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Density and spin-density excitations in normal-liquid*He
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In bulk Fermi liquids such as liquidHe and nuclear matter the quasiparticle effective mass is enhanced at
the Fermi surface and reduces to the bare mass far from the Fermi surface. We incorporate this central physical
feature into the density and spin-density dynamics of normal-liqiié and obtain good agreement with
recent high-resolution neutron-scattering experiments. Existing theories up to this time using quadratic quasi-
particle dispersion do not reproduce experimgg0163-1827)05010-§

Recent high-resolution inelastic-neutron-scattering meative mass, m* (w), which takes its maximum value at
surements of excitations in normal-liquitHe (Refs. 1 and w=¢r (er is the Fermi energy For “on-shell” energies,
2) show that existing theories and models cannot describe thie two descriptions are equivalent. Microscopic calculations
dynamic response of this fundamental Fermi liquid. A clearin nuclear mattet? liquid *Hel! and other Fermi liquids
understanding of simple Fermi liquids is a prerequisite forpredict this enhancement. It originates from the renormaliza-
addressing more complex highly correlated systems. tion of the quasiparticle mass by density and spin-density

Both density and nuclear spin-density fluctuations in lig-fluctuations. Thermodynamic properties at low temperatures,
uid He are observed in neutron-scattering measurenientssuch as the specific heat, reflect the mass enhancement near
At long wavelengths and up to wave vect@s-1 A~ the kg since only excitations close to the Fermi surface are
density response is dominated by a single collective zerosampled. On the other hand, neutron-scattering measure-
sound mode. The mode energy is well described using theents at largeQ values excite quasiparticles having wave
random-phase approximatigRPA) and a quasiparticle in- vectorsk far from kg, andm* (k) is sampled for a range of
teraction which is an extension to fini@ of the Landau k values. Thus we expect to observe a somewhat different
interaction®™® These models use a quasiparticle effectiveaverage/m* (k)) in the two measurements.
massm* =2.8 times the baréHe mass at saturated vapor In this report, we present a simple model of both the
pressure(SVP), a value taken from Landau-Fermi-liquid density and spin-density response of normal-liqéiite that
theory used for describing thermodynamic and transportincorporates ar(k) that flattens ak=kg represented by an
properties. The spin-density response displays a “paramagn* (k) enhanced ak- . We also use the Landau parameters
non” resonance at low energies. The improved resolution oto represent the quasiparticle-quasiparticle interaction and in-
the measurements in Ref. 1 provided detailed information orlude theQ dependence of the static interaction to the extent
the line shape of the paramagnon resonance. It has be&hown from microscopic calculations. Within a simple RPA,
showrf that the line shape cannot be described by RPA modwe obtain a good description of both the “paramagnon” line
els usingm*=2.8, nor by the paramagnon modethich  shape and of the zero-sound energy @=1 A~L. The
uses the bare mass* =1. Moreover, the paramagnon model model may be extended readily to higl@wvalues by includ-
cannot be extended to describe the density fluctuations. fng multiquasiparticle excitations that requires going beyond
good description of the paramagnon line shape can be ohhe RPA.
tained with a simple RPA model by arbitrarily setting  Neutron scattering measures directly the sum of the den-
m* =1.9 combined with a fitted interaction parameter. How-sity S.(Q,w) and the spin-densit,(Q,») components of
ever, this value ofn* is inconsistent with Landau theory, the dynamic structure factorS(Q,w)=S.(Q,w)+ (o;/
with the observed zero-sound dispersion and the fact that the ) S,(Q, w), whereo, andg; are the coherent and incoher-
zero-sound mode exists up to a wave vector of the order aént scattering cross sections, respectively,(Q,®) is pro-
1.4 AL portional to the imaginary part of the dynamic susceptibility

Very generally, the single quasiparticle energfk) in . (Q,w). The exact equation fog(Q,®) reduces to the
Fermi liquids shows a flattening at the Fermi surface,RPA expression
k=Kkg . This flattening can be represented as an enhancement

of the effective mass at the Fermi surfdc&he effective Xo(Q,w)

massm* (k) is a function of wave vectok and takes its X 1(Q, @)= 1-1,.(0,0)xo(Q, @)’ ()
maximum value ak=kg (kg=0.785 A~ at SVP in liquid s e IAOe

3He). Sufficiently far aboveor below kg, m* (k) reduces if the quasiparticle-quasiparticle interaction

to the bare massn* =1. The behavior of the quasiparticle |s,(kjw;,K,0,,Qw), where k;(w;) and ky(w,) are the
energy may also be described as an energy-dependent effagave vectorgenergiey of two interacting quasiparticles and
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Q(w) is the wave vectofenergy transfer in the scattering 15
process, is approximated by an interactidn ,(Q,w) that

depends only 09 andw. Here xo(Q,w) is the susceptibil-

ity of the independentnoninteracting quasiparticlesand Ig -
andl, are the spin symmetric and spin antisymmetric inter- 1.0 1
actions, respectively. This approximation is valid@t0,
where bothk; andk, are close tkg. We expect it to be- [
come increasingly poor a® increases. Multiparticle-hole 0.5
excitations are also neglected in Ed).

Secondly, we assume that the quasiparticle energy
e(k,w) is real and consider only “on-shell” energies, i.e.,
e(k,w)=€(k, €)= €, so thate, depends only ok. In this
limit, xo(Q,w) reduces to the Lindhard function

————— -
3 - - He SVP
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FIG. 1. The quasiparticle energy, obtained from Eq(3) and
D Nk~ Nk+Q @ the modelm* (k) for the parametersy,=1.7, f=0.35(solid line),
k otin—(eco—€)’ compared with the free-particlg, for m* =2.8 (dashed ling and
m* =1 (dotted ling. The inset shows the modah* (k) for
wheren, is the Fermi function and/ is the volume. The Mo=1.7,f=0.35(solid ling), my=1.5, f=0.4 (dashed ling and
effective massn* (k) is defined in terms of the quasiparticle Mo=1: f=0.5 (dash-dotted ling
energye, as

2
XO(Q!w)z \_/

Shseorriars Gl
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Ma | Ak oo in Eq. (1) with Q-dependent Landau paramet&ig;(Q) that

reduce to the usual “Landau” values a=0, i.e.,

We introduce a model fom* (k) by representing it by a F§$(0)=Fg3. The Q dependence of33(Q) is guided by
simple cosine function that peaks at the Landau valuenicroscopic calculations. Figure 3 shows as the dotted line
m* =2.8 atk=kg and falls to a lower value on each side of F5(Q) calculated by Clementst al® This F5(Q) contains
ke . How rapidly m* (k) falls to m* =1 is not accurately the effect of density and spin-density fluctuations to second
predicted by microscopic calculatioffs:' However, com-  order which increaseB3(Q) at low Q. However, the calcu-
parison of a calculated5(Q,w) with observed data at |atedFs(Q) still lies below the observed Landau value. For

_1 .
Q~2 A™* suggests that an aggregaté of 1.5-2 still ap-  ¢onistency with Landau theory, we have further increased
pears inS(Q, w) at this largeQ value:“ We therefore allow F3(Q) so thatF$(0)=9.3, the Landau value at SVP. The
m* (k) to fall to a constant valuen,=1 outside a range ° 0

|k—kg|<fke wheref sets this range. Fdk—kg| <fkg we
chose the formm*(k)=mg + (Mm*-mg)[1+ coq(k—kg)n/ ~—— T T T T T
fk:})/2. The model has two parametensy and f. We find,
using the data from Refs. 1 and 2, that the spin-density re- 0.1
sponse requiremy<<2, while the density response requires
me>1. The results are largely insensitive to the analytic
form chosen form* (k) (Gaussian, cosine, inverse cosine
and to the value ofng (1.0 <my=< 2.0). Them* (k) should
fall from m* =2.8 to m* =m;y within kg/2 from the Fermi
surface. A good compromise i®y=1.7 andf=0.35. The
dynamic response of liquidHe up toQ=1 A~ depends
chiefly onm* (k) in the regionk—kg|<fke~kg/3, i.e., on
m* (k) nearkg, as set out below. 1+
The inset of Fig. 1 shows the modei* (k) for different P
values ofmy. The quasiparticle energy, was obtained by
integrating Eq.(3) numerically. Figure 1 shows, for
my=1.7 andf=0.35: a clear flattening of, is seen akg,
where m* (k)=m*=2.8. The Fermi energy of the model AT
e lies somewhat above the Landau-Fermi energy. .‘
The Lindhard function for the nonparabokg is obtained oLy 1 b L 1w
by numerical integration of Eq2). As expected, the result- 0.0 0.2 0'3) (mev)o 6 08 10
ing xo(Q,w), shown in Fig. 2, has a strong low-energy en-
hancement reflectinm* (kg) = 2.8 but a longer tail than for FIG. 2. xo(Q,®») atQ=0.6 A~ given by Eq.(2) and the model
a constant* =2.8. m* (k) for the parametersy=1.7, f=0.35(solid line) and for the
We use the Landau interactiondif/de is the density of free particlee, usingm* = 2.8 (dashed lingandm* = 1 (dotted
states at the Fermi surfgce line).
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FIG. 3. Q dependence of;(Q). The solid line shows the & '
F3(Q) used, which is based on the microscopic calculation Clem- 0ol | . . . ;
ents, Greeff, and GlydeCGG) (Ref. 13 (dotted ling and modified ) 0.0 © (meV) 0.4
to reproduce the Landau parameter in the li@it>0. For compari-
son, the polarization-potential result Hess and PiiH#3 (Ref. 5 is FIG. 4. Low-energy part o8(Q,w) for liquid 3He atQ=0.6
also shown. The dots show the valuesagfF5(Q) obtained froma A -1 and SVP(a) The paramagnon modeir® =1) is too extended
fit to the observed zero-sound dispersion. in energy, while the Landau modeht =2.8) is too sharp and has

too little intensity at higher energiegb) Excellent agreement is
resultingF5(Q), given by the solid line in Fig. 3, is similar obtained with the modah* (k) for different parameters, and f
to the static interaction obtained by Hess and Pitfiesn a  as shown. Experimental data are from Ref. 2.
fit to the zero-sound energy. Clemengsal. found that
F2(Q) is nearly independent @, and for simplicity we use from the denominator of.(Q, ) in Eq. (1) with the present
a constanfF{(Q) =F&= —0.695, the Landau value indepen- model of m* (k) and the interactiort4) compared with ex-
dent of Q. F3(Q) was obtained by requiring that the coher- periment. The mode energy is essentially an extension of the
entS,(Q,w) fulfill the f-sum rule at eack® value, neglect- zero-sound velocity with some upward or anomalous disper-
ing multipair contributions. Little is known abo&2(Q) and  sion arising from the initial increase ¢f5(Q) with Q, as
we used the Landau valu€ = —0.55. pointed out already in Ref. 4. Calculations of the zero-sound
This defines the model, which treats the density and spinenergy with the modein* (k) using my=1.7 andf=0.35
density excitations on an equal footing and reduces to Landiffer little from the “Landau calculation®~® using a con-
dau theory in the limitQ—0. The aim is to determine Stantm*=2.8 (Fig. 5. The calculated mode energy and its
whether a simple enhancement of the effective mass ned¥eight Z, agree with experiment without including
kF can provide agreement with experiment =1 AL muItiquasiparticle-hole(MPH) contributions up toQ=0.7
Calculations of the spin-dependent dynamic structure facA ~*. MPH excitations begin to appear in the observed
tor S,(Q, ) are compared with experiment in Fig. 4. To set Sc(Q, ) at 0.8 A~*. When these are important, the particle-
the stage, Fig. @ shows the paramagndmesult, which  hole part of xo(Q,w) in Eq. (1) must be correspondingly
usesm* =1 and a single interaction parameter, and the Lanreduced, by a factorap<1l. This reduces the product
dau resulf:® which usesn* =2.8 and the Landau interaction
Eq. (4) with constant parameterlég,l. Clearly, these two 2.0
models do not reproduce the obsen®@Q, ). Figure 4b)
shows S|(Q,w) calculated using the preseafk) obtained
for my=1.7 andf=0.35 as well as fomy=1 andf=0.5,
using the Landau interaction. Both curves agree well with
the observed,(Q,w). This shows that am* (k) enhanced
at kg reproducesS(Q, ) well and thatS,(Q,w) for Q<1
A-1 is most sensitve to m*(k) for k near
ke ,|k—kg| <k;/3. We have compared theory and experiment
for Q=0.6 A~ 1, since thisQ value (<kg) is low enough for
the theory to be valid and the intrinsic width 8f(Q, w) is
considerably broader than the instrumental resolution width. L
The calculatedS,(Q,w) was convolved with the Gaussian 0.0 02 04 06 08 1.0
instrumental resolution function of width 0.08 meV. The Q (A"
low-energy tail of the zero-sound excitation has also been
included in the calculations since the two excitations overlap F|G. 5. Zero-sound dispersion for liquitHe obtained from Eq.
and this contribution appears in the data. Comparisons at) for a constanm* =2.8 (dashed lingand for the modem* (k)
other wave vectors (04Q<1.0 A™?) lead to similar con-  for my=1.7 and f=0.35 (dash-dotted ling without including
clusions. multiquasiparticle-hole(MPH) contributions. The solid line in-
Figure 5 shows the zero-sound mode energy calculatedudes the effect of MPH. Experimental data are from Ref. 2.
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1(Q,w) x0(Q,w) in Eq. (1) to agl(Q,®)xo(Q,w) which  value of my within the range 1.&my<2.0. Thef value
lowers the mode enerdy® In Fig. 3, we show how much should lie within 0.3<f<0.5, i.e.,m* (k) falls to m, within
F5(Q) must be decreased hy, to obtain agreement with a relatively short distance from the Fermi surface. The model
experiment up t@Q=1 A~ within the present model. In a reproduces the spin-density resporéQ,w) within ob-
following publication we will incorporate MPH contribu- served precision and the zero-sound mode energy up to
tions to S¢(Q,w) fully, which will allow us to extend the Q=1 A~!. Sincem* falls below 2.8, some Landau damping
model to higheiQ values. Our goal here is to show that the of the zero-sound mode is obtained in this model at @w
model m* (k) depicted in Fig. 1 can provide a consistentygjues (0.5Q=<1 A1) which partially explains the large
explanation of both the density and spin-density excitationg)pserved width in thi€ range. The model treats density and

~ -1 . . o .

up toQ~1 A%, , spin-density excitations consistently and reduces to the
In summary, we have presented a simple model of tth.andau-Fermi-quuid theory at lov and lowT.

density and spin-density response of normal-liquitle

which incorporates the enhancement of the effective mass to This work was supported in part by a collaboration grant
the Landau theory valum* =2.8 at the Fermi surface and a between CNRS and NSF, INT-9314661. H.R.G. also grate-
smooth reduction ofm* (k) to a lower valuemy=1.7 away fully acknowledges the hospitality of the Institut Laue-
from the Fermi surface. The results are insensitive to thd.angevin.
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