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Microscopic derivation of the Ginzburg-Landau equations for ad-wave superconductor
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The Ginzburg-LandayGL) equations for &,2_,2 superconductor are derived within the context of two
microscopic lattice models used to describe the cuprates: the extended Hubbard model and the
antiferromagnetic—van Hove model. Both models have pairing on nearest-neighbor links, consistent with
theories ford-wave superconductivity mediated by spin fluctuations. Analytical results obtained for the ex-
tended Hubbard model at low electron densities and weak coupling are compared to results reported previously
for a d-wave superconductor in the continuum. The variations of the coefficients in the GL equations with
carrier density, temperature, and coupling constants are calculated numerically for both models. The relative
importance of anisotropic higher-order terms in the GL free energy is investigated, and the implications for
experimental observations of the vortex lattice are consid¢g8@l63-182@07)00901-9

[. INTRODUCTION higher-orderd-wave gradients in the GL free energy can
give rise to a fourfold-symmetric current distribution around
There is mounting experimental evidence to suggest tha vortex even in the absence of an indusegdave compo-
the high-temperature cuprate superconductors have an ordeent. One of the objectives of the present work is the clari-
parameter with unconventional symmety/Indeed, recent fication of this issue. Indeed, we find that the contributions to
Josephson interference measurenieats strongly indica-  anisotropy of a fourth-order gradient term and thevave
tive of an order parameter witth> > (d-wave) symmetry!  component are comparable and tend to compete.
which has line nodes alonés,|=|k,|. The linear density of While phenomenological GL theory has been highly suc-
states associated with the resulting low-energy excitations isessful in predicting many interesting propertiesdefvave
though® to account for the linear temperature dependence ofuperconductors in external fields, the relative magnitudes of
the specific hedias well as the linear temperatfi@nd mag-  the various coefficients appearing in the free energy and their
netic fiel# dependence of the penetration depth found fordependence on temperature, filling, and field are presently
YBa,Cu;07_; (YBCO) and Bi,Sr,CaCu,0, (BSCCO. unknown. An earlier derivatidfi of the free energy from a
A number of experimental resultsare consistent only continuum model could not include lattice effects that are
with an order parameter of combinedwave andd-wave  believed to be important in theories dfwave superconduc-
symmetry. Sigrist and Ri¢8 have shown that in weakly tivity. Consequently, as will be discussed later, certain tech-
orthorhombic cuprategsuch as BSCCO or YBCa small  nical difficulties arose which would not have appeared in the
s-wave component would be present in addition to a criticalcontinuum limit of an appropriate lattice model. In any case,
d-wave order parameter. In tetragonal systémgh as the it would be useful to derive the GL free energy using models
thallium compoundsthat favor d-wave superconductivity, relevant to the higfi-. oxides. In the present work, the GL
however, ans-wave component can only be nucleated lo-equations are derived microscopically within the context
cally near inhomogeneitiés such as domain walls, of two such models: the extended Hubbard and
impurities?? or vortices'®> '®Indeed, Soininert al'®inves-  antiferromagnetic—van Hove models.
tigated the structure of an isolated vortex fodavave su- The extended HubbardgEH) model, which includes a
perconductor within Bogoliubov—de Gennes theory andhearest-neighbor attraction in addition to the usual on-site
found that a nonzerg-wave component is induced in the repulsion, is one of the simplest lattice models which allows
vortex core. Their results, interpreted within the context offor a d-wave superconducting instability. Pairing occurs
the relevant phenomenological Ginzburg-Land&lk) free  along nearest-neighbor links, appropriate for theories where
energy'’ imply a nontrivial topological structure for the ad- d-wave superconductivity is mediated by antiferromagnetic
ditional s-wave component: As a consequence, the super- fluctuations(see Ref. 2 and references thejeilt has been
current and magnetic field distributions for an isolated vortexemployed in several analyticdland numericaf?**inves-
nearH.; exhibit a fourfold anisotropy in proportion to the tigations ofd-wave superconductivity. The EH model has
magnitude of thes-wave componenf In addition, the recently been showtf, however, to favod-wave supercon-
vortex-lattice structure nedt., deviates significantly from ductivity only in a very small parameter space, preferring a
the usual triangular Abrikosov lattice, becoming increasinglyphase separated or spin-density-wave state.
oblique with increasing-wave admixturg*!® The antiferromagnetic—van Hov&vH) modef® strongly
It remains uncertain, however, whether the anisotropy irfavorsd-wave superconductivity while incorporating the co-
the structures of an isolated vortex and the vortex lattice i®xisting antiferromagnetic correlations observed in NfR,
indeed predominantly due to the admixture of sswave  neutron scattering and angle-resolved photoemission
component. Ichiokat al!® have shown that the inclusion of spectroscopd (ARPES experiments. High transition tem-
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peratures are obtained in the model due to the presence of\g; imply on-site repulsion and nearest-neighbor attraction,
van Hove singularity in the hole density of states near th@espectively. The superconducting carriers in the AvH model
Fermi energy. An extended, flat band neaf2,7/2) in mo-  are holes propagating through the antiferromagnetic back-
mentum space is consistent with numerical investigations oground of the undoped “parent” state. Second- and third-
a single hole propagating through an antiferromagneti®€arest-neighbor hopping parameters are, respectively,
background’ and with experimental eviden@&ln the AvH  t11=0.041 25 eV and=0.02175 e\?* The absence of
model, holes are constrained to move within a single sublatdearest-neighbor hopping in the AvH model reflects the re-
tice of a uniform antiferromagnetic background in order toStricted Hilbert space of the carriers; holes are constrained to

minimize frustration. The hopping parameters are chosen tg'oV€ Within a single spin sublattice in order to minimize

best fit the quasiparticle dispersion for YBCO measured usirustration and preserve antiferromagn{-ztic correlation_s. The
ing ARPES?® values oft,; andt,y are chosen to result in a large density of

In Sec. II, the Ginzburg-Landau equations for the gapstates near the bottom of the hole band, located at

. . . . 12,7/2) in momentum space. The coefficient of the
functions and supercurrent are derived microscopically for(Tr OV . - _
both the EH and AVH lattice models using a finite- nearest-neighbor attractiofi=0.075 eV is chosen to yield a

temperature Green function method. The relations definin d-wave transition temperatur 100 K at optimal doping

the transition temperatures are investigated in Sec. Ill. It i rﬁL:hi_gg??(S)x?(\j/egzz hole densityn)~0.2), consistent with
c :

found that only ad-wave transition is favored for the AvH If the lattice sites andj are nearest neighbors, we can
model; thed-wave transition temperatuig;~100 K is con-  \yrite the mean-field EH Hamiltonian

sistent with the high-temperatuthigh-T;) oxides. The EH
model, in contrast, can have either arwave or d-wave
instability. Heres wave is favored at low electron densities
while d wave is favored either at high densities or at lower
densities with strong on-site repulsion. The equations for
T, (the s-wave transition temperatyrand T, are found ana-
lytically in the limit of weak coupling and low electron den-
sities. The corresponding analytical solutions for the AvH
model are difficult to obtain due to the complicated angular
dependence of the AvH dispersion. The GL free energy is .
derived for both models in Sec. IV. The coefficients of the —A5(r)c(r)c (r+6)+H.cl, 2.3
GL equations are found analytically for the EH model in the

HER(B)=—t > cl(r+d)ch(ne®s—u> cl(rc,(r)
r,d,o ro
+2r [A%(r)c (rey(r)+H.c]

1 N
— 5% [A%(r)c (r)c (r+6)

where
same limit described above. The coefficients are calculated
numerically for the EH model and for the AvH model near _2m (r+5
optimal doping. In Sec. V, we summarize our results and ¢5_¢TO ; A-dl (2.4
discuss the experimental implications of the GL equations
we have derived. and 6= £X, *y (the lattice constant is taken to be unity for
convenience The “on-site” and nearest-neighbor gap func-
II. LATTICE GL EQUATIONS tions are defined as follows:
The Hamiltonians for the extended HubbaiEH) and Ao(r)=Vo(e,(r)e;(r)), 2.9
antiferromagnetic—van Hové€AvH) models are, respec- 2 2
tvely g ¢AVH) P As(N=VAC (e (r+8))=—Vc,(rc,(r+5)),
: (2.6
2 (i assuming the existence of pairing in only the spin-singlet
HE= 4(% CiToCJTUeXF{ [ %f] A'C“) —Miz(r Nig channel, in accordance with experimental results for the cu-

prate superconducto? The mean-field Hamiltonian for the
1 AvH model is written as
+V02 niTnil_§<“>2 Vijnio.njgr, (21)
ijyoo’ N -

HEM(B) =ty 2 cl(r+8ic,(re’o
277 i r,011,0
HAR=t,, > cﬁgcfaex;{i—f A-dl) "

(e boJj i o
+la0 D CH(r+8,0C,(r)e 0

27 (i
ttyy X ci’rgc;roex;{i—J Adl|—u>D ni, 1,850,
((inne b0 Jj T
v —u> ch(r)e,(r)
_E Z ni(,nj(,./, (22) ro

(ijyoa’

wheren;,=c/ ¢!, A is the vector potential associated with

lo?
the external magnetic fieldpo=hc/e is the flux quantum,
andy is the chemical potential included to fix the density. In

the EH model the carriers are electrons, and posifyend 2.7

1 N
- E% [A%(r)c () (r+8)+H.cl],
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wherer=mt,+nf,, such thatr ;=x+Yy andr,=x—y are 1, = = .
primitive vectors of a single sublattice, and each lattice sitey,~A%(r)=— > GO, — ) A* ("G o(r" r+ a,wp)
has the two-point basis ,0X. Then, &;,=*f;,*5, ¢ F+n

8=+ (F1+7,), +(f1—T,), and 6= +X,+y. Throughout

the remainder of this section calculations will be presented + D GO —w) A (1)

within the context of the EH model. Comparison of the

1,1,y 00
above Hamiltonians indicates that analogous results for the v
AvH model can be obtained at any stage by eliminating the -0 ~0
on-site gap function, reversing the sign of the kinetic term XGE(r",ry,0n)A(r)G “(ra,ry, — wy)
(keeping in mind the holes hop along second- and third-
neighbor links, and settingv s=V/2. XA*(r)G O(r ) F+ @, 0;) 2.12
The Gorkov equations can then be derived in the stan- ’ B
1
dard manne?: where
~ ~ * _AK _ * i
g(r,r/'wn):g O(r’r!,wn)+2 gO(r’r//,wn) A (X)_AO(X) 25 A(S(X)Pé(x)! (213)
r//

anda=0, =X, or 7.
% Ao(r")—z As(r")Ps(r") In the strong type-Il limit, appropriate for the high-
5 oxides, the penetration dept(T) exceeds the coherence
length £(T) and all other length scales. The single-particle

X FHr e o), (2.9 ;Br:ﬁen function is then approximately translationally invari-
~ =0 ' 0 ’ 2m (v
Flrro)=—2 Go%"r —w,) GAnr o) =gir=rioyexp —i-- | A-dl
rH
mgo(r—r"wn)

X[ A5 () =2 AF(MPATT)
o

2T
X ex |¢TA(r)~(r—r’) , (2.19
XG(r",r' wp), (2.9 0
whereG%(r—r',w,,) is the normal-state lattice Green func-

where |5,;(r)X(r)EX(r+ 3) is the kinetic energy operator, tion in the absence of an exteral field,

G and F T are finite-temperature single-particle and anoma-

lous Green functions, respectively, agP is the normal- Plx,0 ):2 Chl 2.15
state Green function in the presence of the external field. The TV iwn— & ’
Matsubara frequencies asg,=7T(2n+1). The anomalous
Green function” " is related to the gap functions and the sum is over wave vectors in the first Brillouin zone.
The dispersion relations for the EH and AvH models are,
respectively,
=TV, Fl(rre,), (2.10
on &M= —2t(cosk+ cosk,) — u, (2.16
A= 2t,1(cosky + coky) + 4t,0c0k, CoOK, —
()=TVs>, Flrr+dw,). (2.11) (2.17
@n

wherek; andk, are reciprocal vectors of a given sublattice.

Assuming the gap functions vary slowly compared with the
Arbitrarily close to the superconducting critical temperaturecharacteristic length scalk- of the single-particle Green
T., the ratiosA,/T.<1 or identically zero =0,5). Iter-  function (2.15, Eq. (2.12 can be expanded up to fourth
ating Eqgs.(2.8) and (2.9 up to third order in the gap func- order in lattice derivatives. The justification for keeping
tions, and making use of the conditiof’&s10 and(2.11), the  higher-order gradient terms will be addressed in Sec. V. The
self-consistent equations for the gap functions are immediGL equations for the gap functions in the EH model can then
ately obtained: be written as
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A*(r)=—TV, > 2 (—1)® Z GO(mx+ny, — w,)P(MX+ny+a’ —a wn)exr<—|—A(r) a')

oy o

X{1— e (XI1,)% = eg (Y1) — e H(XIL)* — ey H(YIT, ) — ey LX) (Y1) 2} AT (1)

e aex —i (27 ¢o)A(r) - a]

TV, 7 [186(1) 245 (1) =21 80(r)[ZM () +2IM(1) 245 (1)~ A* (1) M* (1)
+Ao(NM2(r)=|M(1)|2M(r)}, (2.18
where
R 4
i(ZHz)Az(r)EeXF{i?Az(r))Az(r)_Az(r) (2.19
0
. 4
~ (ZAZ)'H_AZ(I')}AZ("): (2.20
bo

with the forward difference operator defined by

(EAZ)A,Z(F)EA,Z(I'-FE)—A,Z(I’)ZAZ(I')—A,Z(Y) (2-21)

and

M= 2 A% (me* 5ex;{|—A (r)- 5’) (2.22

8 =+X+y

The coefficients of the gradient terms have been defined in the Appendix for clarity. Note that all gap functions are taken at
the same point in the last term of Eq(2.18); this condition will be relaxed in Sec. V. The gradient terms with odd powers
of XII, and/or§/Hy vanish for tetragonal systems. The GL equations for the gap functions in the AvH model are given by

- S 2 . o
A%(r) =—2 2 > (Mt +nts, — w,)G(MTy+niy+ 6’—5,wn)ex;< i—A(r)-(6—95")

w, 5 mn d’O
X{1- T (XIT) %= e (YT1,)%— €5 (XTL)* = €57 (YT1,)* — ey 3 (XIT,) (T, 2FAT, ()
TV < €X%exg —i(27/ ¢g)A(r)- 8]
—— M(r)|2M(r), 2.2
> (W21 £ IM(n)[M(r) (2.23
where we have used
(FlHrl)E(g(Hx)(g/Hy)"—(g(Hx)"—(g/Hy)a (224)
(T2l )= — (XIL) (YITy) + (XIT,) — (Y1), (2.29
and the coefficientg are given in the Appendix.
The current operator for the EH model is
BH(r) =it de'¢sct(r+d)c,(r)
8,0
=—2tTE I5(r")G(r,r" s op) | =, AT f(r) ex;{|—A(r) 5)f(r+5)—f( r) (2.26
S,wp
R - - . 2
—>—2t[H’*(r)+H’(r’)]TE grr’, o=, I'(r)=—ivV+ ?A(r), (2.27
wp 0

where Eq.(2.27) represents the continuum limit of the lattice current. Iterating Eg8) and (2.9) to second order in gap
functions and making the same approximations employed abovd2E®) becomes
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(= 2tT2 ex |—A(r) (ap—ay) | (= D)ol(=1)l2 GO =R, 0,)G(Ry— Ry — g, — w,) A

al 0‘2
Ry R,

X{AL,(NIM(XIL)* +n(YILy)*JA ., (1) + A, (NIM' (XL +n' (YI1,) JAZ (1)},

whereR;=mX+ny andR,=m’X+n’y. A similar expres-
sion for the AvH model can be obtained by setting
t—— tll! t20 W|th 3—> 311,520 and Rlzm?‘l-i- n?z,
R,=m’'r;+n’f,, and making the replacements
(XHX)_’(XHX)+(yHy) and @Hy)_’(xnx)_(yny)-
The various integrals and sums appearing
Ginzburg-Landau equations for the gaps functi¢h48 and
(2.23, and the currenf2.28 can, in general, be determined
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5(R2)G(Ro+ ay,wp)

in the

only numerically. There is, however, one case which is ana-

lytically tractable: the EH model at low electron densities
and weak to intermediate coupling. Fovs=0 and
Vo— — Vg, this limit would correspond to ordinary BCS
theory.

Ill. DETERMINATION OF T,

At temperatures sufficiently nedr., we can linearize the
gap equation$2.18 and(2.23. Making use of the definition
of the normal-state Green functigd.15, we obtain for the
EH model

23 A% (1) —AF(r)

* =
SN=TVe2 — . (D)
TV« ad2alg(r)—Ag5(r)]
* = —
AS(N=— P = . (32
bEA% ()
*
(NH=TV, >, —— (3.9
d 1“’nv n+§k
where a,=cok,+cok, and by=cok,—cok,. The

(2.28
|
1 2T
AgN=7 eXP(-I(TOAx(r))Ax(r)
rox 127 A0
ex l¢0 K1) [A_x(r)
2
—ex;{—l(?oAy(r)>Ay(r)
2
—ex;<|%Ay(r)>Ay(r) . (3.5

The equations that determine th@vave andd-wave tran-
sition temperature$ and T4 are immediately

[Vila(T9—2][Volo( T +2]=VoVal X(Ty), (3.6
(T _2 (3.7
a( d)—vl, .
where
RS WS
In(TS)=; gktanr(ZTs), n=0,1,2, (3.9
b_ fk)
I3(Tg)= 2 t "(ZTd (3.9

It is clear from Eq.(3.6) that if V;=0, nos-wave supercon-
ducting instability can occur for positive temperature.
The corresponding equations for the AvH model are

&k

o

2T

1+ cok,cok,+cok; + cosk2+

3 Lan)‘(

V
3>

s-wave andd-wave gap functions are related to the bond gap

functions through the gauge-invariant definitiths

2
[{ —I %Ax(r))Ax(r)
2T
+exy{|%Ax(r))A_x(r)

¢ y(r)) Ay(r)

2
+exp<|¢—0Ay(r))A_y(r) ,

1
As(r)EZ ex

+ex

(3.9

(3.10
€k

_>_

2T4
(3.11)

While these equations are not analytically tractable, they
have been shown numericafyto strongly favor ad-wave
transition temperature for all relevant hole concentrations.
Optimal doping at approximately 25% fillingn the hole
representation, whek@,,) is calculated af.) yields a value
of T4~100 K.

In order to analytically solve the sunmig_s Egs. (3.9
and (3.9, we make the standard transformation to an inte-
gration over energies, making use of the single-particle den-
sity of stategDOS):

1+ cok cok,—
&k

cok; — cok, I‘(
tan
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To~— 20 ) 21|+ 22 14 BN
1(T)~— 5 Nttty (1),
(3.19
8u? [T*\ 4(D*-3u?)
3 12(Ts)~ 45z N |H(T—S +——/pz N
2 5 “
= + 52| ~4uD+6u2In 5| ~5u%+D2|N(1),
(3.195
0.0 ‘ ‘ , where
-1.0 -0.5 0.0 05 1.0
& (D) M
N’=N(0)—N(21)In —’ (3.19
FIG. 1. The density of statd$(e) for tight-binding electrons on D
the square lattice is shown as the solid curve. The energy scale is
the half-bandwidttD = 4t. The best fit, the dashed line, is found to and
be N(g)=0.31D +(0.19D)In|D/e].
2e7{D?— u?
D = R (317
N(O)+N(1)In;, if |e|]<D, m
N(e)=2, d(e—¢g)~ .
(€) ; (e=ew) 0, otherwise, For all terms proportional tdN(1), we assume thal <D
(weak coupling, so that
(3.12
where D=4t is the half-bandwidth and:, =&+ u. The e—p -1, e<u,
DOS is approximated by a constant plus a term reflecting the tan 5 =141, e>u. (3.18
van Hove singularity at half-filling £=0), as is shown in T ’

Fig. 1. The best fit is obtained wheX(0)=0.31D (the

DOS for free electrons in two dimensions is7D) and

N(1)=0.19D [note that the DOS at half-filling is
approximately® (2/w?D)In|D/e|]. Using the relation
a=—2(¢+w)/D, the sumd_, can be solved to yield

Note that in this lattice model, all interactions are instanta-
neous and therefore the bandwidth is the only possible en-
ergy cutoff. Sinceb, cannot be written exactly in terms of

&, some simplifying assumption must be made in order to

*

o (T 2D
lo(Ts)~2N'In T—S)—TN(l),

evaluate I;. At low densities (the continuum limit of
the lattice model ¢&~tk?>-~D—u and thus by

G193 L scosH(¢+D +p)/D. Then,

I5(Tg)~ (e

2
+ —(D?—4uD—3u?)N(0)

4 +D)2N,I T*

D? D

+2 P +D)%+ u(3p+4D)l
FT(/J« )+ u(3u )In

D2—8uD—5u?

+
2

o
D (3.19

}N(l).

The equation for the-wave transition temperatufg; resulting from the application of Eq3.6) is, for V,=0,

T=T* exp(

The corresponding equation for thewave transition temperatufgy from Eq. (3.7) is

(3.20

—D2-V,[6u?N’—2D2N(0)— (D?-4uD—5u?)N(1)]
4u?VN’ '

(3.29

—D2-V [ (4D +3u)N'—D2N(0) + (1/2u) (4D3+7D%u+ 12D u?+ 5u3)N(1)] ]

—T*
Ta=T eXp[ 2(n+ D)2V N’
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FIG. 3. The transition temperatur&s are given as functions of

FIG. 2. The transition temperatur&g are given as functions of

chemical potentialu for nearest-neighbor attractiod;=t and  chemical potentiak for V;=3t. The solid lines correspond to the

V,=0. The results fofT and T, are given by solid and dashed numerical evaluation of s for on-site repulsiov,=0, 2.8, 3.8,

lines, respectively. The analytical resullighter line9 are found to ~ and~o; linewidth decreases with increas¥g. The d-wave tran-

compare well with the numerical resulidarker lineg in the appli-  Sition temperaturely (dashed lingsis unaffected by changes in

cable low-density regime. V. Note that the analyticallighter dashed lineand numerical
(darker dashed lingesults forT still agree closely at low densities

in this intermediate-coupling regime. The correspondence between

The transition temperatures for the casgs=t andV,=3t _ _
are shown as functions of chemical potential in Figs. 2 and 3the numerical and analytical results By (not shown continues for

respectively. Near the bottom of the tight-binding bandlntermedlate coupling but is found to improve with increasggor

(u~—D), ans-wave transition is strongly favored for any decreaseds.

Vo andV, whereas al-wave transition is favored near half- . oa5 function. Thus, the subcritical transition tempera-
filing (#~0). The value of the chemical potential at which 4, .o ‘\yhich is of dubious relevance in any case, can be taken
the preferred symmetry of the dominant gap funcuont0 be identically zero without loss of generality.

changes is extremely sensitive to the strengths of the respec-
tive interactions. As the on-site repulsion is increased, the
magnitude ofT is suppressed whil&, is unaffected® As a
result,d-wave superconductivity is favored for virtually all

densities for sufficiently larg¥,. It should be noted that the
magmtude of the subcntlcal transmon temperature associ- fEor sufficiently large systems the lattice sums |n Eq.

decreased due to the presence of the dominant gap functiopurth-order derivatives and making use of the expressions
The relevant equation for the subcritical transition temperafor the s-wave, Eq.(3.4), andd-wave, Eq.(3.5), gap func-
ture, one of Eqs(3.1)—(3.3), should haveé, replaced by tions as well as the normal-state Green functi@ri5), the

VEE+ (APO™M?Z whereAPM is the magnitude of the domi- following three gap equations for the EH model are obtained

IV. CALCULATION OF THE GINZBURG-LANDAU
COEFFICIENTS

A. Extended Hubbard model

2
4Tv02 f(dk il _:2 (wz+55)2[16|s(r,k)|28*(r,k)+32|d(r,k)|23*(r.k)+16d*2(r,k)s(r,k)]
2k/ ei(k+k’)~z
f f(Z'n')Z Cio—t) (e gk)(co§0H§+sin20H§)[s*(r,k)+d*(r,k)] 4.1
(4.2

. ok
AX=2TV,>, f Wak{as abovg,

_ r 24* 24* * 2
_2TV12 J'(Z 2 by wﬁ+§§ (wﬁ+§&)2Ll6|d(r,k)| d* (r,k)+32s(r,k)|“d* (r,k)+16s* *(r,k)d(r,k)]

el (k+k')-z

J J d?k’
(2m)% (—iwp= &) (iwn— &)

d2k [d*(r,k)

(coSOIIZ+sirPgIIZ)[ s* (r,k) +d* (r,k)] 4.3
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wheres(r,k)=(a,/2)Ag(r)— 3 Ag(r), d(r,k)=(by/2)A4(r), @ is the angle betweenandz (=mx+ny), and the continuum
limit of Eq. (2.19,

I,= i +— am 4.4
acts only on the center-of-mass coordinateEquations(4.1)—(4.3) can be simplified by making use of the fact that
Ag(r)=e€eA4(r), wheree depends on temperature and chemical potential. This relation follows from the observation that Egs.
(4.1) and(4.2) are not linearly independent, sindg(r) andA¢(r) have the same symmetry. NeBg the magnitude of the
s-wave component is small; from E¢B.1) we infer e~V,l/(1+V,lo/2), wherely andl; are defined in Eq(3.8) and are
evaluated in the weak-coupling and low-density limit in E(&13 and (3.14). The integrals involving gradients of the gap
functions can be greatly simplified by means of the identity

f d?z Gz, ~ ) GOz + @, wp) = (gz)ze oy, GOk 002, (4.9
and similarly for integrals involving/?. Thus,
1o )a10-TUS [ g il st - g a0t i+ saiBiiadn Pt
+4a,b2A%2(r)Ag(r)+ D2(5|n2k 117+ sirPk, [15)[ 2a, A% (1) + by A% (r)]”, (4.6)
0TS [ oy o ol 030~ ot | el 1)+ 8ag A 1)
(@m? wh+é P
+4a;2bkA;Z(r)Ad(r)+g—z(sinzkxni+sinZkyH@[zal;A;(r)JrbkAg(r)]H, (4.7)

wherea,=(ay/2)—(e/4).
The appropriate free energy fordawave (or extendeds-wave superconductor on a tetragonal lattic& is
Fo=Fn+ag Ag(N)[>+ agl Ag(r) 2+ Bl Ag(n)|*+ B2 Ag()|*+ B3| As(N)[2Ag(r)[2+ BLAE (r)2AZ(r) + A% (r)2A5(r)]
- - h?
+ ¥ TTAL(N) [P+ g A (1) 2+ 7 AT AN T* [Ty A (1) ] = [TLAL) T* [T A (1) ]+ c.c} + Fi+Fi+ g (49

where higher-order terms
- 3 2 32 2 2_ 172 2
FI= s As(NTIAL(r)|?+ s [TI2A4(r)] +757|(Hy_Hx)As(r)| ) (4.9

F8= 7al Aa(DTIAG(N)]2+ yg [TI2A (1) ]2+ yg- [(TTZ—TI12) Ay(r)|? (4.10

will be discussed in detail in Sec. V. In the present work, sheave andd-wave order parameters are, respectively, the gap
functionsA¢(r) andA4(r). The GL free energy4.8) implies that ars-wave ([d-wave component is induced whenever there
exist spatial variations of the dominadtwave (s-wave order parameter. The magnitude of the “subdominant” order
parameter is evidently proportional to the coefficigntof the mixed gradient term. Minimizing and comparing to E@s6)

and (4.7) immediately yields:

1 d’k  a.? d’%k b2
“S:v_1_4_v0_ E @2m? i+ gl M7 vl 2 f (2m)? w2+ & .17
d%k {32a.* 2by, 32a,%bZ, 8a,?b?}
B2,B3,Ba}=T J 4.1
(BLbB2BaBI=T2 | o5 WTE) (4.12
D d?k {4a}?,—2a;by b2}
{’}/S!’}/V”Yd}_ ?T f (2 )2°Inz ((1)§+ 55)2 . (413)

The current density in they plane can be obtained either by evaluating €528 in the continuum limit or by minimizing
the free energy4.8) with respect to the vector potential:
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4 - - R
j= 5%[7dA§(r)HAd(r)+ YA (DAL =Xy, [AX (NILA (1) + A% (NITLALT)]
Yy [AS (DT AG(r) + A% (NT,A(N)]+c.cl, (4.14

where the factoré= (layer thickness/layer spacings introduced in order to model the layered structure of the cuprate
superconductors. In the present two-dimensional modelQ, reflecting the inability of the system to sustain screening
currents. Equation§t.11)—(4.14) are subject to the following boundary conditions:

n-[yallAg(r)+ y,(J11,— XIT,) A{(r)]=0, (4.19

n-[yslTAL(r) +7,(YIT,—XIT,) A4(r)]=0, (4.16

wheren is the unit vector normal to the surface of the superconductor.
The coefficients of the GL free energy can be calculated analytically in the same low-density and weak-coupling limit
employed earlier by setting,~—2u/D, b,~—2(u+D)cos2/D, and sifk,~4(u+D)cog6/D. Making use of

d?k 1 7Z(3)N’
2 | G g e @47
we immediately obtain
1(u €\? T 1(u+D)\2 T
as——v—l B+Z (1—T—S), ad——v—l D 1—T—d y (418)
4 4 2 2 2 2
_ u €\*3[utb m e\fut+tD\“1/{uw €\ ut+D
1B1,B2:83.B44=47{| 5 7] 5l ,2(5+ Z) AR AR EE (4.19
2 2 2
_UE M€ M €\(utD)\ [u+D
s vt =7v7612l 5 2 ,—(5 Z)(T) D ] (4.20
|
where The GL coefficient44.18—(4.20 of the free energy4.9)
imply that at the bottom of the bangw.& — D) the d-wave
7Z(3)N’ component vanishes, yielding a puwevave superconductor,
YT T 2T o (42D while at half-filling (w=0) only thed-wave component re-

mains (with the caveat that these analytical results become
and v2=D?k2/4~D(u+D). From Egs.(3.13 and (3.14  decreasingly valid near half-filling At densities intermedi-

we obtain ate between these two extremes all the GL coefficients are
nonzero, leading to coexisting-wave ands-wave order
4u VoN'In(T*/T)— VN’ paramaters for any temperatufe<T. and finite external

=T VNI T A1 (4.22  magnetic field. For type-Il superconductors described by Eq.

(4.8) in fields just abovéd 4, it has been fourd®%that the
The expressions fows and ay are only valid near their re- subdominant order parameter is nucleated in the vicinity of a
spective critical temperatures. Since the subcritical transitiofnagnetic vortex core whenever the coefficient of the mixed-
temperature is much lower than the dominant transition temgradient termy, is nonzero. Moving in thex=y direction
perature, the corresponding coefficient for the subdominarffom the center of the vortex, the induced subdominant order
order parameter can be assumed approximataly fgr all parameter reaches a maximum, and then decreases algebra-
values of T<T, [i.e., the contribution of the appropriate in- ically; there exist extra nodes in tixe=0 ory=0 directions.
tegral in either of Eqs(4.11) will be negligible]. Note thatin ~ The maximum amplitude attained by the subdominant order
the limit V,=0, Vy— — Vo, A and A4 vanish; the relevant Parameter nucleated in the vortex core is givef’by
gap equation is therefore EGt.1) with s(r,k)=Ay(r) and

d(r,k)=0. Then Eq.(4.8) becomes the two-dimensional AA™ 3y, lagel _3(. T | v
continuum BCS GL free energy Ag(A)P™ 16 yys) asay 1617 Tas) Yas '
1 T 7Z(3)N(O0
FEoS= = o[ 1 | [ag(n) [+ L Too> e (429
Vo T, 167°T . ] ) )
, whereA® is the maximum value of the induced subdomi-
N 7Z(3)N(0) 2 Ay ()2 + h* 4.23 nants-wave order parameter compared with the magnitude
327272 VRS0 8 ' of the critical d-wave order parametes5"* far from the
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FIG. 4. The ratio of the mixed gradient coefficiepf to the FIG. 5. The relative magnitude of the maximwywave com-

ordinary gradient coefficient of the dominant order parametesr ponent induced in the vortex cosg,,/dpuk IS calculated numeri-
vq 1S given as a function of chemical potentjal The solid and cally and given as a function of hole density,) for temperatures
dashed lines correspond to numerical and analytical results, respe€=0.9T,. The dashed line, corresponding to results for the AvH
tively. The solid lines become progressively darker\gsis de- model, indicates that the inducsevave component is largest near
creased from Bto t in increments of; V, is taken to be zero. The optimal doping (n,)~20%). Results for the EH model are given
discontinuity reflects the transition from a@ravave tod-wave bulk  for comparison, where in the hole representatioR)=0 corre-
superconductor; the dashed line assumes that this occurs feponds tou=0; solid lines(in order of decreasing boldnessor-
pn=—1.6%. All values are determined at the appropridate respond toV,=t,2t,3t with Vy=0, while the dotted line is for
V,=3t,Vo=4t.
vortex core and vice versa. The estimaié4) are reliable
as long asA4(Ag)™*<A4(Ag)""%4, which is always the |arger even for weak coupling at intermediate densities, how-
case sufficiently neal.. Since Ay(A)""~\(1-T/T.), ever; not only is the gradient coefficient ratio enhanced, but
the above equations indicate that also the ratig agon/ @sup SinCe agyy—0 as the subdominant
superconducting instability is approachdgigure 5 in the
Af(Ag) ™~ (1-TIT)¥ (4.29  following section provides further quantitative details.
There are in general two characteristic length scdles
nd &4 governing spatial variations of the-wave and
d-wave order parameters in the vicinity of a vortex core,
respectively. NeafT., however, the induced subdominant
order parameter is negligible compared to the critical order

The subdominant order parameter must decay more rapidl
near the transition temperature since it is induced throug
spatial variations of the critical order parameter.

From Eq.(4.20, we have

v, |wu+Dels parameter by Eq4.25. Keeping only terms in the free en-
%’ TD’ Tg>Ts, (4.26  ergy (4.9 involving the dominant order parameter, the su-
Yd . perconducting coherence length§T) and penetration
vy, 1| u+D depthsh(T) nearT, can be crudely estimated:
= —‘ —‘ . TSTy. (4.27)
vs 2| u+Deld

Ys(d
The gradient coefficient ratiogl.26) and(4.27), which gov- Esa)(T)= V [ (d)|7 (4.28
ern the magnitude of the subdominant order, are compared (@
with the appropriate numerical results in Fig. 4 for the spe-
cial caseVy=0. The analytical results capture the essential \/ 2(253,31(2)
physics in their regime of applicability, i.e., at low densities Asia)(T)= 5(477)375(d>|as<d>|’
and weak to intermediate coupliriigetter quantitative agree-
ment at intermediate coupling can be obtained by i_n_cluding,\,here the flux quanturgh,=hc/e and both lengths are given
in a, by, etc., terms higher order ig). Near half-filing iy ynits of the lattice constarat. Inserting the relevant ana-
(zero filling), whered-wave (s-wave superconductivity is |ytical expressions from Eq¢4.18—(4.20), valid in the low-
most stable;y, /yq (77, /vs) grows with increased coupling. density, weak- to intermediate-coupling limit, we obtain
As a result, a significant component of the subdominant or-
v 7¢(3)VN’
ww(z FT) \/Zg( AL
T (1-T/Ty)
zero, the magnitude of thewave component is suppressed
for all densities; ad-wave subcomponent would be thereby

der parameter would only exist for stronger coupling in these
two density regimes. It should be kept in mind, however, that

enhanced in a bulk-wave superconductor. The magnitude fd(ﬂ”( UF ) \/ TEBVIN , (4.30
of the subdominant order parameter can be significantly 2mT 4(1-T/Tq)

(4.29

as the on-site repulsiody (and therefores) increases from
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mations employed in the microscopic calculation above are
not strictly valid; indeed, the numerical results clearly indi-
cate the existence of a nonvanishisigvave component for
T<T4 even in the absence of an on-site interactieee Fig.
4). For any other density(except u— —D, where the
d-wave component vanishest temperatures beloW;, both
A and Ay will be nonzero in the vortex core since both are
generated by the same nearest-neighbor pairing interaction
V. There is therefore no limit in which the present model
reduces to that of Reretal, i.e., where an isotropic
s-wave order parameter derived from a repulsive on-site in-
teraction is alone nucleated by spatial variations of a domi-
nantd-wave order parameter. The technical difficulty which
necessitated the implementation of the Pageroximation
in Ref. 19 was due to the indistinguishability &f andA4 in
the continuum. This problem can always be avoided by start-
FIG. 6. The numericald-wave Ginzburg-Landau coherence ing with a lattice model which gives rise tocawave order
length £4(T), measured in units of a lattice spacing, is shown forparameter, and then taking the appropriate continuum limit.
T=0.9T4 as a function of hole concentratign;,). The dashed line
corresponds to the AvH model while the solid lings order of

decreasing boldnessorrespond to the EH model for;=t,2t,3t
andV,=0. Neglecting fourth-order derivatives, the equations for the

gap functions in the thermodynamic limit of the AvH model

T \/T from Eq.(2.23 are
s 72 ovE(1—TITy)’

d?k CkA*(r)
>\T~\/ 3¢oVy 42 Ef [mfk
oM~ 4m35v2(1-TITy) (4.39

B. Antiferromagnetic—van Hove model

1

Note that the penetration depths are effectively infinite for an - m[cﬁlAs(r)PA;(r)
isolated layer. The magnitudes of the coherence lengths can n’ Sk
be estimated for parameters stabilizing eitleewave or
d-wave superconductivitydepending on the magnitude of
V). For example, withu=—-2.0t, T.~0.2 (V,~3t), and . )
T=0.9T,, we obtainés~6a and é~8a for d-wave and d2k’ gl(ktkh)-z
s-wave superconductors, respectively. The coherence lengths J J (2m)? (—iwp— &) (o= &)
tend to become progressively shorter with increased electron
density.(Figure 6 in the next section gives further details.

It is useful to compare the GL free energy.8) with that X [T12+sin20(IT;—T12) |[c A% (1) + e A% (D],
derived by Renet al!® Defining s=— (u/D+ €/4)A, and Y
d=[(x+D)/D]A4 (we drop reference to the center of mass
coordinater for convenience we obtain (4.33

T T
Fstn—(l——>|s|2—(1——)|d|2+4y{|s|4+§|d|4 L TV d?k | deAG(r)
T o N2 | | d

2
w,+
2 nfk

+2|s|?|d|?+ 3 *2d2+d*22)}+y {2|Hs|2

+2¢, i Ag(r)|2A% (1) + e d A S A1) Ag(r)]

1
_2—§2[dk|Ad(r)|2A (r)

- 4(wp+
+|Hd|2+[(1'[ys)*(Hyd)—(l'lxs)*(l'[xd)+c.c.]}
h? +20, i Ag(N[PAG (1) + o AT 2(r)Ag(r)]
+— (4.32
8
dzk/ |(k+k )-z
While the various coefficients appearing in the above free J J 22 (o) (lon—&)

energy appear to be similar to those found by Real., one
important distinction must be emphasized. The above free
energy(4.32 mixes ad-wave order parameter with agx- 32, o 2_ 2 *

tended swave order parameter. The analytical results sug- XL+ sin26(11 - )][ekA (N+dAd (],
gest that only near half-fillingg— 0) does the contribution

of A to s vanish. At these densities, however, the approxi- (4.39
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such that €= Sink;Sinks. (4.39

Cx=1+cok;cok,+cok; +cok,, (4.39
From these, and making use of Ed.5), we can immedi-
dy=1+cok;cok,—cok; —cokKs, (4.36 ately obtain the appropriate free ener@y8) where

1 1 d*k {c,dy &k
{as,ad}— v— Zf (277_)2 & tanl‘(ﬁ ) (4.38
T d?k {cZ,dZ, 4c,d,cd}
{B1,B2,B3,B4}= Egn f (2m)2 (2% &) , (4.39
d?k  SirPky(tyq+ 2t,00K,) 2+ SinPK,(ty,+ 2000k, )2
Yar=T f Cy,dy}, 4.4
{7s:vd % 2n)? (21 )2 {ck, dit (4.40
|
d2k (low T,Vq, large (ny),Vy), the EH model can allow for
y,=—-2T2, f (2m)2 Smax! Apu~ (20—30%. As the on-site repulsion is increased,
“n however, the induced-wave component is suppressed. The
€(t11+ 2tpoC0Ky ) (t11+ 2t5COK,) reduction in the magnitude of trewave component in the

(02t £2)2 (4.4)  “overdoped” AvH model may be partly due to effective

n’ Sk on-site repulsion, built into the Hamiltonian by constraining
Note thatB;=4p,, as was found for the EH modé#.32  holes to move within a single spin sublattice of an antiferro-
and in Ref. 19. This generic feature of the free enddg§ is ~ Magnetic background.
a direct consequence of the symmetry betweensthsve The GL d-wave coherence lengté(T), calculated nu-
and d-wave order parameters and the underlying bémd  merically with the aid of Eq(4.28), is shown as a function of
directionally dependehigap functions from which they are hole concentration folT=0.9T in Fig. 6. As expected,
derived. Due to the complicated angular dependence of th&(T) becomes shorter with decreasi(r,). For hole densi-
AvH dispersion(2.17), the above expressions above are notties up to 30% filling, the AvH model leads to
analytically tractable, however. At optimal hole doping é~a/\1—T/T4 wherea is a lattice spacing, in agreement
({Nhote = 1= {Neecron ~0.2), thed-wave transition tempera- with experiments for the cupraté$.The EH model yields
ture found using Eq(3.11) is ~100 K, and the coefficients similar d-wave coherence lengths foi, = 2t,3t. These short
of the GL free energy have been evaluated numerically: &g strictly violate the initial GL condition that the gap func-
tions be more slowly varying than the Fermi wavelength
kg 1~1a-2a, the characteristic length scale of the fermionic
excitations. The close agreement, however, between the re-
sults of integrating Eqs4.8) and (4.14) (Refs. 14, 19, and
+5720A¢|*+60F |A4%|Aq? 16) and numerical investigations ogg;c{;rg—superconductors

- within Bogoliubov—de Gennes thearjindicates that the GL

+3(A3 2A§+A§ 2A§)]+ 2.69114|* equations derived thus far capture at least some of the essen-
tial physics.

|Agl?+10.9A4%+38.7A4*

T
Fo=Fp-1131-

+7.38T1A |2+ 1.5 (TT,A¢)* (TTyA 4)

h2
— (LA Y* (T Ag) +c.c]+ gi (4.42 V. EXTENSION OF THE GL EQUATIONS
The current and magnetic field distribution around an iso-
where the coefficientg and y have been evaluated @ . lated vortex of ad-wave superconductor is found to be four-
The maximum value of the-wave component nucleated fold symmetric whenever as-wave component is induced
in the vortex core, calculated numerically using E@s24),  in the vicinity of the vortex coré®'? It has been recently

(4.1, (4.13, (4.38), and(4.40, is shown as a function of shown, however, that a similar anisotropy results from the
hole density in Fig. 5. Evidently, in the AvH model the in- inclusion of higher-orded-wave gradient terms in the GL
duceds-wave component can be at most 5% of the bulkfree energy (4.8) even in the absence of as-wave
d-wave value [corresponding to(n,)~25% and T—0, component® The connection between these observations
where it is assumed thaiy(T)>=(1—T/T4),¥T]. Thisis in  can be made apparent by integrating out of the free energy
spite of a large temperature-independent gradient coefficierifie degree of freedom associated with the subdominant order
ratio (y,/y4~20% near optimal dopingthat is found to parameter. Given a bulkl-wave superconductor, for ex-
increase monotonically with doping up to the largest densiample, Eq.(4.8) can be minimized with respect 7 (r),

ties studied. By contrast, with a suitable choice of parametergielding to lowest order in (+ T/Ty)
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, Eqg. (2.12 to include gradients of the gap functions. Apply-
Ag(r)=— a—(Hi—Hi)Ad(f)- (5.)  ing similar techniques to those described in previous sec-
S tions, one obtains for the EH model
Note that since\ 4(r) varies on the length scalg, we im-
mediately obtainA~ vy, /aséa~(1—T/T4)%? in agreement

EH d2k & Vi &0? o
with Eq. (4.25. Upon substitution of Eq5.1) into Eq.(4.8), {ns, g} =" = —4T2 f 272 (@ +§ 2y {16a,% by}
the leading correction due to the inducgevave component “n k
will be of the form (- Yol ag)|(I17—112) Ag|% The free en- 3UGSN'VE ([ €\*3[u+D\*
ergy for an inhomogeneouswave superconductor then be- =T T3 AT 5+ 2l 8l | I’
comes
(5.3
Fo=Fn+ aglAg(r)|2+ B Ag(r)|*+ yg| TTA4(r)|?
5= Fnt e Ag(N) "+ B2l Ad()]+ yall1Aq(r)] where the analytical solution is valid in the continuum limit,
+ gl Ag(DTTAG(r) |2+ g4 | TT2A4(r) |2 i.e., at low electron densities. For the AvH model,
2 2 2
Yol 12172 2, N AVH _ d’k
ve-— o lA-THAMP+ g (62 {ns,mal™"=-2T2 | 55
which clearly |nd_|cates that the |r_1duced/_vave order param- fﬁ[(vklék 24 (szgk)z]
eter breaks rotational symmetry in precisely the same way as X 2 {cﬁ 'di}-
a fourth-orderd-wave gradient term. (on+ &)
In order to assess the relative importance of the induced (5.4)
subcritical component in eliciting anisotropy, the coefficients
of the higher-order terms included in E@.8), and yq() - , The coefficients of the fourth-order gradient terms can be

in particular, must be determined microscopically. The deri-derived by evaluating in the thermodynamic limit terms in
vation of 55 and 4 appearing in Eqs(4.9) and (4.10 re-  Egs.(2.18 and(2.23 hitherto ignored. After some manipu-
guires extending the second term on the right-hand side dftion, one obtains

d2kd2kr el(k+k )-z
EH_ 2 2(y2 2 12 W2
{¥sz . vas} E fd f T Sl g (o) (x*+3y?){4a,* bi},

de 2 ’
{Yszﬁd:}AVH: 2 f f (r1+r2)2[(r1+r2)2+3(r1_r2)2]{ck K (5.9

where the ellipsis represents thalependent part of the integrand. The fourth-order gradient terms can be evaluated analyti-
cally in the EH model for weak to intermediate coupling and low densities:

3(u €\25[u+D)\?
2\072) 8l D

2

+D)\2
022
8

314(5)N’
(WT) D (5.6

{75+ »Yd+»Ys— ’Yd—}% 256

The analytical results obtained for the EH model indicatedue to the existence of the subdominant order parameter or
that all the higher-order terms in the free enefgyd) and  fourth-order gradients, however. For a bigkwvave super-
(4.10 have a negative sign compared with the second-ordetonductor, the inducedd-wave order parameter clearly
terms. The overall sign of these higher-order terms is of ndreaks circular symmetry since,#0 for u>—D while
consequence, however, provided the order parameters afg_=0. Yet stronger coupling or lattice effects could lead to
sufficiently small and slowly varying; while both conditions a nonvanishingys_ which could compete with they%/ad
will be satisfied near T, we also find ygq+/  coefficient in the free energy(5.2. Assuming that

Y@y~ (ve/mT)?—0 asu— —D. At low densities, the EH @~ 1/\/,, we find for a bulkd-wave superconductor
model predicts a vanishing,_ coefficient, in accordance

with the expectation that the free energy of a continuum 712, 196/(3)?ViN(0) [ €\?

s-wave superconductor should have spherical symmetry. asyd_*_ 31(5) (5 Z) , (5.7)
Furthermore, yq4, /vq4-=5/2, as was found by Ichioka

et all® which is of order—V, /t. This result indicates that the “sub-

The analytical results for the EH model cannot adequatelgritical” coefficient 7,2,/ ag and the “asymmetric” coefficient
determine whether anisotropy in the free energy is primarilyyq_ give similar contributions to the anisotropy. It should be
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)
AR P11 1= [l 5720840

+7.3911A4(r)|?— 16 300A 4(r)ITA 4(r)|?
N h2
—16.511%A4(r)|*+2.68(I1j- T} Aq(r)|*+ o —.
(5.9

The relatively large values ofgq4y and ygq)+ compared
with the magnitude ofyyq) clearly demonstrate that the GL
theory derived herein is only strictly valid quite negy.

0.0 0.2 0.4 0.6 0.8 1.0 VI. SUMMARY AND DISCUSSION

<n>

The primary objective of the present work has been to

FIG. 7. The ratio«yi/ad(s)ys(d), is shown as a function of elec- derive the Ginzburg-Landau equations fod-avave super-
tron concentration,) for T=T,. Solid lines(in order of decreas- conductor using two microscopic lattice models which have

ing boldnesscorrespond to the EH model fof; = 1.3, 2t, 3t with been previously used to describe the highexides: the ex-
V=0, while the dotted line is for the EH model witti;=3t,  tended Hubbard model and the antiferromagnetic—van Hove
Vo=4t. The dashed line gives the results for the AvH model in themodel. In so doing, it has been possible to quantitatively
electron notation such than,) =1—(ny). To the left(right) of the  investigate how the lattice and external magnetic field gen-

arrow is showny/agys- (¥/asys-) corresponding to bulk erate, and govern the interplay between, coexistivgave
s-wave (d-wave) superconductivity. andd-wave order parameters. In addition, the relative mag-
nitudes of the various GL coefficients, as well as their tem-

emphasized, however, thdtwave superconductivity is not Perature and density dependence, have been ascertained.

favored at densities for which these analytical results are Phenomenological GL theory has enabled much progress
strictly valid. to be made recently toward understanding the structures of

isolated vortices and the vortex lattice fiwwave supercon-
ductors. Of particular current interest is the theoretical pre-
diction by Franz and co-workéfs!® of an oblique structure
%or the vortex lattice neaH.,; i.e., the Abrikosov lattice

ribution & <o £ th beritical fficient i tWould be intermediate between the usual triangle and a
contribution 1o anisotropy ot the subcritical Coetlicient IS a square. The degree of “obliqueness” is mostly dependent on

mqst comparabl_e to the asymmetric coefficien.t for most denfhe gradient coefficient ratig, /4. The coefficienty, gov-
sities and coupling strengths. Furthermore, since both coefs,\s the extent as-wave component is induced by spatial
ficients have the same sign, their contributions to the asyMyariations of the dominant-wave order parameter, and
metric gradient term in the free enerd$.2) are in fact characterizes the degree of fourfold symmetry in the free
competing. Only for densities very near the crossover fro”bnergy. Fory,/y4=0, the s-wave component vanishes,
bulk s-wave tod-wave condensatiofor vice versqin the  yielding a triangular lattice. The Abrikosov lattice deforms
EH model, or for large hole densities in the AvH model, doescontinuously away from a triangle as /4 is increased; for

The ratios;xf/ad(s)ys(d), have been calculated numeri-
cally for T=T. and are shown in Fig. 7; virtually indistin-
guishable results have been obtained for all temperatur
0.5T.<T<T, (not shown. The numerics make clear that the

the subcritical coefficient dominate; in this regirae-0. v.1v4=0.45, the angle between primitive vectags=76°.
It is not presently clear if the overall sign of the aniso- For vy, /y4~0.6 and higher, the flux lattice is square.
tropic fourth-order gradient term in the free ene(§y2) has The present work demonstrates that microscopic models

any physical significance. Previous microscopic investigaused to describe the high: oxides can predict a significant
tions of the EH model within the context of Bogoliubov—de admixture of ars-wave order parameter in the mixed state of
Gennes theory demonstrated marked anisotropy in the a d-wave superconductor. One consequence is the deviation
structure of the criticatl-wave component near the core of of the flux lattice from that of a triangle. It has been found
an isolated vortex. Parameters chosen correspond to a suirat within a broad and experimentally relevant parameter
stantial s-wave component nucleated near the vortex corespace both microscopic models yield a gradient coefficient
i.e., v’/ag>v4_ , and therefore a large negative coefficientratio y,/y4~0.1-0.4. This is consistent with two recent ex-
for the asymmetric gradient term. Recent wdtkhowever, perimental observatiofs® for YBCO of flux lattices with
indicates that this anisotropy persists even for densities app~73° and 77°. It is not yet clear, however, whether the
proaching half-filling, whereyy_ dominates and the overall a-b anisotropy associated with the orthorhombicity of
sign of the gradient term is positive. YBCO is alone sufficient to account for the distortion in the
For completeness, the coefficienygq) and ysq)+ have  flux lattice®’
also been determined numerically for both the EH and AvH It is presently uncertain whether tteewave component
models. Both coefficients are always negative and in generaducleated in the vicinity of vortex cores is in fact required to
it is found that for the EH modelngq)~10ygq)+ induce a significant deviation from a triangular vortex lattice.
~100 ysa)—|, and ysq)+ is of the same order agsq at It has been shown that a fourth-order gradient term in the
T.. For the AvH model at optimal doping afid , we obtain  d-wave order parameter also introduces fourfold symmetry
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into t_he free energy; over mgch of thg phase diagram, the 65,T2%|m|(|m|_1): (A1)
contribution of this term to anisotropy is comparable to that

of the s-wave component. This important issue will be ad- EH_ 1 _

dressed in future work. €v.1” z[nl(n[=1), (A2)

Wherever possible, comparison has been made with pre-

vious derivations of the GL coefficients within continuum €x5=—zIm[(Im=1)(|m|-2)(Im[-3),  (A3)
models. It should be emphasized, however, that lattice mod-

els not only provide considerably more information regard- es5=—3In|(In|—=1)(In[=2)(|n|-3), (A4)
ing the density and coupling-dependence ssivave and

d-wave admixture in the vortex core, but also avoid the tech- 65?2: — m|(|m[=1)|n|(|n|-1). (A5)

nical difficulties(i.e., the application of the Padgproxima-

tion) encountered in continuum models. In particular, thegq, the AvH model. we obtain

lattice models clearly indicate that boshwave andd-wave

components must always coexist in the vortex core for all AVH_ 1 .
=z[|m{(|m|—1)+|n|(|n|—1)+2mn]; A6

temperatures below ., regardless of the symmetry of the xa = zlIml([m=1)+[n|([n[-1) ! (A6)

bulk order parameter. A 1

ey1 =z [Iml(Jm[=1)+[n[(|n[-1)—2mn]; (A7)
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APPENDIX: COEFFICIENTS OF THE GL X(In[=2)(In[=3)]= zml[n[{3(Im[ = 1)(In| = 1)

GRADIENT TERMS —2[(Im|=1)(|m[=2)+(|n|-1)(In|-2)]}, (A9)
The coefficients of the gradient terms appearing in the GL
equations for the gap functiori®.18 and(2.23 are, for the enva=— 3L (Iml(Jm[=1)+|n|(|n] - 1))?~ 4m?n?].
EH model, (A10)
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