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Nonlinear friction in the periodic stick-slip motion of coupled oscillators
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We suggest that coupling-induced orbit hopping is one possible mechanism for stick-slip dynamics. This
mechanism is dominant in the highly nonlinear regime. Our example is a one-dimensional array of nonlinearly
coupled oscillators subject to a strong periodic potential. The nonlinear dynamics leads to a fundamentally
different friction law, in particular when the driving force is barely larger than the minimal force needed to start
motion. We find a dramatic increase in the friction coefficient of the array compared to that of a single
uncoupled oscillator, even though the same constant fbriseapplied to each oscillator in the array. The
sliding friction coefficient is found to diverge asy = (K—KC)*”Z, where k; is the critical value of the
coupling constank. The coefficientyn also grows linearly with the number of elements in the afbgand
shows dynamical transitions as the external fofceapplied to each of the oscillators is increased.
[S0163-18207)07107-3

I. INTRODUCTION potentialU(x;) and interact with each other via a pairwise
potential V(x; —X;). Equation(1) has a very broad range of
Friction between materials is of fundamental importanceinterpretations; it is widely used and, depending on the
for many applications in pure and applied scientésinder-  choice of the parameters and the potentials, describes various
standing the basic mechanisms occurring at the interface @fhysical systems. This equation has been used to describe
two materials brought into close contact is significant for athe dynamics of an adsorbate system on a sutféke linear
wide range of technological applications, from adhesion tqriction coefficient is then related to the noise and the tem-
wear and lubrication. perature via the fluctuation-dissipation theojem a macro-

The limit of small velocities leads to a special type of scqpic variation Eq(1) describes the motion of a set bf
dynamics called stick-slip motion, which is of particular in- coupled oscillators subject to a periodic potentidhe

terest for many applications including friction, lubrication of Frenkel-Kontorova model: this model has been studied in
1 ,2 ’

Zxatg:;ﬂjnt ée:gw;?gi t?:grzl'c?éa??r?o daéaligcgﬁfgsergf relation to commensurate-incommensurate phase tran-
P ' oo . = ; . sitions). An example of Eq(1) applied to Hamiltonian dy-
spring-block systenfsindicate that stickslip motion arises namics is given in Ref. 10 and is related to energy transfer in

mainly in situations in which the average velocity of theI 1D ﬁ . q b q iodi bst ?y
system is low. The transition from creep motion to stick-slip ong chains adsorbed on a periodic substrate.
We study a class of models following from Ed,) in the

and sliding motiofis of interest, especially in small systems . : LS ) .
such as nanostructures, in motion involving boundary lubri2bsence of noise, to obtain periodic stick-slip behavior. We

cation, and in other related phenomena. The dynamicdl@ve developed a simple formalism to reduce the complexity
mechanisms leading to stick-slip motion are not yet clear an@f these equations and to calculate the velocity and the fric-
studies of these mechanisms are important in understandiritpn coefficient of the elements in the array for a stick-slip
the basic principles of friction at a wide range of length motion. This formalism is in good agreement with our nu-
scales from atomftto macroscopié. merical simulations and can be used for both linear and non-
In this work we concentrate on a possible mechanism fofinear interparticle potentials. Already in the lowest order,
friction where the adsorbate-substrate interaction is stronfpr which dynamics of the array can be described by an
and consider the contribution of the nonlinearity to stick-slipeffective single-oscillator equation, our analytical predictions
motion. We study a class of nonlinear systems: a oneshow very good agreement with the numerical solution.
dimensional(1D) chain of nearest-neighbor coupled oscilla-  The sliding friction coefficient strongly depends on the
tors, all subject to a strong nonlinear periodic potential anceffective strength of the nonlinear potent{@thich is mea-

all driven by the same external force. sured as the ratio of the time average of the nonlinear term
In the studies of friction one possible starting point is thegu/x to the time average of each one of the linear tegms
equation of motion or X). When this nonlinear contribution is higfor low val-
ues of the average velocjtyand the dynamics of the single
. : au oV oscillator is more influenced by the viscosity term than by
mx+yX, ==~ o thité, (D) the inertia term(effectively overdamped situatignthe fric-

J J

tion coefficientx,/f diverges agx—«,) 2 and grows lin-
wherey; is the coordinate of thgth oscillator,m is the mass,  early with the number of particles in arrdy; at high driving
yis the linear friction coefficient], is the external force, and force the friction coefficient is equal to the linear friction
¢ is the noise. The oscillators are subjected to a periodicoefficienty (the same as for a single uncoupled oscillator
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Thus the coupling of the elements into an array, in a highly ) ) . K
nonlinear regime, leads to a dramatic increase in the friction Xj+yxjt+sinx;=f+ 8 {exd — B(Xj+1—X))]
coefficient.
This paper is organized as follows. In Sec. Il we present —exd —2B8(Xj+1— X)) 1}
the theory valid in the limit of small coupling. In Sec. Il we
develop an approximate approach to calculate the nonlinear _ K {exd — B(X—%; )]
. . . . j j—1
friction for the intermediate range of couplings. In Sec. IV B

we present the numerical results and compare them with our

analytical predictions. A summary is given in Sec. V. Fi- —exd —2B(x =%} )
nally, our theoretical approach is expanded upon in AppenAs 3—0 we obtain the linear version of E¢B),

dixes A and B.

kj‘f"}/).(j‘f'Sian:f"‘K(Xj+1_2Xj+XJ_1), (4)
while ask=0, the dynamics of the chain reduces to the dy-
Il. EFFECTIVE SINGLE-OSCILLATOR DYNAMICS namics ofN uncoupled nonlinear oscillators,
We consider a variation of Eql), assuming a simple $'<j+y5<j+sinxj=f. 5)

periodic substrate, zero misfit length, and zero noise. Equ

tion (1) can then be written in the dimensionless form aEquatlon(S) has both a "stick” solutionf —sinx=0 and a

periodic “slip” solution x(t)~wt+ ¥ (wt) [where {wt

+2m7) =i wt)].
p In this section we discuss stick-slip dynamics of the chain
Xi+ X+ Fo(x)=f+ — [F2(B(X;+1— X)) when the co_upling_ constant is smék<<1). We are looking _
B for a stick-slip motion; consequently, we focus on the family
—Fa(B(x;— ;- )], ) of wave-propagating solutions defined by

X()=x(t=7)+X(t+]7), (®)

wheref is the applied forcdthe same for all oscillatofs  where 7 is a characteristic time scale for slip to be propa-
Fi(x;,) represents the periodic potential force gated across the array. This kind of dynamics may offour
[Fi(x+2m)=F1(X)], and («/BIFAB(X;+1—X;))] is the instance, in Eqs(3) and (4)] when we initially excite just
nearest-neighbor interaction force between the oscillators asne oscillatofxy(0) =X, andxy(0)=X,], while all the oth-
sumed to be linear at small extensidiis(x) —x asx—0]; ers are initially at rest, i.exj(O)zxj(O):O, ji=1,23....N
« is the nearest-neighbor coupling in the array ghis the —1. The excited oscillator initiates a wave propagating
nonlinearity parametet8 ! is the range over which the across the array in a “falling dominos” type of motion to-
nearest-neighbor coupling is effectively lingaVe consider wards the other end of the array, which is then reflected
both periodic and free-end boundary conditions. back, moving in the opposite direction towards the initially
As a specific example, we will consider Morse interpar-excited oscillator. To demonstrate this stick-slip motion, we
ticle interaction and sinusoidal substrate potential, whictpresent in Fig. 1 the positiox,s and the velocity of the 25th
leads to the equations of motion oscillator for an array oN=50 oscillators interacting via
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| FIG. 2. Time trace of the ve-
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nonlinear Morse potentia[€q. (3)]. The time serie$Fig. 1) 24l
clearly indicate the existence of two different types of dy- V=T (8)

namics: one that is virtually quiescent and the other one
showing a fast 2 jump towards the next potential well. To The nonlinear friction coefficieny is then defined as
contrast the dynamics of the coupled chain with that of the
single uncoupled oscillator, we present in Fig. 2 time series f fTn
of the positionx and the velocityx of the single uncoupled =1, YT 2mly 1
oscillator (showing periodic oscillatory motion

The stick-slip dynamics of the chain can be understoodo emphasize the nonlinear contribution to fricti@t a high
based on the following argumenfeere we present an ex- driving force we expect;—0). Note that since the average
ample for the sinusoidal periodic potentfy(x;) =sinx;]. If velocity can be expressed in terms of the characteristic time
fmin<f<1 (f i, is the minimal value of the force necessary 7 as
to obtain a nonzero average velocity solujiotwo distinct
solutions are possible, depending on initial conditions. The _ 2_7T| (10)
first is the fixed point, defined by sis f. This solution cor- T mNr
responds to the static solution,=0 when all the particles in ) L .
the chain are inside their potential wells. The second solutioff’€n: Provided the characteristic time is independent of
is the limit cycle, corresponding to a running solutieg>0, _boundary conditions, we would expect thg average velocity
where the particles hop over the potential maxima. We starlf’ the presence of free-end boundary conditions to be exactly
with the initial conditions in which all except one of the half the value for periodic boundary conditions.

oscillators are stuck in their potential wells and have zero Ve find that for given values of the external fortand
velocities D<J-(0):5<j(0)=0], while just one oscillatofthe the linear friction coefficienty, there is a critical value for

rightmost oscillato =N) is given a finite displacement and th€ coupling constank, below which the linear wavede-
a finite velocity. This right-most oscillator will initiate the [In€d by EA.(6)] will not propagate across the array. Here we
motion of its neighbors in a chainlike dynamics: each oscil-Will focus on the behavior of the chain in the close vicinity
lator will make a fast &l flip corresponding to a jump be- ©Of this critical coupling ask—«;. At k=« the motion is

tweenl neighboring potential wells and will then stay quies- 'ocalized: at each moment effectively only one oscillator
cent for a long time interval. moves, driven by the force applied from its neighbors. This

The period of oscillations obeys, in general, force can therefore be approximated to a high degree of ac-
curacy as a constant by assuming,,=Xy+27 and
Ty=mNr, (7)  Xj-1=Xo, Wherexo=F  (f ), the stable fixed point of the
single uncoupled oscillatothere we have takeh=1). We
wherem=1,2. For periodic boundary conditions we would note that the localization of motion cannot be obtained if the
expectm=1, thusTy=Nr; for free-end boundary condi- linear friction coefficienty is small enough, i.e., in under-
tions we would expecin=2, thusTy=2Nr. Therefore, as damped situation where the effect of inertia is strong. On the
the average velocity is defined y=Xx,,, its value can be other hand, the limit of overdamped dynamigs>1) may
expressed in terms of the peridg, during which the oscil- not lead to a stable propagating wave solution described by
lator position changes by : Eq. (6).1* Thus, in what follows, we consider the case of

(€)



5494 Y. BRAIMAN, F. FAMILY, AND H. G. E. HENTSCHEL 55

effectively overdamped array where there exist stable lineaand, in the leading order, the average velocity scales as
wave solution Eq. (6)] and the damping coefficient of each (k—«,)*2 Consequently, the nonlinear friction coefficient
single oscillator is high enough to ensure the localization ofliverges agx—«.) 2 and is given by the expression
motion in the vicinity of k~xk,.*?

We have developédan n-cluster approximation to solve mNf [ 1
the equation$Eq. (2)], which can be applicable for the kind 7= %0 Na—cosif (KK -1 (A7)
of dynamics described above. The main idea in our approach
is thatn coupled oscillators are treated as being in the pres- Next consider the nonlinear Morse interaction potential
ence of a force generated by the remaining quiescent osciénd the sinusoidal substratEg. (3)]. In this case
lators assumed to take the valuggn=Xo+27 andxer=x,  Fi(X)=six and Fy(x) =exp(—x)—exp(—2x), and using
[xo=F Il(f )], representing a traveling wave moving Egs.(13) and(14) we can find an expression for the period
through the array from right to left. In the lowest-order ap-of the oscillations. We need to calculaf'(x.,x;) and

proximation(n=1) we obtain JIF (X.,kc)dk for the Morse potential and these are given by
Eqgs.(A26) of Appendix A.
. K The main effect of the nonlinearity in the interacti@ris
X+ yx+F(X)=f+ B [F2(B(Xo+2m—x)) to shift the critical value of(B8) upward[the lowest-order
correction is given by Eq/A30) for the Morse potentidland
—F2(B(X=Xo))]. (1) in consequence for very small (28<1), () increases

with B asHB)~7(1+Ap); hereA is a constant and is the
value of 7 derived for the linear interparticle interactipBq.
(15)]. As B increases further, it will approach a critical value
B: given by the implicit equatiornk.(B;) =« at which this
time scale diverges. The most singular contribution of the
nonlinearity B to the scale separation periedin the vicinity

of B., is then given bysee Eq.(A36)]

X(0)=Fy (f)=xo, (123 {(B)= (B (Bo— BBl 12 19

x(0)=0. (12b) where 7{(8,) is a constant ang, is the value ofg at which
the period diverges. Because of the close relationship be-
To find T we integrate Eq(11). The details of the calcu- tween the period and the nonlinear frictionwe also find
lation are presented in Appendix A. The resulting expressiorthat, asf— ., its most singular term may be expected to
is diverge as

The characteristic time for the excitation to pass between
oscillators(a property of the arrgycan be approximated here
by =T, whereT is the time each oscillator moves sepa-
rately. Therefore,r and consequently the average velocity
can be calculated using E@L1) together with the matching
initial conditions

2(B)=~n(BIL(Be—B) Bl M2 (19

27
T= \/ m k—r(f,8)]" Y2
7NF (XC'Kc)’?F(XC’Kc)/aK[ (LAl Equations(17) and (19) indicate a dramatic increase in
(13 the friction coefficient of an array compared to the friction
where coefficient of a single uncoupled oscillator, even though the
same constant force is applied to each oscillator in the array.

K Also note that(as k—«,) the friction coefficient is propor-
F=f-F.(0+ B [F2(B(Xo+27—X)) = F2(B(X~Xo))] tional to the size of the chaimp « N.
(14) By manipulating initial conditions, different solutions are

» ) obtained. In particular, we have found a family of solutions
andx. and . are the critical values of the displacement and¢orresponding to harmonic and subharmonic ratios of the
the c.oupllng determlr)ed by the |nstab|I|ty.of the fixed point minimal velocityv, [Eq. (8), | =1], v = (k/m)v,. Figure 3a)
solution[see Appendix A, Eq(A8)]. Equation(13) can be  gemonstrates the situation where the average velocity is
used to calculate the average velodity{Eq. (8)] and the  twjice the minimal average velocity,. Figure 3b) shows the
average nonlinear friction coefficient[Eq. (9)] for avariety  case when the average velocity is three times the minimal
of nonlinear potentials and nearest-neighbor couplings. average velocity .

For example, for linear coupling and a sinusoidal periodic  The formalism developed in this section is strictly valid

potential to a good approximation, &s-«; this time period  only for x— «,, though the agreement between the numerical

is* simulations and the theoretical predictions extends for values
of « far beyond the value ok.. In the next section we
T~y1 / m A (15) present the analysis for the situation where .. .
m—cos *f ¢ '
where k.~(1—f )27+ O((1—f )%. Equations (10) and lll. ANALYTICAL RESULTS:
(15) lead to the following expression for the velocity of the INTERMEDIATE-COUPLING RANGE

chain: In this section we study the dynamics of the linear chain
in the range of intermediate coupling>«;. In contrast to

—1 .. . . .
_ 2l m—cos “f 172 the limit of k~«, where at any given time only one oscillator
v= (k— ko) Y2 (16) ; gIve y one o
MmNy T moves and there exists localization of motion in time, here
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we study the case when the motion is not localized, and $'<j+yﬁ(j+sinxj=f+2;<(coshrd/dt—1)xj. (20)

therefore a large cluster of oscillators moves at the same o ] .

time. This type of dynamics occurs etO(1). The strength In_deriving Eqg. (200 we used the identityx(t* 7)

of coupling introduces very important effects into the dy- =€ X(t). We use our knowledge of the dynamics to

namics of the chain. When the coupling is strong enough, th&€k an approximate form for the solution. For tint@s:t

“barrier crossing” time of a single oscillatoT=2m/w is < I =27 w) during which the running solution exists we ap-

compatible with the period of motion of the whole arfsy ~ Proximate the motion of the oscillator by the ansatz

and the separation time[see Eq.(6)] is much less thai "

(<< T). In contrast, for the case of weak couplifig~TN _ ;

and 7~T, for the intermediate-coupling case we have X(t)_AJ”"HIZl By sin(kwt+ By). (21

T<Tny<TN and r<T. An example of the time series for

the position and the velocity of the 25th oscillator in an array For the rest of the time (&/o<t<Ty=2w/v)

of N=50 oscillators is shown in Fig. 4. x(t)=sin"}f (v is the average velocity of the chairNote
Our starting point is to combine Eqggl) and(6) to derive  that Eq.(21) represents the expansion xft) = wt + £(wt),

the effective single-oscillator equation where £(X) = &(x+27) is a periodic function in a Fourier
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series. In the equations of motig&qg. (4)] every single os- kyo+g(A{B},{B})=0, (24b)
cillator j is influenced by its nearest neighbgrs1 andj —1.
Since for times &t<27/w the oscillatorsj, j+1, andj—1 7l wk
all move, we substitute the ansd®l) into Eq. (20) (to de- —kK2w?+f(A{B}{B}) = — 4« sir o (249
scribe the dynamics of the oscillatpy, which leads to the v
expression Though Eqgs(24) are intractable without severe truncation,

" " some general features can be gleaned from their structure. In
. the limit of weak coupling a perturbative solution appears to
_.2 2
® kzl KBysin(kat+ By) + Vwkzl kBcogkaot+ ) exist in which the amplitudes, {B} and the phase§3} can
be solved for in the«=0 limit and then substituted into the

) ” ) equations for the velocity. Thus, for small enough the
+sin (A=) +(wt+ B1)+ 2, Bysin(kot+ By) main features of the dynamics of the barrier crossing at times
k=1
0<t<2w/w do not depend strongly on the parameters of the

< 7l wk chainN and « [this ansatz had been successfully tested nu-
=f- ’)/(1)—4K2 Bisin(kwt+ By)sir? o (22 merically for k~0O(1) as well; if wlok/mNv is small

k=1 v enough that the approximation gk X is reasonable, the av-
Let us rewrite Eq(22) in the form erage velocity is given by

o0

— 02, k2B, sin(kot+ B) + yw D, kBcogkot+ By)
k=1 k=1

v%%G(f,y). (25)

o The conditionwl wk/mNv <1 occurs in situations where
many oscillators move at the same tiog@posite to the situ-
- k§=:o 9u(A{B}{BhBicostkat+ B ation neark~ k., where only one oscillator moves at a given
. time), thus the barrier crossing time of one oscillator
. T=2nlw is compatible with the period of the whole array
+k21 f(A.{B}{A} Bisin(kot+ By Ty. We performed numerical tests to verify this condition
and found that the approximation gk¥x is fair for such
, . mlok dynamics. We also tested numerically the expresioan.
=f- 7‘0_4’<k21 Bisin(kwt+ By sin? o @®  (29]in the range of & k<3 for N=25 oscillator array and
- found that the average velocity<x®*® which is in good
The functionsf, and g, depend, in general, oA and the agreement with the prediction of E(5).
complete set of amplitudd8} and phase§3}, which appear To test the predictions of Eq25), we performed an
in the form of Bessel function$, (B;) and in the cross terms analysis using just the first harmonic in the expansion of Egs.
of the formJ,,(B;)Jm(B;). Equation(23) can be now written  (24) expressing the position of the oscillator during the pe-
as a set of equations riod 0<t<T=27n/w as

[’

Jo(A{BL{BYH =f— yo, (243 X(1)=A+ wt+B sin(wt+ 3), (26)
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where w is the characteristic overturning frequency of eachharmonic in the expansiofEq. (21)]. It is also cleaffrom

single oscillator. During the rest of the period the structure of Eq27)] that there is a minimum value af

T=2mlw<t<Ty (which forms a stick phagex=sin"'f. for which a solution exists,

The details of the calculations are presented in Appendix B.

Here we present the main expression F(f,y)
K= 4 y

(30

Q4(f)

9= =7 +G(f )=4x sir mENT )

ymNo 27 and the comparison of this result with the values<pfesti-
mated in Sec. Il suggests thatf,y) —2(1—f )/7 asf—1.
where the functiong)(f ),G(f ) are given by Eqgs(B11)

and (B13). _ IV. NUMERICAL RESULTS
For small enoughrl Q/ymNv one can approximate Eg.
(27) as We solved Eq.(3) numerically using arrays containing
N=18, 25, 35, 42, and 50 oscillators. The external force was
Q(f) set tof=0.9 and the dissipatiory=0.7; the coupling con-
VA y) =27k SNy (28)  stantk varied from 0 to 1, while the nonlinearity paramejer

went from 0.01 to 0.25. Simulations were carried out for
and the average velocity is then given in this limit by both periodic and free-end boundary conditions.

In Fig. 5 we have plotted the average velocity of the os-

cillators as a function of the coupling constdrt- KC)”2 for
_ (29 N=25 andB=0.01,0.1,0.2; we were using the same single-
MmN JA(f,y) oscillator parameter§=0.9 andy=0.7, and free-end initial
conditions were imposedThe numerically calculated aver-
A comparison of Egs.(29) and (15 suggests that age velocities for periodic boundary conditions are roughly
Q(f ) yJAf,y)— J(m—cos f )/r asf—1. twice as large as those for free-end initial conditions, as pre-
Specifically it is clear from Eq(29) that for the range of dicted by analytical consideration&q. (16)].) The initial

intermediate values of the coupling constant and for the forceonditions were chosen in the following way;=5 and
ing f<1 (where the dynamics of the array cannot be dex,=0.8; the other oscillators were set initially with
scribed by continuum limit of sine-Gordon equafidnthe  x;=x;=0.
average velocity is proportional to the square root of the The solid lines in Fig. 5 are to guide the eye, while the
couplinguv = \x, which is in good agreement with our simu- points show the numerical values. The valuex tiave been
lations. The actual values of the average veloéigtained varied between 0 and 0.4, angl was estimated from the
from our numerical simulations for intermediate values ofnumerical simulations. All curves show tl(me—xc)l’2 behav-
the couplingx and for the other parameter values as in Fig.ior; the larger slopes correspond to smajeralues. This
5) are higher by 20-30 % from the predicted vali&s).  behavior agrees with our prediction that the effect of the
(29)]. This discrepancy ismainly) due to the simplified de- nonlinearity in the interactiop is to increasec, and, conse-
scription of the positioEq. (26)] keeping only the first quently, to decrease the average velocity of motifor a

sz& Q(f)

V=
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FIG. 6. Time-averaged mini-
mal velocity of the oscillators as a
function of the nonlinearity pa-
rameterg for anN=25 oscillators
7 array. The crossedop curve are
the numerically calculated values
for k=0.2, while the squareot-
tom curve correspond tox=0.1;
the lines are to guide the eye. The
other parameters aré=0.9 and
v=0.7.

given value of the couplingc). We found that in a very array as a function of applied fordefor k=0.1 and3=0.01
narrow range ofx there exists an in-phase solution of the and 0.05compare to Eq(19)]. Each point on the curve was
array (not shown in Fig. B resulting in a high average ve- calculated using the same set of initial conditions for each
locity of a chain(equal to the average velocity of uncoupled value of the external forcé (see Fig. 1. The curve shows
oscillatop. This resonance is also predicted by the equatiorthe presence of two dynamical transitions gt andf, and
for a single oscillatofEq. (A2)]. The in-phase solution then its resulting effect on the average value of the sliding fric-
disappears, leading to stick-slip motion of the oscillators. tion. If the external force is low ,;,<f<f.;, the dynamics
Figure 6 shows the numerically calculated minimal valueof an array shows stick-slip motion. As we increase the
of the average velocity, as a function of the nonlinearity force, the array undergoes a dynamical transitiofi.atto a
parameter3, when g varies from 0 tog;. In the vicinity of  different kind of dynamics, valid for forcing in the range
B: [Eq. (19)] the slope is approximately, while for smallg  f.,<f<f.,, where the oscillators form two separate clusters
[vo(B)=~v(1—-ApB)], A is a constant. consisting of alternate oscillators, the oscillators in each clus-
Figure 7 shows the nonlinear friction coefficientof the  ter being almost in phase, but out of phase with the oscilla-

30 T T T T T

25 b

77 FIG. 7. Friction coefficient
n=(flvg—7y)/y as a function of
1 the applied forcef for an N=25
oscillator array. The triangle@op
curve correspond to 8=0.05,

_ while the squaregbottom curve
correspond to8=0.01 and free-
end boundary conditions. The
lines plotted are to guide the eye.
The other parameters are the same
as in Fig. 1 and«=0.05. The inset
<L e e T T T shows the small region of the
f same plot to mark the differences
between these two curves.

15 |

10 |
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1.8
1.6 |
l.ar FIG. 8. Minimal velocityv, as
VO a function of the applied forcé
1.2 + for an N=25 oscillator arrays.
The squares(top curve corre-
1k spond to8=0.01, while the tri-
angles(bottom curvé correspond
o8 L to 8=0.05 and free-end boundary
conditions. The lines plotted are to
o6k guide the eye. The other param-
) eters are the same as in Fig. 1 and
x=0.05. The inset shows the
0.4 1 small region of the same plot to
mark the differences between
0.2 these two curves.
0
0.85
tors forming the other cluster. Finally, for even larger exter- APPENDIX A

nal forcesf>f.,, the dynamics is the stable “in-phase”
solution and all the oscillators move together. Figure 8th
shows the minimal average velocityy as a function of the
applied force.

In this section we derive the expressions for the period of
e oscillationsT. Our starting point is

X+ yxj+Fi(x)="f+ % [F2(B(Xj+1—X)))

V. SUMMARY —Fo(B(Xj—X;-1))], (A1)

We have studied the periodic stick-slip dynamics in awhere Fi(x+2m)=F,(27) and F5(x)—»x as x—0. The
class of nearest-neighbor interacting discrete chains di€Xt Step is to decouple these equatiGinsthe limit of very
coupled nonlinear oscillators subject to a periodic potentialSMall coupling «), so_that x;=X, Xj.1=Xo+2m, and
We identified the mechanism of stick-slip motion, which is Xi-17 Xo here Xo=F1 (f ), the fixed point of the un-
related to the periodic transition from a stick dynamics Char-COuDIed oscillator. Thus E¢A1) can be written as

acterized by the stable fixed point of the single uncoupled

- . K
oscillator (in which each particle forming the chain is stuck X+ yx+Fi(xX)=f+ E [Fo(B(Xp+2m—X))
in its potential well to slip motion corresponding to the limit
cycle of the oscillator due to its motion over the periodic —F,(B(X—Xg))]. (A2)

potential. The nonlinear dynamics leads to a fundamentall
different friction law, in particular when the driving force is
barely larger than the minimal force needed to start motion.

The friction coefficient grows with the number of elemeNts

in the array and for effectively overdamped dynamics scalesvhere
as (k— k) Y2 Similarly, the average velocity, as calculated
from Eq. (16), exhibits the(k—«.)™'“ dependence. The non- e K o B
linearity in interaction provides an additional source for the F=1-F.()+ 8 [F2(B(Xo+2m—x)) = F2(B(X—Xo))].
increase in friction coefficient; in the vicinity ofb;, (A4)
7 ml(Be— B) B Y2 Our predictions are in excellent
agreement with the numerically calculated values.

)Let us rewrite Eq(A2) in the form
x=y, y=—yy+F(xf,Bx), (A3)

The fixed point(x=x., y=0), wherex. is given by the im-
plicit equationF(x.,f,3,«) =0, becomes unstable when the
eigenvalues\ of the linearized equation
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N2+ yN—F'=0, (AB) odic potential; thus F.(x)=sinx and F=f-sinx
, ) +2k(7m+Xy—X), where sig="f. Thus x.(f ) and x.(f )
which can be solved to give can be found from
—y+ y*+4F'
A= % (A7) F=f—sin(x;) +2x(Xo+ 7—X;)=0.
Thus, forF’<0 we get an attractor, while fé¥' >0, a saddle JF
point occurs. A traveling wave can thus propagate through X o= 2k=0. (A18)
the array whern>«k; given by
Also, since
F(xe,f,B8,kc)=0, F'(X,f,B,k)=0. (A8)
As k—k., we may expandr aboutx, and . and repre- F'(Xc,ke) =sin(Xc),
sent it by the universal form
IF(Xe,xe)
1 aF e AmTXemXo), (A19)
F(x,f,B,k)== F"(X—Xo)2+ — (k—k¢), (A9) K
2 ok
which will control the dynamics. Neglecting the inertial term we find
X compared to the dissipative contributiopx as x—«,
which we justifya posterioribecause _ \/ m _ -12
) =y SinX (74 Xg— Xc) L= we(f,8)]775 (A20)
x T 1 (k—ke)t?
PP LoV VAR (A10)  where xo=sin"(f) and cosx,= —2x.. We can therefore

] ) rewrite Eq.(A20), using sirxcz\/l—4:<c2, as
we can findT from the equation

YR=F(xf.B.x) (AL1) Xe=7 +SinH(2xc); (A21)
or

thus
fdx dtde H—InF), (Al12)
=] —=== x exp(—InF),
F Yy v

v
which we can integrate using saddle-point integration about T= 7\/\/1_4K2[7T_Cosl(f )—sin 1(2x.)]
Xc. In this region, ¢ ¢

, B X (k= xe) M (A22)
~ oy _ VRV
In(F)~InF(xc)+ F (X=xc)+ 2F2 (X=%¢)%, For k.<1, Eq.(A22) simplifies to
(A13)
but asF’(x.) =0 we find — o~ m -1
c ” T=y 7—cos () (k=) 7% (A23)
IN(F)~INF(t)+ o0 (x—xp)2.  (AL4)
N(F)~InF(xc) 2F(Xc) (X=Xe)™ Our next example is a Morse interaction for which
Thus, for k close tok. we obtain F2(X) =exp(=x)~exp(=2x). In this case
T ” F"(Xc) —f—simxt S _ _
o1 VY F=f—sinx+ — {exd — B(Xg+27—Xx)]
Y F (XCYKC) f—oc EXp_(ZF(XC (X XC) )dX I[)’ 0
(A15) «
or —exd —2B(xo+2m=X) I} = 5 {exil — B(X—x0)]
T 2mF —exf —2B(X=xo)]}. (A24)
—~F’1\/%= J27lFF7, (A16)
Y Thus k.(f,8) andx.(f,B) can be found from
and, finally,

\/ = » F=f—sinxc+%{exp[—B(XOJrZw—xC)]
T=YN F i k) O e are L el BB

(AL7) —expf — 2B(Xo+ 27— Xo) I} — % {exi] — B(Xc—Xo)]

Now we can apply the results to specific examples. Our
first example is the linear chain subject to a sinusoidal peri- —exgd —2B(x.—Xg) 1} =0, (A25)



55 NONLINEAR FRICTION IN THE PERIODIC STICK.. .. 5501

a—i = —cogX.)— k{exd — B(Xp+ 27 —X¢)]

—exff —2B(Xo+2m—Xc) I} + w{exy — B(Xc~Xo) ]

—exd —2B(X;—Xo) 1} =0,
and then the period is given by EGA17) with

F"(X¢, k) =sinX.+ kB{exd — B(Xo+27—Xc) ]

—4dexg —2B8(Xg+27—X) 1}

- % {exi] — B(Xe—%o)]

—4 exd —2B(X;—Xo) 1},
IF (X, k)l dx=1Ip{exd — B(Xg+27—X.)]
—exd —2B(Xg+27—X¢) ]}
— 1p{exd — B(Xc=Xo)]
—exfd —2B(Xe—Xo)1}-

(A26)

These results can be used to calculate the shifis’iand
JdF ok required to calculate the effect of the nonlinearity on
the periodT. We find

F,,:FII,+F1,,B+"' ;

OFldk=oF'1 oK+ IF Y oxB+ -+ | (A33)

where

F1"= — [F4(0)FY (x)/F}(x)]

[(Xo+2m—X)2—(X;—X0)?]
a— 3

x| 2 2(m+Xg—X))

[(Xo+2m—%)%— (X —Xg)]
2(m+Xo—X))

m—

JFt F5(0)
ax TR0

F2(0)
2

[(Xo+27=X))?= (X —X0)*]. (A34)

These results allow us to calculate the effect of a weak
nonlinearity on the dynamics. As the nonlinearity parameter

Because of the complexity of these expressions it is usefuB is increased further, the period retains [itls— KC(B)]’”Z
to solve for <1 by introducing a perturbation solution for dependence or. Thus writingT(8) =A(B)[ x — «(B)] -1z

F(x..f.B8,k.)=0 anddF(x.,f,B,«k:)/Ix=0,
F=F'+Fg+---,
X=X +X B+ - (A27)

Ke=Kt KB+ -,

where x; and « are the solutions of the linear array
F'(x,,f,x) =0 andaF'(x, ,f,«)/9x=0. For ; we then find
the expression

|
K1=—F1(X|,f,K|)/W. (A28)

Now, in general, we may write

Fl=—FJ(0) g [(Xo+2m=X)%=(X—X0)],

(A29)
Fl
E=2(W+XO—X|);
therefore, for the Morse potential
3k [(Xo+ 27— %)%= (X, — Xg)?
=3 [0 P

4 (m+Xg—X))?

and consequently. increases withy. In a similar manner it
is possible to calculatg,; as

x1=—[FY (x,f, &)+ dF 1 akaxs, I/F"(x, ,f, k1)
(A31)
or, in general,
(Xo+27—X%)?— (X, — Xo)?

X1=— | [F5(0)/Fi(x)]| 27— 2(m+Xo— X))

(A32)

and v(B)=B(B)[x— x(B)]Y%, we can see that a critical
value of B=B.(x) occurs given by the implicit equation
Ke(Be) = K, (A35)

where the period diverges and the average velocity tends to
zero. ForpB close tof,, we may use the Taylor-series expan-
sion x.(B8)~k—«'(B.— B); consequently,

T(B)=T(B=BI(B—B)B] 2

v(B)=v(B=BI(Bc.—B)I B

Equation(A36) is only valid asp— ., but numerically this
functional form appears to fit the data reasonably well all the
way from =0 to ;.

(A36)

APPENDIX B

To test the predictions of Eq24), we performed an
analysis using just the first harmonic in the expansion of Eq.
(23), expressing the position of the oscillator during the pe-
riod 0<t<27/w as

X(1)=A+ wt+B sin(wt+ ), (B1)

where w is the characteristic overturning frequency of each
single oscillator. During the rest of the periodrZy<t<T
(which forms a stick phagex=sin"f. Substituting Eq(B1)
into Eq. (4) and using the matching initial conditior&q.
(12)] yields

—Bw?sinwt+ B)+ yo+Byw cof wt+ B)
+siMA+ wt+B sif(wt+ 8)]

— f— 4KB sir? :—N“; sinwt+ ). (B2)
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Equation(B2) is only valid to order sitwt+8) and co$wt  weak and intermediate coupling. Indeed, numerical simula-
+8), consistent with the ansatz E@1) [to find higher- tions confirm this assumption. Thus we can write

order terms we would need to keep higher-order terms in Eq. 1

(B1)]. We therefore expand $i+ wt+B sin(wt+pg)] in SiN(A—B)= — [(V1—12+f\[B[2—1)siny[B[?2—1

Eqg. (B2) in Bessel functions, using only the zeroth-, first-, B

and second-order Bessel functions to achieve harmonic bal-
ance

+(f—J1-f2\|B[*~1)cos||B[*~- 1],

(B8a)
SIMA+ wt+B sin(wt+8)]=—J,(B)sinfA—B)

1
+[Jo(B) — J5(B) Jcog A B) cog A= )= g1 [(VI=T*\[BP =11 )sinV[B[~ 1

X sin(wt+ B) +(\1— 2+ 14[B[?—1)cos/[B]?—1].
+[Jo(B) +J5(B)] (B8D)

X si(A— B)cog wt+ B) We solve Eqs(B4) and (B5) in a sequential manner. First,
L 83 eliminate the unknown angular frequency from E¢R4b)

and (B4c) and use Eq(B73a) to derive an implicit equation
Collecting terms showing the same time dependence resulfer |B(f )|,

in three equations f=[(VI= T2+ f[BP=D)sin[BP—1

—Bw?+[Jo(B) —Jo(B)]co A— B) = — 4«B sir? :—l\‘:j +(f=v1-fJ[B[*~1)cos|[B|*~ 1]
(B4a) Jl|(||3|T|) N Jo(|B||)I;F|\2]2(|B|) B9)
yo—J1(B)sinNA—B) =, (BAb)

Equation(B9) can be solved numerically to yiel@(f )|, a

ywB~+[Jo(B)+J,(B)]sifA—B)=0. (B4c)  monotonically decreasing function éffor f>f ~0.35 with

the finite limit|B(f )| —-1.523 ... asf—1.0. At low values

The matching of the quiescent and running solutions is donef the driving force multiple solutions of Eq$B8) appear

by using initial condition§Eqs. (12)] (which may be unstableUsing |B(f )|, the variables3(f )
- ) andA(f ) can also be found from Eq&7). These variables
X(0)=xo=sin""f=A+B sing, (B58  describe the shape of the running solution and depend only
: on the driving forcef.
x(0)=0=w+Bw cosB. (BSb) The angular frequencw(f,y) is only a function of the

force f and the damping coefficient; from Eg. (B6) and

Equations(B4) and (B5) form a set of five equations for IB(f )| we can write

five variables:A, B, 8, v, and w. Substitution of Eq(B4c)

into Eq. (B4b) leads to Qf)
o(f,y)= ——, (B10)
f/ Y
- 14 B6)
CTITBL(BIB) B (0O where
Since  Jo(x)=Jo(—%), Jo(x)=dp(—x), and JIy(X) Ot )= f _f i
=—J,(—x), there exist two trivially related solutiorB= 1+|B|J.(|BD/[Jo(|B]) +3x(|B|)]  1+B?/2
+|B| for each value ofw. As w#0, Eq. (B5b) implies that (B11)

B=—1/cos and thus|B|>1. For each value of c@=*+1/ s a monotonically increasing function of the driving fore
|B|, there exist two values of si==|B“|—1/|B| for a  Having found an explicit expression fex(f,y), we are now

total of four trivially related solutions depending on the in a position to use EqB4a) to find the average velocity
qguadrant in whichg lies. In the following we shall assume from

that 0<B<m/2 lies in the first quadrant and consequently

- _ _ Q(f 1Q(f
B=—|B[<—-1.Thus 7(2 ) G(f )=ax sir? Wym,(\lv), (B12)
—ain—1 2_
B=sin"'[|B|*—1/|B|], (B7a where
A=+/|B|?—1+X,, (B7b) 1
. G(f )= g (Jal IB(F)[1= oL [B(F )1}
where Eqs(B7) follow from Eq. (B5a). In principle, in ad- B(f )
dition to the four solutions discussed here, there exist two xcogA(f )—B(f)]. (B13)

possibilities forx,=sin"f, one lying in the first quadrant

and the other in the second. For the uncoupled oscillator only We now can use expressiot®11) and(B13) to estimate
the first quadrant solution crg>0 is stable. We assume that the validity of the replacement sia{Q/ymNv)~zlQ/
this remains true for the coupled array in the presence oymNv. From Eq. (B11), Q(f ) has an upper bound of
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0.3 T T T T T T T
0.25 -
FIG. 9. Time-averaged mini-
vO mal velocities ofN=25 oscillators

vo as a function of/« for the case
of linear coupling. The upper
curve denotes numerically calcu-
lated values of the average veloc-
ity, the bottom dotted line shows
the theoretical curvg¢Eq. (B12)]
and the points show the linearized
expression six=Xx obtained from
Eq. (B12). The other parameters
are f=0.9 andy=0.7. The initial
conditions are Xn(0)=5,
xn(0)=0.8, andx;(0)=x;(0)=0
forall j=1,...N—1.

K-l/2

1[1+B(1)%/2]=0.463. From the EQq.(B13), G(f) is We show in Fig. 9 the minimal values of the average veloc-
bounded by 1(1)=0.66[in fact, our numerical calculations ity calculated numericallfupper curvé compared with the
show thatG(f )<0.1 for 0.5<f <1]. Thus, fory=0.7, /(f ) = average velocity derived from E@B12) (dotted ling; the

is bounded by 1.1, sa/Fl4x<\1/4«; therefore, for ex- points show the linearized version of H§12). Both curves
ample, fork=1, 71Q/ymNv~0.5. Thus our estimate is rea- fit the yx dependence on the coupling constant well; the
sonable fork=1. We observe numerically that the lineariza- predicted values of the average velocityor a given param-
tion is a fair approximation for EB12) for a broader range eter range are about 20% lower than the actual numerical
of the coupling«>0.1 (for the parameter values considered values.
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R3005(1996.

15t has been foungisee M. Bittiker and H. Thomas, Phys. Rev. A

37, 235(1988] that for the continuum limit and describing the
propagating kink solutiony = \x/ ygy(f )[ 1+ x?g(f )12,
with y=const. In principle, there are two possible ways our
solution (Appendix B can be continued towards the continuum
limit: (a) increasing the coupling constartwhile keeping all
the other parameters unchanged dhyincreasingy and the
forcing f (for y>1, f must be higher than 1 to obtain running
solutiong. Possibility (a), which would be consistent with Ap-
pendix B, is observed to lead to the breaking of symmetry, thus
the solution[Eq. (6)] will not be valid. Possibility(b) would
indeed lead to the solutidiig. (6)]; however, becauskE>1 and
there are no fixed points for an uncoupled oscillator, the initial
conditions[Egs. (B5)] would not be correct, thus leading to
expressions different from those derived in the Appendix B.



