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Resonant transport properties of tight-binding mesoscopic rings
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Using the tight-binding model, we have studied the resonant-transport properties of the multiply connected
ring systems threaded by magnetic fld and coupled to two electron reservoirs. For different flixhe
electronic-energy spectrum and their corresponding total transmission probabilities of multiring systems have
been calculated and compared. Some novel resonant-transport properties which display the Aharonov-Bohm
effect have been found. We have also studied the same problem of a single ring with two barriers. It is found
that for the high barriers the distribution of resonant states is coincident with the energy spectrum of the
isolated ring, but the energies of resonant states have deviated from the eigenenergies of the system.
[S0163-18297)11607-1

. INTRODUCTION Xia'® has studied the Aharonov-Bohm effect of the open
single ring, i.e., by two leads the ring is connected with
In the past decade developments in mesoscopic physiaectronic reservoirs, by calculating the reflection and trans-
have made rapid progress. Quantum transport in the mesmission amplitudes as functions of the magnetic flux, the
scopic systems has been extensively studied both experimearm lengths, and the wave vector. Deo and Jayant¥ar
tally and theoretically during this peridd? For mesoscopic have studied the quantum transmission properties of serial
systems at very low temperatures, the scattering of phonorstub or loop structures and the band formation in these geo-
(dephasing scatteringis significantly suppressed and the metric structure. Takai and OREhave published a series of
phase coherence length of the electrons becomes large comticles to investigate the same sort of problems but both
pared to the system dimensions, so that the systems can b#gnetic flux and electrostatic potential are applied simulta-
modeled as phase coherent elastic scattering. Furthermore riéously. Before them, Cahay, Bandyopadhyay, and Gttibin
one considers the electron as a free particle, the idealizoave studied théA-B—type conductance oscillation in the
sample becomes an electron waveguide, which assumes thaesence of either a magnetic flux or an electrostatic poten-
the electron transport through the system is perfectly ballistial. On the other hand, Wu and Mahfehave developed the
tic. In recent years, there has been extensive work on thguantum network theory of transport, by which the transmis-
electronic properties of mesoscopic rings in the frameworlksion probability for opemA-B—type ring with arbitrary form
of the ballistic model or waveguide theot§.2° Along this  factor has been studied in detail. For the tight-binding model,
line, theoretical studies to date have concentrated largely othe advantages of which are that it is easier to induce disor-
the isolated ring and open rings connected via leads to eleder and there is a definite energy band, however, there are
tron reservoirs, both of which are threaded by a magnetionly a few papers devoted to investigating the transport
flux. For the isolated ring, the persistent currents are th@roperties of single ring system by the use of the Green’s
main subjects, in which an important and well-known con-function!’ We have studied a mesoscopic ring system con-
clusion is the “period halfing, i.e., the persistent current nected in parallel, and found that the transmission coefficient
is periodic in magnetic flux® with a period ®y/2, T is periodic in flux with a period @, but notd®, as that of
®,=hc/e being the elementary flux quantum. As for openthe double-ring systems connected in sefieEo the best of
ring systems the main interest is to study the relationshipur knowledge, in the framework of the tight-binding model
between the transmission coefficiehtand fluxd. In open there is no work devoted to study the transport properties of
ring systems, the electron reservoirs act as a source of energyultiring systems connected in serial. Especially the reso-
dissipation or irreversibility, and all scattering processes imant transport phenomenon appearing in a variety of incident
the leads and rings are assumed to be elastic. Along this linejectronic energye and magnetic fluxP has not been re-
to date the theoretical work is mostly based on waveguidgorted.
theory to study the open single-ring or multiring systems. In this paper, based on the tight-binding model and by the
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use of scattering matrix, we concentrate on studying the se-
rially connected ring systems, which are composed of one- N-1 N L L+1
dimensional ordered chains. Of main interest to us is to in-
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vestigate the relationship among the resonant states, the

energy spectrum of the closed-ring system and magnetic (2)

flux. In a general picture, if the energy of the incident elec-

tron is coincident with the eigenenergy of the energy spec-

trum, the electron would easily transmit the system and form 'g

a resonance peak. On the other hand, the Aharonov-Bohm

effect would influence this transmission. Therefore, it would (b)

be very interesting to see &E-® three-dimensional trans- . . o

mission diagram which displays the influence of fiixon FIG. 1. (a) A single ring coupled to two electrop reservoirs via

the resonant transmission behavior. It is found that rouglhltwo ordere_d leadgb) Serially connected mesoscopic rings thre_aded
) % magnetic fluxd, and coupled to two electron reservoirs via ideal

the resonant states have the same structure as the eneigy,q

spectrum of the serially connected ring systems, but when

levels of the spectrum are compared the resonant energies cog b/2)

have shifted; besides that, all of the states closed to flux t=2K————[(b—a)2—e "], 3

®,/2 are antiresonant ones. Our numerical results for the d

open multiring systems, as mentioned above, do not show ghere

very good agreement between the resonance peaks and

eigenenergies. Therefore, to expect a better agreement we d=27D/D,,

have investigated an open single ring with two site barriers

by setting the site energy, much higher than that of ideal y=2q(L—-N)=qS,

ordered chain, which composes the leads and ring. We have o

found that, when the barriers are high enough, the number of a=e‘2in[2|J simg }

resonant states is coincident with the number of levels of D '

isolated ring, but the energies of resonant states have slightly

shifted toward the center of spectrum and the resonant states _2igN 2iJ sing
closed to® =®,/2 are still missed. For these transport be- b=e D
haviors we will give a plausible explanation. This paper has
been organized as follows. In Sec. Il we state the theoretical
treatment for calculating the transmission coefficients of the
mesoscopic ring systems studied in this article, including
multiring systems and single ring with two barriers. In Sec. 213 sing
[l we present the results of calculation and their physical JK=——,
explanation. Section IV is a brief summary. D

c= eZin

2iJ sinq
T_l}

D=E-—g,+3J€9,
Il. TRANSMISSION COEFFICIENTS

OF THE MESOSCOPIC RING SYSTEMS E—e,
. , ) ) g=arccos — ,
A. Transmission amplitude of a single ring 2]
For an open single ring, i.e., a ring connected via two d=2b%cosp—e ¥~ (b?— a2)2e ¥+ 232

leads to electron reservoirs, we assume that the leads and

ring are composed of one-dimensional ordered chains with TheN andL are the left site and right site, through which
site energye,,, transfer integrall between nearest neighbor the ring is coupled to the reservoirs via leads as shown in
sites. If we denote the electron energytbyand wave func-  Fig. 1(a), andSiis the circumference length of the ring. In the
tion at thenth site by ¢, the tight-binding equations are  next paragraph, we disscuss how to use these single-ring
formulas to treat the multiring systems.
(en—E) = % Inn' Pnenrs @ B. Transmission amplitude of N connected rings
In order to obtain the total transmission coefficientNof
hi h he si 0f dered chai connected rings, we divide the studied system into two sub-
this paper we choose the site eneegy=0 for ordered chain. systems at siten, which usually is the central site of lead

Referring to Fig. 1a), for a single ring threaded by flux ohhected two neighbor rings, referred to as the left sub-
@, and connected via leads to glectron reservoirs, t_he refle%'ystem and the right subsystem. In this papemdr repre-
tion a':‘ﬂ ,oransmission amplitudes  can be given asgn; the transmission and reflection amplitudes of the inci-
flollows:™ dent wave from the left; whilet’ and r’ represent the

transmission and reflection amplitudes of the wave from the
right. We now denote the transfer matrix of the studied sys-

tem by 7; in general,r can be expressed4s

where the sum runs over the nearest neighbons site. In

r=e2aN| o %[bcos¢+a—ei“’(b2—az)(b_a)] ) (2)
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1 tt'—rr’ r’ E 25 :
=y - 1/ ) 2.0 :
1.5
If we denote the transfer matrix of the left subsystem by 1.0
7, and the right one byg, then, the transfer matrix of 05
whole system is equal teg , )

0.0
T=TRTL . (5) ~-0.5
Inserting Eq.(4) into Eq. (5), we can obtain the total -1.0
transmission and reflection amplitudes expressetkbyt, , -1.5
th t/, IR, fL, IR IL, @nd the formulas are 20

P -2.5 : ‘ ‘ ‘

Ut _ (Wt —nrretr ® 00 02 04 06 08 1.0
1—rRr,’_’ 1—rRr|’_ F].U_X(CI)Q)

It is important and easy to derive that the relationships

betweert andt’, r andr’ are FIG. 2. Energy spectrum of isolated single ring as a function of

magnetic fluxd for the tight-binding model. The parameters of the
system are site energy,= 0, transfer integal = 1.0; the site num-

_ _ —2iq(N+L)
t'=t, r'=re 2N+ (7) " ber of the ring is 8.

whereN andL are the left and right site of the ring, respec-
tively, as shown in Fig. (B). For a serially connected double-

ring system, if the left ring is referred to as the left sub- - ﬂ_ (8)
system, and other one as right subsystem, then in terms of E—ep+2Je?’

formulas(2), (3) and(6), we can calculate the total transmis- .

sion and reflection amplitudes of double-ring systems. In the _ —[(E—&p)+2Jcogyle?’™ 9
same way, if we take a two-ring system as right subsystem, r= E—gp+2J€ ' ©

and add a single ring from the left as the left subsystem,
again by the use of above procedure, we can obtain the total In this paper we choosé=1.0, therefore the range of
transmission and reflection amplitudes of three-ring systemicident electron energy is from 2.0 to 2.0. The incident
by repeatedly using the formulé). Following the above electron with any energy from-2.0 to 2.0 will be decayed
procedure, if we have obtained thi £ 1)-ring systems and by the barrier siten,. In this case, the ring, in some sense,
referred it as right subsystem; then adding a single ring frontan be analogous to a double-potential well. The resonant
the left as the left subsystem, by the same calculation procestates of incident electrons can be expected to possess the
dure we can obtain the total transmission and reflection aneigenenergies of the isolated ring.
plitudes ofN-ring systems. The transmission and reflection
coefficientsT andR are given by the absolute square of the  |Il. THE NUMERICAL RESULTS AND DISCUSSION
corresponding amplitudes, and satisfy the conservation con-
dition T+R=1. These calculation processes for arbitrary
multiring systems are easy to be handled with a computer. In order to investigate the relationship between the reso-
Figure Xb) shows a serially connected-ring system nant states and the electronic energy spectrum of ring sys-
threaded by same magnetic fldx and coupled to two elec- tems, the numerical exact diagonalization method has been
tron reservoirs via idea leads. In our calculation program, irused to calculate the energy spectrum of the studied systems.
principle, the transmission coefficient of arbitrary number ofFor the isolated ring-systems threaded by fixthe Hamil-
connected rings can be calculated. tonian simply is

A. Electronic energy spectrum of ring systems

C. A single ring with two barriers H=2 [nYen(n|+ > [n)Jnnea(n=1], (10)
For the purpose of investigating the relationship between " n=t

the resonant states and the eigenenergies of isolated ring, wéheree, is the site energy, and, ,-; is the transfer inte-
have studied a single ring with two barriers at sitgs=N  gral, which equalsle™'?7®/(®0  whereS is the circumfer-
—1 andL+1 with the site energy,>&,=0, &, being the ence length of the ring
site energy of ideal leads and ring, as shown in Fi@).1 The energy spectra of an isolated one-ring system and
Because of the site energy being simply the energy of the three-ring systems connected to each other by ideal leads
atomic level, the site with high site energy, becomes an with length being a lattice constant are shown in Fig. 2 and
ideal barrier. By the use of the transfer matrix, after a longFig. 3, respectively, and each ring has eight sites. They show
but straightforward calculation, we have obtained the transthat the electronic eigenenergyis periodic in flux® with a
mission and reflection amplitudes of the present system aggeriod ®,, ®, being the elementary magnetic flux. In the
follows: case of®d=0, the electronic states are degenerated at ener-
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FIG. 3. Same as Fig. 2 for a serially connected three-ring sys-
tem. The distance of neighbor rings is a lattice constant. FIG. 4. Transmission coefficiefit versus magnetic flu® and
incident electron energl for a single ring connected to two elec-
tron reservoirs. All the relative parameters are same as those of Fig.

giesE=0.0 andE = *£1.414 21, as shown in Fig. 2 and Fig. 2

3. As magnetic fluxd increases from zero, the degenerate

states split due to the magnetic Aharonov-Bohm effects.

When the fluxd reachesb,/2, the electronic states degen- between the frequency of quantum oscillation and the num-
erate again. The whole diagram shows a symmetric patterber of connected rings is not explicit. From Figs. 4 and 5 we
to ®=®,/2 andE=0. Comparing Fig. 3 with Fig. 2 we can can see that the rule of apearance of resonance peaks cannot
see that the energy spectrum of three-ring systems has sarbe easily tackled, but for the waveguide ring systems it€an.
structure as the single ring; our calculation has shown thathe reason for this is that, for the waveguide theory, the
the fundamental configuration of the energy spectrum doeslectron transport through the system is perfectly ballistic, so

not change as the number of connected rings increases. that it may be analogous to serial superlattited However,
our numerical calculation shows that for the tight-binding

model there is no such analogy. The above difference be-
tween the wave guide theory and tight-binding calculation
Formula (6) displays that the transmission coefficient mainly is due to such a fact that for the tight-binding model
T=|t|2 of the ring systems connected with electron reserthere is additional scattering in the junction, the combination
voirs has a very heavy and complicated expression; it is ne@f which with the multibackscattering between the neighbor
' “('H‘
| 4 , W

essary to use computer to obtain the numerical results. For
guaranteeing the accuracy of numerical calculation, in every
stage after obtaining the transmission and reflection coeffi-
cients, we have checked the results by the criterion
[t|2+|r|?=1. Our numerical accuracy reaches to~ 1% ’
which adequately guarantees that the calculation is reliable.
For simplicity, we have assumed that all of the rings are ‘ ’
| \ “ ' M m,.,
\ (|
l '|'| i ‘ “” \"l‘\\\\i I',I ’
| ! ;,u i ':
:, ‘f A
H i f)'ﬂ!’” ' ‘“l u\\ ,/1/
model used in the present paper in all cases with different il ‘ &
N, one cannot find the above proportional properties. The =\
resonant states exhibit a very complicated behavior follow- o ’ o «&G
ing the change of electron energy and magnetic flux. We
found that, in general, more anomalous peaks appear as the FIG. 5. Same to Fig. 4 for a serially connected three-ring sys-
number of connected rings increase, but the correspondingm. The distance of neighbor rings is a lattice constant.

B. Transport properties of serially connected ring systems

Y ™.
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identical. Applying formula6) repeatedly, we can easily ob-
tain the transmission coefficieft for a serially connected
ring systems. We have calculated a series of multiring sys-
tems with ring numbeN=1,2,3,4,5,6,8,10, respectively. As
typical cases, we display the results of single-ring and three-
ring systems in Fig. 4 and Fig. 5.

We have noticed that in the framework of waveguide
theory for the mutiply connected ring systems, in some case
the frequency of quantum oscillation is proportional to the 0.
number of connected rings. However, for the tight-binding
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FIG. 6. Resonance spectrum of Fig. 5 is shown in the electron
energy versus magnetic flux plane. The dots represent the incident
electron states with total transmission coefficieft=0.85.
Aharonov-Bohm effect results in the missing of resonance peak in  FIG. 7. T-E-® diagram for an open single ring with two barriers
the region closed t@ = /2 (see text as shown in Fig. (), the site energy,=20.0 at theN—1 and
L+1 sites, energy intervaAE=0.04. Compared with Fig. 4 the
resonance peaks are much sharper and sparser.

rings gives rise to different results from the waveguide

theory. The bigger the ring number is, the more different the

transport behavior will be. when the energy of incident electron is closed to one of the

From Fig. 4 and Fig. 5, it is noteworthy that all the reso- eigenenergies of the system, the electron will easily transport
nance peaks appear along a sinuouslike ctitwehich cor-  through the system and the transmission coefficient exhibits
responds another kind of quantum oscillation behavior. Bea resonance peak. This result is consistent with that of Ref. 4,
cause to date all previous work based on the waveguida which the quantum oscillation of a single ring was studied.
theory has not shown @a-E-® three-dimensional diagram, As we have mentioned, there exists an energy deviation be-
therefore, at the moment we cannot give a detailed compariween the resonance peak and the energy spectrum of iso-
son for these two different models. In the next paragragh, wéated ring systems. This point can be seen also from a com-
will explain that the location of these resonance peaks resultgarison between Fig. 3 and Fig. 6. The deviation should be
from the competition between the Aharonov-Bohm magnetidue to the additional junction scattering when the ring is
effect and resonance effect existing in the degenerate statennected via leads to electron reservoirs. Our numerical cal-

Now we discuss the relationship between the resonanceulation displays that the junction scattering results in two
peaks and the energy spectrum of the studied systems in tledfects, firstly it depresses the peaksEst =2, and sec-
presence of the Aharonov-Bohm flux threading the rings. Foondly, it shifts the peak positions if compared with the en-
the single ring, from Fig. 4 we can easily see that the resoergy spectrum of isolated ring systems. From Figs. 2 and 3
nant states distribute in coincidence with the energy spemne can see that in the absence of magnetic flux the elec-
trum of the single ring, as shown in Fig. 2, except in thetronic states are degenerate. When the magnetic field is ap-
region of the diagram closed ®=®/2. In all of theT- plied, the time-reversal symmetry is broken and the degen-
E-® diagrams we have observed a common fact that in therate states split into 2. On the other hand, if the number of
region closed tab,/2 the transmission coefficient is always rings increases, the corresponding level proportionally in-
equal to zero. This conclusion also can be reached from forsreases. From these two facts one would expect that follow-
mula (3), which implies that whend=®,/2 transmission ing the increase of ring number and magnetic flux the num-
amplitudet=0. This is a typical Aharonov-Bohm effect, be- ber of peaks would proportionally increase as in the case of
cause in the present case the upper and bellow arms aveaveguide theory” But in our tight-binding model calcula-
identical, when ®=®,/2, the accummulated magnetic tion even the energy step is taken by #0we still cannot
phases through upper and bellow arms at kitef Fig. 1(a) observe this kind of result, the peaks increase, but not pro-
are+27®/d,= + 7, respectively, so that the electron wave portionally.
attenuates to zero because of the interference effect. But if
one compares Fig. 5, corresponding to three-ring system, c R ies of a single i
with Fig. 4, one can see that the distribution of transmission - Resonant transport properties of a single ring
coefficient is further complicated. For better visualization we with two barriers
plot those points of Fig. 5, of which the transmission coeffi- This paragraph is devoted to investigating the idea of
cient is not less than 0.85T&0.85), and shown in Fig. 6. whether or not in some cases the studied ring systems can be
We can consider that this picture displays the distribution ofinalogous to a double-potential well, so that the resonance
resonance peaks. Compared with Fig. 3, which displays thpeaks, no matter what their location or number, should be
energy spectrum of the three-ring system, it is found thatoincident with the spectrum of isolated ring systems. For



5342 JINGBO LI, ZHAO-QING ZHANG, AND YOUYAN LIU 55

1 1
o9 | 09 |
- N E =
E 9.8 E 0.8
o 07} O o7}
ll.t [T
! 06 | 5 o6
O o5} 8 05 |
4 p-4
© 04} © 04}
wn 17
‘é’ 03 | g 03 |
%’ 0.2 [ 2 o2}
ot L Eor | I |
[ - - 1
: \ o '
_0.1 I L 1 1 | L 1 _0.1 L | 1 1 1 1 1
2 45 1 05 0 05 1 15 2 2 15 4 05 0 05 1 15 2
ELECTRON ENERGY (J) ELECTRON ENERGY (J)

~ FIG. 8. A cross section of Fig. 7 with=0 and the energy FIG. 9. Same as Fig. 8, but fluk = 0.38®,. The number of
interval AE=0.001. There are five resonance peaks, which are COresonance peaks is in agreement with F|g 2, but there is also a

incident with the number of eigenenergies of energy spectrunyjeviation of energy as in thé®=0 case.
shown in Fig. 2. Barriers and junction scattering have deviated very

much from the resonance peak energies from the correspondinge scattering of the studied system for the incident electrons.
eigenenergies of the isolated single ring. These two facts result in the deviation of resonant energies
from eigenenergies of studied system.

) ) ) ) ) . The experimental plausibility of the theoretical results is
this purpose, we have investigated an open single ring with, interesting problem for which Takai and Oftdave
two barriers as shown in Fig(d). By the use of formulat8)  given a detailed discussigRhys. Rev. B0, 11 132(1995].
and(9), we have calculated the-E-® diagram for the sys- |y principle, their discussion is also suitable for the tight-
tem with barrier site energy,=20.0, and the results are pinding model, even though they deal with a waveguide
shown in Fig. 7. If_we compare it with Fig. 4, which COre- model. The experimental results definitely depend on the
sponds to same single-ring system but without barrier siteyaometric cofiguration of the system. For a chosen cofigura-
we can see that the resonance peak behavior is quite diffefip the measurement of tieE-d spectrum is meaningful
ent. It turns out to be much more sparse and sharp, and alggyrk, which can serve to adjudge the correctness of theory,

better corresponds to the spectrum of the isolated ring. Fofnq also would give some suggestion for future theoretical
observing this point, in Fig. 8 and Fig. 9 we plot the trans-gyqy.

mission coefficienT of the system versus incident electronic
energy E for =0 and &=0.38D,, respectively. Their
resonance peak numbers are coincident with that of eigenen-
ergies of energy spectrum. Besides that, we have also noticed We have studied the electron transport properties of seri-
some features which appear due to the existence of barriersally connected mesoscopic ring systems in the framework of
Firstly, we found that both pictures of Fig. 8 and Fig. 9 arethe tight-binding model. Including the magnetic Aharonov-
not symmetric again t&=0 for the incident electronic en- Bohm effect, firstly the transmission amplitude of a single
ergy E, because the two barriers with,# 0 have changed ring is obtained by the scattering matrix of the three-terminal
the symmetry of incident electronic energy Eo=0. Sec- splitter. The transmission coefficient ®f-connected ring
ondly, in the absence of magnetic field, as shown in Fig. 2systems is derived by the treatment of adding a single ring
there are three degenerate peaks of the transmission coeffiom the left side, one by one. The energy spectrum of the
cient. When the magnetic field is applied, these degenerattudied systems is calculated by the numerical diagonaliza-
states split, which causes three additional resonance peatien method. In comparison with the results of the waveguide
appearing in Fig. 9. The physical origin of these increasingnodel, some new electron transport properties are found. We
resonance peaks lays on that the magnetic flux in the rinbave found that more anomalous peaks of transmission co-
gives a contrary phase shié.? in the upper arm and'? in efficient appear as the number of connected rings increases,
the lower one, and the contrary phase shift causes the degeand the behavior of the quantum oscillation is much compli-
erate peak splitting. Thirdly, from the energy spectrumcated, even though a fundamental structure of the resonance
shown in Fig. 2, we can see that at the polnt=0 and spectrum is kept. But in contrast with waveguide results, the
®=0.38D, there are five and eight eigenenergies; correfrequency of quantum oscillation is not proportional to the
spondingly, in Fig. 8 and Fig. 9, five and eight resonancenumber of connected rings. The transmission coefficient of
peaks appear, respectively. If comparing the energies, wihe system depends on the energy of the incident electron as
will find that some resonant states deviate from the eigenernwell as the magnetic flux penetrating the rings. The distribu-
ergies of the ring system. A plausible explanation is that firstion of resonance peaks is similar to the energy spectrum of
the additional barriers change the energy spectrum of ththe studied systems, i.e., if the energy of the incident electron
whole system; on the other hand, the barriers also enhandg closed to the eigenenergy of the system, the incident elec-

IV. SUMMARY
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