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Possible equivalence of Feynman’s backflow and spin-dependent correlations
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The topic in the title has produced debate about whether spin-dependent correlations should be used in trial
wave functions for Hamiltonians that are independent of spin. We investigate this question by calculating the
ground-state properties of a small system®die atoms using the variational Monte Carlo method and trial
wave functions, first, with explicit backflow correlations and second, with spin-dependent correlations. We
review how backflow and spin-dependent correlations can be made approximately equivalent, and then give
Monte Carlo results which demonstrate that spin-dependent correlations can substantially reproduce the effect
of backflow correlations.S0163-18207)05409-X]

Many author$*° have recognized the importance of lations. However, this same system, shows some remarkable
Feynman-Cohen backfldw correlations as well as spin- magnetic properties, being, in some sense, nearly ferromag-
dependent correlations in the description of liquid and solidnetic. In fact, most calculations have difficulty getting the
3He. However, quantitative understanding of the relative im-spin-polarized®He system higher in energy than the unpo-
portance of these correlations has been elusive. Attempts {8rized system. Wave functions with pairing and other
investigate spin-dependent correlations have used mainly irforrelation$® have been proposed to deal with this problem.
tegral equation techniqu&® with the well-known difficul- Just as in electronic systems where the underlying inter-
ties of calculating the elementary diagrams in closed form. Irction is independent of spin, the magnetic effects’ tie
addition, the noncommutativity of the backflow and spin-are produced by the Pauli principle and exchange. Even
dependent correlations requires the development of new aphough the interaction is independent of spin, including spin
proximations which are not well characterized, and are difexchange terms in the wave function may describe the physi-
ferent for backflow and spin-dependent cases. Other studieg@l correlations in a simpler way than just using spatial cor-
where the variational Monte Carlo method was employedrelations. Obtaining the correct answer to the question im-
have used correlations which depend only onzheompo- ~ Plied by the title is therefore important in understanding the
nent of the spin. These latter correlation factors break th@hysics of both quantum fluids and other many-particle sys-
spin rotational symmetry, have little or no effect at all, andtems.
do not reproduce the results of backflow correlatibns. As a side benefit, if spin correlations can substantially

In this work we investigate the importance of including reproduce backflow correlations, we would expect less effect
spin-dependent correlations in trial functions for Hamilto- from adding backflow correlations to wave functions of sys-
nians without an explicit spin dependence. We also want téems where spin correlations are directly induced by the
show that in these systems the effect of Spin-dependent CoHamiItonian. Such systems include neutron matter, nuclei,
relations and backflow correlations are largely overlappingand nuclear matter.

Finally, we demonstrate that Monte Carlo calculations with a  In our work we apply the variational Monte Carlo method
symmetrized product of spin-dependent correlations wavéo calculate the ground-state expectation values of’id
function for liquid 3He are within our present computational atoms with periodic boundary conditions. Much of the size
capabilities. This work might have important consequences§lependence of the energy comes from the difference between
for other Fermi systems such as atoms, strongly correlatehe free gas energy per particle for the infinite and finite
electrons, and nuclei. systems. For 14 particles in a cubic periodic system, this

Classical backflow is related to the flow of a fluid arounddifference is only about 1.5%. Despite the small size of the
a large impurity and including backflow correlations in a trial System, comparisons between different forms of wave func-
wave function gives the correct correspondence principldions should be valid. By using only 14 particles, full spin
limit. Backflow correlations and how to include them in summations can be carried out for a wave function with a
variational wave functions were first described by Feynmarpymmetrized product of spin-dependent correlation factors.
and Cohelt in their pioneering calculations of the effective ~ The simplest form for a trial wave function for the ground
mass of*He in liquid “He and of the excitation spectrum of State of liquid *He is
“He. For a single component fermion system suct’lds,
both integral equatiorf and Monte Carlo calculatiofs
have shown that the ground state is generally well described — .

_ _ _ (wo=I1 fj|®). ®
by using backflow correlations, along with three-body corre- i<j
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The f;;=f(r;;) is a two-body correlation factor that depends for the positions of the particles with spin-up and spin-down,
on the distance; between particles and j. |®) is the respectively. The determinants in E@) are numbers de-
uncorrelated model state, a Slater determinant of space anending only on the positions of the particl€.S) is either
spin orbitals. 0 or 1, and is chosen consistently with the ordering conven-
Feynman-Cohen backflow correlations are introduced irtion of the particles in the spin-up and spin-down determi-
| ;) by modifying the plane waves ifR|®)so that they nants so that we reproduce the correct signs to assure that
become |®) is antisymmetric under particle interchange.
Backflow is often described as a state dependent correla-
P4 2 7 D @) tion s!nce it can.be thought of as applying gcorrellation factor
m Tmn’ mn| |- to pairs of particles that depends on their relative momen-
tum. Spin dependence can give a similar effect since at low
Standard variational wave functions for liquid He often relative momentum, the particles are in a relatestate
include a three-body correlation factor prOdLﬂt<j<kfi(j3k)1 which must be spatially symmetric and therefore is a spin
in Eq. (1). Although it is straightforward to include these singlet. At higher momenta, the particles can be in a relative
terms, they are not used in the present calculations so th&t state which corresponds to a spin triplet state. The spin-
comparisons are easier. dependent wave function, E), gives a correlation factor
In a wave function without spin-dependent correlations,of f¢—3f7 for spin singlets and®+ ¢ for spin triplets.
the spin matrix elements can be calculated analytically and To make the correspondence more concrete, we follow a
the result is that one can consider the system to be made wpethod analogous to that given by Pandharipande and'itoh
of nonidentical spin-up and spin-down particles. The waveand expand the backflow and spin dependent wave functions
function can be written as the correlation factor times twofor a pair of particles with small relative wave vectorif we
determinants of spatial orbitals: one for up spins and one foeliminate the center of mass motion, the spatial two-body
down spins. The standard variational Monte Carlo methodvave function for the backflow case is
can then be applied. The reason for this simplification is that
neither the correlation operator nor the Hamiltonian can flip K-r
the spins. f(r)exp(iT[lJrzn(r)]
The introduction of spin-dependent correlations makes
this simple analysis fail. The spin correlations introduce spin
exchanges which flip the spins of particles. Since the ampli- ker
tude for these components changes as a function of the pair ~f(r)exp< ==
distances, the spin degrees of freedom become intimately
connected with the positions of th? particles and the spin TABLE |. Variational and kinetic energies at given densities
sums can no longer be done analytically. __and wave functions as described in the text. The calculations at
A spin-dependent wave function that includes spin-spin,-0,01659 A ® were made with 54 particles, all ours with 14
pair correlations and which is invariant under rotations inparticles. At the equilibrium density we have used the following
spin space is the symmetrized product form variational parametersi=2.94 A A=1.0,r,=2.3 A, andw=1.3
A, atp=0.01797 A3, r, was changed to 2.4 A and at the freezing
density to 2.6 A.

exr(il%-r})-»exp( ik, -

[1+ik-ro(r)], (5

|q’sp>=3i1;[j (e +170i-0))| D). 3)
p A3 (E) (K) (T) (K) WF

In this expressiors represents a symmetrizing operator that
averages over all ordering of the correlations in the pai-01635

product. Herg®) is not the product of two Slater determi- —1.35:002  12.61-0.09 SP
nants but is given by the single determinant of ti& N —1.49£0.02  12.650.04 JSB
—1.18+0.02 13.06:0.03 JS

matrix with elementsg,(r,)| o). For our helium system
the ¢ are the plane waves without backflow correlations,

|o,)n the spin state of particlé, either up or down, and 1659
R={rili=1, ... N}. In our calculations we expan|®) ~155:0.04 ISB(Ref. 12
by grouping together all terms which have the same spin —1.0820.03 JS(Ref. 12
assignments for the particles. Each of these terms is a deter- —1.91+0.03 JTSB(Ref. 12
minant of the spatial orbitals of the up spin particles times a
determinant of the spatial orbitals of the down spin particles,o-01797
—1.10+0.04 14.45-0.09 SP
—1.21+0.03 14.56:0.04 JSB
(RI®)=2 (~1)7FdelRs )delRs)|S), ~0.86+0.03  14.93-0.04 Js
0.01946
:zs *(R.9)|S). “) —-0.57£0.05  16.530.10 SP
—0.68+0.03 16.44-0.05 JSB
where|S) is a shorthand notation for a given spin assignment —0.39+0.03 16.870.05 JS

to each particle, i.elg,)1|0,)2 - |0 )N- Rs, and Rs, stand
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where we have kept just the Ii.near term msincg it.is 5i'5j=2Eij—1, 9)
expected to be small. If the particle pair is in a spin singlet, ) o _

the spatial wave function must be symmetric. If spin-WhereE;; exchanges the spins of particleand]. For each
dependent and backflow wave functions were equivalent, w8f the spin statefS) in Eq. (4), we record the state that each

would require, Ei; produces. The multiplication diP) by the N(N—1)/2
correlation operators is then easily accomplished as a series
A K-T of very sparse matrix operation — each row of the matrix
f(r) co{ _> —K-r n(r)sin( _” representing a correlation factor $1space has only 1 or 2
2 2 nonzero elements, the diagonal element, and the pair ex-

B changed element if the spins of the pair are different. If the
:[fc(r)_3fa(r)]cos< H) (6) spins are different, the diagonal elementfjs—f and the
2 nondiagonal 2. The number of possible spin assignments
Similarly, for a spin triplet state we would require, gives th_e number of eIements in our wave function. For our
total spin zero wave function this iN{)/[ (N/2)!(N/2)!]
{ (Ef R namely 3432 states fdd=14. Flipping all the spins of the
f(r)i| sinl — +k-r77(r)cos(—) particles leaves the magnitude of our wave function un-
2 2 changed; the sign changes fa\/@) odd. We can therefore
K7 reduce the si_ze of our proble_m to 1716 states by using this
=[f(r)+£7(r)]i sin( _) (7) symmetry. It is amusing that if we were to attempt to calcu-
2 late the next closed Fermi surface for the periodic cubic box,
38 particles, we would have about a factor of hore spin
states.
The symmetrized product wave function requires that we
average over all the orderings of the correlation operators.
fo(r)=f(N[1+3x(r)], for)=f(r)n(r). (8 We choose to do this averaging by Monte Carlo sampling of
the orders. In principle this could lead to a sign problem in
Equivalence of backflow and the spin-dependent correlathe Monte Carlo method because the order of the operators
tions should imply that¥ ) and|¥sp with the above cor- on the left and right wave functions in the Monte Carlo in-
respondence provide similar results. tegration are not the same, and there is no guarantee that
The variational Monte Carlo method used in calculationstheir product is positive. In practice we have not encountered
with the backflow correlated wave functirt® is now a  any negative signs. If a few were produced, they would not
completely standard application of the Metropobs$al. contribute significantly to the variance, and could be dealt
method*® The spin-dependent wave functipif sp requires  with by sampling from the absolute value and including the
a few simple modifications of the standard treatmf&n/e  sign in the averaging.

R K-r

These equation cannot be solved generally fokalalues.
Expanding and keeping just the lowest order terrk mives
the approximate correspondence

write the spin operator using the identity The expectation value of the energy is
pair
o%ars dRS% <s'|c1>(R,s')]n:[n (f,cnn+5m-<;nf§m)H]n:[n (S 0+ om- onf 5 P (R,S)|S)
(H)=—ar : (10)
s | SRZ (SIORSIL (Tt om anfin 1 (Tt ow-ouf ) @R S)[S)

The sums oveB andS' are done explicitly. The sums over wherelL is the side of the simulation céff. We present re-
the pair operator orderings and the integration over the spasults for the Jastrow-Slater trial function modified by back-
tial coordinateR are done using the Metropolis method. The flow correlations(JSB
Hamiltonian includes only a pairwise potential and is
L/2—r\?3
n(r)=>\exr[—(r—ro)zlwz](—) , (12)
z2 N L/2
— 2 g
H= 2m 2’1 Vi +i§<:j v(|rig))- (19) and for the spin-dependent symmetrized-prod® wave
function with f¢(r) and f?(r) given by the relations in Eq.
(8). At all densities, we have optimized the trial energy ob-
Results for the energies of our 14 particle model heliumtained with JSB with respect to,, the parameter ofy(r)
liquid with periodic boundary conditions and the HFDHEZ2 that most affects the trial energy. Calculations have been
potential” are shown in Table I. Figure 1 shows a compari-done at the equilibrium density, at freezing and at an inter-
son of two-body distribution functions. In our calculations mediate density. We also give results for a simple Jastrow-
we usef(r)=exg —3(b/r)%] together withL/2 corrections, Slater (J9 wave function. For completeness, we report



5650 BRIEF REPORTS 55

the Jastrow-Slater-Backflow trial functions is good. This
situation shows that spin-dependent correlations and back-
flow correlations produce effects that are largely overlap-
ping. Figure 1 shows that the spin dependent correlations
change the two-body distribution more than backflow corre-
lations although the differences are small. We want to em-
phasize again that we have not optimized the spin-dependent
correlations. This situation could very well account for the
fact that the JSB form of the wave function provides slightly
better energies. The result that effects of spin-dependent cor-
relations and backflow correlations are similar for spin inde-
pendent Hamiltonians can help us understand the role of
these two different correlations on observable properties of
the system, and may show how to include backflow correla-
. : ™ tions in problems where so far the efforts to introduce them
have not been successful. The major advantage to using

FIG. 1. The SRsolid), JS(dotted, and JSB(dashed two-body backflow correlations is that they are computationally much
distribution  functions are shown at equilibrium density Ch€aper. _ _ _
p=0.01635 A 3. The insert displays the contributions for like and ~ The overlapping effects of spin and backflow correlations
unlike spin pairs. may be relevant for other systems. In nuclear physics, where

spin and isospin dependent correlations are already required

result$? at a density very near the equilibrium density for abY the form of the-Hami!tonian,.qur results indicate that. lttle
system of 543He atoms. In this case, three different trial will be galned by including adqnlonal backflow cprrelatlons.
functions were considered: the JS and JSB forms, and tH&@ atomic and molecular physics, calculations with backflow
Jastrow-triplet-Slater with backflodTSB form. Compar- correlations have not been successful irj improving the trial
ing the JS and JSB results for 14 and 54 atoms one can s¥@ve functions. Spin-dependent correlations may give a clue
that finite size effects are not dramatic. that will help understand both the physical correlations and

The total energy per atom determined with the spin_how to include them in electronic structure calculations.
dependent symmetrized product trial function is significantly ~In conclusion, this work, which reports Monte Carlo cal-
better than the one obtained with a wave function of theculations with a symmetrized product of spin-dependent cor-
Jastrow-Slater form. This calculation was performed withinrelations wave function for liquid®He, shows that spin-
the variational Monte Carlo framework and thus subject onlydependent correlations defined to be equivalent to backflow
to statistical uncertainties. It demonstrates that spincorrelations at low relative momenta, produce similar effects.
dependent correlations can account for a fraction of the erBesides giving a better understanding of the underlying
ergy defect that we have when a simple wave function of thehysics of the quantum many-body problem, our results may
Jastrow-Slater form is used, even if the system Hamiltoniaprove useful in other fields.
does not depend explicitly on spin.

The overall agreement between the total energy per atom This work was supported by INFM, NSF Grant Nos.
obtained with the spin-dependent symmetrized product an@HE94-07309, and by INFM, under PRA-HTSC.
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