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Resonant transport properties of tight-binding mesoscopic rings
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Using the tight-binding model, we have studied the resonant-transport properties of the multiply connected
ring systems threaded by magnetic fluxF, and coupled to two electron reservoirs. For different fluxF the
electronic-energy spectrum and their corresponding total transmission probabilities of multiring systems have
been calculated and compared. Some novel resonant-transport properties which display the Aharonov-Bohm
effect have been found. We have also studied the same problem of a single ring with two barriers. It is found
that for the high barriers the distribution of resonant states is coincident with the energy spectrum of the
isolated ring, but the energies of resonant states have deviated from the eigenenergies of the system.
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I. INTRODUCTION

In the past decade developments in mesoscopic phy
have made rapid progress. Quantum transport in the m
scopic systems has been extensively studied both experim
tally and theoretically during this period.1–23For mesoscopic
systems at very low temperatures, the scattering of phon
~dephasing scattering! is significantly suppressed and th
phase coherence length of the electrons becomes large
pared to the system dimensions, so that the systems ca
modeled as phase coherent elastic scattering. Furthermo
one considers the electron as a free particle, the ideal
sample becomes an electron waveguide, which assumes
the electron transport through the system is perfectly ba
tic. In recent years, there has been extensive work on
electronic properties of mesoscopic rings in the framew
of the ballistic model or waveguide theory.16–20 Along this
line, theoretical studies to date have concentrated largely
the isolated ring and open rings connected via leads to e
tron reservoirs, both of which are threaded by a magn
flux. For the isolated ring, the persistent currents are
main subjects, in which an important and well-known co
clusion is the ‘‘period halfing,’’22 i.e., the persistent curren
is periodic in magnetic fluxF with a period F0/2,
F05hc/e being the elementary flux quantum. As for op
ring systems the main interest is to study the relations
between the transmission coefficientT and fluxF. In open
ring systems, the electron reservoirs act as a source of en
dissipation or irreversibility, and all scattering processes
the leads and rings are assumed to be elastic. Along this
to date the theoretical work is mostly based on wavegu
theory to study the open single-ring or multiring system
550163-1829/97/55~8!/5337~7!/$10.00
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Xia16 has studied the Aharonov-Bohm effect of the op
single ring, i.e., by two leads the ring is connected w
electronic reservoirs, by calculating the reflection and tra
mission amplitudes as functions of the magnetic flux,
arm lengths, and the wave vector. Deo and Jayannava18,19

have studied the quantum transmission properties of se
stub or loop structures and the band formation in these g
metric structure. Takai and Ohta20 have published a series o
articles to investigate the same sort of problems but b
magnetic flux and electrostatic potential are applied simu
neously. Before them, Cahay, Bandyopadhyay, and Grub11

have studied theA-B–type conductance oscillation in th
presence of either a magnetic flux or an electrostatic po
tial. On the other hand, Wu and Mahler15 have developed the
quantum network theory of transport, by which the transm
sion probability for openA-B–type ring with arbitrary form
factor has been studied in detail. For the tight-binding mod
the advantages of which are that it is easier to induce di
der and there is a definite energy band, however, there
only a few papers devoted to investigating the transp
properties of single ring system by the use of the Gree
function.17 We have studied a mesoscopic ring system c
nected in parallel, and found that the transmission coeffic
T is periodic in flux with a period 2F0, but notF0 as that of
the double-ring systems connected in series.23 To the best of
our knowledge, in the framework of the tight-binding mod
there is no work devoted to study the transport properties
multiring systems connected in serial. Especially the re
nant transport phenomenon appearing in a variety of incid
electronic energyE and magnetic fluxF has not been re-
ported.

In this paper, based on the tight-binding model and by
5337 © 1997 The American Physical Society
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use of scattering matrix, we concentrate on studying the
rially connected ring systems, which are composed of o
dimensional ordered chains. Of main interest to us is to
vestigate the relationship among the resonant states,
energy spectrum of the closed-ring system and magn
flux. In a general picture, if the energy of the incident ele
tron is coincident with the eigenenergy of the energy sp
trum, the electron would easily transmit the system and fo
a resonance peak. On the other hand, the Aharonov-B
effect would influence this transmission. Therefore, it wou
be very interesting to see aT-E-F three-dimensional trans
mission diagram which displays the influence of fluxF on
the resonant transmission behavior. It is found that roug
the resonant states have the same structure as the e
spectrum of the serially connected ring systems, but w
levels of the spectrum are compared the resonant ene
have shifted; besides that, all of the states closed to
F0/2 are antiresonant ones. Our numerical results for
open multiring systems, as mentioned above, do not sho
very good agreement between the resonance peaks
eigenenergies. Therefore, to expect a better agreemen
have investigated an open single ring with two site barri
by setting the site energy«b much higher than that of idea
ordered chain, which composes the leads and ring. We h
found that, when the barriers are high enough, the numbe
resonant states is coincident with the number of levels
isolated ring, but the energies of resonant states have slig
shifted toward the center of spectrum and the resonant s
closed toF5F0/2 are still missed. For these transport b
haviors we will give a plausible explanation. This paper h
been organized as follows. In Sec. II we state the theore
treatment for calculating the transmission coefficients of
mesoscopic ring systems studied in this article, includ
multiring systems and single ring with two barriers. In Se
III we present the results of calculation and their physi
explanation. Section IV is a brief summary.

II. TRANSMISSION COEFFICIENTS
OF THE MESOSCOPIC RING SYSTEMS

A. Transmission amplitude of a single ring

For an open single ring, i.e., a ring connected via t
leads to electron reservoirs, we assume that the leads
ring are composed of one-dimensional ordered chains w
site energy«n , transfer integralJ between nearest neighbo
sites. If we denote the electron energy byE, and wave func-
tion at thenth site byfn , the tight-binding equations are

~«n2E!fn5(
n8

Jn,n8fn1n8, ~1!

where the sum runs over the nearest neighbors ofn site. In
this paper we choose the site energy«n50 for ordered chain.

Referring to Fig. 1~a!, for a single ring threaded by flux
F, and connected via leads to electron reservoirs, the re
tion and transmission amplitudes can be given
flollows:14,23

r5e2iqNH c2
2K

d
@b cosf1a2eic~b22a2!~b2a!#J , ~2!
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t52K
cos~f/2!

d
@~b2a!22e2 ic#, ~3!

where

f52pF/F0 ,

c52q~L2N!5qS,

a5e22iqNF2iJ sinqD
21G ,

b5e22iqN
2iJ sinq

D
,

c5e2iqNF2iJ sinqD
21G ,

AK5
2iJ sinq

D
,

D5E2«n13Jeiq,

q5arccosS 2
E2«n
2J D ,

d52b2cosf2e2 ic2~b22a2!2eic12a2.

TheN andL are the left site and right site, through whic
the ring is coupled to the reservoirs via leads as shown
Fig. 1~a!, andS is the circumference length of the ring. In th
next paragraph, we disscuss how to use these single-
formulas to treat the multiring systems.

B. Transmission amplitude ofN connected rings

In order to obtain the total transmission coefficient ofN
connected rings, we divide the studied system into two s
systems at siten, which usually is the central site of lea
connected two neighbor rings, referred to as the left s
system and the right subsystem. In this paper,t andr repre-
sent the transmission and reflection amplitudes of the in
dent wave from the left; whilet8 and r 8 represent the
transmission and reflection amplitudes of the wave from
right. We now denote the transfer matrix of the studied s
tem byt; in general,t can be expressed as14

FIG. 1. ~a! A single ring coupled to two electron reservoirs v
two ordered leads.~b! Serially connected mesoscopic rings thread
by magnetic fluxF, and coupled to two electron reservoirs via ide
leads.
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t5
1

t8 S tt82rr 8 r 8

2r 1 D . ~4!

If we denote the transfer matrix of the left subsystem
tL , and the right one bytR , then, the transfer matrixt of
whole system is equal totRtL ,

t5tRtL . ~5!

Inserting Eq.~4! into Eq. ~5!, we can obtain the tota
transmission and reflection amplitudes expressed bytR , tL ,
tR8 , tL8 , r R , r L , r R8 , r L8 , and the formulas are

t5
tRtL

12r Rr L8
, r5

~ tLtL82r Lr L8 !r R1r L
12r Rr L8

. ~6!

It is important and easy to derive that the relationsh
betweent and t8, r and r 8 are

t85t, r 85re22iq~N1L !, ~7!

whereN andL are the left and right site of the ring, respe
tively, as shown in Fig. 1~a!. For a serially connected double
ring system, if the left ring is referred to as the left su
system, and other one as right subsystem, then in term
formulas~2!, ~3! and~6!, we can calculate the total transmi
sion and reflection amplitudes of double-ring systems. In
same way, if we take a two-ring system as right subsyst
and add a single ring from the left as the left subsyste
again by the use of above procedure, we can obtain the
transmission and reflection amplitudes of three-ring syste
by repeatedly using the formula~6!. Following the above
procedure, if we have obtained the (N21)-ring systems and
referred it as right subsystem; then adding a single ring fr
the left as the left subsystem, by the same calculation pro
dure we can obtain the total transmission and reflection
plitudes ofN-ring systems. The transmission and reflecti
coefficientsT andR are given by the absolute square of t
corresponding amplitudes, and satisfy the conservation c
dition T1R51. These calculation processes for arbitra
multiring systems are easy to be handled with a comput

Figure 1~b! shows a serially connectedN-ring system
threaded by same magnetic fluxF, and coupled to two elec
tron reservoirs via idea leads. In our calculation program
principle, the transmission coefficient of arbitrary number
connected rings can be calculated.

C. A single ring with two barriers

For the purpose of investigating the relationship betwe
the resonant states and the eigenenergies of isolated ring
have studied a single ring with two barriers at sitesnb5N
21 andL11 with the site energy«b.«050, «0 being the
site energy of ideal leads and ring, as shown in Fig. 1~a!.
Because of the site energy«n being simply the energy of the
atomic level, the site with high site energy«b becomes an
ideal barrier. By the use of the transfer matrix, after a lo
but straightforward calculation, we have obtained the tra
mission and reflection amplitudes of the present system
follows:
y
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t5
2iJ sinq

E2«b12Jeiq
, ~8!

r5
2@~E2«b!12J cosq#e2iqnb

E2«b12Jeiq
. ~9!

In this paper we chooseJ51.0, therefore the range o
incident electron energy is from22.0 to 2.0. The incident
electron with any energy from22.0 to 2.0 will be decayed
by the barrier sitenb . In this case, the ring, in some sens
can be analogous to a double-potential well. The reson
states of incident electrons can be expected to posses
eigenenergies of the isolated ring.

III. THE NUMERICAL RESULTS AND DISCUSSION

A. Electronic energy spectrum of ring systems

In order to investigate the relationship between the re
nant states and the electronic energy spectrum of ring
tems, the numerical exact diagonalization method has b
used to calculate the energy spectrum of the studied syst
For the isolated ring-systems threaded by fluxF, the Hamil-
tonian simply is

H5(
n

un&«n^nu1 (
n61

un&Jn,n61^n61u, ~10!

where«n is the site energy, andJn,n61 is the transfer inte-
gral, which equalsJe6 i2pF/(F0S), whereS is the circumfer-
ence length of the ring.21

The energy spectra of an isolated one-ring system
three-ring systems connected to each other by ideal le
with length being a lattice constant are shown in Fig. 2 a
Fig. 3, respectively, and each ring has eight sites. They s
that the electronic eigenenergyE is periodic in fluxF with a
periodF0, F0 being the elementary magnetic flux. In th
case ofF50, the electronic states are degenerated at e

FIG. 2. Energy spectrum of isolated single ring as a function
magnetic fluxF for the tight-binding model. The parameters of th
system are site energy«n50, transfer integalJ51.0; the site num-
ber of the ring is 8.
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giesE50.0 andE > 61.414 21, as shown in Fig. 2 and Fi
3. As magnetic fluxF increases from zero, the degenera
states split due to the magnetic Aharonov-Bohm effe
When the fluxF reachesF0/2, the electronic states dege
erate again. The whole diagram shows a symmetric pat
to F5F0/2 andE50. Comparing Fig. 3 with Fig. 2 we ca
see that the energy spectrum of three-ring systems has
structure as the single ring; our calculation has shown
the fundamental configuration of the energy spectrum d
not change as the number of connected rings increases.

B. Transport properties of serially connected ring systems

Formula ~6! displays that the transmission coefficie
T5utu2 of the ring systems connected with electron res
voirs has a very heavy and complicated expression; it is n
essary to use computer to obtain the numerical results.
guaranteeing the accuracy of numerical calculation, in ev
stage after obtaining the transmission and reflection co
cients, we have checked the results by the criter
utu21ur u251. Our numerical accuracy reaches to 10214,
which adequately guarantees that the calculation is relia
For simplicity, we have assumed that all of the rings a
identical. Applying formula~6! repeatedly, we can easily ob
tain the transmission coefficientT for a serially connected
ring systems. We have calculated a series of multiring s
tems with ring numberN51,2,3,4,5,6,8,10, respectively. A
typical cases, we display the results of single-ring and thr
ring systems in Fig. 4 and Fig. 5.

We have noticed that in the framework of wavegui
theory for the mutiply connected ring systems, in some c
the frequency of quantum oscillation is proportional to t
number of connected rings. However, for the tight-bindi
model used in the present paper in all cases with differ
N, one cannot find the above proportional properties. T
resonant states exhibit a very complicated behavior follo
ing the change of electron energy and magnetic flux.
found that, in general, more anomalous peaks appear a
number of connected rings increase, but the correspon

FIG. 3. Same as Fig. 2 for a serially connected three-ring s
tem. The distance of neighbor rings is a lattice constant.
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between the frequency of quantum oscillation and the num
ber of connected rings is not explicit. From Figs. 4 and 5 w
can see that the rule of apearance of resonance peaks can
be easily tackled, but for the waveguide ring systems it can.20

The reason for this is that, for the waveguide theory, th
electron transport through the system is perfectly ballistic, s
that it may be analogous to serial superlattices.18,20However,
our numerical calculation shows that for the tight-binding
model there is no such analogy. The above difference b
tween the wave guide theory and tight-binding calculatio
mainly is due to such a fact that for the tight-binding mode
there is additional scattering in the junction, the combinatio
of which with the multibackscattering between the neighbo

s-
FIG. 4. Transmission coefficientT versus magnetic fluxF and

incident electron energyE for a single ring connected to two elec-
tron reservoirs. All the relative parameters are same as those of F
2.

FIG. 5. Same to Fig. 4 for a serially connected three-ring sys
tem. The distance of neighbor rings is a lattice constant.
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rings gives rise to different results from the wavegui
theory. The bigger the ring number is, the more different
transport behavior will be.

From Fig. 4 and Fig. 5, it is noteworthy that all the res
nance peaks appear along a sinuouslike curve,23 which cor-
responds another kind of quantum oscillation behavior.
cause to date all previous work based on the wavegu
theory has not shown aT-E-F three-dimensional diagram
therefore, at the moment we cannot give a detailed comp
son for these two different models. In the next paragragh,
will explain that the location of these resonance peaks res
from the competition between the Aharonov-Bohm magne
effect and resonance effect existing in the degenerate st

Now we discuss the relationship between the resona
peaks and the energy spectrum of the studied systems in
presence of the Aharonov-Bohm flux threading the rings.
the single ring, from Fig. 4 we can easily see that the re
nant states distribute in coincidence with the energy sp
trum of the single ring, as shown in Fig. 2, except in t
region of the diagram closed toF5F0/2. In all of theT-
E-F diagrams we have observed a common fact that in
region closed toF0/2 the transmission coefficient is alway
equal to zero. This conclusion also can be reached from
mula ~3!, which implies that whenF5F0/2 transmission
amplitudet50. This is a typical Aharonov-Bohm effect, be
cause in the present case the upper and bellow arms
identical, when F5F0/2, the accummulated magnet
phases through upper and bellow arms at siteL of Fig. 1~a!
are62pF/F056p, respectively, so that the electron wa
attenuates to zero because of the interference effect. B
one compares Fig. 5, corresponding to three-ring syst
with Fig. 4, one can see that the distribution of transmiss
coefficient is further complicated. For better visualization
plot those points of Fig. 5, of which the transmission coe
cient is not less than 0.85 (T>0.85), and shown in Fig. 6
We can consider that this picture displays the distribution
resonance peaks. Compared with Fig. 3, which displays
energy spectrum of the three-ring system, it is found t

FIG. 6. Resonance spectrum of Fig. 5 is shown in the elec
energy versus magnetic flux plane. The dots represent the inc
electron states with total transmission coefficientT>0.85.
Aharonov-Bohm effect results in the missing of resonance pea
the region closed toF5F0/2 ~see text!.
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when the energy of incident electron is closed to one of t
eigenenergies of the system, the electron will easily transp
through the system and the transmission coefficient exhib
a resonance peak. This result is consistent with that of Ref
in which the quantum oscillation of a single ring was studie
As we have mentioned, there exists an energy deviation
tween the resonance peak and the energy spectrum of
lated ring systems. This point can be seen also from a co
parison between Fig. 3 and Fig. 6. The deviation should
due to the additional junction scattering when the ring
connected via leads to electron reservoirs. Our numerical c
culation displays that the junction scattering results in tw
effects, firstly it depresses the peaks atE562, and sec-
ondly, it shifts the peak positions if compared with the en
ergy spectrum of isolated ring systems. From Figs. 2 and
one can see that in the absence of magnetic flux the el
tronic states are degenerate. When the magnetic field is
plied, the time-reversal symmetry is broken and the dege
erate states split into 2. On the other hand, if the number
rings increases, the corresponding level proportionally i
creases. From these two facts one would expect that follo
ing the increase of ring number and magnetic flux the num
ber of peaks would proportionally increase as in the case
waveguide theory.20 But in our tight-binding model calcula-
tion even the energy step is taken by 1023 we still cannot
observe this kind of result, the peaks increase, but not p
portionally.

C. Resonant transport properties of a single ring
with two barriers

This paragraph is devoted to investigating the idea
whether or not in some cases the studied ring systems can
analogous to a double-potential well, so that the resonan
peaks, no matter what their location or number, should
coincident with the spectrum of isolated ring systems. F

n
nt

in FIG. 7. T-E-F diagram for an open single ring with two barriers
as shown in Fig. 1~a!, the site energy«b520.0 at theN21 and
L11 sites, energy intervalDE50.04. Compared with Fig. 4 the
resonance peaks are much sharper and sparser.
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this purpose, we have investigated an open single ring w
two barriers as shown in Fig. 1~a!. By the use of formulas~8!
and ~9!, we have calculated theT-E-F diagram for the sys-
tem with barrier site energy«b520.0, and the results ar
shown in Fig. 7. If we compare it with Fig. 4, which corre
sponds to same single-ring system but without barrier si
we can see that the resonance peak behavior is quite d
ent. It turns out to be much more sparse and sharp, and
better corresponds to the spectrum of the isolated ring.
observing this point, in Fig. 8 and Fig. 9 we plot the tran
mission coefficientT of the system versus incident electron
energy E for F50 and F50.38F0, respectively. Their
resonance peak numbers are coincident with that of eige
ergies of energy spectrum. Besides that, we have also no
some features which appear due to the existence of barr
Firstly, we found that both pictures of Fig. 8 and Fig. 9 a
not symmetric again toE50 for the incident electronic en
ergy E, because the two barriers with«bÞ0 have changed
the symmetry of incident electronic energy toE50. Sec-
ondly, in the absence of magnetic field, as shown in Fig
there are three degenerate peaks of the transmission c
cient. When the magnetic field is applied, these degene
states split, which causes three additional resonance p
appearing in Fig. 9. The physical origin of these increas
resonance peaks lays on that the magnetic flux in the
gives a contrary phase shift,eiu in the upper arm ande2 iu in
the lower one, and the contrary phase shift causes the de
erate peak splitting. Thirdly, from the energy spectru
shown in Fig. 2, we can see that at the pointF50 and
F50.38F0 there are five and eight eigenenergies; cor
spondingly, in Fig. 8 and Fig. 9, five and eight resonan
peaks appear, respectively. If comparing the energies,
will find that some resonant states deviate from the eigen
ergies of the ring system. A plausible explanation is that fi
the additional barriers change the energy spectrum of
whole system; on the other hand, the barriers also enha

FIG. 8. A cross section of Fig. 7 withF50 and the energy
intervalDE50.001. There are five resonance peaks, which are
incident with the number of eigenenergies of energy spect
shown in Fig. 2. Barriers and junction scattering have deviated v
much from the resonance peak energies from the correspon
eigenenergies of the isolated single ring.
th
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the scattering of the studied system for the incident electro
These two facts result in the deviation of resonant energ
from eigenenergies of studied system.

The experimental plausibility of the theoretical results
an interesting problem for which Takai and Ohta20 have
given a detailed discussion@Phys. Rev. B50, 11 132~1995!#.
In principle, their discussion is also suitable for the tigh
binding model, even though they deal with a wavegu
model. The experimental results definitely depend on
geometric cofiguration of the system. For a chosen cofigu
tion, the measurement of theT-E-F spectrum is meaningfu
work, which can serve to adjudge the correctness of the
and also would give some suggestion for future theoret
study.

IV. SUMMARY

We have studied the electron transport properties of s
ally connected mesoscopic ring systems in the framework
the tight-binding model. Including the magnetic Aharono
Bohm effect, firstly the transmission amplitude of a sing
ring is obtained by the scattering matrix of the three-termi
splitter. The transmission coefficient ofN-connected ring
systems is derived by the treatment of adding a single r
from the left side, one by one. The energy spectrum of
studied systems is calculated by the numerical diagonal
tion method. In comparison with the results of the wavegu
model, some new electron transport properties are found.
have found that more anomalous peaks of transmission
efficient appear as the number of connected rings increa
and the behavior of the quantum oscillation is much com
cated, even though a fundamental structure of the reson
spectrum is kept. But in contrast with waveguide results,
frequency of quantum oscillation is not proportional to t
number of connected rings. The transmission coefficien
the system depends on the energy of the incident electro
well as the magnetic flux penetrating the rings. The distrib
tion of resonance peaks is similar to the energy spectrum
the studied systems, i.e., if the energy of the incident elec
is closed to the eigenenergy of the system, the incident e

o-
m
ry
ng

FIG. 9. Same as Fig. 8, but fluxF 5 0.38F0. The number of
resonance peaks is in agreement with Fig. 2, but there is al
deviation of energy as in theF50 case.
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tron is easy to transport through the system. For the sin
ring with two barriers, we have found that it is the two ba
riers that give rise to the deviation of the energies of reson
states from the eigenenergies of the isolated ring. Most of
above transport properties have been explained by
Aharonov-Bohm magnetic effect and the additional scat
ing of the three-terminal junction.
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