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Microscopic derivation of the Ginzburg-Landau equations for ad-wave superconductor

D. L. Feder and C. Kallin
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
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The Ginzburg-Landau~GL! equations for adx22y2 superconductor are derived within the context of two
microscopic lattice models used to describe the cuprates: the extended Hubbard model and the
antiferromagnetic–van Hove model. Both models have pairing on nearest-neighbor links, consistent with
theories ford-wave superconductivity mediated by spin fluctuations. Analytical results obtained for the ex-
tended Hubbard model at low electron densities and weak coupling are compared to results reported previously
for a d-wave superconductor in the continuum. The variations of the coefficients in the GL equations with
carrier density, temperature, and coupling constants are calculated numerically for both models. The relative
importance of anisotropic higher-order terms in the GL free energy is investigated, and the implications for
experimental observations of the vortex lattice are considered.@S0163-1829~97!00901-6#
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I. INTRODUCTION

There is mounting experimental evidence to suggest
the high-temperature cuprate superconductors have an o
parameter with unconventional symmetry.1,2 Indeed, recent
Josephson interference measurements3 are strongly indica-
tive of an order parameter withdx22y2 (d-wave! symmetry,

4

which has line nodes alongukxu5ukyu. The linear density of
states associated with the resulting low-energy excitation
thought5 to account for the linear temperature dependenc
the specific heat6 as well as the linear temperature7 and mag-
netic field8 dependence of the penetration depth found
YBa2Cu3O72d ~YBCO! and Bi2Sr2CaCu2Oy ~BSCCO!.

A number of experimental results9 are consistent only
with an order parameter of combineds-wave andd-wave
symmetry. Sigrist and Rice10 have shown that in weakly
orthorhombic cuprates~such as BSCCO or YBCO! a small
s-wave component would be present in addition to a criti
d-wave order parameter. In tetragonal systems~such as the
thallium compounds! that favor d-wave superconductivity
however, ans-wave component can only be nucleated
cally near inhomogeneities11 such as domain walls
impurities,12 or vortices.13–16 Indeed, Soininenet al.13 inves-
tigated the structure of an isolated vortex for ad-wave su-
perconductor within Bogoliubov–de Gennes theory a
found that a nonzeros-wave component is induced in th
vortex core. Their results, interpreted within the context
the relevant phenomenological Ginzburg-Landau~GL! free
energy,17 imply a nontrivial topological structure for the ad
ditional s-wave component.14 As a consequence, the supe
current and magnetic field distributions for an isolated vor
nearHc1 exhibit a fourfold anisotropy in proportion to th
magnitude of thes-wave component.16 In addition, the
vortex-lattice structure nearHc2 deviates significantly from
the usual triangular Abrikosov lattice, becoming increasin
oblique with increasings-wave admixture.14,16

It remains uncertain, however, whether the anisotropy
the structures of an isolated vortex and the vortex lattice
indeed predominantly due to the admixture of ans-wave
component. Ichiokaet al.18 have shown that the inclusion o
550163-1829/97/55~1!/559~16!/$10.00
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higher-orderd-wave gradients in the GL free energy ca
give rise to a fourfold-symmetric current distribution arou
a vortex even in the absence of an induceds-wave compo-
nent. One of the objectives of the present work is the cla
fication of this issue. Indeed, we find that the contributions
anisotropy of a fourth-order gradient term and thes-wave
component are comparable and tend to compete.

While phenomenological GL theory has been highly su
cessful in predicting many interesting properties ofd-wave
superconductors in external fields, the relative magnitude
the various coefficients appearing in the free energy and t
dependence on temperature, filling, and field are prese
unknown. An earlier derivation19 of the free energy from a
continuum model could not include lattice effects that a
believed to be important in theories ofd-wave superconduc
tivity. Consequently, as will be discussed later, certain te
nical difficulties arose which would not have appeared in
continuum limit of an appropriate lattice model. In any ca
it would be useful to derive the GL free energy using mod
relevant to the high-Tc oxides. In the present work, the G
equations are derived microscopically within the conte
of two such models: the extended Hubbard a
antiferromagnetic–van Hove models.

The extended Hubbard~EH! model, which includes a
nearest-neighbor attraction in addition to the usual on-
repulsion, is one of the simplest lattice models which allo
for a d-wave superconducting instability. Pairing occu
along nearest-neighbor links, appropriate for theories wh
d-wave superconductivity is mediated by antiferromagne
fluctuations~see Ref. 2 and references therein!. It has been
employed in several analytical20 and numerical13,20,21inves-
tigations of d-wave superconductivity. The EH model ha
recently been shown,22 however, to favord-wave supercon-
ductivity only in a very small parameter space, preferring
phase separated or spin-density-wave state.

The antiferromagnetic–van Hove~AvH! model23 strongly
favorsd-wave superconductivity while incorporating the c
existing antiferromagnetic correlations observed in NMR24

neutron scattering,25 and angle-resolved photoemissio
spectroscopy26 ~ARPES! experiments. High transition tem
559 © 1997 The American Physical Society
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560 55D. L. FEDER AND C. KALLIN
peratures are obtained in the model due to the presence
van Hove singularity in the hole density of states near
Fermi energy. An extended, flat band near (p/2,p/2) in mo-
mentum space is consistent with numerical investigation
a single hole propagating through an antiferromagn
background27 and with experimental evidence.28 In the AvH
model, holes are constrained to move within a single sub
tice of a uniform antiferromagnetic background in order
minimize frustration. The hopping parameters are chose
best fit the quasiparticle dispersion for YBCO measured
ing ARPES.29

In Sec. II, the Ginzburg-Landau equations for the g
functions and supercurrent are derived microscopically
both the EH and AvH lattice models using a finit
temperature Green function method. The relations defin
the transition temperatures are investigated in Sec. III. I
found that only ad-wave transition is favored for the AvH
model; thed-wave transition temperatureTd;100 K is con-
sistent with the high-temperature~high-Tc) oxides. The EH
model, in contrast, can have either ans-wave or d-wave
instability. Heres wave is favored at low electron densitie
while d wave is favored either at high densities or at low
densities with strong on-site repulsion. The equations
Ts ~thes-wave transition temperature! andTd are found ana-
lytically in the limit of weak coupling and low electron den
sities. The corresponding analytical solutions for the A
model are difficult to obtain due to the complicated angu
dependence of the AvH dispersion. The GL free energy
derived for both models in Sec. IV. The coefficients of t
GL equations are found analytically for the EH model in t
same limit described above. The coefficients are calcula
numerically for the EH model and for the AvH model ne
optimal doping. In Sec. V, we summarize our results a
discuss the experimental implications of the GL equatio
we have derived.

II. LATTICE GL EQUATIONS

The Hamiltonians for the extended Hubbard~EH! and
antiferromagnetic–van Hove~AvH! models are, respec
tively,

HEH52t (
^ i j &s

cis
† cjs

† expS i 2p

f0
E
j

i

A•dlD 2m(
is

nis

1V0(
i
ni↑ni↓2

1

2 (
^ i j &ss8

Vi j nisnjs8, ~2.1!

HAvH5t11 (
^^ i j &&s

cis
† cjs

† expS i 2p

f0
E
j

i

A•dlD
1t20 (

^^^ i j &&&s
cis
† cjs

† expS i 2p

f0
E
j

i

A•dlD 2m(
is

nis

2
V

2 (
^ i j &ss8

nisnjs8, ~2.2!

wherenis5cis
† cis

† , A is the vector potential associated wi
the external magnetic field,f05hc/e is the flux quantum,
andm is the chemical potential included to fix the density.
the EH model the carriers are electrons, and positiveV0 and
f a
e

of
ic

t-

to
s-

p
r

g
is

r
r

r
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d
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Vi j imply on-site repulsion and nearest-neighbor attracti
respectively. The superconducting carriers in the AvH mo
are holes propagating through the antiferromagnetic ba
ground of the undoped ‘‘parent’’ state. Second- and thi
nearest-neighbor hopping parameters are, respectiv
t1150.041 25 eV andt2050.021 75 eV.23 The absence of
nearest-neighbor hopping in the AvH model reflects the
stricted Hilbert space of the carriers; holes are constraine
move within a single spin sublattice in order to minimiz
frustration and preserve antiferromagnetic correlations. T
values oft11 andt20 are chosen to result in a large density
states near the bottom of the hole band, located
(p/2,p/2) in momentum space. The coefficient of th
nearest-neighbor attractionV50.075 eV is chosen to yield a
d-wave transition temperatureTd;100 K at optimal doping
(m'20.075 eV or hole densitŷn&;0.2), consistent with
the high-Tc oxides.

23

If the lattice sitesi and j are nearest neighbors, we ca
write the mean-field EH Hamiltonian

Heff
EH~B!52t (

r ,dW ,s
cs
†~r1dW !cs

†~r !eifd2m(
r ,s

cs
†~r !cs~r !

1(
r

@D0* ~r !c↓~r !c↑~r !1H.c.#

2
1

2(r ,dW
@Dd* ~r !c↓~r !c↑~r1dW !

2Dd* ~r !c↑~r !c↓~r1dW !1H.c.#, ~2.3!

where

fd5
2p

f0
E
r

r1dW
A•dl ~2.4!

anddW 56 x̂,6 ŷ ~the lattice constant is taken to be unity fo
convenience!. The ‘‘on-site’’ and nearest-neighbor gap fun
tions are defined as follows:

D0~r ![V0^c↓~r !c↑~r !&, ~2.5!

Dd~r ![Vd^c↓~r !c↑~r1dW !&[2Vd^c↑~r !c↓~r1dW !&,
~2.6!

assuming the existence of pairing in only the spin-sing
channel, in accordance with experimental results for the
prate superconductors.30 The mean-field Hamiltonian for the
AvH model is written as

Heff
AvH~B!5t11 (

r ,dW11 ,s
cs
†~r1dW 11!cs~r !eifdW11

1t20 (
r ,dW20 ,s

cs
†~r1dW 20!cs~r !eifdW20

2m(
r ,s

cs
†~r !cs~r !

2
1

2(r ,dW
@Dd* ~r !c↓~r !c↑~r1dW !1H.c.#,

~2.7!
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55 561MICROSCOPIC DERIVATION OF THE GINZBURG- . . .
where r5mr̂11nr̂2, such thatr̂ 1[ x̂1 ŷ and r̂ 2[ x̂2 ŷ are
primitive vectors of a single sublattice, and each lattice s
has the two-point basis 0ˆ, x̂. Then, dW 1156 r̂ 1 ,6 r̂ 2,
dW 2056( r̂ 11 r̂ 2), 6( r̂ 12 r̂ 2), and dW 56 x̂,6 ŷ. Throughout
the remainder of this section calculations will be presen
within the context of the EH model. Comparison of th
above Hamiltonians indicates that analogous results for
AvH model can be obtained at any stage by eliminating
on-site gap function, reversing the sign of the kinetic te
~keeping in mind the holes hop along second- and th
neighbor links!, and settingVd5V/2.

The Gor’kov equations can then be derived in the st
dard manner:31

G~r ,r 8,vn!5 G̃ 0~r ,r 8,vn!1(
r9
G̃ 0~r ,r 9,vn!

3FD0~r 9!2(
dW

Dd~r 9!P̂d~r 9!G
3F †~r 9,r 8,vn!, ~2.8!

F †~r ,r 8,vn!52(
r9
G̃ 0~r 9,r ,2vn!

3FD0* ~r 9!2(
dW

Dd* ~r 9!P̂d~r 9!G
3G~r 9,r 8,vn!, ~2.9!

where P̂d(r )X(r )[X(r1dW ) is the kinetic energy operator
G andF † are finite-temperature single-particle and anom

lous Green functions, respectively, andG̃ 0 is the normal-
state Green function in the presence of the external field.
Matsubara frequencies arevn[pT(2n11). The anomalous
Green functionF † is related to the gap functions

D0* ~r !5TV0(
vn

F †~r ,r ,vn!, ~2.10!

Dd* ~r !5TVd(
vn

F †~r ,r1dW ,vn!. ~2.11!

Arbitrarily close to the superconducting critical temperatu
Tc , the ratiosDa /Tc!1 or identically zero (aW 50,dW ). Iter-
ating Eqs.~2.8! and ~2.9! up to third order in the gap func
tions, and making use of the conditions~2.10! and~2.11!, the
self-consistent equations for the gap functions are imm
ately obtained:
e

d

e
e

-

-

-

e

i-

1

Va
Da* ~r !52 (

r9,vn

G̃ 0~r 9,r ,2vn!D* ~r 9!G̃ 0~r 9,r1aW ,vn!

1 (
r9,r1 ,r2 ,vn

G̃ 0~r 9,r ,2vn!D* ~r 9!

3 G̃ 0~r 9,r1 ,vn!D~r1!G̃ 0~r2 ,r1 ,2vn!

3D* ~r2!G̃ 0~r2 ,r1aW ,vn!, ~2.12!

where

D* ~x![D0* ~x!2(
dW

Dd* ~x!P̂d~x!, ~2.13!

andaW 50̂, 6 x̂, or 6 ŷ.
In the strong type-II limit, appropriate for the high-Tc

oxides, the penetration depthl(T) exceeds the coherenc
length j(T) and all other length scales. The single-partic
Green function is then approximately translationally inva
ant:

G̃ 0~r ,r 8,vn!'G0~r2r 8,vn!expS 2 i
2p

f0
E
r

r8
A•dlD

'G0~r2r 8,vn!

3expS i 2p

f0
A~r !•~r2r 8! D , ~2.14!

whereG0(r2r 8,vn) is the normal-state lattice Green fun
tion in the absence of an external field,

G0~x,vn!5(
k

eik•x

ivn2jk
, ~2.15!

and the sum is over wave vectors in the first Brillouin zon
The dispersion relations for the EH and AvH models a
respectively,

jk
EH522t~coskx1cosky!2m, ~2.16!

jk
AvH52t11~cosk11cosk2!14t20cosk1cosk22m,

~2.17!

wherek1 andk2 are reciprocal vectors of a given sublattic
Assuming the gap functions vary slowly compared with t
characteristic length scalekF of the single-particle Green
function ~2.15!, Eq. ~2.12! can be expanded up to fourt
order in lattice derivatives. The justification for keepin
higher-order gradient terms will be addressed in Sec. V. T
GL equations for the gap functions in the EH model can th
be written as
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Da* ~r !52TVa(
vn

(
aW 8

~21!a8(
m,n
G0~mx̂1nŷ,2vn!G0~mx̂1nŷ1aW 82aW ,vn!expS 2 i

2p

f0
A~r !•~aW 2aW 8! D

3$12ex,1
EH~ x̂Px!

22ey,1
EH~ ŷPy!

22ex,2
EH~ x̂Px!

42ey,2
EH~ ŷPy!

42exy,2
EH ~ x̂Px!

2~ ŷPy!
2%Da8

* ~r !

1TVa (
k,vn

eik•a
W
exp@2 i ~2p/f0!A~r !•aW #

~vn
21jk

2!2
$uD0~r !u2D0* ~r !22uD0~r !u2M ~r !12uM ~r !u2D0* ~r !2D* 0

2~r !M* ~r !

1D0~r !M
2~r !2uM ~r !u2M ~r !%, ~2.18!

where

i ~ ẑPz!D2z~r ![expS i 4p

f0
Az~r ! DDz~r !2D2z~r ! ~2.19!

'F ~ ẑD̂z!1 i
4p

f0
Az~r !GD2z~r !, ~2.20!

with the forward difference operator defined by

~ ẑD̂z!D2z~r ![D2z~r1 ẑ!2D2z~r !5Dz~r !2D2z~r ! ~2.21!

and

M ~r ![ (
dW 856 x̂,6 ŷ

Dd8
* ~r !eik•d

W 8expS i 2p

f0
A~r !•dW 8D . ~2.22!

The coefficients of the gradient terms have been defined in the Appendix for clarity. Note that all gap functions are
the same pointr in the last term of Eq.~2.18!; this condition will be relaxed in Sec. V. The gradient terms with odd pow
of x̂Px and/orŷPy vanish for tetragonal systems. The GL equations for the gap functions in the AvH model are give

Dd* ~r !5
TV

2 (
vn

(
dW 8

(
m,n
G0~mr̂11nr̂2 ,2vn!G0~mr̂11nr̂21dW 82dW ,vn!expS 2 i

2p

f0
A~r !•~dW 2dW 8! D

3$12ex,1
AvH~ x̂Px!

22ey,1
AvH~ ŷPy!

22ex,2
AvH~ x̂Px!

42ey,2
AvH~ ŷPy!

42exy,2
AvH~ x̂Px!

2~ ŷPy!
2%Dd8

* ~r !

2
TV

2 (
k,vn

eik•d
W
exp@2 i ~2p/f0!A~r !•dW #

~vn
21jk

2!2
uM ~r !u2M ~r !, ~2.23!

where we have used

~ r̂ 1P r1
![~ x̂Px!~ ŷPy!1~ x̂Px!1~ ŷPy!, ~2.24!

~ r̂ 2P r2
![2~ x̂Px!~ ŷPy!1~ x̂Px!2~ ŷPy!, ~2.25!

and the coefficientse are given in the Appendix.
The current operator for the EH model is

jEH~r !5 i t(
dW ,s

dWeifdcs
†~r1dW !cs~r !

522tT(
dW ,vn

Pd8~r 8!G~r ,r 8,vn!ur5r8, iPd8~r ! f ~r ![expS i 2p

f0
A~r !•dW D f ~r1dW !2 f ~r ! ~2.26!

→22t@PW 8* ~r !1PW 8~r 8!#T(
vn

G~r ,r 8,vn!ur5r8 , PW 8~r ![2 i¹W 1
2p

f0
A~r !, ~2.27!

where Eq.~2.27! represents the continuum limit of the lattice current. Iterating Eqs.~2.8! and ~2.9! to second order in gap
functions and making the same approximations employed above, Eq.~2.26! becomes
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jEH~r !52tT (
dW ,vn

aW 1 ,a
W
2

R1 ,R2

expS i 2p

f0
A~r !•~aW 22aW 1! D ~21! ua1u~21! ua2uG0~2R1 ,vn!G0~R22R12aW 1 ,2vn!D̂2d~R2!G0~R21aW 2 ,vn!

3$Da2
* ~r !@m~ x̂Px!*1n~ ŷPy!* #Da1

~r !1Da1
~r !@m8~ x̂Px!1n8~ ŷPy!#Da2

* ~r !%, ~2.28!
ng

ts

th

d
na
es

a

ey

ns.

te-
en-
whereR15mx̂1nŷ andR25m8x̂1n8ŷ. A similar expres-
sion for the AvH model can be obtained by setti
t→2t11,2t20 with dW→dW 11,dW 20 and R15mr̂11nr̂2,
R25m8 r̂ 11n8 r̂ 2, and making the replacemen
( x̂Px)→( x̂Px)1( ŷPy) and (ŷPy)→( x̂Px)2( ŷPy).

The various integrals and sums appearing in
Ginzburg-Landau equations for the gaps functions~2.18! and
~2.23!, and the current~2.28! can, in general, be determine
only numerically. There is, however, one case which is a
lytically tractable: the EH model at low electron densiti
and weak to intermediate coupling. ForVd50 and
V0→2V0, this limit would correspond to ordinary BCS
theory.

III. DETERMINATION OF Tc

At temperatures sufficiently nearTc , we can linearize the
gap equations~2.18! and~2.23!. Making use of the definition
of the normal-state Green function~2.15!, we obtain for the
EH model

D0* ~r !5TV0 (
vn ,k

2akDs* ~r !2D0* ~r !

vn
21jk

2 , ~3.1!

Ds* ~r !5
TV1
2 (

vn ,k

ak@2akDs* ~r !2D0* ~r !#

vn
21jk

2 , ~3.2!

Dd* ~r !5TV1 (
vn ,k

bk
2Dd* ~r !

vn
21jk

2 , ~3.3!

where ak5coskx1cosky and bk5coskx2cosky . The
s-wave andd-wave gap functions are related to the bond g
functions through the gauge-invariant definitions32

Ds~r ![
1

4 FexpS 2 i
2p

f0
Ax~r ! DDx~r !

1expS i 2p

f0
Ax~r ! DD2x~r !

1expS 2 i
2p

f0
Ay~r ! DDy~r !

1expS i 2p

f0
Ay~r ! DD2y~r !G , ~3.4!
e

-

p

Dd~r ![
1

4 FexpS 2 i
2p

f0
Ax~r ! DDx~r !

1expS i 2p

f0
Ax~r ! DD2x~r !

2expS 2 i
2p

f0
Ay~r ! DDy~r !

2expS i 2p

f0
Ay~r ! DD2y~r !G . ~3.5!

The equations that determine thes-wave andd-wave tran-
sition temperaturesTs andTd are immediately

@V1I 2~Ts!22#@V0I 0~Ts!12#5V0V1I 1
2~Ts!, ~3.6!

I 3~Td!5
2

V1
, ~3.7!

where

I n~Ts![(
k

ak
n

jk
tanhS jk

2Ts
D , n50,1,2, ~3.8!

I 3~Td![(
k

bk
2

jk
tanhS jk

2Td
D . ~3.9!

It is clear from Eq.~3.6! that if V150, nos-wave supercon-
ducting instability can occur for positive temperature.

The corresponding equations for the AvH model are

15
V

4(k
11cosk1cosk21cosk11cosk2

jk
tanhS jk

2Ts
D ,
~3.10!

15
V

4(k
11cosk1cosk22cosk12cosk2

jk
tanhS jk

2Td
D .
~3.11!

While these equations are not analytically tractable, th
have been shown numerically23 to strongly favor ad-wave
transition temperature for all relevant hole concentratio
Optimal doping at approximately 25% filling~in the hole
representation, wherênh& is calculated atTc) yields a value
of Td;100 K.

In order to analytically solve the sumsI 0–3, Eqs. ~3.8!
and ~3.9!, we make the standard transformation to an in
gration over energies, making use of the single-particle d
sity of states~DOS!:
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N~«![(
k

d~«2«k!'H N~0!1N~1!lnUD« U, if u«u<D,

0, otherwise,

~3.12!

where D54t is the half-bandwidth and«k[jk1m. The
DOS is approximated by a constant plus a term reflecting
van Hove singularity at half-filling («50), as is shown in
Fig. 1. The best fit is obtained whenN(0)50.31/D ~the
DOS for free electrons in two dimensions is 1/pD) and
N(1)50.19/D @note that the DOS at half-filling is
approximately20 (2/p2D)lnuD/«u#. Using the relation
ak522(j1m)/D, the sumsI 0–2 can be solved to yield

I 0~Ts!'2N8lnS T*Ts D2
2D

m
N~1!, ~3.13!

FIG. 1. The density of statesN(«) for tight-binding electrons on
the square lattice is shown as the solid curve. The energy sca
the half-bandwidthD54t. The best fit, the dashed line, is found
beN(«)50.31/D1(0.19/D)lnuD/«u.
e

I 1~Ts!'2
4m

D
N8F lnS T*Ts D21G1

4m

D S 11
D

m DN~1!,

~3.14!

I 2~Ts!'
8m2

D2 N8lnS T*Ts D1
4~D223m2!

D2 N~0!

1
2

D2 F24mD16m2lnU m

D U25m21D2GN~1!,

~3.15!

where

N85N~0!2N~1!lnUmDU ~3.16!

and

T*[
2egAD22m2

p
. ~3.17!

For all terms proportional toN(1), we assume thatTc!D
~weak coupling!, so that

tanhS «2m

2T D 'H 21, «,m,

11, «.m. ~3.18!

Note that in this lattice model, all interactions are instan
neous and therefore the bandwidth is the only possible
ergy cutoff. Sincebk cannot be written exactly in terms o
jk , some simplifying assumption must be made in order
evaluate I 3. At low densities ~the continuum limit of
the lattice model!, jk'tk22D2m and thus bk
'22cos2u(j1D1m)/D. Then,

is
I 3~Td!'
4~m1D !2

D2 N8lnS T*Td D1
2

D2 ~D224mD23m2!N~0!

1
2

D2 F22D

m
~m1D !21m~3m14D !lnUmD U1 D228mD25m2

2 GN~1!. ~3.19!

The equation for thes-wave transition temperatureTs resulting from the application of Eq.~3.6! is, for V050,

Ts5T* expH 2D22V1@6m2N822D2N~0!2~D224mD25m2!N~1!#

4m2V1N8 J . ~3.20!

The corresponding equation for thed-wave transition temperatureTd from Eq. ~3.7! is

Td5T* expH 2D22V1@m~4D13m!N82D2N~0!1 ~1/2m! ~4D317D2m112Dm215m3!N~1!#

2~m1D !2V1N8 J . ~3.21!
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The transition temperatures for the casesV15t andV153t
are shown as functions of chemical potential in Figs. 2 an
respectively. Near the bottom of the tight-binding ba
(m'2D), an s-wave transition is strongly favored for an
V0 andV1, whereas ad-wave transition is favored near hal
filling (m'0). The value of the chemical potential at whic
the preferred symmetry of the dominant gap functi
changes is extremely sensitive to the strengths of the res
tive interactions. As the on-site repulsion is increased,
magnitude ofTs is suppressed whileTd is unaffected.

20 As a
result,d-wave superconductivity is favored for virtually a
densities for sufficiently largeV0. It should be noted that the
magnitude of the subcritical transition temperature, ass
ated with the subdominant gap function, is in fact furth
decreased due to the presence of the dominant gap func
The relevant equation for the subcritical transition tempe
ture, one of Eqs.~3.1!–~3.3!, should havejk replaced by
Ajk

21(Dk
DOM)2, whereDk

DOM is the magnitude of the domi

FIG. 2. The transition temperaturesTc are given as functions o
chemical potentialm for nearest-neighbor attractionV15t and
V050. The results forTs and Td are given by solid and dashe
lines, respectively. The analytical results~lighter lines! are found to
compare well with the numerical results~darker lines! in the appli-
cable low-density regime.
2 ~2p! ~2 ivn2jk8!~ ivn2jk!
3,

c-
e

i-
r
on.
-

nant gap function. Thus, the subcritical transition tempe
ture, which is of dubious relevance in any case, can be ta
to be identically zero without loss of generality.

IV. CALCULATION OF THE GINZBURG-LANDAU
COEFFICIENTS

A. Extended Hubbard model

For sufficiently large systems, the lattice sums in E
~2.18! can be transformed intok-space integrals. Neglectin
fourth-order derivatives and making use of the expressi
for the s-wave, Eq.~3.4!, andd-wave, Eq.~3.5!, gap func-
tions as well as the normal-state Green function~2.15!, the
following three gap equations for the EH model are obtain

FIG. 3. The transition temperaturesTc are given as functions o
chemical potentialm for V153t. The solid lines correspond to th
numerical evaluation ofTs for on-site repulsionV050, 2.5t, 3.5t,
and;`; linewidth decreases with increasedV0. Thed-wave tran-
sition temperatureTd ~dashed lines! is unaffected by changes in
V0. Note that the analytical~lighter dashed line! and numerical
~darker dashed line! results forTd still agree closely at low densitie
in this intermediate-coupling regime. The correspondence betw
the numerical and analytical results forTs ~not shown! continues for
intermediate coupling but is found to improve with increasedV0, or
decreasedTs .
D0*54TV0(
vn

E d2k

~2p!2 H s* ~r ,k!

vn
21jk

2 2
1

~vn
21jk

2!2
@16us~r ,k!u2s* ~r ,k!132ud~r ,k!u2s* ~r ,k!116d* 2~r ,k!s~r ,k!#

2E d2z
z2

2 E d2k8

~2p!2
ei ~k1k8!•z

~2 ivn2jk8!~ ivn2jk!
~cos2uPx

21sin2uPy
2!@s* ~r ,k!1d* ~r ,k!#J , ~4.1!

Ds*52TV1(
vn

E d2k

~2p!2
ak$as above%, ~4.2!

Dd*52TV1(
vn

E d2k

~2p!2
bkH d* ~r ,k!

vn
21jk

2 2
1

~vn
21jk

2!2
@16ud~r ,k!u2d* ~r ,k!132us~r ,k!u2d* ~r ,k!116s* 2~r ,k!d~r ,k!#

2E d2z
z2E d2k8

2

ei ~k1k8!•z

~cos2uPx
21sin2uPy

2!@s* ~r ,k!1d* ~r ,k!#J , ~4.3!
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wheres(r ,k)[(ak /2)Ds(r )2
1
4 D0(r ), d(r ,k)[(bk /2)Dd(r ), u is the angle betweenr andz (5mx̂1nŷ), and the continuum

limit of Eq. ~2.19!,

Pz[2 i
]

]z
1
4p

f0
Az~r !, ~4.4!

acts only on the center-of-mass coordinater . Equations~4.1!–~4.3! can be simplified by making use of the fact th
D0(r )5eDs(r ), wheree depends on temperature and chemical potential. This relation follows from the observation th
~4.1! and ~4.2! are not linearly independent, sinceD0(r ) andDs(r ) have the same symmetry. NearTc the magnitude of the
s-wave component is small; from Eq.~3.1! we infer e'V0I 1 /(11V0I 0/2), whereI 0 and I 1 are defined in Eq.~3.8! and are
evaluated in the weak-coupling and low-density limit in Eqs.~3.13! and ~3.14!. The integrals involving gradients of the ga
functions can be greatly simplified by means of the identity

E d2z x2G0~z,2vn!G
0~z1aW ,vn![E d2k

~2p!2
e2 ik•aW u¹kx

G0~k,vn!u2, ~4.5!

and similarly for integrals involvingy2. Thus,

1

4 S 12
V1e

2

4V0
DDs* ~r !5TV1(

vn

E d2k

~2p!2
ak8

vn
21jk

2H ak8Ds* ~r !2
1

vn
21jk

2 F16ak83uDs~r !u2Ds* ~r !18ak8bk
2uDd~r !u2Ds* ~r !

14ak8bk
2Dd*

2~r !Ds~r !1
D2

16
~sin2kxPx

21sin2kyPy
2!@2ak8Ds* ~r !1bkDd* ~r !#G J , ~4.6!

1

4
Dd* ~r !5TV1(

vn

E d2k

~2p!2
bk

vn
21jk

2H 14 bkDd* ~r !2
1

vn
21jk

2 Fbk3auDd~r !u2Dd* ~r !18ak8
2bkuDs~r !u2Dd* ~r !

14ak8
2bkDs*

2~r !Dd~r !1
D2

32
~sin2kxPx

21sin2kyPy
2!@2ak8Ds* ~r !1bkDd* ~r !#G J , ~4.7!

whereak8[(ak /2)2(e/4).
The appropriate free energy for ad-wave ~or extendeds-wave! superconductor on a tetragonal lattice is17

Fs5Fn1asuDs~r !u21aduDd~r !u21b1uDs~r !u41b2uDd~r !u41b3uDs~r !u2uDd~r !u21b4@Ds* ~r !2Dd
2~r !1Dd* ~r !2Ds

2~r !#

1gsuPW Ds~r !u21gduPW Dd~r !u21gn$@PyDs~r !#* @PyDd~r !#2@PxDs~r !#* @PxDd~r !#1c.c.%1F1
s1F1

d1
h2

8p
, ~4.8!

where higher-order terms

F1
s5hsuDs~r !PW Ds~r !u21gs1uPW 2Ds~r !u21gs2u~Py

22Px
2!Ds~r !u2, ~4.9!

F1
d5hduDd~r !PW Dd~r !u21gd1uPW 2Dd~r !u21gd2u~Py

22Px
2!Dd~r !u2 ~4.10!

will be discussed in detail in Sec. V. In the present work, thes-wave andd-wave order parameters are, respectively, the
functionsDs(r ) andDd(r ). The GL free energy~4.8! implies that ans-wave (d-wave! component is induced whenever the
exist spatial variations of the dominantd-wave (s-wave! order parameter. The magnitude of the ‘‘subdominant’’ ord
parameter is evidently proportional to the coefficientgn of the mixed gradient term. Minimizing and comparing to Eqs.~4.6!
and ~4.7! immediately yields:

as5
1

V1
2

e2

4V0
24T(

vn

E d2k

~2p!2
ak8

2

vn
21jk

2 , ad5
1

V1
2T(

vn

E d2k

~2p!2
bk
2

vn
21jk

2 , ~4.11!

$b1 ,b2 ,b3 ,b4%5T(
vn

E d2k

~2p!2
$32ak8

4, 2bk
4 , 32ak8

2bk
2 , 8ak8

2bk
2%

~vn
21jk

2!2
, ~4.12!

$gs ,gn ,gd%5
D2

8
T(

vn

E d2k

~2p!2
sin2kx

$4ak8
2,22ak8bk ,bk

2%

~vn
21jk

2!2
. ~4.13!

The current density in thexy plane can be obtained either by evaluating Eq.~2.28! in the continuum limit or by minimizing
the free energy~4.8! with respect to the vector potential:
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j5d
4pc

f0
@gdDd* ~r !PW Dd~r !1gsDs* ~r !PW Ds~r !2 x̂gn@Ds* ~r !PxDd~r !1Dd* ~r !PxDs~r !#

1 ŷgn@Ds* ~r !PyDd~r !1Dd* ~r !PyDs~r !#1c.c.#, ~4.14!

where the factord5~layer thickness/layer spacing! is introduced in order to model the layered structure of the cup
superconductors. In the present two-dimensional model,d→0, reflecting the inability of the system to sustain screen
currents. Equations~4.11!–~4.14! are subject to the following boundary conditions:

n•@gdPW Dd~r !1gn~ ŷPy2 x̂Px!Ds~r !#50, ~4.15!

n•@gsPW Ds~r !1gn~ ŷPy2 x̂Px!Dd~r !#50, ~4.16!

wheren is the unit vector normal to the surface of the superconductor.
The coefficients of the GL free energy can be calculated analytically in the same low-density and weak-couplin

employed earlier by settingak'22m/D, bk'22(m1D)cos2u/D, and sin2kx'4(m1D)cos2u/D. Making use of

T(
vn

E d2k

~2p!2
1

~vn
21jk

2!2
'
7z~3!N8

8p2T2
, ~4.17!

we immediately obtain

as52
1

V1
S m

D
1

e

4D
2S 12

T

Ts
D , ad52

1

V1
S m1D

D D 2S 12
T

Td
D , ~4.18!

$b1 ,b2 ,b3 ,b4%54gH S m

D
1

e

4D
4

,
3

8 S m1D

D D 4,2S m

D
1

e

4D
2S m1D

D D 2,12 S m

D
1

e

4D
2S m1D

D D 2J , ~4.19!

$gs ,gn ,gd%5g
vF
2

16H 2S m

D
1

e

4D
2

,2S m

D
1

e

4D S m1D

D D ,S m1D

D D 2J , ~4.20!
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g5
7z~3!N8

p2T2
, ~4.21!

and vF
25D2kF

2/4'D(m1D). From Eqs.~3.13! and ~3.14!
we obtain

e52
4m

D

V0N8ln~T* /T!2V0N8

V0N8ln~T* /T!11
. ~4.22!

The expressions foras andad are only valid near their re
spective critical temperatures. Since the subcritical transi
temperature is much lower than the dominant transition te
perature, the corresponding coefficient for the subdomin
order parameter can be assumed approximately 1/V1 for all
values ofT,Tc @i.e., the contribution of the appropriate in
tegral in either of Eqs.~4.11! will be negligible#. Note that in
the limit V150, V0→2V0, Ds andDd vanish; the relevan
gap equation is therefore Eq.~4.1! with s(r ,k)5D0(r ) and
d(r ,k)50. Then Eq. ~4.8! becomes the two-dimensiona
continuum BCS GL free energy

Fs
BCS5Fn2

1

V0
S 12

T

Ts
D uD0~r !u21

7z~3!N~0!

16p2T2
uD0~r !u4

1
7z~3!N~0!

32p2T2
vF
2 uPW D0~r !u21

h2

8p
. ~4.23!
n
-
nt

The GL coefficients~4.18!–~4.20! of the free energy~4.8!
imply that at the bottom of the band (m52D) the d-wave
component vanishes, yielding a pures-wave superconductor
while at half-filling (m50) only thed-wave component re-
mains ~with the caveat that these analytical results beco
decreasingly valid near half-filling!. At densities intermedi-
ate between these two extremes all the GL coefficients
nonzero, leading to coexistingd-wave ands-wave order
paramaters for any temperatureT,Tc and finite external
magnetic field. For type-II superconductors described by
~4.8! in fields just aboveHc1, it has been found

14,19,16that the
subdominant order parameter is nucleated in the vicinity o
magnetic vortex core whenever the coefficient of the mix
gradient termgn is nonzero. Moving in thex5y direction
from the center of the vortex, the induced subdominant or
parameter reaches a maximum, and then decreases alg
ically; there exist extra nodes in thex50 or y50 directions.
The maximum amplitude attained by the subdominant or
parameter nucleated in the vortex core is given by16

Ds~Dd!
max

Dd~Ds!
bulk'

3

16

gn

gd~s!

uad~s!u
as~d!

'
3

16S 12
T

Td~s!
D gn

gd~s!
,

Td~s!.Ts~d! , ~4.24!

whereDs
max is the maximum value of the induced subdom

nant s-wave order parameter compared with the magnitu
of the critical d-wave order parameterDd

bulk far from the
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vortex core and vice versa. The estimates~4.24! are reliable
as long asDs(Dd)

max,Dd(Ds)
bulk/4, which is always the

case sufficiently nearTc . SinceDd(Ds)
bulk;A(12T/Tc),

the above equations indicate that

Ds~Dd!
max;~12T/Tc!

3/2. ~4.25!

The subdominant order parameter must decay more rap
near the transition temperature since it is induced thro
spatial variations of the critical order parameter.

From Eq.~4.20!, we have

gn

gd
'U m1De/4

m1D U, Td.Ts , ~4.26!

gn

gs
'
1

2 U m1D

m1De/4U, Ts.Td . ~4.27!

The gradient coefficient ratios~4.26! and~4.27!, which gov-
ern the magnitude of the subdominant order, are compa
with the appropriate numerical results in Fig. 4 for the sp
cial caseV050. The analytical results capture the essen
physics in their regime of applicability, i.e., at low densiti
and weak to intermediate coupling~better quantitative agree
ment at intermediate coupling can be obtained by includ
in ak , bk , etc., terms higher order injk). Near half-filling
~zero filling!, whered-wave (s-wave! superconductivity is
most stable,gn /gd (gn /gs) grows with increased coupling
As a result, a significant component of the subdominant
der parameter would only exist for stronger coupling in the
two density regimes. It should be kept in mind, however, t
as the on-site repulsionV0 ~and thereforee) increases from
zero, the magnitude of thes-wave component is suppresse
for all densities; ad-wave subcomponent would be there
enhanced in a bulks-wave superconductor. The magnitud
of the subdominant order parameter can be significa

FIG. 4. The ratio of the mixed gradient coefficientgn to the
ordinary gradient coefficient of the dominant order parametergs or
gd is given as a function of chemical potentialm. The solid and
dashed lines correspond to numerical and analytical results, res
tively. The solid lines become progressively darker asV1 is de-
creased from 3t to t in increments oft; V0 is taken to be zero. The
discontinuity reflects the transition from ans-wave tod-wave bulk
superconductor; the dashed line assumes that this occurs
m521.65t. All values are determined at the appropriateTc .
ly
h

ed
-
l
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larger even for weak coupling at intermediate densities, ho
ever; not only is the gradient coefficient ratio enhanced,
also the ratiouadomu/asub sinceasub→0 as the subdominan
superconducting instability is approached.~Figure 5 in the
following section provides further quantitative details.!

There are in general two characteristic length scalesjs
and jd governing spatial variations of thes-wave and
d-wave order parameters in the vicinity of a vortex co
respectively. NearTc , however, the induced subdomina
order parameter is negligible compared to the critical or
parameter by Eq.~4.25!. Keeping only terms in the free en
ergy ~4.8! involving the dominant order parameter, the s
perconducting coherence lengthsj(T) and penetration
depthsl(T) nearTc can be crudely estimated:

js~d!~T!5A gs~d!

uas~d!u
, ~4.28!

ls~d!~T!5A 2f0
2b1~2!

d~4p!3gs~d!uas~d!u
, ~4.29!

where the flux quantumf05hc/e and both lengths are give
in units of the lattice constanta. Inserting the relevant ana
lytical expressions from Eqs.~4.18!–~4.20!, valid in the low-
density, weak- to intermediate-coupling limit, we obtain

js~T!'S vF
2pTDA7z~3!V1N8

2~12T/Ts!
,

jd~T!'S vF
2pTDA7z~3!V1N8

4~12T/Td!
, ~4.30!

ec-

for

FIG. 5. The relative magnitude of the maximums-wave com-
ponent induced in the vortex coresmax/dbulk is calculated numeri-
cally and given as a function of hole density^nh& for temperatures
T50.9Td . The dashed line, corresponding to results for the A
model, indicates that the induceds-wave component is largest nea
optimal doping (̂nh&;20%). Results for the EH model are give
for comparison, where in the hole representation^nh&50 corre-
sponds tom50; solid lines~in order of decreasing boldness! cor-
respond toV15t,2t,3t with V050, while the dotted line is for
V153t,V054t.
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ls~T!'A f0
2V1

p3dvF
2~12T/Ts!

,

ld~T!'A 3f0
2V1

4p3dvF
2~12T/Td!

. ~4.31!

Note that the penetration depths are effectively infinite for
isolated layer. The magnitudes of the coherence lengths
be estimated for parameters stabilizing eithers-wave or
d-wave superconductivity~depending on the magnitude o
V0). For example, withm522.0t, Tc;0.2t (V1;3t), and
T50.9Tc , we obtainjd;6a and js;8a for d-wave and
s-wave superconductors, respectively. The coherence len
tend to become progressively shorter with increased elec
density.~Figure 6 in the next section gives further details!

It is useful to compare the GL free energy~4.8! with that
derived by Renet al.19 Defining s[2(m/D1e/4)Ds and
d[@(m1D)/D#Dd ~we drop reference to the center of ma
coordinater for convenience!, we obtain

Fs5Fn2S 12
T

Ts
D usu22S 12

T

Td
D udu214g$usu41 3

8 udu4

12usu2udu21 1
2 ~s* 2d21d* 2s2!%1g

vF
2

16
$2uPW su2

1uPW du21@~Pys!* ~Pyd!2~Pxs!* ~Pxd!1c.c.#%

1
h2

8p
. ~4.32!

While the various coefficients appearing in the above f
energy appear to be similar to those found by Renet al., one
important distinction must be emphasized. The above
energy~4.32! mixes ad-wave order parameter with anex-
tended s-wave order parameter. The analytical results s
gest that only near half-filling (m→0) does the contribution
of Ds to s vanish. At these densities, however, the appro

FIG. 6. The numericald-wave Ginzburg-Landau coherenc
length jd(T), measured in units of a lattice spacing, is shown
T50.9Td as a function of hole concentration^nh&. The dashed line
corresponds to the AvH model while the solid lines~in order of
decreasing boldness! correspond to the EH model forV15t,2t,3t
andV050.
n
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mations employed in the microscopic calculation above
not strictly valid; indeed, the numerical results clearly ind
cate the existence of a nonvanishings-wave component for
T,Td even in the absence of an on-site interaction~see Fig.
4!. For any other density~except m→2D, where the
d-wave component vanishes! at temperatures belowTc , both
Ds andDd will be nonzero in the vortex core since both a
generated by the same nearest-neighbor pairing interac
V1. There is therefore no limit in which the present mod
reduces to that of Renet al., i.e., where an isotropic
s-wave order parameter derived from a repulsive on-site
teraction is alone nucleated by spatial variations of a do
nantd-wave order parameter. The technical difficulty whic
necessitated the implementation of the Pade´ approximation
in Ref. 19 was due to the indistinguishability ofD0 andDs in
the continuum. This problem can always be avoided by st
ing with a lattice model which gives rise to ad-wave order
parameter, and then taking the appropriate continuum lim

B. Antiferromagnetic–van Hove model

Neglecting fourth-order derivatives, the equations for t
gap functions in the thermodynamic limit of the AvH mod
from Eq. ~2.23! are

Ds*5
TV

2 (
vn

E d2k

~2p!2 H ckDs* ~r !

vn
21jk

2

2
1

4~vn
21jk

2!2
@ck

2uDs~r !u2Ds* ~r !

12ckdkuDd~r !u2Ds* ~r !1ckdkDd*
2~r !Ds~r !#

2E d2z
z2

2 E d2k8

~2p!2
ei ~k1k8!•z

~2 ivn2jk8!~ ivn2jk!

3@PW 21sin2u~Px
22Py

2!#@ckDs* ~r !1ekDd* ~r !#J ,
~4.33!

Dd*5
TV

2 (
vn

E d2k

~2p!2 H dkDd* ~r !

vn
21jk

2

2
1

4~vn
21jk

2!2
@dk

2uDd~r !u2Dd* ~r !

12ckdkuDs~r !u2Dd* ~r !1ckdkDs*
2~r !Dd~r !#

2E d2z
z2

2 E d2k8

~2p!2
ei ~k1k8!•z

~2 ivn2jk8!~ ivn2jk!

3@PW 21sin2u~Px
22Py

2!#@ekDs* ~r !1dkDd* ~r !#J ,
~4.34!

r
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such that

ck511cosk1cosk21cosk11cosk2 , ~4.35!

dk511cosk1cosk22cosk12cosk2 , ~4.36!
e
t
o
g
-

d

f
-
ulk

ie

s
te
ek5sink1sink2 . ~4.37!

From these, and making use of Eq.~4.5!, we can immedi-
ately obtain the appropriate free energy~4.8! where
$as ,ad%5
1

V
2
1

4E d2k

~2p!2
$ck ,dk%

jk
tanhS jk

2TD , ~4.38!

$b1 ,b2 ,b3 ,b4%5
T

16(vn

E d2k

~2p!2
$ck

2 ,dk
2 , 4ckdk ,ckdk%

~vn
21jk

2!2
, ~4.39!

$gs ,gd%5T(
vn

E d2k

~2p!2
sin2k1~ t1112t20cosk2!

21sin2k2~ t1112t20cosk1!
2

~vn
21jk

2!2
$ck ,dk%, ~4.40!
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gn522T(
vn

E d2k

~2p!2

3
ek
2~ t1112t20cosk1!~ t1112t20cosk2!

~vn
21jk

2!2
. ~4.41!

Note thatb354b4, as was found for the EH model~4.32!
and in Ref. 19. This generic feature of the free energy~4.8! is
a direct consequence of the symmetry between thes-wave
and d-wave order parameters and the underlying bond~or
directionally dependent! gap functions from which they ar
derived. Due to the complicated angular dependence of
AvH dispersion~2.17!, the above expressions above are n
analytically tractable, however. At optimal hole dopin
(^nhole&512^nelectron&;0.2), thed-wave transition tempera
ture found using Eq.~3.11! is ;100 K, and the coefficients
of the GL free energy have been evaluated numerically:

Fs5Fn211.3S 12
T

Td
D uDdu2110.8uDsu2138.7uDsu4

15720uDdu41603@ uDsu2uDdu2

1 1
4 ~Ds*

2Dd
21Dd*

2Ds
2!#12.69uPW Dsu2

17.38uPW Ddu211.50@~PyDs!* ~PyDd!

2~PxDs!* ~PxDd!1c.c#1
h2

8p
, ~4.42!

where the coefficientsb andg have been evaluated atTd .
The maximum value of thes-wave component nucleate

in the vortex core, calculated numerically using Eqs.~4.24!,
~4.11!, ~4.13!, ~4.38!, and ~4.40!, is shown as a function o
hole density in Fig. 5. Evidently, in the AvH model the in
duceds-wave component can be at most 5% of the b
d-wave value @corresponding to^nh&;25% and T→0,
where it is assumed thatad(T)}(12T/Td),;T#. This is in
spite of a large temperature-independent gradient coeffic
ratio (gn /gd;20% near optimal doping! that is found to
increase monotonically with doping up to the largest den
ties studied. By contrast, with a suitable choice of parame
he
t

nt

i-
rs

~low T,V0, large ^nh&,V1), the EH model can allow for
smax/dbulk;(20–30!%. As the on-site repulsion is increase
however, the induceds-wave component is suppressed. T
reduction in the magnitude of thes-wave component in the
‘‘overdoped’’ AvH model may be partly due to effectiv
on-site repulsion, built into the Hamiltonian by constrainin
holes to move within a single spin sublattice of an antifer
magnetic background.

The GL d-wave coherence lengthj(T), calculated nu-
merically with the aid of Eq.~4.28!, is shown as a function o
hole concentration forT50.9Td in Fig. 6. As expected,
j(T) becomes shorter with decreasing^nh&. For hole densi-
ties up to 30% filling, the AvH model leads t
j;a/A12T/Td wherea is a lattice spacing, in agreemen
with experiments for the cuprates.33 The EH model yields
similar d-wave coherence lengths forV152t,3t. These short
jd strictly violate the initial GL condition that the gap func
tions be more slowly varying than the Fermi waveleng
kF

21;1a–2a, the characteristic length scale of the fermion
excitations. The close agreement, however, between the
sults of integrating Eqs.~4.8! and ~4.14! ~Refs. 14, 19, and
16! and numerical investigations of short-jd superconductors
within Bogoliubov–de Gennes theory13 indicates that the GL
equations derived thus far capture at least some of the es
tial physics.

V. EXTENSION OF THE GL EQUATIONS

The current and magnetic field distribution around an i
lated vortex of ad-wave superconductor is found to be fou
fold symmetric whenever ans-wave component is induce
in the vicinity of the vortex core.16,19 It has been recently
shown, however, that a similar anisotropy results from
inclusion of higher-orderd-wave gradient terms in the GL
free energy ~4.8! even in the absence of ans-wave
component.18 The connection between these observatio
can be made apparent by integrating out of the free ene
the degree of freedom associated with the subdominant o
parameter. Given a bulkd-wave superconductor, for ex
ample, Eq.~4.8! can be minimized with respect toDs* (r ),
yielding to lowest order in (12T/Td)
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Ds~r !52
gn

as
~Py

22Px
2!Dd~r !. ~5.1!

Note that sinceDd(r ) varies on the length scalejd , we im-
mediately obtainDs;gn /asjd

2;(12T/Td)
3/2 in agreement

with Eq. ~4.25!. Upon substitution of Eq.~5.1! into Eq.~4.8!,
the leading correction due to the induceds-wave component
will be of the form (2gn

2/as)u(Py
22Px

2)Ddu2. The free en-
ergy for an inhomogeneousd-wave superconductor then be
comes

Fs5Fn1aduDd~r !u21b2uDd~r !u41gduPW Dd~r !u2

1hduDd~r !PW Dd~r !u21gd1uPW 2Dd~r !u2

1Fgd22
gn
2

as
G u~Py

22Px
2!Dd~r !u21

h2

8p
, ~5.2!

which clearly indicates that the induceds-wave order param-
eter breaks rotational symmetry in precisely the same wa
a fourth-orderd-wave gradient term.

In order to assess the relative importance of the indu
subcritical component in eliciting anisotropy, the coefficien
of the higher-order terms included in Eq.~4.8!, andgd(s)2 ,
in particular, must be determined microscopically. The de
vation of hs andhd appearing in Eqs.~4.9! and ~4.10! re-
quires extending the second term on the right-hand sid
at

rd
n

s

um
tr

te
ril
as

d
s

i-

of

Eq. ~2.12! to include gradients of the gap functions. Appl
ing similar techniques to those described in previous s
tions, one obtains for the EH model

$hs ,hd%
EH524T(

vn

E d2k

~2p!2

jk
2~¹kx

jk!
2

~vn
21jk

2!4
$16ak8

4,bk
4%

'2
31z~5!N8vF

2

32p4T4 H S m

D
1

e

4D
4

,
3

8 S m1D

D D 4J ,
~5.3!

where the analytical solution is valid in the continuum lim
i.e., at low electron densities. For the AvH model,

$hs ,hd%
AvH522T(

vn

E d2k

~2p!2

3
jk
2@~¹k1

jk!
21~¹k2

jk!
2#

~vn
21jk

2!4
$ck

2 ,dk
2%.

~5.4!

The coefficients of the fourth-order gradient terms can
derived by evaluating in the thermodynamic limit terms
Eqs.~2.18! and ~2.23! hitherto ignored. After some manipu
lation, one obtains
nalyti-
$gs6 ,gd6%EH52
T

48(vn

E d2zE d2kd2k8

~2p!4
ei ~k1k8!•z

~2 ivn2jk8!~ ivn2jk!
x2~x263y2!$4ak8

2,bk
2%,

$gs6 ,gd6%AvH52
T

48(vn

E d2zE d2kd2k8

~2p!4
•••~r 11r 2!

2@~r 11r 2!
263~r 12r 2!

2#$ck ,dk%, ~5.5!

where the ellipsis represents thek-dependent part of the integrand. The fourth-order gradient terms can be evaluated a
cally in the EH model for weak to intermediate coupling and low densities:

$gs1 ,gd1 ,gs2 ,gd2%'2
31z~5!N8

256 S vFpTD 4H 32 S m

D
1

e

4D
2

,
5

8 S m1D

D D 2, 0,28 S m1D

D D 2J . ~5.6!
r or

y

to

-

e

The analytical results obtained for the EH model indic
that all the higher-order terms in the free energy~4.9! and
~4.10! have a negative sign compared with the second-o
terms. The overall sign of these higher-order terms is of
consequence, however, provided the order parameters
sufficiently small and slowly varying; while both condition
will be satisfied near Tc , we also find gs(d)1 /
gs(d);(vF /pT)

2→0 asm→2D. At low densities, the EH
model predicts a vanishinggs2 coefficient, in accordance
with the expectation that the free energy of a continu
s-wave superconductor should have spherical symme
Furthermore, gd1 /gd255/2, as was found by Ichioka
et al.18

The analytical results for the EH model cannot adequa
determine whether anisotropy in the free energy is prima
e

er
o
are

y.

ly
y

due to the existence of the subdominant order paramete
fourth-order gradients, however. For a bulks-wave super-
conductor, the inducedd-wave order parameter clearl
breaks circular symmetry sincegnÞ0 for m.2D while
gs250. Yet stronger coupling or lattice effects could lead
a nonvanishinggs2 which could compete with thegn

2/ad

coefficient in the free energy~5.2!. Assuming that
as'1/V1, we find for a bulkd-wave superconductor

gn
2

asgd2
'2

196z~3!2V1N~0!

31z~5! S m

D
1

e

4D
2

, ~5.7!

which is of order2V1 /t. This result indicates that the ‘‘sub
critical’’ coefficientgn

2/as and the ‘‘asymmetric’’ coefficient
gd2 give similar contributions to the anisotropy. It should b
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emphasized, however, thatd-wave superconductivity is no
favored at densities for which these analytical results
strictly valid.

The ratiosgn
2/ad(s)gs(d)2 have been calculated numer

cally for T5Tc and are shown in Fig. 7; virtually indistin
guishable results have been obtained for all temperat
0.5Tc<T<Tc ~not shown!. The numerics make clear that th
contribution to anisotropy of the subcritical coefficient is
most comparable to the asymmetric coefficient for most d
sities and coupling strengths. Furthermore, since both c
ficients have the same sign, their contributions to the as
metric gradient term in the free energy~5.2! are in fact
competing. Only for densities very near the crossover fr
bulk s-wave tod-wave condensation~or vice versa! in the
EH model, or for large hole densities in the AvH model, do
the subcritical coefficient dominate; in this regimea→0.

It is not presently clear if the overall sign of the anis
tropic fourth-order gradient term in the free energy~5.2! has
any physical significance. Previous microscopic investi
tions of the EH model within the context of Bogoliubov–d
Gennes theory13 demonstrated marked anisotropy in t
structure of the criticald-wave component near the core
an isolated vortex. Parameters chosen correspond to a
stantial s-wave component nucleated near the vortex co
i.e., gn

2/as@gd2 , and therefore a large negative coefficie
for the asymmetric gradient term. Recent work,34 however,
indicates that this anisotropy persists even for densities
proaching half-filling, wheregd2 dominates and the overa
sign of the gradient term is positive.

For completeness, the coefficientshs(d) andgs(d)1 have
also been determined numerically for both the EH and A
models. Both coefficients are always negative and in gen
it is found that for the EH modelhs(d);10gs(d)1
;100ugs(d)2u, and gs(d)1 is of the same order asgs(d) at
Tc . For the AvH model at optimal doping andTc , we obtain

FIG. 7. The ratiogn
2/ad(s)gs(d)2 is shown as a function of elec

tron concentration̂ne& for T5Tc . Solid lines~in order of decreas-
ing boldness! correspond to the EH model forV151.3t,2t,3t with
V050, while the dotted line is for the EH model withV153t,
V054t. The dashed line gives the results for the AvH model in
electron notation such that^ne&512^nh&. To the left~right! of the
arrow is showngn

2/adgs2 (gn
2/asgd2) corresponding to bulk

s-wave (d-wave! superconductivity.
e

es

t
-
f-
-

s

-

ub-
,
t

p-

al

Fs
AvH5Fn211.3S 12

T

Td
D uDd~r !u215720uDd~r !u4

17.38uPW Dd~r !u2216 300uDd~r !PW Dd~r !u2

216.5uPW 2Dd~r !u212.65u~Py
22Px

2!Dd~r !u21
h2

8p
.

~5.8!

The relatively large values ofhs(d) and gs(d)1 compared
with the magnitude ofgs(d) clearly demonstrate that the G
theory derived herein is only strictly valid quite nearTc .

VI. SUMMARY AND DISCUSSION

The primary objective of the present work has been
derive the Ginzburg-Landau equations for ad-wave super-
conductor using two microscopic lattice models which ha
been previously used to describe the high-Tc oxides: the ex-
tended Hubbard model and the antiferromagnetic–van H
model. In so doing, it has been possible to quantitativ
investigate how the lattice and external magnetic field g
erate, and govern the interplay between, coexistings-wave
andd-wave order parameters. In addition, the relative m
nitudes of the various GL coefficients, as well as their te
perature and density dependence, have been ascertaine

Phenomenological GL theory has enabled much prog
to be made recently toward understanding the structure
isolated vortices and the vortex lattice ford-wave supercon-
ductors. Of particular current interest is the theoretical p
diction by Franz and co-workers14,16 of an oblique structure
for the vortex lattice nearHc2; i.e., the Abrikosov lattice
would be intermediate between the usual triangle an
square. The degree of ‘‘obliqueness’’ is mostly dependen
the gradient coefficient ratiogn /gd . The coefficientgn gov-
erns the extent ans-wave component is induced by spati
variations of the dominantd-wave order parameter, an
characterizes the degree of fourfold symmetry in the f
energy. Forgn /gd50, the s-wave component vanishes
yielding a triangular lattice. The Abrikosov lattice deform
continuously away from a triangle asgn /gd is increased; for
gn /gd50.45, the angle between primitive vectorsf576°.
For gn /gd;0.6 and higher, the flux lattice is square.

The present work demonstrates that microscopic mod
used to describe the high-Tc oxides can predict a significan
admixture of ans-wave order parameter in the mixed state
a d-wave superconductor. One consequence is the devia
of the flux lattice from that of a triangle. It has been foun
that within a broad and experimentally relevant parame
space both microscopic models yield a gradient coeffici
ratio gn /gd;0.1–0.4. This is consistent with two recent e
perimental observations35,36 for YBCO of flux lattices with
f'73° and 77°. It is not yet clear, however, whether t
a-b anisotropy associated with the orthorhombicity
YBCO is alone sufficient to account for the distortion in th
flux lattice.37

It is presently uncertain whether thes-wave component
nucleated in the vicinity of vortex cores is in fact required
induce a significant deviation from a triangular vortex lattic
It has been shown that a fourth-order gradient term in
d-wave order parameter also introduces fourfold symme



th
a
d

pr
m
o
rd

ch

he

a
e

y
nd
e
ra
a

G

55 573MICROSCOPIC DERIVATION OF THE GINZBURG- . . .
into the free energy; over much of the phase diagram,
contribution of this term to anisotropy is comparable to th
of the s-wave component. This important issue will be a
dressed in future work.

Wherever possible, comparison has been made with
vious derivations of the GL coefficients within continuu
models. It should be emphasized, however, that lattice m
els not only provide considerably more information rega
ing the density and coupling-dependence ofs-wave and
d-wave admixture in the vortex core, but also avoid the te
nical difficulties~i.e., the application of the Pade´ approxima-
tion! encountered in continuum models. In particular, t
lattice models clearly indicate that boths-wave andd-wave
components must always coexist in the vortex core for
temperatures belowTc , regardless of the symmetry of th
bulk order parameter.
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APPENDIX: COEFFICIENTS OF THE GL
GRADIENT TERMS

The coefficients of the gradient terms appearing in the
equations for the gap functions~2.18! and~2.23! are, for the
EH model,
g,

.Z

nd

g,

s

n

e
t
-

e-

d-
-

-

ll

,

s-
l
nd

L

ex,1
EH5 1

2 umu~ umu21!, ~A1!

ey,1
EH5 1

2 unu~ unu21!, ~A2!

ex,2
EH52 1

24 umu~ umu21!~ umu22!~ umu23!, ~A3!

ey,2
EH52 1

24 unu~ unu21!~ unu22!~ unu23!, ~A4!

exy,2
EH 52 1

4 umu~ umu21!unu~ unu21!. ~A5!

For the AvH model, we obtain

ex,1
AvH5 1

2 @ umu~ umu21!1unu~ unu21!12mn#; ~A6!

ey,1
AvH5 1

2 @ umu~ umu21!1unu~ unu21!22mn#; ~A7!
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12@~ umu21!~ umu22!1~ unu21!~ unu22!#%, ~A8!
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