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Self-consistent LCAO-CPA method for disordered alloys
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We present a scheme for calculating the electronic structure of disordered alloys, self-consistent in the
local-density-approximation sense. It is based on expanding the one-electron Green’s function in the basis of
modified atomic orbital§H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extended
SystemgSpringer, Berlin, 1988. The two-terminal approximation introduced for the Hamiltonian and the
overlap matrix permits us to treat both the diagonal and off-diagonal disorder using an extension of the
Blackman-Esterling-Berk form of the coherent-potential approximat@A) [Phys. Rev. B4, 2412(1971)]
to a nonorthogonal basis set. Calculations using the scalar relativistic density functional for the magnetic binary
transition-metal alloys Fe-Co, Fe-Pt, Co-Pt, and for the ternary alloy Al-Fe-Mn give results comparing well
with experimental data and calculations based on the Korringa-Kohn-RogtKBr)-CPA and linear muffin-
tin orbital-CPA techniqued.S0163-18207)03509-1

[. INTRODUCTION Within the LCAO scheme one deals with a nonorthogonal
basis. There have been attempts to implement the CPA in
Several powerful implementations of the coherent-nonorthogonal basis schentes! However, up to now there
potential approximation® (CPA) to calculate the electronic were no charge self-consistent calculations and the off-
structure of substitutional alloys have been developed in rediagonal disorder was only treated in virtual crystal approxi-
cent years. Early applications of the CPA with first- mation(VCA). Despite the many similarities between LCAO
principles band-structure methods were mostly based on thend TB-LMTO there are also some differences. LCAO puts
method of Korringa, Kohn, and Rostok&8¢KR),* and this  no restriction on the shape of the potential, as for instance
KKR-CPA is still widely used, e.g., Ref. 5. In view of the the atomic-sphere approximati¢gASA) of the TB-LMTO-
multiple-scattering formulation underlying the KKR theory, CPA.
the incorporation of the CPA turns out to be quite natural. ~ Our aim will be to present a fully charge self-consistent
To reduce the numerical effort of the KKR method, theapproach to complex lattices based on a nonorthogonal
tight-binding-linear-muffin-tin-orbit&l (TB-LMTO) method LCAO basis scheme without restriction to VCA. We will
was developed. Another linear band-structure scheme is theeat all randomness of the Hamiltonian and of the overlap
linear-combination-of-atomic-orbitalé. CAO).” To incorpo-  matrix including off-diagonal disorder at the same level. The
rate the CPA idea into these linear band-structure methodspproach is applicable to a wide class of alloys. It is based on
one has to start from an algebraic, matrix version of the CPAa pseudospin description often used in the gesthe BEB
instead of using the multiple-scattering language. In thigheory?® in the augmented space metfdd We present a
way, a TB-LMTO-CPA(Ref. 8 was developed and also first generalization of the BEB theory to sublattices and to non-
steps towards a LCAO-CP#/Refs. 9—1] were made. These orthogonal basis sets in the propagator formalism, embedded
approaches made it possible to apply the CPA in quite comin a charge self-consistent treatment. A variant of a propaga-
plex structures like multilayers, surfaces or interfaées in  tor formalism for BEB was proposed, for example, in Ref.
bulk materials with complex unit cells and partial disorder.23, where the analyticity of the BEB Green’s function was
First TB-LMTO-CPA calculations on partially disordered al- proved. In the context of the propagator formalism we
loys were performed by Kudrnovslet al,**'*however not present a formulation of the full multiple-scattering problem
fully charged and spin self-consistent. Recently, the screenedithin the LCAO approach comparable to the KKR descrip-
KKR approach was introducéd.It combines the pleasant tion. This leads to a quite natural introduction of the single-
features of a TB formulation with the rigorousness of asite approximation.
multiple-scattering approach. The problem of disordered alloys naturally requires quite
In the past, special attention has been drawn to the prota number of approximations. In our opinion two points have
lem of off-diagonal disorder appearing in the matrix CPA. Into be met by every charge self-consistent CPA method. It
the case of multiplicative off-diagonal disorder one can useshould incorporate the major effects of disorder at least in
the approach proposed by Shifawhich was introduced single-site mean-field approach and rely on a band-structure
into the TB-LMTO-CPA"~1® For the case of general off- scheme which is sufficiently accurate in relation to the accu-
diagonal disorder the procedure of Blackman-Esterling+acy of the CPA. When using a wave-function approach, the
Berl?® (BEB) is applicable. Some applications of BEB to possibility of a single-site approximation implies the use of
band-structure calculations were reported in Ref. 21 using aot only a local but an effectively well localized basis. In the
tight-binding fit. But to the authors’ knowledge, the BEB TB-LMTO this is achieved by the additional LMTO-TB
approach was never used in a first-principles, charge seltransformation, which is not entirely without problems. The
consistent CPA application. optimized local orbital approach,approved for ordered
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structures, seems to us particularly appropriate to a moreith the potential being a function of atomic species and
direct solution. It leads naturally to the terminal-point ap-positions and a functional of the electron density. The
proximation and therefore includes the most general kind ofround-state electron density is again solely determined by
off-diagonal disorder. Clearly the mean-field treatment of thehe atomic species and positions. For the sake of simplicity
disorder via single-site CPA has a quite strong model charin the notation, a possible spin dependence is understood in
acter. However, in the case of a BEB theory the randomneghe following without mention. In a relativistic version, a
of the environment is taken into account at least with respedPauli Hamiltonian or a Dirac Hamiltonian can be used like-
to the two terminal points of all matrices, thus giving a goodwise. To prepare for the alloy case we define the retarded
description of the densities of states as demonstrated faingle-particle  Green’s  function in real space
model systems. Our combination of the CPA with the non-(w*=w+i4):
orthogonal LCAO fulfills the requirement with respect to the _ . o
accuracy of the whole scheme and thereby arrives directly at [w"—HM)]G(r,r";o")=68r-r1") . (2
a matrix representation without a tight-binding transforma-
tion of the Hamiltonian.

Our paper is organized as follows. First, in Sec. I, we
present the representation of the charge density of an alloy in 1
terms of conditionally averaged Green'’s functions and local n(ry=— —j IMG(r,r;0)0(sp—w)do )
orbitals. This is necessary to obtain the self-consistent poten- m

tial in the spirit of the local-density approximatidbDA).  \where® is the step function and denotes the Fermi level.
Next, in Sec. lll, we generalize the BEB theory to nonor- At this stage we introduce a nonorthogonal local orbital
thogonal basis sets and to the case of several sublattices jg@presentatiohof all real-space quantities. The basis orbitals
terms of the propagator formalism. In Section IV we deSCfib%re classified as Va|en¢'e/_L) and Core|ic) states with site

the numerical procedure and present the underlying equandexi and atomic quantum numbegsandc, respectively.
tions. In Sec. V we apply the method to binary and ternaryrhe core states are assumed to be nonoverlapping and or-
transition-metal alloys. The binary examples FeCo and espghogonal to each other, while the valence states are not. To
cially CoPt and FePt prove the applicability and accuracy ofyet rid of the core part of the Hamiltonian, we project the

our approach to alloys with a great difference in the bandvalence basis states onto the Hilbert subspace orthogonal to
widths of the constituents and to cases where relativistic efy|| core states:

fects are important. The last example FeMnAl is a rather
complex one. It shows a rich structure of the magnetic phase , ) ,
diagram. Here we present an investigation of the ferromag- |'M>:|'ﬂ)_§ lle)(lclip) (4)
netic phase. In that case, we obtain magnetic moments in
agreement with experiment for all Al concentrations, how-Core states and the corresponding density contributions are
ever, at higher Al content, the incorporation or partial orderseparately treated as a first step in each cycle of self-
is decisive in obtaining agreement with experiment. We disconsistency.
cuss the dependence of the moments on the local environ- From now on, we consider the valence subspace in the
ment. Hilbert space which in practical implementations is spanned
by a finite number of basis states per site, but is sufficiently
complete to represent the occupied valence eigenstates. All
Il. KOHN-SHAM APPROACH TO ALLOYS following quantities like Hamiltonian, overlap matrix, and
IN LOCAL ORBITAL REPRESENTATION Green’s function will be given as projected to this subspace.
r may likewise be considered as spanned by a set of or-

Theoretically, an alloy is described as an ensemble o ; . ) ;
) . : i S honormalized statelk) containing the occupied eigenstates
configurations of atoms, accompanied with the definition o . A
of the projected Hamiltonian:

an average of observable quantities. For each configuration,
in the spirit of density-functional theory an effective single-
particle Hamiltonian is introduced, depending on the electron |k)y= 2 |i,u,>aik# ) (5)
density of that configuration. Instead of summing over the L

squares of Kohn-Sham orbitals, in alloy theory it is prefer-

able to use the single-particle Green's function in closing the 7 = — " |ky(k| = 2 i) arMarr*M&i W'l (6
self-consistency cycle. K i K

From its imaginary part the electron density may be calcu-
lated as

i’/.l,’
In practical implementations, completeness in this sense is

checked as basis set convergence. The coeffidzéptdeﬁne

the valence states and the inverse of the overlap m3trix
Given an atomic configuration, the Kohn-Sham theory

starts from an effective single-particle Hamiltoniéme use Kk« N B

atomic unitst =m.=|e|=1): Ek: A8, = (i’ u') =S (7

A. Local orbital representation of the single-particle
Green'’s function

Straightforwardly we deduce the Hamiltonian matrix, the
(1) overlap matrix, and from Eq2) the Green’s matrixsee also

. 1 .
H(r)=—§A+V(r) Ref. 9:
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izing the eigenstatetk) of the Hamiltonian. To arrive at

H(r)= 2 (rjv) S (i HIO]i ) measurable quantities, we have to carry out a configurational
ud ! average.
iy We want to point out that we have no frozen-core treat-
xslﬁi,'j,v,(j’y'ﬁ) , ment, since in this approach it would not lead to a simplifi-

cation. In each cycle of charge self-consistency the core

. S, states and the projected valence basis states will be recalcu-
H=[(lHOl )] ed brel
S=|w|i’wH
Il B. Pseudospin description of the ensemble
1=(0*S—-H)G* . (8) In this paper we discuss substitutional disordered alloys,

taking into account the possibility of a complex unit cell. The

G* abbreviateG(w*)=G(w=*id). . : . -
The contravari(ant )Gree(n’s maztrix elements in the nonor-Vectors of the underlying lattice will be denoted Byand the

thogonal basis are defined as basis vectors bys. Each site belongs to a sublattice. The
sublattices may be randomly occupied by various species of
atoms or by a vacancy. Each alloy configuration is mapped

+ — . g} N[y — i Q—» .
Gi;;,i’#’Ez g1 (v|G(r,r";0™)|j v >3_,1, o onto a set of pseudospuﬁs;R :

~ Tpjv 1
]’V’ 9

©) ] 1, atomofspecieQQ at R+s 2 1
Starting from the Kohn-Sham ansatz the valence part of the "Trs 0, otherwise, o) Rs™ =
electron density is given by (13

(“species” may include vacangyMany physical properties
n(r)=> (r|kyO(eg— e ){K|r) , (100  of interest are defined as configurational averages denoted in
k the following by (- --). Applying it we introduce the con-

wheree again denotes the Fermi energJhe core part has gentratlon of the specie® with respect to a specified site

a similar structure and will be added, but it is simple and isS in the unit cell:
not the object of consideration her&Ve replace thé func-
tion by an integral over & function, which is expressed as

the difference of the retarded and advanced one-particle (ng§>=c§:>2 039:1 (19
Green'’s functions. After switching to the local bagis we Q
get and the condition of statistical independence of all sites:
SN VT FFd Q. ¢ Q . SV
n(r)= 27 & (rlip) o (mas Mg =c ¢, for R+s#R'+s’ . (19

i'n
N B . For the sake of simplicity, we use in the following a multiple
X[G -G ]i,u,i’p,’<| M |r> . (11) |ndeX|:§§

The involved integration starts below the band bottom of the W€ construct now the local orbitals for an alloy with the
valence states. The occurrence of the advanced Green’s nia€lP Of those stochastic pseudospins:

trix is due to moving the imaginary part in E(B) between

the (possibly complexlocal basis stategln cases of a real

Hamiltonian matrix—in the presence of inversion |i,u)=2 liQu) niQ, local stochastic valence basis,
symmetry—the difference in Eq11) reduces to the imagi- Q

nary part of the retarded Green’'s matfiX.o simplify the (16)
notation, we use the abbreviation Be=1/2(G*—G7) in

the following. We get a density representation consisting of

(overlapping local site densitiegfor i=i’) and of doubly |ic)=2 liQc) niQ, local stochastic core states.
terminated terms called overlap density: Q 17

- 1 - eF - The pseudospin ensures that the correct basis state is used at
n(r)=— P 2 , (rlipm) IMG; i deo(i’ Ir) . the right place. The orthogonalization to core states corre-
Ll 12) sponds to the Q expanded” equatiori4):

Up to this point we considered a given configuration of an
alloy. One of the main problems here is the lack of period- liw)=>, |iQu)n?, (18)
icity, so that there are no good quantum numbers character- Q '
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) ) SN O still contain a stochastic dependence on two sites. To arrive
iQu)=1iQu)— X 1Q"c) 72 (1Q"cliQu) . (19 finally at the single-site description of an alloy, we are led to

leQ’ a corresponding assumption about the form of the density
The core states fulfill the relation: used in the self-consistency cycle:
22iQcli’Q'c) 72 =8 00 cor 12 (20) A~ 2@
i i’ i’,QQ ,cc' M~ n(r)~ & 7N . (25)
since fori#i’ and fori=i’, Q=Q’ they are orthonormal,
and niQ,,iQ’: Soq at a given sitd by definition (13). This means the full charge density for a configuration shall
To emp|oy the pseudospin representaﬁon, we introducb? addlthG'y decomposed into singl.e-site Components..These
the Q-expanded expressidqi2) for the density: will be replaced by the self-averaging component projected

densities given by ensemble averages. Thus we neglect the
- - two-site correlated fluctuations in the local densities. An ad-
n(r=-— 2 - (rliQu) ditional average over the right index of the overlap elements
1Qu1"Q p in Eq. (24) serves to reduce E@21) to a sum of single-site

eF , R, expressions:
Xf IM[ 723G, (0) 73 1d(i’ Q" u'|r)

- 1 -
(21) niQ(r)=—;_,’E (rliQu)
We interpret thep product of the Green'’s function as a new FQ nm
guantity, the expanded Green’s matrix: eF 00’ A o 2
, , xf Im(%ﬂy,ﬂ,)gti,de Q'u'lr)
AL ACRTNE (22

—5:0c?
The definition(22) gives the key quantity for the introduc- XL+ (1=di)e ] (26)

tion of the BEB transformation in Sec. IIl. Expression(26) gives the alloy version of the local charge-

N _ density contribution used in Ref. 7 to recalculate the crystal
C. Conditional average of the charge density potential.

The expanded expressidg1) for the charge density is

suitable for configuration averaging, yielding the average p. sjte decomposition of the random self-consistent potential

over the whole alloy ensemble: ,
To close the self-consistency cycle we have to calculate

- . the potentiaN/(r) from the density(25). In the spirit of the
n(r):——' 2 , (rliQu) single-site approximation and in correspondence with Eg.
Q' Q (25), we have to make an ansatz for the configuration depen-
eF Q Q' R dence of the potential: we assume it to be a sum of local
Xf IM(7°Gi v (@) 75 Yd(i'Q" ' [r) . terms of unspecified shapes, bQtdependent and linearly
depending on the pseudospin:

(23
Herein the Green’s matrix appears in a new context. The - 0.0, & =
twofold conditional average of thg multiplied matrix is the V(r)= % MgsVs (T —R=s). (27)

commonly used projected Green’s functidrTo calculate

an ensemble average of the density, first the stochastic exhjs is of course a single-site approximation, there is how-
pression(21) is reduced to a sum of twofold conditionally ever no approach available which goes beyond it, except for
averaged terms, that means insertion of the two-site condgxtremely costly direct simulations of an ensemble of con-
tional averages of E¢22) in Eq. (21). o _ figurations or cluster calculations, which would reach far be-
Now we proceed to the basic step which will permit theyond the single-site picture. Recall that every charge and
use of the single-site approximation, namely we will ap-spin self-consistent single-sitt CPA approach is bound to
proximate the actual two-terminal elements of the Green'sxpress the site potential by the site density alone. However,
matrix (22) by their conditional component projected con- gt variance with KKR or LMTO, here the overlap of site

figuration averages: densities and potentials is not at all restricted. The actual
0, Q o o potential construction from the density is described consist-
7 G MY >g,:ii,77i' : (24)  ing of two parts, constructing the Coulomb contribution and

_ . the exchange and correlation contribution.
(- '>8,1'i, means averaging over all members of the en- Once one has calculated the electron density as a sum of
semble of configurations with fixed occupation at the twolocal overlapping site densities one proceeds as follows. The

) I - CQ >
terminal points:nQ= 778 —1. Hence, Eq(24) differs from charge contribution contained i (r) amounts to
Eq. (22) by configuration averaging over all sites, except
andi’. These averages are self-averaging, so that all random Ang nQ(F)dF
S S .

environment effects are neglected. The matrix eleméits (28)
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Together with the nuclear chargbg we divide the total A. Algebra of pseudospins and the Blackman-Esterling-Berk

. > — formalism
charge density around atomin a neutral part and an ionic !
point charge: In Sec. Il B we introduced the pseudospins. Now we give

them an algebraic structure, which leads in consequence to
Q 0 0 0 the BEB transformation. For a given sitethe pseudospin
<A55(F) "S”(F)) T (Zs‘ - As“) 87 . (29 72 is a column indexed b. For the following, it is advan-
neutral ionic tageous to consider it as a diagonal block of a rectangular

h I L ocalized b aoDbing C matrix 7= 28|, to be used together with its transposed
e neutral part gives rise to OC?'Ze ut overlapping Ou'%f in the definition of configuration-dependent projectors
lomb potential wells via Poisson’s equation. We assume as.

usually in solid-state physics local charge neutrality. That™
means that any ionicity must be totally screened within a
certain cluster range. Since we have no detailed information
on that screening in an alloy, we simply use a Gaussiahis x is simply a square diagonal matrix with diagonal
screening within a rangep ™%, i.e., we combine the ionic elementsy?°= »° of Eq. (13). It has the properties
point chargelsgzzsg—Asg with a Gaussian screening charge )

i X=x,  Troxiir =i . (34
according to Q

We expand the Hamiltonian and overlap matrices to contain
of .= p° _ 22 information of all possible configurations in such a way that
13 8(r)— e Pr (30 : ; ; - :
s Ty . the formerly introduced matrices of a given configuration are
obtained by projection:

x=nn', n'x=7n', xn=7. (33

3

The screening length has to be chosen such that the lattice

sum of the added heavily overlapping Gaussian charge den- _ Qi Ay, ,.Q
sities is essentially zero. This treatment is comparable to the H (%/ n(IQuIRMII'Q ") s
discussion in the literature. In Refs. 24 and 25 a screened (35)
impurity model is used to describe the effect of the Made-

lung potential in a disordered alloy. It is based on the obser-

vation that almost all of the compensating charge is located S=
in the first coordination shell around the impurity.

_ _The exchange and cor_relatipn potential W_hich is 1ess seNy and S are the expanded matrice€The #'s provide a
sitive to density modulations is calculated in an ASA ap-mapping of the product Hilbert space of all configurations
proximation: onto the valence Hilbert spaces of given configurations. The

“tensor products” y=g7', at variance, are projectors
Veins S 209l within the expanded Hilbert space onto the subspaces corre-
xcs| s s' R’ sponding to those configurations. In this sense the BEB
theory is a kind of “tensorial” CPA. Compare the paper Ref.
for |F|grgSA§ , (31 26, where a similar language is used in the framework of the
' KKR-CPA) It is worth noting thatH and S are stochastic
. and not translational invariant, whild and S will be ap-
Ve interstitia™= CONSt  for |r|>r,?sA,g- (32)  proximated in the following by expressions which are no
longer stochastic and are translational invariant. This struc-
This latter simplification used in our applications of Sec. V isture is used in the BEB formalisth(the x; andy; in that
however not a necessary prerequisite of the approach. By thigaper are the component;é\ and niB for the binary case
we complete the charge and spin self-consistency cycle, pro- The pseudosping enter the matricesl and S in three
vided the average of the Green’s mat(22) is obtained. ways: at the left and right “matrix terminals,” and via the
crystal potential and the core orthogonalization corrections.
We average over the’s entering on sites different from
both terminal sites of the matrices. This terminal-point ap-
The preceding section was devoted to the construction gbroximation preserves the fu} dependence at both terminal
the self-consistent potential from a known Green'’s functionsites and is far better than the former virtual-crystal
in the orbital representation. Now, we come to the other partapproximatior?, since the only averaged parts are the crystal-
namely to the approximate calculation of the correspondindield and the orthogonalization corrections frahird cen-
Green’s matrix. This is an algebraic problem. Thus, unlike inters. The expanded matrices are now split into on-site and
the KKR approach, the multiple-scattering problem is solvedff-site terms:
in the corresponding arithmetic space, rather than in the real

=9'Hy ,

=7'Sn. (36

> 2iQuli'Q )y nS
QQ’

R’ +s'#5,Q’

Ill. THE COHERENT-POTENTIAL APPROXIMATION

space’ We have to make the fundamental two-terminal ap- H=H+H, Hy=xH , (37)
proximation. Then, the structure of the Green’s matég) - - - = -
and the requirement to treat both the Hamiltonian and the S=S+§ SXZXS S~1 (38)

overlap matrix in the same manner without neglecting off- - -
diagonal disorder leads naturally to the BEB theory. with the detailed structure:
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82, ~6ir 00| B~ 2 (1QulIQe)cR(QcliQu’) | (39
IcQ

89 ~(1-5)| (1Quli’Q'w)~ 2 (1QulQe)cRIQcli’Q' ') |, (40

IcQ
AR~ 8o | (IQult+VRliQu)+ X (iQulcRvRiQu)— X (iQullQe)cReR(1QcliQu) |, (41)

1#i,Q lcQ
ARQ, =~ (1= 6| (IQult+VR+ VY i'Q u)+ 2 (IQuleRVRi'Q'u')~ 2 (iQullQe)eReR(1Qeli’ Q') |.
1#i,i",Q lcQ
(42
[
The energy Ievelsgare the core levels of atoma The We start byQ expanding the equation of motion of the

combination of the matrix elements of the three center po@ne-particle Green’s matritg):

tential and the core orthogonalization correction at a given T

site is known as the Phillips-Kleinman pseudopoterftial. 7 (‘”§_ﬂ) 7G=1. (43
Normally, its actlc_)n on _smooth functions is quite smc_all, SoFrom Eq.(22) we take the idea to multiply this equation with
the average over it at third centers away from the basis func- the left and withnT on the riaht to get an tion of
tion centers is not a severe approximation. Now we are pre” on the le _a T on the right to get an equation o
pared to formulate the multiple-scattering theory in the pseu—motlon forg=7Gn:

dospin language.
p guag x(@S—H)7nGy'=x. (44)

B. The scattering problem Now we use the definition of and the commutation rules in

The random arrangement of different types of atoms inEgs.(37) and(38):
the disordered alloy and the resulting breaking of the trans-
lational symmetry leads to an incoherent scattering of the [wS_H+X(wé_F|]X) Gy =yx. (45)
electrons. By defining a coherent reference medium it is pos- - = - =
sible to collect all incoherent parts of the scattering withWhen using the vacancy concept we associate at least one
respect to this medium in one quantity, called the scatterindpasis orbital with every site, sort of a smooth Gaussian at the
matrix T. Then the Green'’s function of the disordered alloy vacancy site.
is expressed in terms of the propagation in the coherent me- Then the expression on the left-hand side is stochastic but
dium and of the scattering matrix. The coherent medium willHerglotz, so that the resolvent exists in the upper complex
be defined by a self-consistency condition. o half plane:

G=nGn'=xnGy' (46)

=x[@S—H+x(0S—H)x]"'x

-1
=x[wﬁ—ﬂ—x(w—Z)x+x(w—2+w£—ﬁ)x] X - (47)

—a

]

=r-!

Here we introduced the Herglot (the stochastic potentjahnd the Herglotd™ (the nonstochastic nonlocal coherent Green's
matrix). The next steps are aimed at collecting all stochastic quantitie@a) into one matrix:

g:/ L_lz—a_I/:— -1 —1 -1 -1 SN 48
g x(x X _) X xgbx+xg xL7 xa ™ x + (48

1]

G=b(b-T)'r=T+T(b-1)'I=I+T T T. “9
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At this stage we expressed the multiple scattering in terms of

the translational invariant coherent Green’s mattixin the

product Hilbert spageand the random perturbatidn 0=
The averaging procedure now follows the well-known r'=o

scheme. The nonregular inverse potenbalcontaining all V%

randomness, defines the scattering mafrixvhose average i

is required to vanish: Al #0

/N
(T)=((b=T)"=0=(G)=T . 0 OF L
In that way we defined the self-ener§y Remembering our

aim we examine some projector relations concerning the
two-site conditional average of. From Eq.(46) we deduce

FIG. 1. The diagrams of the first four orderstin

G=x9x, Xt lq—i= 40 (51)
, , (t)=0. (57
QI(I?’Q | q—»? :gﬂ(} | q—>? 5Qq,Q’q” (52) -
q’'—i’ Q' —i’ After expanding the scattering series Eab) and inserting it

where the subscrigi—i again means to fix the specigsat  into Eq. (49) the averaged becomes

site i. We gain the insight, that th® Q" matrix G;, (for N

i,i’ fixed), as expected by its definition, contains only one (G)=T+0((t*) (58)
nonzero element under the conditigr+i,q’' —i’ (no aver-
ages were taken Furthermore the connection to the fully
averaged; is given by

as is easily seen in Fig. 1. The final result for the twofold
conditional averages in E@26) is then

QQ QQ’
QQ' _ /QQ"y a/cQQ"y L5 '
Fii _<gii >_§ Ci <gii >q_)l6Qq'Q'q <QS>QHI:CI_IQ! <g|?’Q> Q/HI’: Q” er (59)
i Q' —i Ci Ci'
—cQ/cQQ
=c UG . 800 53
(G a-i%0 ®3 except for terms of the orded(({t*)).
and This may be a good place for a few comments on the BEB
approximation and its quality. As shown here, in the general
FSQ :<_i<i?9 )= E cﬁcﬁ, <9§/Q ) 4—i S0q0'y case of _dlagonal and off-diagonal disorder, the BEB approxi-
qq q’—i’ mation is formally exact to the same order of the multiple

, , scattering expansion as the CPA is in the case of the diagonal
=cchS (QS,Q ) Qi . (54)  disorder. We have made a number of comparisons with the
- Qe results of a direct calculation of the projected DOS for one-
In other words the elements &f give the physical two-site dimensional model random alloys which indicate an excel-
conditional averaged Green’s matrix connected with the denlent quality of the BEB approximation in a wide range of
sity (26). This just is the gain of using the product Hilbert component bandwidths and other alloy parameters. The al-
space. ternative treatment of the off-diagonal disorder, the Shiba

For the cas&®=0 one gets from Eq48) b?%=0 and  multiplicative ansatz, can be shown to be a special case of
henceG@?=0 independent of . That means, configurations the BEB method, Ref. 28. While the self-consistent equa-
(iQ) with ciQ=O must be removed from the beginning: the tions reduc_e in number for the Shiba meth_od, an additional
set of specie€) may depend on the sitein cases of site calculation is needed to generate the physically a|:1d compu-
selectivity. tationally relevant component projected averaﬁ§§ . For

a nonzero overlap matrix, the generalized Shiba matrix factor
C. The single-site approximation should be the same for the Hamiltonian and the overlap ma-
trices, and this appears as excessively restrictive for use in
realistic calculations. Details of this model analysis will be
presented in a separate communication.

In the present paper, we treat consistently the case of
several inequivalent sublattices in the elementary cell. For
ghe structure of the self-energy and the validity of the single-
site approximation in this case we refer to Appendix A.

Except for the terminal-point approximation for the ma-
trix elements of the Hamiltonian and the overlap matrix, in-
troduced in Sec. Ill A, we made no approximation in Sec. Il
so far. In order to solve Eq50) we have to introduce an
approximation similar to the single-site approximatiorive
require the self-energy to be diagonal in site indices. Thi
leads to a site diagonal inverse scattering potebtiahd we
may decouplg50): N

IV. THE COMPUTATIONAL SCHEME
T=1-tI'")" %, ty=68(b—Typ)~ ', (55 o . . .
- -— - - - - In this brief section we summarize the basic features of
I, =(1-6;)T; (56) the present approgch, specify the orbital basis used, and give
- — the working equations as they were actually coded and used
with the condition in the self-consistent computation cycle.
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A. General characterization Vgg. Details concerning the relativistic implementation of the

Any meaningfulab initio theory of the electronic struc- LCAO method are described elsewhé?elgg is the poten-

ture of a”oys should be an extension of a well tested descripﬁa| Corresponding to the resumng density of the previous
tion of the corresponding pure component crystals. In theycle. Some atomic potential is used to start with.

present case, this is represented by the orbital theory summa- whijle recalculating the core orbitals readily from the site
rized in Ref. 7. In this sense, we continue the earlier wor%‘

Ref. 9. Thi | 410 rate that bit Iotent|al Vgg, the valence basis states will be modified to
Clg A r;eedlsn%?rb{ap?:neédsgr\tlg r?oreamol:];li::tﬁ/e seri?ecr)rz Iir ake them more suitable for the construction of Bloch wave
. Y, qua S P unctions. They will be recalculated with an additional at-
ical scheme. Both conceptual and practical limitations re- . : a0
: . . fractive potential termr(/r 5)* which compresses strongly the
stricted the approach to the alloys with near components, like .
. . e éxtended valence states. These compressed states are suffi-
CuNi. By contrast, our present method is sufficiently general.’; ) ; o .
; d ctiently complete in the interstitial region and have a strongly
(1) The present scheme is fully charge self-consistent, all-
) . . .~ ' “reduced overlap, compared to those calculated from the pure
electron, and, in principle, not restricted by approximations_; : . .
. . AR . “site potential. To close the recalculation of the orbitals these

of the atomic-sphere typ@dditional approximations speci-

. ; X : ~ - optimized valence orbitals will be orthogonalized to the core
fied below are not essentjallo achieve a wider applicabil- : X
. L states calculated from the pure potential. By this way the
ity, we use the scalar relativistic model of Ref. 29. . . .
: o . number of multicenter integrals is reduced. The parameters
(2) We use a scattering formulation in the matrix form, ro are chosen by convergence checks of the band energies
which in its general scope parallels the KKR-CPA method.- 9 | Oy 9 -NErgies.
o . They scale with the lattice constant and are determined, in
In fact there are similarities with the screened KKR ap-_.~7. .
principle, by the lattice structure.

proach.
(3) In the orbital formulation leading to the energy- ) ]
independent Hamiltonian matrix, the present approach paral- C. Implementation of the self-consistent cycle

lels the TB-LMTO-CPA. However, the present approach is For the construction of the nonstochastic and hence lattice
not based on the TB transformation, and includes the orbitadymmetric Hamilton and overlap matrix we use Bloch sums
overlaps. of AO’s in the usual manner resulting in expressions of the
(4) Both the diagonal and the off-diagonal disorder areform [ = (Im)]:
included on the same footing in the BEB framework. This
opens the possibility to apply it to local basis representations Q. (k) and ‘SQQL/ ,(K), (61)
in the most flexible way, including nonorthogonal bases. T Sse
(5) The method is formulated so as to incorporate severdor the off-diagonal part§40,42. Thesek-dependent matrix
components and several sub-lattices with different composielements together with the elements of the self-energy will
tions. be inserted in Eq(47) to calculate via Brillouin-zone inte-
gration the on-site elements of the coherent Green’s matrix:
B. Orbital basis I‘?Q’
Our computational scheme follows the lines of Ref. 7. We s, up’
are dealing with a minimal basis set of modified orbitals. For
each atom the local valence basis is represented by one statge off-diagonal elements f@+ Q" of the Green’s matrix
per angular momentum and spin. The maximum angular moare kept during the self-consistency cycle, but they vanish in
mentum is determined by the type of the element, for transithe end. Details concerning the crystal symmetry are given in
tion metals we uss, p, andd states and for actinides up to Appendix B. The site diagonal inverse scattering potential

- f o2+ 08K~ H0] g - (62)
BZ o e

su,su’

f states: 9 (48) can be written as
> 32 > 2 > 2 > QQ’ (9QQ’
(rIRsnIm)= ¢y (Ir=R=S))Yim(r=R=5),  (60) bac e =2 M bs (63)

with Y|, being real spherical harmonics. The radial part \ith

does not depend on the magnetic quantum nunmbeAs

described, the crystal potenti@?) is chosen to be a sum of (@QQ’ _ 179 &9 q, -1
; ; . . - = , —wSltw—2X0) .

overlapping site potentials. Additionally, we want to assume By uur 0@ .aH m0S o=, (64

the Shape of the site pOtentialS to be Spherical. This SlmpllTo fulfill condition (57) we choose the averaqu*natrix

fication |mp||eS that all aSpherical parts of the CryStaI pOten'approach‘ That means, we calculate from E$) the aver-
tial are claimed to be approximated by the lattice sum ofaged single-site scattering matrix

those spherical site potentials. Surely this is not exact, but for

a wide range of applications especially for closed-packed Q' | an@ .1
structures this method together with the valence basis treat- '55,##'>_2q cs(bg _Es)QQ/' ' (65)
ment as described below has been proved to give results pr

between muffin-tin and full potential approachéaspheri-  which should be zero. The resulting change in the self-
cal site potentials could be readily incorporajefiirst in  energy is d3=(1+(t)I')"Xt). In an inner CPA self-
each self-consistency cycle, the species-dependent basiensistency cycle the Green’s matrix, the self-energy and the
states are recalculated by solving an atomic Sdiluger or  scattering matrix are recalculated until the averaged single-
Dirac equation for each atomic species with a potentiakite scattering matrix vanishes.
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FIG. 2. bce-FeCo alloy: The dashed lines are the TB-LMTO-  FIG. 3. fcc-CoPt alloy: The dashed line is calculated by the full
ASA result taken from Turelet al. The full lines are our results, relativistic KKR-CPA. These data and the experimental values
experimental values are marked by filled symbols. (filled symbolg are reported in Ebest al. Our result is marked by

a full line.

To perform the involvedv integration along the real axis constant(Fig. 2). For comparison with other methods we

accurately, we employ the Herglotz property of the Green'syregent also the LMTO results, published in Ref. 12. Both
matrix and of related quantities, which allows us to use th&,ryes show the characteristic maximum, while our curve is
common trick of changing the integration contour from the . oser to the experimental one. The higher Co moment is

real line to a semicircular path in the upper complex half.,nsistent with the bece Co moment obtained by pure LCAO

plane. The integrals depend only on the end points and thgy|cyjations. The deviations to the LMTO result may result

functions to be integrated are much smoother far away from.,m 5 sjightly higher pure Fe moment in their calculations.
the real axis. The integration starts in energy regions below The above-mentioned applicability to different band-
the band bottom and ends at the Fermi energy, which has {Rjqihs and relativistic cases is tested in the following two

be readjusted to get the right number of occupied states. gyamples. The fcc-CoPt alloy was explored by the fully rela-
__Once reaching the converged self-energy the energyistic KKR method®® The magnetization of this compound

integrated Green’s matrix elements are inserted into the exsypipits a transition to zero moment with increasing Pt con-
pression for the density26). In view of the spherical ap- centration. Here the bandwidth of the pure Pt is approxi-
proximation of site potentials, which is single-site. CPA 401y twice the Co bandwidth. Our scalar relativistic calcu-
consistent, we compute the spherical average of site densitigs;on, reproduces the slightly nonlinear behavior as given by

only. We end up at a density representation C(_)nsisting of e KKR results, in good agreement with experiméfig.
lattice sum of local spherical, overlapping densities. ?)_
a

This representation of the density leads to the potenti
via the expressions in Sec. IID. In this way, the self-
consistency loop is closed.

The last binary example is the Invar alloy fcc FePt, which
shows anomalies, for instance in the thermal expansion. The
critical region lies between 70% and 80% Pt content. To
investigate the nontrivial behavior of the moment and the
V. ILLUSTRATIVE APPLICATIONS lattice constant one has to perform_total-energy calculatio_ns.
Here we compare the moments given by our method with
The numerical tests shown below serve to test the reliabilthose calculated by the recently developed relativistic TB-
ity and flexibility of our approach. It should be suitable for LMTO-CPA (Ref. 3] at a fixed lattice constanfFig. 4).
light and moderately heavy atoms, and for alloys of metal{The LMTO data are taken from Ref. BBoth results show
with widely different pure component bandwidths. We nearly the same local and averaged moments. The experi-
present calculations and comparisons for some magneticalinental data are given in Ref. 33. These three examples prove
ordered binary systems and for a ternary system. the applicability of our method in the case of binary alloys.
The first example is the bcc FeCo alloy. One main feature To show an application to more complicated structures we
of this compound is the transition from filled iron majority switch now to a ternary system. The FeAlMn alloys have
bands to lower filling by increasing the iron content, result-been known to show interesting and complicated magnetic
ing in a maximum of the magnetization curve at 70% Feand structural features. We want to present here theoretical
concentration. This compound is widely studied. We calcu+esults for the ferromagnetic phase. The composition inves-
lated the magnetization versus concentration at a fixed latticegated has the formula Bgg_,Mng 1Al . When disregard-
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TABLE |. The local moments and the moment per atom
at various Al concentrations for theA2 structure of the
Al Fepgg yMng 14 alloy.

X 0.00 0.10 0.20 0.30 0.40

Fe 2320 2273 2185 2062 1911
Al -0.168  -0.150 -0.128  -0.104
Mn -0.141 -0.118 0678  1.089  1.135
Fper atom 2,019 1766 1552  1.297  1.019

the values of the averaged magnetization coincide well with
the experiment at low Al concentrations. Beyaxe 0.2 the
magnetization at helium temperature is breaking down. This
phase transition is not obtained in our ternary CPA treatment
of the A2 structure. To go a step further we paid attention to
the fact, that with increasing Al content experimentally the
structure seems to switch to tB2 structure. To investigate
the influence of this structural long range order on the mag-
netization we performed a CPA calculation with two simple
cubic sublattices, displaced by (1/2,1/2,1/2). One is occu-

FIG. 4. fcc-FePt alloy: The dashed lines are calculated with the?ied With pure Fe atoms, the other is occupied with the com-

full relativistic TB-LMTO-CPA, developed by Shickt al. The full

position Fg 7g->,Mn Al 5, which corresponds to the ter-

lines are our results, experimental values are marked by filled symaary alloy with the Al contentx. This subdivision is

bols, they are taken from Wasserman.

ing the different constituents the structure is a b&2) lat-

motivated by the observation that in the system A(Ref.
36) (a DO; derived structure ak,<40%) and in similar
systems like SiF@&/,Mn),®" % the Fe atoms tend to occupy

tice. Comparison is made to measurements by Bremensvo of the four fcc sublattices of the DQOstructure. These
et al**3° First we calculated a bce alloy where each site islattices reduce to thB2 structure if one considers the other
randomly occupied. The room-temperature lattice constariivo sublattices to be equally occupied. We transfer the ex-
was taken from experimentBremers and reduced by perimentally known occupation preferences to tB
0.5% to the T=0 value, estimated from the thermal- AlFeMn by assuming one site to carry pure iron atoms. The
expansion coefficient. As can be seen in Fig. 5 and Table fesults are striking. They are collected in Table Il. We give

Al Fe .. Mn

a,=5.45

0.11

25 T T ;

0.0 0.1 0.2 0.3
x[Al]

0.4

the local moments of the two different sites in B2 struc-
ture and the moment per atom.

One remarkable feature is easily seen. The local moments
of the Fe atoms depend strongly on the nearest-neighbor
shell. The Fe atom with eight pure neighbors has a saturated
magnetization of about 2/, while the atom on the Fe
sublattice, for which only a small percentage of the eight
neighbor atoms are iron, has a reduced moment. This behav-
ior is known from the antistructure atoms in ordered
Fe,Als, (Ref. 39 and from the alloys SiFe and SiFéV.
Most important, we get a sudden transition of the moment of
the pure iron sublattice to ferrimagnetic coupling, thereby
enormously reducing the total magnetic moment at about
30%

TABLE Il. The local moments of both simple cubic sublattices
and the moment per atom at 10, 20, 30, and 35% Al content for the
B2 structure of the FghAl 5 Feg 7 2,Mng o, alloy. The number
besides the elements refers to the sublattice.

FIG. 5. bce-FeAlMn alloy: The moment per atom in the ternary Mn 2

bcc alloy for theA2 structure and for th82 structure in compari-

son with experiment. For details see the text.

X 0.10 0.20 0.30 0.35
Fe 1 2.232 1.955 -0.144 -0.274
Fe 2 2.378 2441 2.592 2.520
Al 2 -0.191 -0.168 0.001 0.014

0.938 1.499 2.167 1.932
1.890 1.572 0.399 0.181

Mper atom
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aluminum. This reduction meets excellently the experimen- APPENDIX A: THE SELF-ENERGY

tally observed decrease of the magnetizatiéig. 5). Without approximations, is not diagonal in real space.

We may write with diagonal invertible=wS—H (dropping
VI. CONCLUSION the underbar -

Starting from the local orbital representation of the Kohn- o 11 o
Sham theory we constructed a fully charge and spin self- G=x1=x(O-T"Ox]"x, O=0=3.
consistent CPA scheme for calculation of the electroniaCorresponding to Eq(48) one derives(with site diagonal
structure of substitutional disordered alloys. An optimization) = y| ~1y)
resulting into a strong localization of the valence orbitals is
needed for the assignment of the atoms to the basis states, G=A[1—(O@-T"H\]"1=T+TITT,
and for a single atom decomposition of the potential. Even ]
s0, the basis states are nonorthogonal. For alloys with ver(¢hich gives
different components, it is essential to treat properly both the

diagonal and the off-diagonal disorder both in the overlap AN=(C+TTD[1-(0—-T Y],
matrix and in the Hamiltonian matrix. In our method, this is
achieved by the terminal-point approximation, permitting us TA=(1+TI)(ON-1), (T)=0).

to achieve the CPA solution within the BEB formalism in-
corporating a self-consistent recalculation of all matrix ele-
ments in each cycle. Among the advantages of the loc

Now we are asking for elements with the right indealled
f) being at a site with only one possible occupation. Then,

orbital-matrix representation is a simple inclusion of the sca—)‘.f>:)\f hOIdS.' The averaging procedure removes terms
lar relativistic effects and its straightforward applicability to with (T) and yields
structures with complex unit cells and with a complete or a

partial disorder. The numerical results presented have an ac-

curacy comparable with the KKR and LMTO CPA methods . .
currently in use. Sit=0 if[o(1=S)+H «].

To summarize, the pure orbital alternative to the KKR- . . , . .

CPA and to the TB-LMTO-CPA appears as feasible andBecausen thus vanishes in the case of fixed site occupation

meaningful. Like the recently developed screened KKR, itVe havg to exclude the§e _sites f_rom the CPA. equatﬂ_ﬁﬁ)s
combines the rigor and directness of the KKR with the prac—(57)' This general peculiarity && is preserved in the single-

tical simplicity of the LMTO; on top of that its LCAO form si_te approximation, where we set _by definition all site off-
provides physically illuminating “quantum chemical” in- diagonal elements dt to ZErO. It gives us h.Opt.:“ to expect
sights. that the CPA would be better if less stochastic sites existed in

There are several obvious directions for a future work.the unit cell.
First, a number of improvements, especially making the con-
struction of the potential more flexible, will be needed to APPENDIX B: THE BRILLOUIN-ZONE INTEGRATION
generate a standard computer code, suitable for general use. .
Within the CPA, several extensions are inevitable, but not In order to calcu!ate the on-site elements of the coherent
difficult to achieve, notably the inclusion of the spin-orbit Green'’s matrixLSiM, we perform Brillouin-zone integra-
effects, and the calculation of the total energy as a function. QQ'k L . o
of the alloy parameters. A more general question which hal0NS OVerLs /. To reduce this time consuming step it is
arisen during the work is the position of BEB among otherunavoidable to integrate only in the |rr(_edu0|ble part of the
alloy formalisms, and the reasons for the unexpected qualitpZ- Unfortunately, we have to symmetrize the Green's ma-
of the BEB-CPA. trix after doing so, becausg® does not form a unit repre-
All this methodological work should not mask the fact sentation of the full Brillouin-zone symmetry. In simple
that we have developed the present method because it @ases, like unit cells where each site has the full cubic sym
computationally facile and suitable for the studies of com-metry and with basis states up dostates, this task is very

plex alloy structures. We intend to concentrate primarily ONgasy. Then£§ff;, is diagonal inuu’ and the matrix ele-

hi . ;
this aspect ments for given angular momentunarem degenerated. The
average over all diagonal elements to a fixagives just the
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and J. Hesse for providing us with experimental results orft Point-group operation, a proper or improper rotation, while
the FeAlMn system, partially prior to publication, and for 7 IS a translation through a vector. It can be a composite of a
discussions. B.V. acknowledges financial support by theprimitive lattice translatiorR and of an essential nonprimi-
Max-Planck society. tive translationry, which in cases of nonsymmorphic space
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groups can never be made to vanish by shifting the origin: 0O’ 3 Q0" K
Ref. 40. The set of symbolai| 7o} with 7, being a specified Eg,,m/:f d kI ") (B3)
set of nonprimitive translation vectors does not form itself a
subgroup in nonsymmorphic space groups. We therefore
consider the vectors as general composits of primitive and =
nonprimitive lattice vectors. This ensures the group proper- u
ties of the symbolgu|7}. (B4)

The action of these operations on the LCAQO basis states iEhe sum runs over all space-group elements. Examining the

given by symmetry relationgB2) we get
e n e Q' _ 3 * pQQ Kk,
U|RSM>:Z [U(R+s)u')a,, . (BY) LI s irBZd k% R AR (BS)
“
The coefficientsa are representation matrices of the point- =3 Q' (irez) S ata
H - s’ vy’ e, vV
group element for an angular momentumand provide the oo T Os=s'
transformation of the spherical harmonics included in the (B6)

basis states. This relation holds for arbitrary space groupspe space-group operations can be classified by inspecting

Together Y‘"th the transformation properties of the phase fac,[—he pairs of basis vectors ' which are transformed into
tor exp{kR) we deduce

another. There exists for eash a possibly empty subset of
. U's which transforms a given vectors into s':
POUUK_S gx P2k, (B2) =03 3 ified i

Lsun T Qupd g, Rt s'=UsmodR}. For a speml‘leds, the union of the subsets
" belonging to all basis vectoss in the unit cell contains each

holding for site diagonal elements only. This formula is valid group operation exactly once. Thus, the second sum in Eq.
for arbitrary space groups. Note, that a space-group operatidf6) runs over the set of group operations which transform

U acts ons, while only the corresponding point-group ele- sintos’. The superscript ofi denotes thé integration over
mentu acts onk. Now we decomposed the integral in the the irreducible part. Since the last sum in EB6) is only
whole zone into a sum over integrals in the irreducible parstructure dependent it is performed once for ever and then
but over rotated matrices, represents all point-group opera- the symmetrization is much faster than to calculBtefor
tions: eachk point in the whole zone.
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