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Self-consistent LCAO-CPA method for disordered alloys

Klaus Koepernik, B. Velicky´,* Roland Hayn, and Helmut Eschrig
MPG Research Group Electron Systems, Department of Physics, TU Dresden, D-01062, Dresden, Germany

~Received 9 August 1996!

We present a scheme for calculating the electronic structure of disordered alloys, self-consistent in the
local-density-approximation sense. It is based on expanding the one-electron Green’s function in the basis of
modified atomic orbitals@H. Eschrig,Optimized LCAO Method and the Electronic Structure of Extended
Systems~Springer, Berlin, 1989!#. The two-terminal approximation introduced for the Hamiltonian and the
overlap matrix permits us to treat both the diagonal and off-diagonal disorder using an extension of the
Blackman-Esterling-Berk form of the coherent-potential approximation~CPA! @Phys. Rev. B4, 2412~1971!#
to a nonorthogonal basis set. Calculations using the scalar relativistic density functional for the magnetic binary
transition-metal alloys Fe-Co, Fe-Pt, Co-Pt, and for the ternary alloy Al-Fe-Mn give results comparing well
with experimental data and calculations based on the Korringa-Kohn-Rostoker~KKR!-CPA and linear muffin-
tin orbital-CPA techniques.@S0163-1829~97!03509-1#
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I. INTRODUCTION

Several powerful implementations of the cohere
potential approximation1–3 ~CPA! to calculate the electronic
structure of substitutional alloys have been developed in
cent years. Early applications of the CPA with firs
principles band-structure methods were mostly based on
method of Korringa, Kohn, and Rostoker~KKR!,4 and this
KKR-CPA is still widely used, e.g., Ref. 5. In view of th
multiple-scattering formulation underlying the KKR theor
the incorporation of the CPA turns out to be quite natura

To reduce the numerical effort of the KKR method, t
tight-binding-linear-muffin-tin-orbital6 ~TB-LMTO! method
was developed. Another linear band-structure scheme is
linear-combination-of-atomic-orbitals~LCAO!.7 To incorpo-
rate the CPA idea into these linear band-structure meth
one has to start from an algebraic, matrix version of the C
instead of using the multiple-scattering language. In t
way, a TB-LMTO-CPA~Ref. 8! was developed and also firs
steps towards a LCAO-CPA~Refs. 9–11! were made. These
approaches made it possible to apply the CPA in quite c
plex structures like multilayers, surfaces or interfaces12 or in
bulk materials with complex unit cells and partial disord
First TB-LMTO-CPA calculations on partially disordered a
loys were performed by Kudrnovsky´ et al.,13,14 however not
fully charged and spin self-consistent. Recently, the scree
KKR approach was introduced.15 It combines the pleasan
features of a TB formulation with the rigorousness of
multiple-scattering approach.

In the past, special attention has been drawn to the p
lem of off-diagonal disorder appearing in the matrix CPA.
the case of multiplicative off-diagonal disorder one can u
the approach proposed by Shiba,16 which was introduced
into the TB-LMTO-CPA.17–19 For the case of general off
diagonal disorder the procedure of Blackman-Esterli
Berk20 ~BEB! is applicable. Some applications of BEB
band-structure calculations were reported in Ref. 21 usin
tight-binding fit. But to the authors’ knowledge, the BE
approach was never used in a first-principles, charge s
consistent CPA application.
550163-1829/97/55~9!/5717~13!/$10.00
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Within the LCAO scheme one deals with a nonorthogo
basis. There have been attempts to implement the CPA
nonorthogonal basis schemes.9–11However, up to now there
were no charge self-consistent calculations and the
diagonal disorder was only treated in virtual crystal appro
mation~VCA!. Despite the many similarities between LCA
and TB-LMTO there are also some differences. LCAO p
no restriction on the shape of the potential, as for insta
the atomic-sphere approximation~ASA! of the TB-LMTO-
CPA.

Our aim will be to present a fully charge self-consiste
approach to complex lattices based on a nonorthogo
LCAO basis scheme without restriction to VCA. We wi
treat all randomness of the Hamiltonian and of the over
matrix including off-diagonal disorder at the same level. T
approach is applicable to a wide class of alloys. It is based
a pseudospin description often used in the past~in the BEB
theory,20 in the augmented space method22!. We present a
generalization of the BEB theory to sublattices and to n
orthogonal basis sets in the propagator formalism, embed
in a charge self-consistent treatment. A variant of a propa
tor formalism for BEB was proposed, for example, in Re
23, where the analyticity of the BEB Green’s function w
proved. In the context of the propagator formalism w
present a formulation of the full multiple-scattering proble
within the LCAO approach comparable to the KKR descr
tion. This leads to a quite natural introduction of the sing
site approximation.

The problem of disordered alloys naturally requires qu
a number of approximations. In our opinion two points ha
to be met by every charge self-consistent CPA method
should incorporate the major effects of disorder at leas
single-site mean-field approach and rely on a band-struc
scheme which is sufficiently accurate in relation to the ac
racy of the CPA. When using a wave-function approach,
possibility of a single-site approximation implies the use
not only a local but an effectively well localized basis. In th
TB-LMTO this is achieved by the additional LMTO-TB
transformation, which is not entirely without problems. T
optimized local orbital approach,7 approved for ordered
5717 © 1997 The American Physical Society
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structures, seems to us particularly appropriate to a m
direct solution. It leads naturally to the terminal-point a
proximation and therefore includes the most general kind
off-diagonal disorder. Clearly the mean-field treatment of
disorder via single-site CPA has a quite strong model ch
acter. However, in the case of a BEB theory the randomn
of the environment is taken into account at least with resp
to the two terminal points of all matrices, thus giving a go
description of the densities of states as demonstrated
model systems. Our combination of the CPA with the no
orthogonal LCAO fulfills the requirement with respect to t
accuracy of the whole scheme and thereby arrives direct
a matrix representation without a tight-binding transform
tion of the Hamiltonian.

Our paper is organized as follows. First, in Sec. II, w
present the representation of the charge density of an allo
terms of conditionally averaged Green’s functions and lo
orbitals. This is necessary to obtain the self-consistent po
tial in the spirit of the local-density approximation~LDA !.
Next, in Sec. III, we generalize the BEB theory to nono
thogonal basis sets and to the case of several sublattic
terms of the propagator formalism. In Section IV we descr
the numerical procedure and present the underlying eq
tions. In Sec. V we apply the method to binary and tern
transition-metal alloys. The binary examples FeCo and es
cially CoPt and FePt prove the applicability and accuracy
our approach to alloys with a great difference in the ba
widths of the constituents and to cases where relativistic
fects are important. The last example FeMnAl is a rat
complex one. It shows a rich structure of the magnetic ph
diagram. Here we present an investigation of the ferrom
netic phase. In that case, we obtain magnetic moment
agreement with experiment for all Al concentrations, ho
ever, at higher Al content, the incorporation or partial ord
is decisive in obtaining agreement with experiment. We d
cuss the dependence of the moments on the local env
ment.

II. KOHN-SHAM APPROACH TO ALLOYS
IN LOCAL ORBITAL REPRESENTATION

Theoretically, an alloy is described as an ensemble
configurations of atoms, accompanied with the definition
an average of observable quantities. For each configura
in the spirit of density-functional theory an effective singl
particle Hamiltonian is introduced, depending on the elect
density of that configuration. Instead of summing over
squares of Kohn-Sham orbitals, in alloy theory it is pref
able to use the single-particle Green’s function in closing
self-consistency cycle.

A. Local orbital representation of the single-particle
Green’s function

Given an atomic configuration, the Kohn-Sham theo
starts from an effective single-particle Hamiltonian~we use
atomic units\5me5ueu51):

H~rW !52
1

2
D1V~rW ! . ~1!
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with the potential being a function of atomic species a
positions and a functional of the electron density. T
ground-state electron density is again solely determined
the atomic species and positions. For the sake of simpli
in the notation, a possible spin dependence is understoo
the following without mention. In a relativistic version,
Pauli Hamiltonian or a Dirac Hamiltonian can be used lik
wise. To prepare for the alloy case we define the retar
single-particle Green’s function in real spac
(v15v1 id):

@v12H~rW !#G~rW,rW8;v1!5d~rW2rW8! . ~2!

From its imaginary part the electron density may be cal
lated as

n~rW !52
1

pE ImG~rW,rW;v1!Q~«F2v!dv , ~3!

whereQ is the step function and«F denotes the Fermi level
At this stage we introduce a nonorthogonal local orbi

representation7 of all real-space quantities. The basis orbita
are classified as valenceu im) and coreu ic) states with site
index i and atomic quantum numbersm andc, respectively.
The core states are assumed to be nonoverlapping and
thogonal to each other, while the valence states are not
get rid of the core part of the Hamiltonian, we project t
valence basis states onto the Hilbert subspace orthogon
all core states:

u im&5u im)2(
lc

u lc)~ lcu im! . ~4!

Core states and the corresponding density contributions
separately treated as a first step in each cycle of s
consistency.

From now on, we consider the valence subspace in
Hilbert space which in practical implementations is spann
by a finite number of basis states per site, but is sufficien
complete to represent the occupied valence eigenstates
following quantities like Hamiltonian, overlap matrix, an
Green’s function will be given as projected to this subspa
It may likewise be considered as spanned by a set of
thonormalized statesuk& containing the occupied eigenstat
of the projected Hamiltonian:

uk&5(
im

u im&aim
k , ~5!

1valence5(
k

uk&^ku5 (
i m
i 8m8

u im&(
k
aim
k ai 8m8

k* ^ i 8m8u . ~6!

In practical implementations, completeness in this sens
checked as basis set convergence. The coefficientsaim

k define
the valence states and the inverse of the overlap matrixS:

(
k
aim
k ai 8m8

k* 5^ imu i 8m8&215Sim,i 8m8
21 . ~7!

Straightforwardly we deduce the Hamiltonian matrix, t
overlap matrix, and from Eq.~2! the Green’s matrix~see also
Ref. 9!:
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H~rW !5 (
im i 8m8
jn j 8n8

^rWu jn&Sjn,im
21 ^ imuH~rW !u i 8m8&

3Si 8m8, j 8n8
21 ^ j 8n8urW& ,

H5i^ imuH~rW !u i 8m8&i ,

S5i^ imu i 8m8&i ,

15~v1S2H !G1 . ~8!

G6 abbreviatesG(v6)5G(v6 id).
The contravariant Green’s matrix elements in the non

thogonal basis are defined as

Gim,i 8m8
6 [ (

jn
j 8n8

Sim, jn
21 ^ jnuG~rW,rW8;v6!u j 8n8&Sj 8n8,i 8m8

21 .

~9!

Starting from the Kohn-Sham ansatz the valence part of
electron density is given by

n~rW !5(
k

^rWuk&Q~«F2«k!^kurW& , ~10!

where«F again denotes the Fermi energy.~The core part has
a similar structure and will be added, but it is simple and
not the object of consideration here.! We replace theQ func-
tion by an integral over ad function, which is expressed a
the difference of the retarded and advanced one-par
Green’s functions. After switching to the local basis~4! we
get

n~rW !52
1

2p i (im
i 8m8

^rWu im&E«F
dv

3@G12G2# im,i 8m8^ i 8m8urW& . ~11!

The involved integration starts below the band bottom of
valence states. The occurrence of the advanced Green’s
trix is due to moving the imaginary part in Eq.~3! between
the ~possibly complex! local basis states.@In cases of a rea
Hamiltonian matrix—in the presence of inversio
symmetry—the difference in Eq.~11! reduces to the imagi
nary part of the retarded Green’s matrix.# To simplify the
notation, we use the abbreviation ImG[1/2i (G12G2) in
the following. We get a density representation consisting
~overlapping! local site densities~for i5 i 8) and of doubly
terminated terms called overlap density:

n~rW !52
1

p (
im,i 8m8

^rWu im&E«F
ImGim,i 8m8dv^ i 8m8urW& .

~12!

Up to this point we considered a given configuration of
alloy. One of the main problems here is the lack of perio
icity, so that there are no good quantum numbers charac
r-

e

s

le

e
a-

f

-
r-

izing the eigenstatesuk& of the Hamiltonian. To arrive at
measurable quantities, we have to carry out a configuratio
average.

We want to point out that we have no frozen-core tre
ment, since in this approach it would not lead to a simpl
cation. In each cycle of charge self-consistency the c
states and the projected valence basis states will be rec
lated.

B. Pseudospin description of the ensemble

In this paper we discuss substitutional disordered allo
taking into account the possibility of a complex unit cell. Th
vectors of the underlying lattice will be denoted byRW and the
basis vectors bysW. Each site belongs to a sublattice. Th
sublattices may be randomly occupied by various specie
atoms or by a vacancy. Each alloy configuration is mapp
onto a set of pseudospins$hRW sW

Q
%:

hRW sW
Q

5H 1, atom of speciesQ at RW 1sW

0, otherwise,
(
Q

hRW sW
Q

51 ,

~13!

~‘‘species’’ may include vacancy!. Many physical properties
of interest are defined as configurational averages denote
the following by ^•••&. Applying it we introduce the con-
centration of the speciesQ with respect to a specified sit
sW in the unit cell:

^hRW sW
Q

&5csW
Q⇒(

Q
csW
Q

51 ~14!

and the condition of statistical independence of all sites:

^hRW sW
Q hRW 8sW 8

Q8 &5csW
Q
csW 8
Q8 for RW 1sWÞRW 81sW8 . ~15!

For the sake of simplicity, we use in the following a multip
index i5RW sW.

We construct now the local orbitals for an alloy with th
help of those stochastic pseudospins:

u im)5(
Q

u iQm)h i
Q , local stochastic valence basis ,

~16!

u ic)5(
Q

u iQc)h i
Q , local stochastic core states .

~17!

The pseudospin ensures that the correct basis state is us
the right place. The orthogonalization to core states co
sponds to the ‘‘Q expanded’’ equation~4!:

u im&5(
Q

u iQm&h i
Q , ~18!
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u iQm&5u iQm)2 (
lcQ8

u lQ8c)h l
Q8~ lQ8cu iQm! . ~19!

The core states fulfill the relation:

h i
Q~ iQcu i 8Q8c8!h i 8

Q85d i i 8,QQ8,cc8h i
Q , ~20!

since for iÞ i 8 and for i5 i 8, Q5Q8 they are orthonormal

andh i
Qh i

Q85dQQ8 at a given sitei by definition ~13!.
To employ the pseudospin representation, we introd

theQ-expanded expression~12! for the density:

n~rW !52
1

p (
iQm,i 8Q8m8

^rWu iQm&

3E«F
Im@h i

QGim,i 8m8~v!h i 8
Q8#dv^ i 8Q8m8urW& .

~21!

We interpret theh product of the Green’s function as a ne
quantity, the expanded Green’s matrix:

Gim,i 8m8
QQ8 5h i

QGim,i 8m8h i 8
Q8 . ~22!

The definition~22! gives the key quantity for the introduc
tion of the BEB transformation in Sec. III.

C. Conditional average of the charge density

The expanded expression~21! for the charge density is
suitable for configuration averaging, yielding the avera
over the whole alloy ensemble:

n~rW !52
1

p (
iQm,i 8Q8m8

^rWu iQm&

3E«F
Im^h i

QGim,i 8m8~v!h i 8
Q8&dv^ i 8Q8m8urW& .

~23!

Herein the Green’s matrix appears in a new context. T
twofold conditional average of theh multiplied matrix is the
commonly used projected Green’s function.17 To calculate
an ensemble average of the density, first the stochastic
pression~21! is reduced to a sum of twofold conditionall
averaged terms, that means insertion of the two-site co
tional averages of Eq.~22! in Eq. ~21!.

Now we proceed to the basic step which will permit t
use of the single-site approximation, namely we will a
proximate the actual two-terminal elements of the Gree
matrix ~22! by their conditional component projected co
figuration averages:

h i
Q^h i

QGim,i 8m8h i 8
Q8&

Q8→ i 8
Q→ i h i 8

Q8 . ~24!

^•••&
Q8→ i 8
Q→ i means averaging over all members of the e

semble of configurations with fixed occupation at the t

terminal points:h i
Q5h i 8

Q851. Hence, Eq.~24! differs from
Eq. ~22! by configuration averaging over all sites, excepi
andi 8. These averages are self-averaging, so that all ran
environment effects are neglected. The matrix elements~24!
e

e

e

x-

i-

-
’s

-

m

still contain a stochastic dependence on two sites. To ar
finally at the single-site description of an alloy, we are led
a corresponding assumption about the form of the den
used in the self-consistency cycle:

n~rW !'(
iQ

h i
Qni

Q . ~25!

This means the full charge density for a configuration sh
be additively decomposed into single-site components. Th
will be replaced by the self-averaging component projec
densities given by ensemble averages. Thus we neglec
two-site correlated fluctuations in the local densities. An a
ditional average over the right index of the overlap eleme
in Eq. ~24! serves to reduce Eq.~21! to a sum of single-site
expressions:

ni
Q~rW !52

1

p (
i 8Q8mm8

^rWu iQm&

3E«F
Im^Gim,8m8

QQ8 &
Q8→ i 8
Q→ i dv^ i 8Q8m8urW&

3@d i i 81~12d i i 8!ci 8
Q8# . ~26!

Expression~26! gives the alloy version of the local charge
density contribution used in Ref. 7 to recalculate the crys
potential.

D. Site decomposition of the random self-consistent potential

To close the self-consistency cycle we have to calcu
the potentialV(rW) from the density~25!. In the spirit of the
single-site approximation and in correspondence with
~25!, we have to make an ansatz for the configuration dep
dence of the potential: we assume it to be a sum of lo
terms of unspecified shapes, butQ dependent and linearly
depending on the pseudospin:

V~rW !5(
Q

hRW sW
Q
VsW
Q

~rW2RW 2sW ! . ~27!

This is of course a single-site approximation, there is ho
ever no approach available which goes beyond it, except
extremely costly direct simulations of an ensemble of co
figurations or cluster calculations, which would reach far b
yond the single-site picture. Recall that every charge a
spin self-consistent single-site CPA approach is bound
express the site potential by the site density alone. Howe
at variance with KKR or LMTO, here the overlap of sit
densities and potentials is not at all restricted. The ac
potential construction from the density is described cons
ing of two parts, constructing the Coulomb contribution a
the exchange and correlation contribution.

Once one has calculated the electron density as a su
local overlapping site densities one proceeds as follows.
charge contribution contained innsW

Q(rW) amounts to

AsW
Q

5E nsW
Q

~rW !drW . ~28!
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Together with the nuclear chargeZsW
Q we divide the total

charge density around atomsW in a neutral part and an ioni
point charge:

~29!

The neutral part gives rise to localized but overlapping C
lomb potential wells via Poisson’s equation. We assume
usually in solid-state physics local charge neutrality. T
means that any ionicity must be totally screened within
certain cluster range. Since we have no detailed informa
on that screening in an alloy, we simply use a Gauss
screening7 within a rangep21, i.e., we combine the ionic
point chargeI sW

Q
5ZsW

Q
2AsW

Q with a Gaussian screening charg
according to

I sW
QS d~rW !2

p3

p3/2e
2p2r2D . ~30!

The screening lengthp has to be chosen such that the latti
sum of the added heavily overlapping Gaussian charge
sities is essentially zero. This treatment is comparable to
discussion in the literature. In Refs. 24 and 25 a scree
impurity model is used to describe the effect of the Mad
lung potential in a disordered alloy. It is based on the obs
vation that almost all of the compensating charge is loca
in the first coordination shell around the impurity.

The exchange and correlation potential which is less s
sitive to density modulations is calculated in an ASA a
proximation:

Vxc,sW
Q FnsWQ1 (

RW 81sW8ÞsW,Q8
csW8
Q8nRW 8sW8

Q8 G ~rW !

for urWu<rASA,sW
Q , ~31!

Vxc ,interstitial5const for urWu.rASA,sW
Q . ~32!

This latter simplification used in our applications of Sec. V
however not a necessary prerequisite of the approach. By
we complete the charge and spin self-consistency cycle,
vided the average of the Green’s matrix~22! is obtained.

III. THE COHERENT-POTENTIAL APPROXIMATION

The preceding section was devoted to the constructio
the self-consistent potential from a known Green’s funct
in the orbital representation. Now, we come to the other p
namely to the approximate calculation of the correspond
Green’s matrix. This is an algebraic problem. Thus, unlike
the KKR approach, the multiple-scattering problem is solv
in the corresponding arithmetic space, rather than in the
space.9 We have to make the fundamental two-terminal a
proximation. Then, the structure of the Green’s matrix~22!
and the requirement to treat both the Hamiltonian and
overlap matrix in the same manner without neglecting o
diagonal disorder leads naturally to the BEB theory.
-
s
t
a
n
n

n-
e
d
-
r-
d

n-
-
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n
t,
g
n
d
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e
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A. Algebra of pseudospins and the Blackman-Esterling-Berk
formalism

In Sec. II B we introduced the pseudospins. Now we g
them an algebraic structure, which leads in consequenc
the BEB transformation. For a given sitei , the pseudospin
h i
Q is a column indexed byQ. For the following, it is advan-

tageous to consider it as a diagonal block of a rectang
matrix h5ih i

Qd i i 8i , to be used together with its transpos
hT in the definition of configuration-dependent projecto
x:

x[hhT, hTx5hT, xh5h . ~33!

This x is simply a square diagonal matrix with diagon
elementsx i i

QQ5h i
Q of Eq. ~13!. It has the properties

x25x, TrQx i i 85d i i 8 . ~34!

We expand the Hamiltonian and overlap matrices to con
information of all possible configurations in such a way th
the formerly introduced matrices of a given configuration a
obtained by projection:

H5I (
QQ8

h i
Q^ iQmuH~rW !u i 8Q8m8&h i 8

Q8I5hTHh ,

~35!

S5I (
QQ8

h i
Q^ iQmu i 8Q8m8&h i 8

Q8I5hTSh . ~36!

H and S are the expanded matrices.~The h ’s provide a
mapping of the product Hilbert space of all configuratio
onto the valence Hilbert spaces of given configurations. T
‘‘tensor products’’ x5hhT, at variance, are projector
within the expanded Hilbert space onto the subspaces co
sponding to those configurations. In this sense the B
theory is a kind of ‘‘tensorial’’ CPA. Compare the paper Re
26, where a similar language is used in the framework of
KKR-CPA.! It is worth noting thatH andS are stochastic
and not translational invariant, whileH and S will be ap-
proximated in the following by expressions which are
longer stochastic and are translational invariant. This str
ture is used in the BEB formalism20 ~the xi and yi in that
paper are the componentsh i

A andh i
B for the binary case!.

The pseudospinsh enter the matricesH andS in three
ways: at the left and right ‘‘matrix terminals,’’ and via th
crystal potential and the core orthogonalization correctio
We average over theh ’s entering on sites different from
both terminal sites of the matrices. This terminal-point a
proximation preserves the fullh dependence at both termina
sites and is far better than the former virtual-crys
approximation,9 since the only averaged parts are the crys
field and the orthogonalization corrections fromthird cen-
ters. The expanded matrices are now split into on-site
off-site terms:

H5Ḣ1H̆, Ḣx5xḢ , ~37!

S5Ṡ1S̆, Ṡx5xṠ, Ṡ'1 , ~38!

with the detailed structure:
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Ṡim,i 8m8
QQ8 'd i i 8,QQ8Fdmm82(

lcQ̄

~ iQmu lQ̄c!cl
Q̄~ lQ̄cu iQm8!G , ~39!

S̆im,i 8m8
QQ8 '~12d i i 8!F ~ iQmu i 8Q8m8!2(

lcQ̄

~ iQmu lQ̄c!cl
Q̄~ lQ̄cu i 8Q8m8!G , ~40!

Ḣ im,i 8m8
QQ8 'd i i 8,QQ8F ~ iQmu t̂1Vi

Qu iQm8!1 (
lÞ i ,Q̄

~ iQmucl
Q̄Vl

Q̄u iQm8!2(
lcQ̄

~ iQmu lQ̄c!cl
Q̄« lc

Q̄~ lQ̄cu iQm8!G , ~41!

H̆ im,i 8m8
QQ8 '~12d i i 8!F ~ iQmu t̂1Vi

Q1Vi 8
Q8u i 8Q8m8!1 (

lÞ i ,i 8,Q̄
~ iQmucl

Q̄Vl
Q̄u i 8Q8m8!2(

lcQ̄

~ iQmu lQ̄c!cl
Q̄« lc

Q̄~ lQ̄cu i 8Q8m8!G .
~42!
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The energy levels« lc
Q̄ are the core levelsc of atom Q̄. The

combination of the matrix elements of the three center
tential and the core orthogonalization correction at a giv
site is known as the Phillips-Kleinman pseudopotentia27

Normally, its action on smooth functions is quite small,
the average over it at third centers away from the basis fu
tion centers is not a severe approximation. Now we are p
pared to formulate the multiple-scattering theory in the ps
dospin language.

B. The scattering problem

The random arrangement of different types of atoms
the disordered alloy and the resulting breaking of the tra
lational symmetry leads to an incoherent scattering of
electrons. By defining a coherent reference medium it is p
sible to collect all incoherent parts of the scattering w
respect to this medium in one quantity, called the scatte
matrix T. Then the Green’s function of the disordered all
is expressed in terms of the propagation in the coherent
dium and of the scattering matrix. The coherent medium w
be defined by a self-consistency condition.
-
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We start byQ expanding the equation of motion of th
one-particle Green’s matrix~8!:

hT~vS2H !hG51 . ~43!

From Eq.~22! we take the idea to multiply this equation wit
h on the left and withhT on the right to get an equation o
motion forG5hGhT:

x~vS2H !hGhT5x . ~44!

Now we use the definition ofx and the commutation rules in
Eqs.~37! and ~38!:

@vṠ2Ḣ1x~vS̆2H̆#x!hGhT5x . ~45!

When using the vacancy concept we associate at least
basis orbital with every site, sort of a smooth Gaussian at
vacancy site.

Then the expression on the left-hand side is stochastic
Herglotz, so that the resolvent exists in the upper comp
v half plane:
n’s
G[hGhT5xhGhT ~46!

5x@vṠ2Ḣ1x~vS̆2H̆ !x#21x

~47!

Here we introduced the Herglotza ~the stochastic potential! and the HerglotzG ~the nonstochastic nonlocal coherent Gree
matrix!. The next steps are aimed at collecting all stochastic quantities (x anda) into one matrix:

~48!

G5b~b2G!21G5G1G~b2G!21G[G1G T G . ~49!
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At this stage we expressed the multiple scattering in term
the translational invariant coherent Green’s matrixG ~in the
product Hilbert space! and the random perturbationb.

The averaging procedure now follows the well-know
scheme. The nonregular inverse potentialb, containing all
randomness, defines the scattering matrixT, whose average
is required to vanish:

^T&5^~b2G!21&[0⇒^G&5G . ~50!

In that way we defined the self-energyS. Remembering our
aim we examine some projector relations concerning
two-site conditional average ofG. From Eq.~46! we deduce

G5xGx, x i i
QQuq→ i5dqQ , ~51!

Gi i 8
QQ8u q→ i

q8→ i 8
5Gi i 8

qq8u q→ i
q8→ i 8

dQq,Q8q8 , ~52!

where the subscriptq→ i again means to fix the speciesq at
site i . We gain the insight, that theQQ8 matrix Gi i 8 ~for
i ,i 8 fixed!, as expected by its definition, contains only o
nonzero element under the conditionq→ i ,q8→ i 8 ~no aver-
ages were taken!. Furthermore the connection to the ful
averagedG is given by

G i i
QQ85^Gi iQQ8&5(

q
ci
q^Gi iQQ8&q→ idQq,Q8q

5ci
Q^Gi iQQ&Q→ idQQ8 ~53!

and

G i i 8
QQ85^Gi i 8

QQ8&5(
qq8

ci
qci 8

q8^Gi i 8
QQ8& q→ i

q8→ i 8
dQq,Q8q8

5ci
Qci 8

Q8^Gi i 8
QQ8& Q→ i

Q8→ i 8
. ~54!

In other words the elements ofG give the physical two-site
conditional averaged Green’s matrix connected with the d
sity ~26!. This just is the gain of using the product Hilbe
space.

For the caseci
Q50 one gets from Eq.~48! bii

QQ50 and
henceGi iQQ50 independent ofG. That means, configuration
( iQ) with ci

Q50 must be removed from the beginning: th
set of speciesQ may depend on the sitei in cases of site
selectivity.

C. The single-site approximation

Except for the terminal-point approximation for the m
trix elements of the Hamiltonian and the overlap matrix,
troduced in Sec. III A, we made no approximation in Sec.
so far. In order to solve Eq.~50! we have to introduce an
approximation similar to the single-site approximation.1,2We
require the self-energy to be diagonal in site indices. T
leads to a site diagonal inverse scattering potentialb and we
may decouple~50!:

T5~12t G8!21t, t i i 85d i i 8~bii2G i i !
21 , ~55!

G i i 8
8 5~12d i i 8!G i i 8 ~56!

with the condition
of

e

n-

-
I

is

^t&[0 . ~57!

After expanding the scattering series Eq.~55! and inserting it
into Eq. ~49! the averagedG becomes

^G&5G1O~^t4&! ~58!

as is easily seen in Fig. 1. The final result for the twofold
conditional averages in Eq.~26! is then

^Gi iQ&Q→ i5
G i i
QQ

ci
Q , ^Gi i 8

QQ8& Q→ i
Q8→ i 8

5
G i i 8
QQ8

ci
Q ci 8

Q8
, ~59!

except for terms of the orderO(^t4&).
This may be a good place for a few comments on the BE

approximation and its quality. As shown here, in the genera
case of diagonal and off-diagonal disorder, the BEB approx
mation is formally exact to the same order of the multiple
scattering expansion as the CPA is in the case of the diagon
disorder. We have made a number of comparisons with th
results of a direct calculation of the projected DOS for one
dimensional model random alloys which indicate an exce
lent quality of the BEB approximation in a wide range of
component bandwidths and other alloy parameters. The a
ternative treatment of the off-diagonal disorder, the Shib
multiplicative ansatz, can be shown to be a special case
the BEB method, Ref. 28. While the self-consistent equa
tions reduce in number for the Shiba method, an addition
calculation is needed to generate the physically and comp

tationally relevant component projected averagesG i i 8
QQ8. For

a nonzero overlap matrix, the generalized Shiba matrix facto
should be the same for the Hamiltonian and the overlap m
trices, and this appears as excessively restrictive for use
realistic calculations. Details of this model analysis will be
presented in a separate communication.

In the present paper, we treat consistently the case
several inequivalent sublattices in the elementary cell. Fo
the structure of the self-energy and the validity of the single
site approximation in this case we refer to Appendix A.

IV. THE COMPUTATIONAL SCHEME

In this brief section we summarize the basic features o
the present approach, specify the orbital basis used, and g
the working equations as they were actually coded and us
in the self-consistent computation cycle.

FIG. 1. The diagrams of the first four orders int.
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A. General characterization

Any meaningfulab initio theory of the electronic struc
ture of alloys should be an extension of a well tested desc
tion of the corresponding pure component crystals. In
present case, this is represented by the orbital theory sum
rized in Ref. 7. In this sense, we continue the earlier w
Ref. 9. This early paper served to demonstrate that an or
CPA need not be a model toy, nor a qualitative semiem
ical scheme. Both conceptual and practical limitations
stricted the approach to the alloys with near components,
CuNi. By contrast, our present method is sufficiently gene

~1! The present scheme is fully charge self-consistent,
electron, and, in principle, not restricted by approximatio
of the atomic-sphere type~additional approximations spec
fied below are not essential!. To achieve a wider applicabil
ity, we use the scalar relativistic model of Ref. 29.

~2! We use a scattering formulation in the matrix form
which in its general scope parallels the KKR-CPA metho
In fact there are similarities with the screened KKR a
proach.

~3! In the orbital formulation leading to the energ
independent Hamiltonian matrix, the present approach pa
lels the TB-LMTO-CPA. However, the present approach
not based on the TB transformation, and includes the orb
overlaps.

~4! Both the diagonal and the off-diagonal disorder a
included on the same footing in the BEB framework. Th
opens the possibility to apply it to local basis representati
in the most flexible way, including nonorthogonal bases.

~5! The method is formulated so as to incorporate sev
components and several sub-lattices with different comp
tions.

B. Orbital basis

Our computational scheme follows the lines of Ref. 7. W
are dealing with a minimal basis set of modified orbitals. F
each atom the local valence basis is represented by one
per angular momentum and spin. The maximum angular
mentum is determined by the type of the element, for tran
tion metals we uses, p, andd states and for actinides up t
f states:

^rWuRW sWnlm&5fnl~ urW2RW 2sWu!Ylm~rW2RW 2sW ! , ~60!

with Ylm being real spherical harmonics. The radial partf
does not depend on the magnetic quantum numberm. As
described, the crystal potential~27! is chosen to be a sum o
overlapping site potentials. Additionally, we want to assu
the shape of the site potentials to be spherical. This sim
fication implies that all aspherical parts of the crystal pot
tial are claimed to be approximated by the lattice sum
those spherical site potentials. Surely this is not exact, bu
a wide range of applications especially for closed-pac
structures this method together with the valence basis tr
ment as described below has been proved to give res
between muffin-tin and full potential approaches.~Aspheri-
cal site potentials could be readily incorporated.! First in
each self-consistency cycle, the species-dependent b
states are recalculated by solving an atomic Schro¨dinger or
Dirac equation for each atomic species with a poten
p-
e
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-
e
l.
ll-
s

.
-

l-
s
al

s

al
i-

r
tate
o-
i-

e
li-
-
f
or
d
t-
lts

sis

l

VRW sW
Q . Details concerning the relativistic implementation of t

LCAO method are described elsewhere.29 VRW sW
Q is the poten-

tial corresponding to the resulting density of the previo
cycle. Some atomic potential is used to start with.

While recalculating the core orbitals readily from the s
potentialVRW sW

Q , the valence basis states will be modified
make them more suitable for the construction of Bloch wa
functions. They will be recalculated with an additional a
tractive potential term (r /r 0)

4 which compresses strongly th
extended valence states. These compressed states are
ciently complete in the interstitial region and have a stron
reduced overlap, compared to those calculated from the p
site potential. To close the recalculation of the orbitals th
optimized valence orbitals will be orthogonalized to the co
states calculated from the pure potential. By this way
number of multicenter integrals is reduced. The parame
r 0 are chosen by convergence checks of the band ener
They scale with the lattice constant and are determined
principle, by the lattice structure.

C. Implementation of the self-consistent cycle

For the construction of the nonstochastic and hence lat
symmetric Hamilton and overlap matrix we use Bloch su
of AO’s in the usual manner resulting in expressions of
form @m5( lm)#:

H̆ sWm,sW8m8
QQ8 ~k! and S̆ sWm,sW8m8

QQ8 ~k! , ~61!

for the off-diagonal parts~40,42!. Thesek-dependent matrix
elements together with the elements of the self-energy
be inserted in Eq.~47! to calculate via Brillouin-zone inte-
gration the on-site elements of the coherent Green’s ma

G
sW,mm8

QQ8
5E

BZ
d3k@v2S1vS̆~k!2H̆~k!# QQ8

sWm,sWm8

21
. ~62!

The off-diagonal elements forQÞQ8 of the Green’s matrix
are kept during the self-consistency cycle, but they vanish
the end. Details concerning the crystal symmetry are give
Appendix B. The site diagonal inverse scattering poten
b ~48! can be written as

b
RW sWm,RW sWm8

QQ8
5(

q
hRW sW
q
b
sW,mm8

~q!QQ8
~63!

with

b
sW,mm8

~q!QQ8
5dQQ8,Qq~Ḣ sW

q
2vṠ sW

q
1v2S

sW
q
!mm8

21 . ~64!

To fulfill condition ~57! we choose the averagedt-matrix
approach. That means, we calculate from Eq.~55! the aver-
aged single-site scattering matrix

^t
sW,mm8

QQ8
&5(

q
csW
q
~b

sW
~q!

2GsW!QQ8
mm8

21
, ~65!

which should be zero. The resulting change in the s
energy is dS5(11^t&G)21^t&. In an inner CPA self-
consistency cycle the Green’s matrix, the self-energy and
scattering matrix are recalculated until the averaged sin
site scattering matrix vanishes.
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To perform the involvedv integration along the real axi
accurately, we employ the Herglotz property of the Gree
matrix and of related quantities, which allows us to use
common trick of changing the integration contour from t
real line to a semicircular path in the upper complex h
plane. The integrals depend only on the end points and
functions to be integrated are much smoother far away fr
the real axis. The integration starts in energy regions be
the band bottom and ends at the Fermi energy, which ha
be readjusted to get the right number of occupied states

Once reaching the converged self-energy the ene
integrated Green’s matrix elements are inserted into the
pression for the density~26!. In view of the spherical ap-
proximation of site potentials, which is single-site CP
consistent, we compute the spherical average of site dens
only. We end up at a density representation consisting
lattice sum of local spherical, overlapping densities.

This representation of the density leads to the poten
via the expressions in Sec. II D. In this way, the se
consistency loop is closed.

V. ILLUSTRATIVE APPLICATIONS

The numerical tests shown below serve to test the relia
ity and flexibility of our approach. It should be suitable f
light and moderately heavy atoms, and for alloys of met
with widely different pure component bandwidths. W
present calculations and comparisons for some magnetic
ordered binary systems and for a ternary system.

The first example is the bcc FeCo alloy. One main feat
of this compound is the transition from filled iron majori
bands to lower filling by increasing the iron content, resu
ing in a maximum of the magnetization curve at 70%
concentration. This compound is widely studied. We cal
lated the magnetization versus concentration at a fixed la

FIG. 2. bcc-FeCo alloy: The dashed lines are the TB-LMT
ASA result taken from Tureket al. The full lines are our results
experimental values are marked by filled symbols.
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constant~Fig. 2!. For comparison with other methods w
present also the LMTO results, published in Ref. 12. Bo
curves show the characteristic maximum, while our curve
closer to the experimental one. The higher Co momen
consistent with the bcc Co moment obtained by pure LCA
calculations. The deviations to the LMTO result may res
from a slightly higher pure Fe moment in their calculation

The above-mentioned applicability to different ban
widths and relativistic cases is tested in the following tw
examples. The fcc-CoPt alloy was explored by the fully re
tivistic KKR method.30 The magnetization of this compoun
exhibits a transition to zero moment with increasing Pt co
centration. Here the bandwidth of the pure Pt is appro
mately twice the Co bandwidth. Our scalar relativistic calc
lation reproduces the slightly nonlinear behavior as given
the KKR results, in good agreement with experiment~Fig.
3!.

The last binary example is the Invar alloy fcc FePt, whi
shows anomalies, for instance in the thermal expansion.
critical region lies between 70% and 80% Pt content.
investigate the nontrivial behavior of the moment and
lattice constant one has to perform total-energy calculatio
Here we compare the moments given by our method w
those calculated by the recently developed relativistic T
LMTO-CPA ~Ref. 31! at a fixed lattice constant~Fig. 4!.
~The LMTO data are taken from Ref. 32!. Both results show
nearly the same local and averaged moments. The exp
mental data are given in Ref. 33. These three examples p
the applicability of our method in the case of binary alloy

To show an application to more complicated structures
switch now to a ternary system. The FeAlMn alloys ha
been known to show interesting and complicated magn
and structural features. We want to present here theore
results for the ferromagnetic phase. The composition inv
tigated has the formula Fe0.892xMn0.11Al x . When disregard-

- FIG. 3. fcc-CoPt alloy: The dashed line is calculated by the f
relativistic KKR-CPA. These data and the experimental valu
~filled symbols! are reported in Ebertet al.Our result is marked by
a full line.
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ing the different constituents the structure is a bcc (A2) lat-
tice. Comparison is made to measurements by Brem
et al.34,35 First we calculated a bcc alloy where each site
randomly occupied. The room-temperature lattice const
was taken from experiment~Bremers! and reduced by
0.5% to the T50 value, estimated from the therma
expansion coefficient. As can be seen in Fig. 5 and Tab

FIG. 4. fcc-FePt alloy: The dashed lines are calculated with
full relativistic TB-LMTO-CPA, developed by Shicket al.The full
lines are our results, experimental values are marked by filled s
bols, they are taken from Wasserman.

FIG. 5. bcc-FeAlMn alloy: The moment per atom in the terna
bcc alloy for theA2 structure and for theB2 structure in compari-
son with experiment. For details see the text.
rs
s
nt

I

the values of the averaged magnetization coincide well w
the experiment at low Al concentrations. Beyondx50.2 the
magnetization at helium temperature is breaking down. T
phase transition is not obtained in our ternary CPA treatm
of theA2 structure. To go a step further we paid attention
the fact, that with increasing Al content experimentally t
structure seems to switch to theB2 structure. To investigate
the influence of this structural long range order on the m
netization we performed a CPA calculation with two simp
cubic sublattices, displaced by (1/2,1/2,1/2). One is oc
pied with pure Fe atoms, the other is occupied with the co
position Fe0.7822xMn0.22Al 2x , which corresponds to the ter
nary alloy with the Al contentx. This subdivision is
motivated by the observation that in the system AlFe~Ref.
36! ~a DO3 derived structure atxAl,40%) and in similar
systems like SiFe~V,Mn!,37,38 the Fe atoms tend to occup
two of the four fcc sublattices of the DO3 structure. These
lattices reduce to theB2 structure if one considers the oth
two sublattices to be equally occupied. We transfer the
perimentally known occupation preferences to theB2
AlFeMn by assuming one site to carry pure iron atoms. T
results are striking. They are collected in Table II. We gi
the local moments of the two different sites in theB2 struc-
ture and the moment per atom.

One remarkable feature is easily seen. The local mom
of the Fe atoms depend strongly on the nearest-neigh
shell. The Fe atom with eight pure neighbors has a satur
magnetization of about 2.5mB , while the atom on the Fe
sublattice, for which only a small percentage of the eig
neighbor atoms are iron, has a reduced moment. This be
ior is known from the antistructure atoms in order
Fe50Al50 ~Ref. 39! and from the alloys SiFe and SiFeV.13

Most important, we get a sudden transition of the momen
the pure iron sublattice to ferrimagnetic coupling, there
enormously reducing the total magnetic moment at ab
30%

e

-

TABLE I. The local moments and the moment per ato
at various Al concentrations for theA2 structure of the
Al xFe0.892xMn0.11 alloy.

x 0.00 0.10 0.20 0.30 0.40

Fe 2.320 2.273 2.185 2.062 1.911
Al -0.168 -0.150 -0.128 -0.104
Mn -0.141 -0.118 0.678 1.089 1.135
mper atom 2.019 1.766 1.552 1.297 1.019

TABLE II. The local moments of both simple cubic sublattice
and the moment per atom at 10, 20, 30, and 35% Al content for
B2 structure of the Fe1.0Al 2xFe0.7822xMn0.22 alloy. The number
besides the elements refers to the sublattice.

x 0.10 0.20 0.30 0.35

Fe 1 2.232 1.955 -0.144 -0.274
Fe 2 2.378 2.441 2.592 2.520
Al 2 -0.191 -0.168 0.001 0.014
Mn 2 0.938 1.499 2.167 1.932
mper atom 1.890 1.572 0.399 0.181
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aluminum. This reduction meets excellently the experim
tally observed decrease of the magnetization~Fig. 5!.

VI. CONCLUSION

Starting from the local orbital representation of the Koh
Sham theory we constructed a fully charge and spin s
consistent CPA scheme for calculation of the electro
structure of substitutional disordered alloys. An optimizati
resulting into a strong localization of the valence orbitals
needed for the assignment of the atoms to the basis st
and for a single atom decomposition of the potential. Ev
so, the basis states are nonorthogonal. For alloys with v
different components, it is essential to treat properly both
diagonal and the off-diagonal disorder both in the over
matrix and in the Hamiltonian matrix. In our method, this
achieved by the terminal-point approximation, permitting
to achieve the CPA solution within the BEB formalism i
corporating a self-consistent recalculation of all matrix e
ments in each cycle. Among the advantages of the lo
orbital-matrix representation is a simple inclusion of the s
lar relativistic effects and its straightforward applicability
structures with complex unit cells and with a complete o
partial disorder. The numerical results presented have an
curacy comparable with the KKR and LMTO CPA metho
currently in use.

To summarize, the pure orbital alternative to the KK
CPA and to the TB-LMTO-CPA appears as feasible a
meaningful. Like the recently developed screened KKR
combines the rigor and directness of the KKR with the pr
tical simplicity of the LMTO; on top of that its LCAO form
provides physically illuminating ‘‘quantum chemical’’ in
sights.

There are several obvious directions for a future wo
First, a number of improvements, especially making the c
struction of the potential more flexible, will be needed
generate a standard computer code, suitable for general
Within the CPA, several extensions are inevitable, but
difficult to achieve, notably the inclusion of the spin-orb
effects, and the calculation of the total energy as a func
of the alloy parameters. A more general question which
arisen during the work is the position of BEB among oth
alloy formalisms, and the reasons for the unexpected qua
of the BEB-CPA.

All this methodological work should not mask the fa
that we have developed the present method because
computationally facile and suitable for the studies of co
plex alloy structures. We intend to concentrate primarily
this aspect.
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APPENDIX A: THE SELF-ENERGY

Without approximationS is not diagonal in real space
We may write with diagonal invertiblel5vṠ2Ḣ ~dropping
the underbar!:

G5x@ l2x~Q2G21!x#21x, Q5v2S .

Corresponding to Eq.~48! one derives~with site diagonal
l5x l21x)

G5l@12~Q2G21!l#215G1GTG,

which gives

l5~G1GTG!@12~Q2G21!l# ,

Tl5~11TG!~Ql21!, ~^T&50! .

Now we are asking for elements with the right index~called
f ) being at a site with only one possible occupation. Th
^l f&5l f holds. The averaging procedure removes ter
with ^T& and yields

Q i fl f5d i f ,

S i f5d i f @v~12Ṡ f !1Ḣ f # .

Becausea thus vanishes in the case of fixed site occupat
we have to exclude these sites from the CPA equations~50!,
~57!. This general peculiarity ofS is preserved in the single
site approximation, where we set by definition all site o
diagonal elements ofS to zero. It gives us hope to expec
that the CPA would be better if less stochastic sites existe
the unit cell.

APPENDIX B: THE BRILLOUIN-ZONE INTEGRATION

In order to calculate the on-site elements of the coher

Green’s matrixG
sW,mm8

QQ8 we perform Brillouin-zone integra-

tions overG
sW,mm8

QQ8,k. To reduce this time consuming step it
unavoidable to integrate only in the irreducible part of t
BZ. Unfortunately, we have to symmetrize the Green’s m
trix after doing so, becauseGk does not form a unit repre
sentation of the full Brillouin-zone symmetry. In simpl
cases, like unit cells where each site has the full cubic sy
metry and with basis states up tod states, this task is very

easy. ThenG
sW,mm8

QQ8 is diagonal inmm8 and the matrix ele-
ments for given angular momentuml arem degenerated. The
average over all diagonal elements to a fixedl gives just the
desired symmetrization ofG calculated by integration ove
the irreducible part of the Brillouin zone.

For more complicated crystals we outline the treatme
Let us start with the definition of the space-group operat
Û5$uut%, where we used the symbol after Seitz for the o
eration which takes a point atr to r 85Ûr5ur1t. u means
a point-group operation, a proper or improper rotation, wh
t is a translation through a vector. It can be a composite o
primitive lattice translationRW and of an essential nonprimi
tive translationt0, which in cases of nonsymmorphic spa
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groups can never be made to vanish by shifting the orig
Ref. 40. The set of symbols$uut0% with t0 being a specified
set of nonprimitive translation vectors does not form itself
subgroup in nonsymmorphic space groups. We therefo
consider the vectorst as general composits of primitive and
nonprimitive lattice vectors. This ensures the group prope
ties of the symbols$uut%.

The action of these operations on the LCAO basis state
given by

ÛuRW sWm&5(
m8

uÛ~RW 1sW !m8&am8m . ~B1!

The coefficientsa are representation matrices of the poin
group elementu for an angular momentuml and provide the
transformation of the spherical harmonics included in th
basis states. This relation holds for arbitrary space grou
Together with the transformation properties of the phase fa
tor exp(ikRW ) we deduce

G
sW,mm8

QQ8,u†k
5(

nn8
anm* G

ÛsW,nn8

QQ8,k an8m8 ~B2!

holding for site diagonal elements only. This formula is vali
for arbitrary space groups. Note, that a space-group opera
Û acts onsW, while only the corresponding point-group ele
mentu acts onk. Now we decomposed the integral in th
whole zone into a sum over integrals in the irreducible pa
but over rotated matrices,u represents all point-group opera
tions:
b

s

c

s.

ys
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GsW,mm8
QQ8 5E

BZ
d3kGsW,mm8

QQ8,k ~B3!

5(
Û

E
ir BZ

d3kGsW,mm8.
QQ8,u†k

~B4!

The sum runs over all space-group elements. Examining
symmetry relations~B2! we get

GsW,mm8
QQ8 5(

Û
E
ir BZ

d3k(
nn8

anm* G ÛsW,nn8
QQ8,k an8m8 ~B5!

5 (
sW8,nn8

GsW8,nn8
QQ8~ ir BZ! (

ÛsW5sW8
anm* an8m8.

~B6!

The space-group operations can be classified by inspec
the pairs of basis vectorssW, sW8 which are transformed into
another. There exists for eachsW8 a possibly empty subset o
Û ’s which transforms a given vectorsW into sW8:
sW85ÛsWmod$RW %. For a specifiedsW, the union of the subset
belonging to all basis vectorssW8 in the unit cell contains each
group operation exactly once. Thus, the second sum in
~B6! runs over the set of group operations which transfo
sW into sW8. The superscript onG denotes thek integration over
the irreducible part. Since the last sum in Eq.~B6! is only
structure dependent it is performed once for ever and t
the symmetrization is much faster than to calculateGk for
eachk point in the whole zone.
ys.
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