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Possible equivalence of Feynman’s backflow and spin-dependent correlations
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The topic in the title has produced debate about whether spin-dependent correlations should be used in trial
wave functions for Hamiltonians that are independent of spin. We investigate this question by calculating the
ground-state properties of a small system of3He atoms using the variational Monte Carlo method and trial
wave functions, first, with explicit backflow correlations and second, with spin-dependent correlations. We
review how backflow and spin-dependent correlations can be made approximately equivalent, and then give
Monte Carlo results which demonstrate that spin-dependent correlations can substantially reproduce the effect
of backflow correlations.@S0163-1829~97!05409-X#
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Many authors1–10 have recognized the importance
Feynman-Cohen backflow11 correlations as well as spin
dependent correlations in the description of liquid and so
3He. However, quantitative understanding of the relative
portance of these correlations has been elusive. Attemp
investigate spin-dependent correlations have used mainly
tegral equation techniques3,4,6 with the well-known difficul-
ties of calculating the elementary diagrams in closed form
addition, the noncommutativity of the backflow and sp
dependent correlations requires the development of new
proximations which are not well characterized, and are
ferent for backflow and spin-dependent cases. Other stu
where the variational Monte Carlo method was employ
have used correlations which depend only on thez compo-
nent of the spin. These latter correlation factors break
spin rotational symmetry, have little or no effect at all, a
do not reproduce the results of backflow correlations.6

In this work we investigate the importance of includin
spin-dependent correlations in trial functions for Hamilt
nians without an explicit spin dependence. We also wan
show that in these systems the effect of spin-dependent
relations and backflow correlations are largely overlappi
Finally, we demonstrate that Monte Carlo calculations wit
symmetrized product of spin-dependent correlations w
function for liquid 3He are within our present computation
capabilities. This work might have important consequen
for other Fermi systems such as atoms, strongly correla
electrons, and nuclei.

Classical backflow is related to the flow of a fluid arou
a large impurity and including backflow correlations in a tr
wave function gives the correct correspondence princ
limit. Backflow correlations and how to include them
variational wave functions were first described by Feynm
and Cohen11 in their pioneering calculations of the effectiv
mass of3He in liquid 4He and of the excitation spectrum o
4He. For a single component fermion system such as3He,
both integral equation1,4 and Monte Carlo calculations12,13

have shown that the ground state is generally well descr
by using backflow correlations, along with three-body cor
550163-1829/97/55~9!/5647~4!/$10.00
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lations. However, this same system, shows some remark
magnetic properties, being, in some sense, nearly ferrom
netic. In fact, most calculations have difficulty getting th
spin-polarized3He system higher in energy than the unp
larized system. Wave functions with pairing and oth
correlations7,9 have been proposed to deal with this proble

Just as in electronic systems where the underlying in
action is independent of spin, the magnetic effects in3 He
are produced by the Pauli principle and exchange. E
though the interaction is independent of spin, including s
exchange terms in the wave function may describe the ph
cal correlations in a simpler way than just using spatial c
relations. Obtaining the correct answer to the question
plied by the title is therefore important in understanding t
physics of both quantum fluids and other many-particle s
tems.

As a side benefit, if spin correlations can substantia
reproduce backflow correlations, we would expect less ef
from adding backflow correlations to wave functions of sy
tems where spin correlations are directly induced by
Hamiltonian. Such systems include neutron matter, nuc
and nuclear matter.

In our work we apply the variational Monte Carlo metho
to calculate the ground-state expectation values of 143He
atoms with periodic boundary conditions. Much of the si
dependence of the energy comes from the difference betw
the free gas energy per particle for the infinite and fin
systems. For 14 particles in a cubic periodic system,
difference is only about 1.5%. Despite the small size of
system, comparisons between different forms of wave fu
tions should be valid. By using only 14 particles, full sp
summations can be carried out for a wave function with
symmetrized product of spin-dependent correlation facto

The simplest form for a trial wave function for the groun
state of liquid3He is

uCT&5)
i, j

f i j uF&. ~1!
5647 © 1997 The American Physical Society
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The f i j5 f (r i j ) is a two-body correlation factor that depen
on the distancer i j between particlesi and j . uF& is the
uncorrelated model state, a Slater determinant of space
spin orbitals.

Feynman-Cohen backflow correlations are introduced
uCT& by modifying the plane waves in̂RuF&so that they
become

exp~ ikW l•rWm!→expS ikW l•F rWm1 (
nÞm

hmnrWmnG D . ~2!

Standard variational wave functions for liquid He ofte
include a three-body correlation factor product,) i, j,kf i jk

(3) ,
in Eq. ~1!. Although it is straightforward to include thes
terms, they are not used in the present calculations so
comparisons are easier.

In a wave function without spin-dependent correlatio
the spin matrix elements can be calculated analytically
the result is that one can consider the system to be mad
of nonidentical spin-up and spin-down particles. The wa
function can be written as the correlation factor times t
determinants of spatial orbitals: one for up spins and one
down spins. The standard variational Monte Carlo meth
can then be applied. The reason for this simplification is t
neither the correlation operator nor the Hamiltonian can
the spins.

The introduction of spin-dependent correlations ma
this simple analysis fail. The spin correlations introduce s
exchanges which flip the spins of particles. Since the am
tude for these components changes as a function of the
distances, the spin degrees of freedom become intima
connected with the positions of the particles and the s
sums can no longer be done analytically.

A spin-dependent wave function that includes spin-s
pair correlations and which is invariant under rotations
spin space is the symmetrized product form

uCSP&5S)
i, j

~ f i j
c 1 f i j

s sW i•sW j !uF&. ~3!

In this expressionS represents a symmetrizing operator th
averages over all ordering of the correlations in the p
product. HereuF& is not the product of two Slater determ
nants but is given by the single determinant of theN3N

matrix with elementsfk(rWn)usz&n . For our helium system
the f are the plane waves without backflow correlation
usz&n the spin state of particlei , either up or down, and
R[$rW i u i51, . . . ,N%. In our calculations we expand̂RuF&
by grouping together all terms which have the same s
assignments for the particles. Each of these terms is a d
minant of the spatial orbitals of the up spin particles time
determinant of the spatial orbitals of the down spin particl

^RuF&5(
S

~21!P~S!det~RS↑
!det~RS↓

!uS&,

5(
S

F~R,S!uS&, ~4!

whereuS& is a shorthand notation for a given spin assignm
to each particle, i.e.,usz&1usz&2•••usz&N . RS↑

andRS↓
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for the positions of the particles with spin-up and spin-dow
respectively. The determinants in Eq.~4! are numbers de-
pending only on the positions of the particles.P(S) is either
0 or 1, and is chosen consistently with the ordering conv
tion of the particles in the spin-up and spin-down determ
nants so that we reproduce the correct signs to assure
uF& is antisymmetric under particle interchange.

Backflow is often described as a state dependent corr
tion since it can be thought of as applying a correlation fac
to pairs of particles that depends on their relative mom
tum. Spin dependence can give a similar effect since at
relative momentum, the particles are in a relatives state
which must be spatially symmetric and therefore is a s
singlet. At higher momenta, the particles can be in a rela
p state which corresponds to a spin triplet state. The sp
dependent wave function, Eq.~3!, gives a correlation factor
of f c23 f s for spin singlets andf c1 f s for spin triplets.

To make the correspondence more concrete, we follo
method analogous to that given by Pandharipande and It14

and expand the backflow and spin dependent wave funct
for a pair of particles with small relative wave vectork. If we
eliminate the center of mass motion, the spatial two-bo
wave function for the backflow case is

f ~r !expS i kW•rW
2

@112h~r !# D
' f ~r !expS i kW•rW

2
D @11 ikW•rWh~r !#, ~5!

TABLE I. Variational and kinetic energies at given densiti
and wave functions as described in the text. The calculation
r50.01659 Å23 were made with 54 particles, all ours with 1
particles. At the equilibrium density we have used the followi
variational parameters:b52.94 Å, l51.0, r 052.3 Å, andw51.3
Å, at r50.01797 Å23, r 0 was changed to 2.4 Å and at the freezin
density to 2.6 Å.

r Å23 ^E& (K) ^T& (K) WF

0.01635
21.3560.02 12.6160.09 SP
21.4960.02 12.6560.04 JSB
21.1860.02 13.0060.03 JS

0.01659
21.5560.04 JSB~Ref. 12!
21.0860.03 JS~Ref. 12!
21.9160.03 JTSB~Ref. 12!

0.01797
21.1060.04 14.4560.09 SP
21.2160.03 14.5660.04 JSB
20.8660.03 14.9360.04 JS

0.01946
20.5760.05 16.5360.10 SP
20.6860.03 16.4460.05 JSB
20.3960.03 16.8760.05 JS
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where we have kept just the linear term inh since it is
expected to be small. If the particle pair is in a spin sing
the spatial wave function must be symmetric. If sp
dependent and backflow wave functions were equivalent,
would require,

f ~r !FcosS kW•rW
2

D 2kW•rWh~r !sinS kW•rW
2

D G
5@ f c~r !23 f s~r !#cosS kW•rW

2
D . ~6!

Similarly, for a spin triplet state we would require,

f ~r !i FsinS kW•rW
2

D 1kW•rWh~r !cosS kW•rW
2

D G
5@ f c~r !1 f s~r !# i sinS kW•rW

2
D . ~7!

These equation cannot be solved generally for allk values.
Expanding and keeping just the lowest order term ink gives
the approximate correspondence

f c~r !5 f ~r !@11 3
2h~r !#, f s~r !5 1

2 f ~r !h~r !. ~8!

Equivalence of backflow and the spin-dependent corr
tions should imply thatuCT& and uCSP& with the above cor-
respondence provide similar results.

The variational Monte Carlo method used in calculatio
with the backflow correlated wave function12,15 is now a
completely standard application of the Metropoliset al.
method.16 The spin-dependent wave functionuCSP& requires
a few simple modifications of the standard treatment.18 We
write the spin operator using the identity
r
p
he

um
2
ri
s

t,
-
e

a-

s

sW i•sW j52Ei j21, ~9!

whereEi j exchanges the spins of particlesi and j . For each
of the spin statesuS& in Eq. ~4!, we record the state that eac
Ei j produces. The multiplication ofuF& by theN(N21)/2
correlation operators is then easily accomplished as a se
of very sparse matrix operation — each row of the mat
representing a correlation factor inS space has only 1 or 2
nonzero elements, the diagonal element, and the pair
changed element if the spins of the pair are different. If
spins are different, the diagonal element isf i j

c 2 f i j
s and the

nondiagonal 2f i j
s . The number of possible spin assignmen

gives the number of elements in our wave function. For o
total spin zero wave function this is (N!)/ @(N/2)!(N/2)!#
namely 3432 states forN514. Flipping all the spins of the
particles leaves the magnitude of our wave function u
changed; the sign changes for (N/2) odd. We can therefore
reduce the size of our problem to 1716 states by using
symmetry. It is amusing that if we were to attempt to calc
late the next closed Fermi surface for the periodic cubic b
38 particles, we would have about a factor of 106 more spin
states.

The symmetrized product wave function requires that
average over all the orderings of the correlation operat
We choose to do this averaging by Monte Carlo sampling
the orders. In principle this could lead to a sign problem
the Monte Carlo method because the order of the opera
on the left and right wave functions in the Monte Carlo i
tegration are not the same, and there is no guarantee
their product is positive. In practice we have not encounte
any negative signs. If a few were produced, they would
contribute significantly to the variance, and could be de
with by sampling from the absolute value and including t
sign in the averaging.

The expectation value of the energy is
^H&5

(
orders

pair E dR(
SS8

^S8uF~R,S8!)
mn

~ f mn
c 1sW m•sW nf mn

s !H)
mn

~ f mn
c 1sW m•sW nf mn

s !F~R,S!uS&

(
orders

pair E dR(
SS8

^S8uF~R,S8!)
mn

~ f mn
c 1sW m•sW nf mn

s !)
mn

~ f mn
c 1sW m•sW nf mn

s !F~R,S!uS&

. ~10!
k-

.
b-

een
er-
ow-
rt
The sums overS andS8 are done explicitly. The sums ove
the pair operator orderings and the integration over the s
tial coordinatesR are done using the Metropolis method. T
Hamiltonian includes only a pairwise potential and is

H52
\2

2m (
i51

N

¹ i
21(

i, j
v~ urW i j u!. ~11!

Results for the energies of our 14 particle model heli
liquid with periodic boundary conditions and the HFDHE
potential17 are shown in Table I. Figure 1 shows a compa
son of two-body distribution functions. In our calculation
we usef (r )5exp@21

2(b/r )
5] together withL/2 corrections,
a-

-

whereL is the side of the simulation cell.12 We present re-
sults for the Jastrow-Slater trial function modified by bac
flow correlations~JSB!

h~r !5l exp@2~r2r 0!
2/w2#S L/22r

L/2 D 3, ~12!

and for the spin-dependent symmetrized-product~SP! wave
function with f c(r ) and f s(r ) given by the relations in Eq
~8!. At all densities, we have optimized the trial energy o
tained with JSB with respect tor 0, the parameter ofh(r )
that most affects the trial energy. Calculations have b
done at the equilibrium density, at freezing and at an int
mediate density. We also give results for a simple Jastr
Slater ~JS! wave function. For completeness, we repo
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results12 at a density very near the equilibrium density for
system of 543He atoms. In this case, three different tri
functions were considered: the JS and JSB forms, and
Jastrow-triplet-Slater with backflow~JTSB! form. Compar-
ing the JS and JSB results for 14 and 54 atoms one can
that finite size effects are not dramatic.

The total energy per atom determined with the sp
dependent symmetrized product trial function is significan
better than the one obtained with a wave function of t
Jastrow-Slater form. This calculation was performed with
the variational Monte Carlo framework and thus subject o
to statistical uncertainties. It demonstrates that sp
dependent correlations can account for a fraction of the
ergy defect that we have when a simple wave function of
Jastrow-Slater form is used, even if the system Hamilton
does not depend explicitly on spin.

The overall agreement between the total energy per a
obtained with the spin-dependent symmetrized product

FIG. 1. The SP~solid!, JS~dotted!, and JSB~dashed! two-body
distribution functions are shown at equilibrium densi
r50.01635 Å23. The insert displays the contributions for like an
unlike spin pairs.
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the Jastrow-Slater-Backflow trial functions is good. Th
situation shows that spin-dependent correlations and ba
flow correlations produce effects that are largely overla
ping. Figure 1 shows that the spin dependent correlati
change the two-body distribution more than backflow cor
lations although the differences are small. We want to e
phasize again that we have not optimized the spin-depen
correlations. This situation could very well account for th
fact that the JSB form of the wave function provides sligh
better energies. The result that effects of spin-dependent
relations and backflow correlations are similar for spin ind
pendent Hamiltonians can help us understand the role
these two different correlations on observable properties
the system, and may show how to include backflow corre
tions in problems where so far the efforts to introduce the
have not been successful. The major advantage to u
backflow correlations is that they are computationally mu
cheaper.

The overlapping effects of spin and backflow correlatio
may be relevant for other systems. In nuclear physics, wh
spin and isospin dependent correlations are already requ
by the form of the Hamiltonian, our results indicate that litt
will be gained by including additional backflow correlation
In atomic and molecular physics, calculations with backflo
correlations have not been successful in improving the t
wave functions. Spin-dependent correlations may give a c
that will help understand both the physical correlations a
how to include them in electronic structure calculations.

In conclusion, this work, which reports Monte Carlo ca
culations with a symmetrized product of spin-dependent c
relations wave function for liquid3He, shows that spin-
dependent correlations defined to be equivalent to backfl
correlations at low relative momenta, produce similar effec
Besides giving a better understanding of the underly
physics of the quantum many-body problem, our results m
prove useful in other fields.

This work was supported by INFM, NSF Grant No
CHE94-07309, and by INFM, under PRA-HTSC.
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