by Lieb and WA, using Bethe ansatz techniques. A (where large system sizes are required for convergesce

particularly enlightening derivation is provided by Suther-that an alternative method is required, as discussed next.
land in Ref. 12. The resulting equations to determine the

wave vectors of thé, electrons are

B. Lieb-Wu equations: Finite systems

C. Lieb-Wu equations: Bulk limit
2 As N—oo, k and A become distributed throughout the

M
1
Ki= it N21 0(2sirkj—2Ag), [j=1,2,3,...,Ne. first Brillouin zone and the real axis, respectively, with den-
A= sity functions p(k) and o(A), respectively:?> The above

© equations become the Lieb-Wu integral equations
An auxiliary set ofM real numbers, thd ,'s, is determined
through the set of equations 0= i+COSka |U|/4t N)d
" " P =t | U2+ (h—sink)2 MM
> o(2sitki—2A ) =273, — 3 O(A,—Ay), ©)
=1 A=1 with o(\) determined self-consistently from
a=1,2,3,. N ,M, (4) 1(Q |U|/4t
—f 2 ——2p(k)dk
where 7 ) —q(U/4t)=+ (N —sink)
0(p)=—2tan Y(2pt/U), —w<6<n. (5) 5 /2t
— +_ ! !
Here thel; are consecutive integer$alf-odd integerk if o(\) wf,B(U/Zt)er()\—)\’)zo()\ Jar', (10

M is even(odd), and thel, are consecutive integetbalf- . .

odd integersif M’ is odd (even. For the ground state we whereQ andB are determined by the following sum rules:
choose them to béseparately clustered around zer(both o

negatlve and positiye In general, for f|r_1|te—S|ze systems, f p(k)dk=1-2s, (12)
their sum[(1/N)(Z;l;+2,J,)] doesnot give zero, so that -Q

the total momentum of the ground state in some sectors is

not zero. For the attractive Hubbard modéland M’ are B n

kept close to one another so that the maximum number of JlB‘T()\)dA: 7S (12
electrons with opposite spin can pair to take advantage of the

attractive|U|. with n=N./N ands=S,/N. Finally the energy per lattice

These equations can be iterated to convergence usingsite is given by
standard Newton-Raphson algorithf, although some
damping of solutions and judicious starting points are some- E
times required. Once thg have been obtained, the ground- N~ — U]
state energy is given by

E—s) —ZtJQ cokp(k)dk. (13
2 -Q
Note that we have already utilized E®) in these equations;
hence they apply to an attractive Hubbard model with elec-
E= _thl CO%K; . (6) tron densityn and magnetization. The ground state is given
= by s=0, so thatQ=; i.e., the entire Brillouin zone is oc-
One way to determine the energy of the first excited state isupied. These equations converge more easily than do their
to compare the energy of two isolated systems Withelec-  discrete counterparts given above; i.e., simple iteration is
trons in one andN.+2 in the other, with two isolated sys- sufficient, and Newton-Raphsdand therefore the inversion
tems withN.+ 1 in each. This yields the pair binding energy of a large matrix is not required.

Ne
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However, in principle, information concerning the gapis 1 [~ |U|/4t 2 |U|/4t
lost, as the distinction between even and odd numbers OZ?L (U/4t)2+()\—sink)2_m (U742 + 1

electrons is no longer possible in the bulk limit. Nonetheless,
Bahder and Woynarovich use the trick of applying an ex-
ternal magnetic field. Minimization of the energy then deter- 1 (8

mines the magnetization as a function of applied field. The =o(\)+ _f d\'a(\)
magnetization is zero below a critical value of the field. The TJ)-B

energy associated with this critical field gives the gap in the

spin excitation spectrum. It turns out that half this energyry first order in 1N there is no change in the density func-
corresponds exactly with the gap as defined by Ejsand o p(k); however, the same is not true for(\). To see
(8). This is nota priori necessary, as the spin gap is definedy,ig e substituts=1/N into Eq.(12), and allowB to adjust
by flipping a spin with fixed electron number, whereas the(B_>BOJr 8B) to the flipped spinthere the subscript O sig-
previous gap was defined by changing the number of eleGsjfies the solution fos=0). The important point is that the

trons in the system. . - . electron densityn remains constant. Then
To determine the gap in the bulk limit, we use a different

procedure, which initially follows the method outlined in
Ref. 11(see their Sec. IV where they carry out an analytical 1 Bo
- 20(Bg) f

|U|/2t
(U/2t)2+ (N —\")?"

(14

calculation in the low- and high-density limjtsAs already (15
mentioned, the spin gap can be defined as the energy re-
quired to flip one spin. Therefore we are interested in the
energy difference between the=0 state and thes=1/N where again we have utilized the even symmetryr¢f).
state whereN is taken to approache. Since Q=7 for  The two first terms within the brace® not cancebecause
s=0, we have from Eq(11) thatQ=7—1[Np(7)], using there areO(1/N) corrections to the density functiom(\).
the even symmetry gé(k). Substitution into Eq(10) yields  This is most clearly seen at half-filling, whef&=0 and the
one term on the left-hand side which @(1/N). Further- sum rule has apparently changed 6¢1/N). Away from

more, p(k) can now be eliminated by substituting E§)  half-filling 6B is O(1/N). Substitution of Eq(15) into Eq.

27N

n
o(N)d\—

into the remaining integral from- 7 to 7:1! (14) results in
|
N fﬂ dk |U|/4t 1f % ol |U|/2t 2 |U|/4t 5B 8
cMN=522] Gz n—sik? @ _8, TN G2+ (n=n)2 N (Ui a2 T T 7 (Bo)
|U|/2t |U|/2t 16
(U2t)2+(N—Bg)? * (U/2t)%+ (N +Bg)?|" (16

where every term except the first on the right-hand side conthe first term on the right-hand side is obtained by solving
tains (explicit or implicit) terms withO(1/N). This equation the integral equations withl—c, i.e., Eqs.(9)—(13). Then

is iterated to convergendavith high precision with some the left-hand side is obtained by solving E¢$5)—(17) for
choice forN (e.g., N=10* or 1®). The equation for the N=10%1C, etc., until the gap extracted from E(L8) has
energy, Eq(13), becomes converged.

E n 2t(= Bo D. BCS equations
—=—|U|———f dkcoszkf dha(N) . . L .
N 2 w)-, -Bg The derivation of the BCS equations is given in many
placed* and will not be presented here. They are

o |U|/4t +|U|—4t SBo(B
(U/41)2+ (N —sink)2 N 7(Bo) U« 1
TN 2R, 19
|U|/4 N |U|/4 K k
(U/4t)?+ (By—sink)? =~ (U/4t)%+ (Bo+sink)? |- with
17
Ex=(ex—u—[U[n/2)?+ Afcs (20
The gap energy is then identified as the coefficient of theand €= —2tco, where the sums are carried out over the
1/N term in the energy, . T e .
first Brillouin zone (— 7w<k=). We use a finite lattice for
simplicity, large enough for the gap to have converged to its
E_Eo 24 (1g)  bulk limit. An auxiliary equation to determine the electron
N N N° number density is also required,
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FIG. 1. The ground-state energy as a function of electron den- FIG. 2. The ground-state energy as a function of the coupling
sity for various values of the coupling strength, both repulsivestrength for quarter-(=0.5) and half- 6=1.0) filling, along with
(U>0) and attractively <0). BCS results are also shown for com- the BCS resullts.
parison.

for this model than appears to be the case for the electron gas
model® In fact a strong coupling expansion shows that the
ground-state energy has corrections of ordéd}? in both
the exact and BCS solutions, whereas for the gas model the
For a given|U| andn these equations are iterated to conver-BCS solution contained a term linear in the inverse coupling
gence to determing. and Agcs. If the chemical potential  constant which was not present in the exact soluftion.
lies within the band, then the gap to the first excited state, |n Fig. 2 we show the ground-state energy as a function of
Ay, is given byAgcs. Otherwise, the gap is defined by the coupling strengthU| for half-filling (n=1) and quarter-
quasiparticle energy at the bottom of the band, i.e., filling (n=0.5). Here it is clear that the BCS theory is most
inaccurate for intermediate coupling strength, i.e.,
_[Ascs for wt|U|n/2> -2t |U|~bandwidth. Nonetheless, the maximum deviation is
0~ \/(2t+,u+|U|n/2)2+ Aécs for w+|U|n/2<—2t. rather small, =~4%, which occurs at half-filling near
(22) |U|=4t. Thus, on the basis of ground-state energy calcula-
, i , , tions, BCS theory appears to be a very accurate theory, even
Ao is to be directly compared to the gap discussed in thg, one dimension. However, in the next subsection we show
previous sections. Finally, the total energy is given by that the BCS result for the energy gap is far less accurate.

EBCSZEE el 1- ex—u—|U[n/2 U] n 2_ Afcs
N N4 K Ex 2 U] - B. Energy gap
(23 The calculation of the energy gap is a much more sensi-

Note that the Hartree term is not required in the BCS gagive test of the accuracy of BCS theory. In Fig. 3 we show
equationgand is often omitted but it provides an important the gap as a function of electron density for various values of

e—m—|U|n/2
nzl_ﬁz &_

X Ex @)

contribution to the total energy. the interaction strengtilJ|. As already stated, the BCS gap
is exact in the low-density limit, regardless of the coupling
. RESULTS strength. However, as the electron density increases, the true
gapdecreasegor all coupling strengths, while the BCS gap
A. Ground-state energy (A,) from Eqg.(22) increasedor all coupling strengths. The

In the dilute limit the BCS solution of the gap equations istrue gap decreases monotonica_lly_as a function of electrpn
exact for all coupling strengtifsOf course the BCS approxi- density, whereas the BCS gap is in general nonmonotonic,
mation also reduces to the noninteracting result in the limi€xhibiting a maximum at some intermediate electron density,
of weak coupling, for any electron density. Finally, BCS Which is a function of coupling strength. For sufficiently
theory also becomes exact in the limit of strong coupling, astrond coupling, the BCS gap is monotonically increasing, so
was appreciated for both the electron §aand the lattice that the maximum occurs at half-filling. The most serious
gas? errors occur near half-filling, particularly in the weak-

In Fig. 1 the ground-state energy is shown as a function ofoupling limit, where BCS theory vastly overestimates the
electron density for various values bf. We have shown Vvalue of the gap. _ ,
some results for repulsivel (Ref. 16 along with the ana- At half-filling certain analytical results can be obtained.
lytical results for U=0 [E/N=(—4/m)sin(m/2)] and FOr the true gap we obtain
U= [E/N=(—2/7)sinnw]. Note that agreement is best in
weak coupling and in strong coupling, particularly for low |
electron density. Nonetheless, the BCS energy follows the A(n=1)=— —2t+4t
exact result much more closely in the intermediate regime 2

“do Ji(w)

0 w Lreora (29
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FIG. 3. The energy gapA/t vs electron density for(a)
|UJ/t=1, (b) |U]/t=2, and(c) |U|/t=10. The BCS resulii.e., Ay)
is shown for comparison.

whereJ;(w) is the Bessel function of the first kind of order
1. This result can be written in a more useful fdfm

2t

8t 1
A(n=1)=;mzlm|<1(m(2m_1)), (25)

where K;(x) is a first-order modified Bessel function. In
weak coupling this reduces to an exponential contribution

(26)

4 — 2t
Aweak:;\/|u |texp{ WJ .

In strong coupling the first two terms of E(R4) dominate.
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FIG. 4. (@) The energy gag/t vs coupling strengthU|/t for
various electron densities. [b) we provide an expanded version of
the weak coupling regime.
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where 6=A,/4t and K(k)Efg’z[l/(\/l—ksiﬁﬁ)]dﬁ is the
complete elliptic integral of the first kind. Note that
Aog=Agcs at half-filling. In weak coupling we obtain

27t
AO(weak): 8texp — |U_| y (28)
while in strong coupling we have
Ul 2t
Ao(strong =5~ IR (29

Thus, the weak coupling BCS gap at half-filling has the fa-
miliar activated form, albeit with incorrect prefactors. In
strong coupling the first-order correctigof order unity is
absent in the BCS solution.

Finally, at zero filling, the exact solution is known
analytically®

2

i +(21)?,

A=-2t+/| 5

(30

and the BCS result is identical. Note that in weak coupling
the dependence ditJ| is quadratic.
In Fig. 4 we show the gap as a function of coupling

The BCS integral can also be performed analytically: Westrength for zero-, quarter-, and half-filling. As already

obtain, at half-filling,

stated, for zero filling BCS is exact, while for any nonzero
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filling, the deviations are as shown. BCS theory overesti-
mates the gap by a considerable degree over the entire cou-
pling range shown. Note that the variation of the exact gap
with electron density is not significant beyofid|/t~2, and,

as remarked earlier, monotonically decreases with increasing
electron density. The dependence of the BCS gap on the
electron density is not monotonic, and beydhd/t~3 the
ordering is incorrect. In Fig. @) we show the weak-
coupling regime in greater detail. In this regime the ordering
with electron density is correct, but BCS theory greatly over-
estimates the gap value, as shown.

A/t

00 05 1.0
C. Finite-size effects n

The attractive Hubbard model can be solved in the ther-
modynamic limit, and therefore, for this study, finite-size
effects do not Con(.:em us. .However’ most models requ”“f:‘attice size as indicated. The curves are BCS reduising the
some sort of numerlcql soluthn_, oft(?n on small Sy.Stem SIZ€%rand canonical ensembleith lattice sizes as indicated. We have
anq are therefore S.UbJeCt to finite-size ef_fects. It is therefor Iso indicated the result for quarter-filling fot=4 (solid circle),
of interest to examine how these effects influence the resul
in both the exact and BCS solutions in the present model. To

some extent the following conclusions can be applied to ) ] )
other models where an exact solution in the bulk limit is notMethod outlined in Sec. Il B. In contrast to the grand canoni-
possible. cal method for finite systems, this method generates gap en-

To obtain the exact gap it is necessary to solve Egjs: ergies for values of the electron density that are commensu-
(8) for some fixed lattice siz&l. The BCS gap is obtained ate with the lattice size. _ _
from Egs.(19—(22), again for a fixed lattice sizdl. How- In Fig. 5 results for the gap are illustrated as a function of
ever, these equations utilize a grand canonical ensemble, d§nsity for [U[=—2t, using all the various methods dis-
that particle number is fixed only in an average Sensecusseql thus fa_lr. The open sy_mbols_repres_ent exact_solunons
through the chemical potential. Thus, all electron densitieéorvarlous lattice sizes as indicated in the figure caption. The
are possibldexcept for certain densities where discontinui- 9P generally decreases as the lattice approaches the bulk
ties may arisg this raises the issue of how applicable the usdiMit- The same trend is observed in the BCS solutions, in-
of the grand canonical ensemble is for small clusters. wélicated by the various curves. Finally, fof=4, the solid
partially address this issue here by using the canonical erfircle |nd|cates. the result for quarter-filling from the canoni-
semble for clusters with one, two, three, and four electronst@ BCS equations. _
This has already been done for a tetrahedral cldSiwehere, We have found quite generally that the use of the canoni-
for symmetry reasons, the BCS solution is exact for all pai€@! €nsemble always improves the ground-state energy, com-

fillings on a four-site cluster. We use the BCS wave func-Pared to that obtained from the grand canonical ensemble.
tions This is particularly true for electron densities that correspond

to an odd number of electrons and for low electron densities.
In fact the conventional BCS theory is variational with re-
|\I’2>:; gkCETCT—k1|O>v spect toH — uN, and not the Hamiltonian alone, so that for
small system sizes this theory giviesver energies than the
true ground-state energies at low electron densities. This
|W,)= > C(kyq,kp)c) Tcik lcl TCT—k 10y, (3 does not violate the variational principle since the BCS wave
kg oo e function used spans all particle numbers, and BCS theory
never gives a lower energy than the true ground-state energy

for two and four electrons, respectively. On a chain of fourfor any particle numberin any event, this distasteful feature
sites these would correspond to quarter- and half-filling. TdS remedied by the use of the canonical ensemble. Of course,
accomodate odd numbers of electrons we simply add anoth@s the bulk limit is approached these discrepancies disappear.
electron, whose momentum then determines the total mo- However, the use of the canonical ensendnes notni-

mentum of the ground-state wave function. For example, foversally improve the BCS gap energy for small systems. The
three electrons, case shown in Fig. 5 shows some improvement. For weaker

coupling the improvement is insignificant, while for stronger
_ Lot Lt coupling the result from the canonical solution is poorer than
|‘I’3>q—k§ 9kCiiC i Cqrl0), (32 the grand canonical one.

K It should be clear that finite-size effects are significant
and the third electron has the important role of blocking theonly in the intermediate- to weak-coupling regirtihe two-
pair from adopting thed, —q) pair state. Minimization with  site system reproduces the correct bulk limit in the strong-
respect to the relevant parameters yields equations for theoupling limit). For the intermediate-coupling case shown,
gk or C(ky,ky) from which the minimum energy can be the finite-size results coulthisleadone to believe that the
obtained. The gap energy can then be obtained following thgap energyncreasesas electron density increases from zero.

FIG. 5. The energy gap/t vs electron density folU|/t=2, for
various chain sizes. The open symbols are from exact results, with

owing an improvement over the grand canonical result.

kp>kq
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This behavior is displayed by the BCS results as well, and The energy gap is not so accurately reproduced within
remains a feature of the BCS solution in the bulk ligsiolid  BCS theory. There is exact agreement in the dilute limit;
line). However, the true energy gap is a monotonically de-however, the exact result monotonically decreases with elec-
creasing function of electron density. Furthermore, the gapron density while the BCS result increases, at least initially.
always decreases as the bulk limit is approached, so that théhere is also agreement in the strong-coupling limit, and
relative error obtained from a finite system study will alwaysBCS theory displays the same activated form in the weak-
underestimate the true error in the bulk limit. The error in thecoupling limit, but with an incorrect prefactor. At
BCS gap at half-filling, for example, is 20% for a four-site intermediate-coupling strength the BCS gap overestimates
chain, while in the bulk limit it is 300%. This underestimate the true gap typically by a factor of 2 or more. The relative
worsens for weaker coupling. error decreasefincreaseswith stronger(weakej coupling.
Finally, we should note that the finite-size effects on theOver most of the coupling strength regime the maximum
ground-state energy are not nearly as severe as just discussador occurs at half-filling.
for the energy gap. For example, the ground-state energy at Finally, we have taken advantage of this exactly solvable
half-filling for N=8 differs from the bulk limit by about case to examine finite-size effects. Insofar as these effects
1% while the gap value is almost a factor of 3 too large. occur in other more complicated models, they can be used as
cautionary guidelines in future finite system studies.
IV. SUMMARY The relevance to higher dimensionality remains somewhat
of an open question. While the accuracy of the BCS ground-
We have carried out an evaluation of BCS theory for thestate energy is most encouraging, it is also clear from this
attractive Hubbard model in one dimension. This is Certainlystudy that this agreement is not a good indicator of the ac-
the SimpleSt Hamiltonian with many'body interactions for curacy of the BCS energy gap. On the other hand, the poor
which an exact solution exists, so that an evaluation in theccuracy of the BCS gap in one dimension may well be
bulk limit is possible. We hope that the results of this papefrectified by proceeding to higher dimension. It is hoped that

can be used for more complicated Hamiltonians where exaqt;ture investigations of this issue can utilize this study as a
solutions are not possible. benchmark.

The ground-state energy is very accurately reproduced by
t_he BCS wave functlc_m, particularly at low electron densi- ACKNOWLEDGMENTS
ties, and for all coupling strengths. In fact the ground-state
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