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Quantum spherical description of an Ising spin glass in a transverse field
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We study the competition between bond randomness and quantum fluctuation in the infinite-range Ising
model in the transverse fiell relevant for a number of pseudospin and magnetic quantum spin-glass systems.
By introducing a mapping of the quantum Hamiltonian of the model onto a soft-spin action we consider it
truncated version in a form of the solvable quantized spherical model. The resulting critical phase boundary
Teil(A) is in considerable agreement with the numerical estimates based on the Trotter-Suzuki and Monte
Carlo methods. The equation of state for the system is also di&&1.63-18207)05209-7

The role of quantum fluctuations in spin glas$8§) re- A systematic analytic study of the quantum spin glasses is
mains a long standing theoretical problésee, Ref. 1, and complicated by two factorg1) the problem has a dynamical
references therein One of the simplest for the theoretical nature from the outset and cannot be simplified to calculation
study but physically relevant system— the Ising spin glass irof static quantities even while evaluating statistical mechani-
a transverse field has attracted renewed interest, especially 3l averages2) quenched disorder and associated very com-
relation to the quantum analogue of the Sherrington®plicated energy landscape resulting in a huge number of local
Kirkpatrick modef (see, e.g., Ref.)30n the experimental Minima of free energy as in the case o_f the classical spin
side, there has been also a renewed interest in systems whiglfsses. Usually, an approximate analytically tractable solu-
display the SG transition the vicinity @=0 induced by an 0N to the problem can be obtained by replacing the dynamic
external parameter. These include the so-called protoﬁelf-mteractlon by an appropriate time average. In the con-
glasse$;® being a random mixture of ferroelectric and anti- ext of the Matsubara “imaginary time” and replica ap-

. ; proach this method is referred to as the static
ferroelectric materials such as Rb(NH4) «H2PO,, where approximation’ While conceptually simple, this approxima-

the proton tgnngling in the glass_, sta_te can be represented .W)n offers a rather crude description due to effective sup-
transverse field in the pseudospin Ising model. In the domaif ossion of quantum fluctuations. An essential improvement
of _magnetic §ystems the long-ranged dipol_ar in_sulating ISinGan be obtained by finding a way of systematic parameter-
spin glass LiHQ 167Y 0.85f"4 has been studied in the pres- jzation of quantum correlatiors.It would be desirable to go
ence of a transverse magnetic fiedld from which a phase peyond static theory but there is no hope in solving any
diagramT;(A) was determined? realistic quantum SG exactly. It may therefore be useful to
The system in question displaying the interplay betweerstudy quantum spherical mod¥sof disordered systems,
randomness and quantum fluctuations is described by thghere the analysis can be pushed further.
following model: To this end we introduce in the present paper a mapping
of the quantum Hamiltoniafil) onto a soft-spin action con-
taining quantum correlations of arbitrary order considering
furthermore its truncated version in a form of the solvable
guantized spherical model.
Hereo, o, are thex,z components of the Pauli spin opera-  The model(1) should be contrasted with another system,
tors, with the Pauli operators on different sites commutingnamely, the SG of quantum rotors solved in the lake-
with each other. For simplicity we consider the interactionsyector limit!>'* There, the quantum dynamics was associ-
J;j as being infinite-range and Gaussian-random distributegdted with a finite moment of inertia of rotors. Although it has
variables with zero mean and the variadée/N (which en-  been argued that it is natural to consider the transverse-field
sures a sensible thermodynamic lirhit- «). Ising model as simply th#1 =1 case of quantum rotdrs(as
Within a pseudospin description of hydrogen-bonded proa formal limiting case, of course, sindd=2 for rotorg
ton glass systems, the proton position in the two potentiathere are important differences in symmetries between the
minima is represented by Ising states=*1, and the tun- Hamiltonian (1): O(M) rotational symmetry in the rotor
neling between the minima by a transverse field t&vo,,  model vs discreteZ, symmetry in the transverse Ising spin
whereA is the tunneling frequencyEach site, therefore, has glass. As we shall see our detailed analysis shows that there
an Ising degree of freedom whilko;, is the kinetic energy is no one-to-one mapping between quantum rotor model and
term and induces on-site flips of the Ising spins dueA\to quantized spherical model obtained for the transverse Ising
Thus the transverse field is acting against the SG phase eve8G and, consequently, details of thermodynamic behavior
tually destroying the glassy order evenTat 0. will differ in both cases.

H=—2> Jijo'iza'jz_AEi Tix - 1)

i<j
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It is convenient to express the partition function B
Z=Trexp(— BH) of the model1) in the interaction represen- Z:f Dzl_i[ Dm;Duiexg — jo dTiEj Jijmi(7)m;(7)
tation as

+ deTZ (m?(1)—N)z(7)
0 i

Z= TreﬁHOTTexp{—fﬁdrE Jijoi(T) o (1) (2
0

<]

B
with the interaction picture Hamiltoniati-H, and the Xexr{—J dr>, mi(T),LLi(T)‘I‘Wi(O)[M]} (6)
“free” part o

Here, ui(7) and z(r) are variables coupled teo;,(7) and
HOZ_AZ Ti ©) miz(r), respectively (the Lagrange multiplieps while
! WO 1]=InZOL ] with
so that the statistical average can be taken in the ensemble
giv:_an byHo,. Here,,8=_1/kB‘!' with T being th_e temperature, 72O u]= nge_BHOTTex;{ fﬁdmiz(ﬂ#i(ﬂ
T, is the Matsubara “imaginary time” ordering operator al- 0

lowing us to treat the time dependent operaters(7) ] ) . )
nential (2). This turns out to be very convenient because itGréen’s functions for the noninteracting system in the Mat-
enables us to handle the objeets(7) as bosonic fields. We Subara formalism. It is well known that related functional

introduce new continuous fields;(7) using the identity W ] is just the generating functional for the connected
Green’s functionKg,( 74, . . .,7,) (cumulant$ and

)

4 :
ﬂg_f,]:fp<—-)e_(§_€ )<, 4 = 1
o WI(O)[ILL]:E sTdeTl"'deT/KOSi(Tl,...,TS)
where&{=[£dr&(7) (7). In spite of the singular character s=1=J0 0

of [ £—¢] it plays exactly the same role for functionals as X wi(7y) - il 7s), €5))
the conventional Dirac delta function in calculations involv-
ing 5-function. Using the above relation and thenumber ~ Where Kogi(7y, . .. ,7) =(T,0i,(71) - - - 0i,(75))g""-. Here,

property ofa,(7) (under the “imaginary” time ordering op- for given operators4, B, andC the cumulant averages are
eratorT,) we may rewrite the statistical suf@) as follows  defined as(AB)§""=(AB)o—(A)o(B)o, (ABC);=(ABC)

= (A)o{BC)o — (B)o{AC)o — (Cho{AB)o + 2(A)o(B)o{C)o.
..., etc., wherg(- - - )o=Tr- - -exp(— BH)/Trexp(— BHy).

Since the generic spherical model consists of the Gaussian
part in fluctuating constrained fields we include only terms in
E m2(r)—N the exponential of Eq6) which are quadratic in the fluctu-

T ating “spin density” m;(7). ExpandingWi(O)[,u] to the sec-
ond order inu; and integrating out the; fields we obtain
(5) the statistical sum of the quantum version of the spherical
(QSP model

Z=J H Dm, Tre*/”HOH T.8[mi(7)

—0i,(7)]§

XeXF{_ fﬁde J|Jm|(7’)m](7’) .
0 i<j

The technique employed in deriving of E¢) can be con-

sidered as a generalized version of widely used the so-called Zosp= f H Dmif D

Hubbard-Stratonovich formula. This becomes apparent infer- !

ring the integral representation of thefunction [see, Eq.

(4)]: we obtain similar integral expression involving expo-

nential with auxiliary field coupled to,(7). 108
According to the construction of the statistical s(Bhthe Sosdm,z]= _f d-d T/[ > [~ 22(7)8)8(7—7)

continuous field variablesy;(7) are allowed to take all val- 2Jo i

ues—oo<m;(7)<<e. However, the original pseudospin vari- w=L N 1m. (ot

ables obeyr?(7)=1 at each site. While an exact computa- 05 Koz (=) Imi(m)my(')

tion of Z in terms of the functional integral ovean;(7)

should conform to this restriction an approximation in evalu- +Nz(7)o(7— T')] ' (10)

ation of Z does not necessarily maintain that constraint.

Therefore, to enforce the constraint we included the termyhere K ,}(7— ') is the inverse function oKg(7—7').

8[=;m?(7)—N] in Eq. (5). Note, that we have also relaxed Furthermore,

the “strong” constraintmiz(r)zl (all i) and imposed in-

stead the “weak” oneEimiz(r) =N which allow us to make 2

contact with solvable “mean spherical” model. KoA 7= 7')= ——{cosi A —2A(7—7)]O (7= 7')
Utilizing Fourier representatio) of the § functional we 0

have +cosh BA+2A(7—7")]O (7' — 1)}, (11

z

—leSesimd,(9)

where the quadratic action reads
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whereZy=2coshBA) and®(x) is the step function. Due to

1.4

the presence of the Lagrange multiplierithe action(10) is 14

augmented by the tera( 7) mi2(7') the integration takes place A/J'1

over all finite energy configurations afi(7) variableg. Be- 12| os )

cause the model is now effectively unconstrained and qua- os Spin Glass
dratic all the quantities can be computed readily. In the ther- 1 g‘; 1
modynamic limitN—« the saddle point method gives the '

b )
HH H H H it i 0 02 04 06 08 1
condition of constraint in a form of an implicit equation for q 0.8 ‘\\ T

the Lagrange multiplieg(T,A) —
leq —
1:N§i: (mi(7)m;(7+0))qsp, (12 0.6 )
HM
where the bar denotes averaging over the quenched disorder 0.4 as B 5
and 0.2 Ft+i\é 4 \
JII,Dm;- - - exp(— Sosp e, N
(- Yos= So _ (13) T
JILDmexH = Sosn 06 0204086 08
In the spherical model, spin-glass ordering is associated with ' |:(BT/J. '

macroscopic condensation into the eigen state of the ex-

change matrlx_J _Wml t_he ,I,argest elgenvalue. Then the FIG. 1. The spin-glass order parametpas a function of the
Lagrange multiplierz “sticks” at that eigenvalue and stays emperature for several values of the fixed transverse field
constant within SG phase. . A/J=0,0.1, 0.2, 0.4, 0.6, 0.8, and (from the top to the bottoin

Further progress in solving of the model requires diago-the inset shows the critical phase bounddigy(A) between dis-
nalization of the random matrik; along with the imposition  ordered and spin glass phases for the spherical approximation of the
of the self-consistency constrai(t2). The first step iS t0 infinite-range interaction quantum lIsing spin-glass model in the
introduce new variables m,(7) via the relation transverse field.
m;(7)=2,m,(7) ¢ using an orthogonal transformation that
diagonalizes] is the averaged density of states corresponding to the random

semicircle law'® Finally, summing over Matsubara frequen-
> Wi =54, (14)  cies the self-consistency E(}.8) for the Lagrange multiplier
: Z, becomes

whereA=1, ... N and/, is the\th eigenvalue. The eigen- 8Atani( BA) (1 dx 1—x
vectors(that are statistical variablgsre orthogonal and we 1= \/f f —\/m
1T 0 -

can choose them to be normalized, -

N
, 1 8Atanh( BA z
> Yyt =0, for \#N, (15) X|5+fg J\/# jo—x) , (20
i=1
N wherefg(y)=1/(e?Y—1) is the Bose distribution function.
2 (pM)2=1. (16) For T<Tgi(A), whereT;(A) marks the onset of the SG
R the saddle point valug, is fixed atzo=J being the branch

Int ¢ iabl for t forming to the f >point of the integrand of Eq(18). To study the SG order
n ferms ol New vanavles after ransiorming fo the frequenc parameter and response functions we introduce into Hi.
space Eq(10) becomes

a source term- =, f8d rh;(7)m;(7), whereh;(7) is the fluc-

1 1 tuating field at sitei that couples to the ‘“spin variable”
m,zg|==— Ih—2Z2pg+— m;(7). Introducing the SG order parameter
SosdM 0] =552 2 [ 220t g (7) g p
1

Xmy(w, )M (—o,)+Nz, (17 qzﬁg (my(7)m, (7+0))qsp (21)
where Koz(w/)=4Atanh(BA)/(4A2+w§) and w,=27/T,
/=0,+1,+2,..., being the Bose Matsubara frequencies.we obtain the equation of state for the quantum spherical
Accordingly, the self-consistency conditi¢h?) reads Ising spin glass in a form

- P(E) .4 [4Atant(BA)
1_sz/ deE—2z0+1/K02(w/)’ (18) q=1-5—\/——

1
1+6f dxxy1—x3fg
3 J 0

ZJX\/MH. (22)

1 " . . .
22— E20(2]—|E 19 The critical lineTg;(A) results immediately from the sub-
mJ? ( ED @9 stitution g=0 in Eq. (22) and is presenteftogether with

where we have used (JX,— [dEp(E) in the limit
N—co. Here, X

1 [—
P(B)= N2 JE-T)=5
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g(T,A) dependencein Fig. 1. For vanishing of the trans- model the replica symmetry breaking solution should occur
verse field the order parameter reads simgpiyl—kgT/J since the model maps onto the classical Ising system for
—in agreement with the result of Thouless and Jones for tha =0. Although in the related quantized spherical version of
classical spherical Ising spin glaésee, Refs. 12 We can the model the replica method was not explicitly used one can
examine the accuracy of the quantum spherical approximaeasily prove that the solutio(22) is replica symmetric and
tion by referring our results to the previous studies on themarginally stable. However, this solution might persist only
guantum infinite-range Ising spin glass in a transverse fieldintil higher order terms then quadratic im have been in-
(see Refs. 11 and 17 for quantitative comparison of variousluded in the actior{17). These terms being a perturbation
method$. The agreement with the best numerical calcula-around spherical model presumably spoil the replica sym-
tions is fairly good. For example, the correspondingmetric solution of the quantized spherical model as it hap-
quantum-critical point in the present approach readsens in its classical counterpdftWe are then forced to look
Aqi(T=0)/J=972/64~1.3879 and is very close to the for the SG order parameter in a general form of the Parisi
value obtained by extensive numerical Trotter-Suzuki com+seplica symmetry breaking scheme. Exploring this possibility
putations & 1.5) and much better than the static approxima-remains the subject for further study.

tion [A.i(T=0)/J=2]. This justifies the usefulness of the

presented ‘“sphericalization” technique for quantum disor- ACKNOWLEDGMENTS

dered systems.
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