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Quantum spherical description of an Ising spin glass in a transverse field
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We study the competition between bond randomness and quantum fluctuation in the infinite-range Ising
model in the transverse fieldD relevant for a number of pseudospin and magnetic quantum spin-glass systems.
By introducing a mapping of the quantum Hamiltonian of the model onto a soft-spin action we consider it
truncated version in a form of the solvable quantized spherical model. The resulting critical phase boundary
Tcrit(D) is in considerable agreement with the numerical estimates based on the Trotter-Suzuki and Monte
Carlo methods. The equation of state for the system is also given.@S0163-1829~97!05209-0#
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The role of quantum fluctuations in spin glasses~SG! re-
mains a long standing theoretical problem~see, Ref. 1, and
references therein!. One of the simplest for the theoretic
study but physically relevant system— the Ising spin glas
a transverse field has attracted renewed interest, especia
relation to the quantum analogue of the Sherringt
Kirkpatrick model2 ~see, e.g., Ref. 3!. On the experimenta
side, there has been also a renewed interest in systems w
display the SG transition the vicinity ofT50 induced by an
external parameter. These include the so-called pro
glasses,4–6 being a random mixture of ferroelectric and an
ferroelectric materials such as Rb12x~NH4) xH2PO4, where
the proton tunneling in the glass state can be represente
transverse field in the pseudospin Ising model. In the dom
of magnetic systems the long-ranged dipolar insulating Is
spin glass LiHo0.167Y 0.833F4 has been studied in the pre
ence of a transverse magnetic fieldD, from which a phase
diagramTcrit(D) was determined.

7,8

The system in question displaying the interplay betwe
randomness and quantum fluctuations is described by
following model:

H52(
i, j

Ji js izs jz2D(
i

s ix . ~1!

Heresx ,sz are thex,z components of the Pauli spin oper
tors, with the Pauli operators on different sites commut
with each other. For simplicity we consider the interactio
Ji j as being infinite-range and Gaussian-random distribu
variables with zero mean and the varianceJ/AN ~which en-
sures a sensible thermodynamic limitN→`).

Within a pseudospin description of hydrogen-bonded p
ton glass systems, the proton position in the two poten
minima is represented by Ising states,sz561, and the tun-
neling between the minima by a transverse field termDsx ,
whereD is the tunneling frequency.9 Each site, therefore, ha
an Ising degree of freedom whileDs ix is the kinetic energy
term and induces on-site flips of the Ising spins due toD.
Thus the transverse field is acting against the SG phase e
tually destroying the glassy order even atT50.
550163-1829/97/55~9!/5623~4!/$10.00
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A systematic analytic study of the quantum spin glasse
complicated by two factors:~1! the problem has a dynamica
nature from the outset and cannot be simplified to calcula
of static quantities even while evaluating statistical mecha
cal averages;~2! quenched disorder and associated very co
plicated energy landscape resulting in a huge number of lo
minima of free energy as in the case of the classical s
glasses. Usually, an approximate analytically tractable s
tion to the problem can be obtained by replacing the dyna
self-interaction by an appropriate time average. In the c
text of the Matsubara ‘‘imaginary time’’ and replica ap
proach this method is referred to as the sta
approximation.10While conceptually simple, this approxima
tion offers a rather crude description due to effective s
pression of quantum fluctuations. An essential improvem
can be obtained by finding a way of systematic parame
ization of quantum correlations.11 It would be desirable to go
beyond static theory but there is no hope in solving a
realistic quantum SG exactly. It may therefore be useful
study quantum spherical models12 of disordered systems
where the analysis can be pushed further.

To this end we introduce in the present paper a mapp
of the quantum Hamiltonian~1! onto a soft-spin action con
taining quantum correlations of arbitrary order consider
furthermore its truncated version in a form of the solvab
quantized spherical model.

The model~1! should be contrasted with another syste
namely, the SG of quantum rotors solved in the largeM
vector limit.13,14 There, the quantum dynamics was asso
ated with a finite moment of inertia of rotors. Although it ha
been argued that it is natural to consider the transverse-
Ising model as simply theM51 case of quantum rotors15 ~as
a formal limiting case, of course, sinceM>2 for rotors!
there are important differences in symmetries between
Hamiltonian ~1!: O(M ) rotational symmetry in the roto
model vs discreteZ2 symmetry in the transverse Ising sp
glass. As we shall see our detailed analysis shows that t
is no one-to-one mapping between quantum rotor model
quantized spherical model obtained for the transverse Is
SG and, consequently, details of thermodynamic beha
will differ in both cases.
5623 © 1997 The American Physical Society
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It is convenient to express the partition functio
Z5Trexp(2bH) of the model~1! in the interaction represen
tation as

Z5 Tre2bH0TtexpF2E
0

b

dt(
i, j

Ji js iz~t!s jz~t!G ~2!

with the interaction picture HamiltonianH-H0 and the
‘‘free’’ part

H052D(
i

s ix ~3!

so that the statistical average can be taken in the ense
given byH0. Here,b51/kBT with T being the temperature
Tt is the Matsubara ‘‘imaginary time’’ ordering operator a
lowing us to treat the time dependent operatorss iz(t)
5e2tH0s ize

tH0 asc numbers within the time-ordered expo
nential ~2!. This turns out to be very convenient because
enables us to handle the objectss iz(t) as bosonic fields. We
introduce new continuous fieldsmi(t) using the identity

d@j2j8#5E DS z

2p i De2~j2j8!z, ~4!

wherejz[*0
bdtj(t)z(t). In spite of the singular characte

of d@j2j8# it plays exactly the same role for functionals
the conventional Dirac delta function in calculations invo
ing d-function. Using the above relation and thec-number
property ofsz(t) ~under the ‘‘imaginary’’ time ordering op-
eratorTt) we may rewrite the statistical sum~2! as follows

Z5E )
i
Dmi Tre

2bH0)
i
Ttd@mi~t!

2s iz~t!#dF(
i
mi
2~t!2NG

3expF2E
0

b

dt(
i, j

Ji jmi~t!mj~t!G . ~5!

The technique employed in deriving of Eq.~5! can be con-
sidered as a generalized version of widely used the so-ca
Hubbard-Stratonovich formula. This becomes apparent in
ring the integral representation of thed function @see, Eq.
~4!#: we obtain similar integral expression involving exp
nential with auxiliary field coupled tosz(t).

According to the construction of the statistical sum~5! the
continuous field variablesmi(t) are allowed to take all val-
ues2`,mi(t),`. However, the original pseudospin var
ables obeys iz

2 (t)51 at each site. While an exact comput
tion of Z in terms of the functional integral overmi(t)
should conform to this restriction an approximation in eva
ation of Z does not necessarily maintain that constra
Therefore, to enforce the constraint we included the te
d@( imi

2(t)2N# in Eq. ~5!. Note, that we have also relaxe
the ‘‘strong’’ constraintmi

2(t)51 ~all i ) and imposed in-
stead the ‘‘weak’’ one:( imi

2(t)5N which allow us to make
contact with solvable ‘‘mean spherical’’ model.

Utilizing Fourier representation~4! of thed functional we
have
ble

it

ed
r-

-
t.

Z5E Dz)
i
DmiDm iexpF2E

0

b

dt(
i j

Ji jmi~t!mi~t!

1E
0

b

dt(
i

~mi
2~t!2N!z~t!G

3expF2E
0

b

dt(
i
mi~t!m i~t!1Wi

~0!@m#G . ~6!

Here,m i(t) and z(t) are variables coupled tos iz(t) and
mi
2(t), respectively ~the Lagrange multipliers! while

Wi
(0)@m#5 lnZi

(0)@m# with

Zi
~0!@m#5 Trse

2bH0TtexpF E
0

b

dts iz~t!m i~t!G ~7!

being the generating functional of the complete pseudos
Green’s functions for the noninteracting system in the M
subara formalism. It is well known that related function
Wi

(0)@m# is just the generating functional for the connect
Green’s functionsK0ni(t1 , . . . ,t l ) ~cumulants! and

Wi
~0!@m#5(

s51

`
1

s! E0
b

dt1•••E
0

b

dt l K0si~t1 , . . . ,ts!

3m i~t1!•••m i~ts!, ~8!

where K0si(t1 , . . . ,ts)5^Tts iz(t1)•••s iz(ts)&0
cum. Here,

for given operatorsA, B, andC the cumulant averages ar
defined as^AB&0

cum5^AB&02^A&0^B&0, ^ABC&0c5^ABC&0
2 ^A&0^BC&0 2 ^B&0^AC&0 2 ^C&0^AB&0 1 2^A&0^B&0^C&0,
. . . , etc., wherê •••&05Tr•••exp(2bH0)/Trexp(2bH0).
Since the generic spherical model consists of the Gaus

part in fluctuating constrained fields we include only terms
the exponential of Eq.~6! which are quadratic in the fluctu
ating ‘‘spin density’’mi(t). ExpandingWi

(0)@m# to the sec-
ond order inm i and integrating out them i fields we obtain
the statistical sum of the quantum version of the spher
~QSP! model

ZQSP5E )
i
DmiE DF z

2pGe2SQSP[m,z] , ~9!

where the quadratic action reads

SQSP@m,z#5
1

2E0
b

dtdt8H(
i j

@„Ji j22z~t!d i j …d~t2t8!

1d i j K02
21~t2t8!#mi~t!mj~t8!

1Nz~t!d~t2t8!J , ~10!

whereK02
21(t2t8) is the inverse function ofK02(t2t8).

Furthermore,

K02~t2t8!5
2

Z0
$cosh@bD22D~t2t8!#Q~t2t8!

1cosh@bD12D~t2t8!#Q~t82t!%, ~11!



e

u
e
e
r

r

wi
e
e
s

go

at

-

c

s

dom
-

.

’

ical

-

eld

f the
the

55 5625BRIEF REPORTS
whereZ052cosh(bD) andQ(x) is the step function. Due to
the presence of the Lagrange multipliersz @the action~10! is
augmented by the termz(t)mi

2(t) the integration takes plac
over all finite energy configurations ofmi(t) variables#. Be-
cause the model is now effectively unconstrained and q
dratic all the quantities can be computed readily. In the th
modynamic limitN→` the saddle point method gives th
condition of constraint in a form of an implicit equation fo
the Lagrange multiplierz(T,D)

15
1

N(
i

^mi~t!mi~t10!&QSP, ~12!

where the bar denotes averaging over the quenched diso
and

^•••&QSP5
*P iDmi•••exp~2SQSP!

*P iDmiexp~2SQSP!
. ~13!

In the spherical model, spin-glass ordering is associated
macroscopic condensation into the eigen state of the
change matrixJ with the largest eigenvalue. Then th
Lagrange multiplierz ‘‘sticks’’ at that eigenvalue and stay
constant within SG phase.

Further progress in solving of the model requires dia
nalization of the random matrixJi j along with the imposition
of the self-consistency constraint~12!. The first step is to
introduce new variables ml(t) via the relation
mi(t)5(lml(t)ci

l using an orthogonal transformation th
diagonalizesJ

(
i
Ji jci

l5Jlcj
l , ~14!

wherel51, . . . ,N andJl is thelth eigenvalue. The eigen
vectors~that are statistical variables! are orthogonal and we
can choose them to be normalized,

(
i51

N

ci
lci

l850 , for lÞl8, ~15!

(
i51

N

~c i
l!251. ~16!

In terms of new variables after transforming to the frequen
space Eq.~10! becomes

SQSP@m,z0#5
1

2b(
v l

(
l

FJl22z01
1

K02~v l !G
3ml~v l !ml~2v l !1Nz0 , ~17!

where K02(v l )54Dtanh(bD)/(4D21vl
2 ) and v l 52pl T,

l 50,61,62, . . . , being the Bose Matsubara frequencie
Accordingly, the self-consistency condition~12! reads

15
1

b(
v l

E dE
r~E!

E22z011/K02~v l !
, ~18!

where we have used (1/N)(l→*dEr(E) in the limit
N→`. Here,

r~E!5
1

N(
l

d~E2Jl!5
1

2pJ2
A4J22E2Q~2J2uEu! ~19!
a-
r-

der

th
x-

-

y

.

is the averaged density of states corresponding to the ran
semicircle law.16 Finally, summing over Matsubara frequen
cies the self-consistency Eq.~18! for the Lagrange multiplier
z0 becomes

15A8Dtanh~bD!

J E
21

1 dx

p
A 12x2

~z0 /J!2x

3F121 f BS JA8Dtanh~bD!

J
Az0

J
2xD G , ~20!

where f B(y)51/(eby21) is the Bose distribution function
For T,Tcrit(D), whereTcrit(D) marks the onset of the SG
the saddle point valuez0 is fixed atz05J being the branch
point of the integrand of Eq.~18!. To study the SG order
parameter and response functions we introduce into Eq.~10!
a source term2( i*0

bdthi(t)mi(t), wherehi(t) is the fluc-
tuating field at sitei that couples to the ‘‘spin variable’
mi(t). Introducing the SG order parameter

q5
1

N(
l

^ml~t!ml~t10!&QSP ~21!

we obtain the equation of state for the quantum spher
Ising spin glass in a form

q512
4

3p
A4Dtanh~bD!

J F116E
0

1

dxxA12x2f B

3S 2JxA4Dtanh~bD!

J D G . ~22!

The critical lineTcrit(D) results immediately from the sub
stitution q50 in Eq. ~22! and is presented@together with

FIG. 1. The spin-glass order parameterq as a function of the
temperature for several values of the fixed transverse fi
D/J50, 0.1, 0.2, 0.4, 0.6, 0.8, and 1~from the top to the bottom!.
The inset shows the critical phase boundaryTcrit(D) between dis-
ordered and spin glass phases for the spherical approximation o
infinite-range interaction quantum Ising spin-glass model in
transverse field.
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q(T,D) dependence# in Fig. 1. For vanishing of the trans
verse field the order parameter reads simplyq512kBT/J
—in agreement with the result of Thouless and Jones for
classical spherical Ising spin glass~see, Refs. 12!. We can
examine the accuracy of the quantum spherical approxi
tion by referring our results to the previous studies on
quantum infinite-range Ising spin glass in a transverse fi
~see Refs. 11 and 17 for quantitative comparison of vari
methods!. The agreement with the best numerical calcu
tions is fairly good. For example, the correspondi
quantum-critical point in the present approach rea
Dcrit(T50)/J59p2/64'1.3879 and is very close to th
value obtained by extensive numerical Trotter-Suzuki co
putations ('1.5) and much better than the static approxim
tion @Dcrit(T50)/J52#. This justifies the usefulness of th
presented ‘‘sphericalization’’ technique for quantum dis
dered systems.

Finally, some comments on the nature of the SG phas
the present model are in order. It is well known that t
solution for the classical spherical model shows absenc
any instability in the low temperature phase, i.e., in the l
guage of the replica theory the model preserves the rep
symmetry.18 On the other hand the need to break repl
symmetry appears already in the classical Ising case19 below
a certain temperature. In the present quantum Ising
.
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model the replica symmetry breaking solution should oc
since the model maps onto the classical Ising system
D50. Although in the related quantized spherical version
the model the replica method was not explicitly used one
easily prove that the solution~22! is replica symmetric and
marginally stable. However, this solution might persist on
until higher order terms then quadratic inm have been in-
cluded in the action~17!. These terms being a perturbatio
around spherical model presumably spoil the replica sy
metric solution of the quantized spherical model as it h
pens in its classical counterpart.20We are then forced to look
for the SG order parameter in a general form of the Pa
replica symmetry breaking scheme. Exploring this possibi
remains the subject for further study.
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