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Nonextensivity and Tsallis statistics in magnetic systems
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We have studied the role of long-range interactions on the thermodynamics of magnetic systems. We have
simulated, through the Monte Carlo method, magnetization curves of a two-dimensional classical Ising model
including a long-range dipole-dipole-like interaction, where the range of interaction is tuned by a parameter
a. Based on the conjectures of Tsallis statistics, we show thaty/fd=1 (d=2), the appropriate form of the
equation of state is given bM/N=m(T* ,H*) with T*=T/N* andH* =H/N*. The normalization factor
N*[N*=(NA-“D—1)/(1— a/d)] emerges from the nonextensivity of thermodynamic variables of energy
type. The crossover from nonextensive to extensive behaviefdst 1 occurs smoothly and similarly to other
quite different systems, thus suggesting it to be a general r¢S0it63-18207)06009-9

In nature long-range spatial interactions or long-rangdim,_.lim, ... and lim_.limy_.., may yield different
memory effects may give rise to very interesting behaviorsresults’ This is not the case of standard BG statistics, where
Among them, one of the most intriguing arises in systemsjue to the ergodic hypothesis the order of the limits
which, given the appropriate conditions of their thermody-in size and in time commute. For long-range interactions
namic variables, such as internal energy, magnetization, ettand memory effects, at theequilibrium state (i.e.,
are nonextensivénonadditivg. The best known examples of limy_.lim,_.) the BG formalism is onlyweakly violated
such systems are the gravitationstbody problem and so thatq=1 holds, but appropriated scaling functions must
astrophysics, black holes and superstringd.evy-like and  pe added. Furthermore, for long-range interactions and
correlatedlike anomalous diffusidn, two-dimensional memory effects, but now at theetaequilibriumstate(i.e.,
turbulence’ granular matter, such as sandpilend many jim, _lim,_..), the BG formalism isstrongly violatedand
others. These systems share a very subtle property: they vigr« 1. This is the case of the examples mentioned above.
late the Boltzmann-Gibb&BG) statistics—the bridge to the  The lack in the literature on this subject applied to mag-
equilibrium thermodynamics. netism has motivated us to discuss the role of long-range

Inspired by multifractals concepts, Tsallisas proposed a interactions in the thermodynamics of magnetic systems. In
generalization of the BG statistical mechanics. He introduceghis paper, we deal with a generalized dipole-dipole interac-
an entropic expression characterized by an indewhich  tion where the range of interaction is tuned by a parameter

leads to a nonextensive statistics, . This is an example of theeak violationof the BG sta-
1-sW oa tistics.
S —k i=1Pi 1) Let us consider a magnetic system witspins following
q g-1 a d-dimensional Ising long-range interaction potential

where p; are the probabilities associated with the micro-Ham"toman'
scopic configurations, and/ is their total number. The value J
of q is a measure of the nonextensivity of the system; —Z (7) aioj, 2
g=1 corresponds to the standard, extensive, BG statistics. LT

Indeed, USingJi(q_fl)~1+(q—1)|npi in the limit g—1, we  whereJ is the exchange coupling constadt{0), r;; is the
immediately verify that distance between the spinsand j, o; assumes the values
+1, ande is the range of interaction @a<). The inter-

w
S __kE | nal energy per spin of the system is calculated integrating
1= K2 Pilnp; . Eq. (2) over the volum&
d— —ald
According to Tsallis conjectures, depending on the range E JN”‘” ' dr= 1 N -1 @)
of interactions and on the range of memory effects present in N J1 re d 1-a/d ’

the system, the BG formalism may or may not fail. Usually, o
the range of interactions and memory effects are of the shorthus for large systems the energy per spin is given by

range type and the BG formalism is fully applied. For in- cte, w/d>1

stance, models usually haveearest-neighborinteractions E
and their dynamic transition probabilities are of the Markov —oy InN, a/d=1;. 4)
type; i.e., takeonly the previous state of the system in the N NLI-ed  4/d<1

computation. Before discussing the unusual case, it is impor-
tant to note that in the scope of Tsallis statistics the order ifDne easily observes that in the thermodynamic limit
which the limits in size ) and in time ¢) are taken, i.e., (N—x) the energy per spin does not converge in the range
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FIG. 1. Magnetization curves in the function of the magnetic
field for a system size of 3232 ((I), 48x48 (A), and 64x64
(x) spins for the usual dipole-dipole interactiore€3) at
T=0.3.

O0<al/d<1. Nevertheless, defining\*= (NX-*/d—1)/

(1— a/d) the convergence can be recovered normalizing the
energy per spin also bi)*, i.e., E/NN*. For a/d=1, N*
«InN. Therefore, other thermodynamic variables of the en-
ergy type €,F,G...) scale withNN*. In order to extend
this reasoning to other thermodynamic quantities, one takes

the Gibbs free energy expressed in thermodynamic variables T 0 30 o o 100

e
=
E

(b)

with their conjugates and normaliZdsy NN*
G Y TS HAM PV (5) FIG. 2. M izati in the function of th i
_——— — — — — —  — — . 2. agnetization curves in the function of the magnetic
* * * * *
NN NN N* N N* N N*N field atT=0.3 fora=2 (a) anda=1 (b) (symbols as in Fig. 1
After rearranging the preview equation in a convenient way,
it suggests that extensive quantities suclsa4,V ... scale We have simulated magnetization curves for lattice sizes

with N, and intensive quantities in BG statistics such asof L XL spins withL =32,48, and 64, for different ranges of
T,H,p... scale in Tsallis statistics witN*. Hence, for ~the long-range interaction between 1 and 4 through the
0<al/d=<1 the equation of state in magnetic systems wouldVlonte Carlo method. We have used semiopen boundary con-
be M/N=m(T* ,H*) with T*= T/N* andH*= H/N*. In- ditions, that is, periodic for exchange interactions, and open
deed, sincdN* is a constant for/d>1, we can always use for dipole-dipole interactions. This boundary condition pro-
the equation of state in this new form, i.e., for the entireduces the same results as obtained by the Ewald summation
range ofa/d. technigue, however in a much reduced computing tifoe
Now, let us consider a system in a two-dimensionalfurther details, see Ref. 10The magnetization curves were
(d=2) square lattice taking a modified Ising Hamiltonian, ©btained at fixed temperature, starting from a saturation mag-
netic field. Thereafter, the field is decreased down to a nega-
g0 tive saturation value passing through zero; at each magnetic-
H=- 2 0i01+0-5z rT_HZ T, (6)  field value the number of Monte Carlo steps is large enough
(D M ' to ensure the system reaches the equilibrium. In the model,
whereo; assumes the values1 on a site i. The first sum- the equilibrium is stated in the sense, \im.lim,_ ., i.e.,
mation represents the exchange interaction acting upon nedhe magnetization attains a stationary value at long times,
est neighboronly, whereas the long-range interaction, rep-and afterwards we analyze the influence of the system size.
resented by the second term, is summed alempairs of We show in Fig. 1 the magnetization per spin for lattice
neighbors. The Hamiltonian was normalized byand the sizes of 3X32,48<48 and 64«64 in the dipolar case
magnetic moment is fixed as 1. Fow=3, the long-range (a=3), i.e.,a/d>1, at a temperature well below the critical
interaction corresponds to the usual dipole-dipole interactiontemperature. Note that these sizes are large enough to pre-
The only parameter of the model is the range of interactionyent any finite-size effect which may arise from the simula-
characterized by the constaat. The last term denotes the tion. We observe a superposition of al(H,T) curves as is
interaction between the spins and an external magnetic fielexpected in the BG statistics.
(H). The exchange and the long-range interactions favor the Now, changing the range of interaction =2, i.e.,
spins alignment parallel and antiparallel, respectively, andv/d=1, a surprising effect emerges from tim¢H,T) curves
with a prefactor 0.5 in the long-range interaction the systenas shown in Fig. @); the magnetization at a field lower than
is a ferromagnet with stripe domains pointing up and doéfvn. the saturation one decreases for larger system sizes, disap-



FIG. 3. Magnetization curves in the function of the variable

H* atT*=0.3 fora=2 (@) (T5=2.08,T,=2.32, andT, =2.49)
anda=1 (b) (T;=18.6,T,=28.2, andT, =37.8) (symbols as in
Fig. 1.

pearing the superposition of the(H,T) curves as in the
previous cased =3, see Fig. L Shown in Fig. 2b) is the
same picture, now fore=1, i.e., /d<1l. As discussed
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FIG. 4. Magnetization curves in the function of the variable
1.04 o=1 gman H* at T*=0.3 for values of « below and abovea/d=1
R B (¢=1,15,2,3, and 4)To(a=1), To(a=1) andT,(a=1) same
0.5 = as Fig. 3b); To(a=1.5)=5.58, Tr(a=15)=7.11 and
A T.(@a=1.5)=8.4; To(a=2), To(a=2), andT,(a=2) same as
& 00 . g Fig. 3@); Tg(a=3)=0.49, Tpo(«=3)=0.51, and T*(a=3).
[ o =0.52; To(a=4)=Tr(a=4)=T,(a=4)=0.29 (symbols as in
El o Fig. 1.
-0.54 ~
L (b) N A
o P for increasing values of. The insensitivity toa in the first
101 me® regime (@/d<1), was also observed in molecular dynamics
3 M . ' > simulations using generalized Lennard-Jones potertfits.
e deed, this behavior is nothing else but a signature of the

nonextensivity behavior which emerges from the long-range
interactions.

In order to characterize the crossover from the nonexten-
sive to the extensive behavior we show in Fig. 5 the suscep-
tibility [x=0m(H* ,T*)/oH*)y+ o] at T*=0.3, i.e., the
slope ofm(H*,T*) curves at zero field, for different val-
ues. We observe that the crossover occurs for2
(a/d=1), above which the susceptibility increases continu-
ously without discontinuity on its first derivative relative to

above, this is a consequence of the nonextensivity whicle- The same behavior has been observed in particles subject
arises from the long-range interactions in the rangdo long-range Lennard-Jones-like potentidis.

al/d<1, andH andT are no longer intensive quantities. We
present in Figs. @ and 3b) the m(H*,T*) curves for
a=2 anda=1, respectively, now as a function bf* and
T*. One observes that the scaling of bathH* , T*) curves

for different system sizes is recovered. It suggests that the

equation of state would be better expressemh@d*, T*) for
the entire range ofr (0<a/d<), i.e., for long-range and

short-range interactions. At this point it is important to
clarify that the real temperature of the system is the tempera-

ture of the thermal batfi, and the real applied magnetic field
on the system i$l. Nevertheless, the variablds andH*

are suitable to recover the same formalism used in BG sta-

tistics.

An interesting picture emerges plotting tihe(H* ,T*)
curves together below and above=2 (a/d=1). Besides
the fact thatm(H* , T*) is size independent fae/d<1, i.e.,

scale independently of the system size, the same scale occurs

independently of a«/d. As a consequence, all the
m(H*,T*) curves collapséndependently of size and of the

Summarizing, we have presented a simple model which
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FIG. 5. Susceptibilityy(«) taken at low fields afT™* =0.3 for

ald ratio, as it is shown in Fig. 4. On the other hand, for 1<a=<4. The values of 5(a), To(a), andT,(a) are the same as

a>2 the slope ofm(H*,T*) curves at low field increases

Fig. 4. The full line is a guide to the eyes.



5614 BRIEF REPORTS 55

shows a weak violation of the BG statistics, i.e., the nonexhavior of systems which weakly violate the BG statistics.

tensive behavior of the thermodynamics variab(&s in- _ _ )
stance, E,F,G,S, etc) in the BG statistics framework We wish to thank Professor Constantino Tsallis for very
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