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The piezoelectric interaction of a surface acoustic wgg&W) with a quantum dot is studied. Electron-
electron interactions are accounted for by solving the screening problem in real space. The absorption and the
scattering cross sections for SAW'’s as a function of the area of theddtite sound wave vectog, and the
diffusion coefficientD, of the electrons are calculated analytically in all cases where the quanfifleand
Aw/D are larger or smaller than unityy is the SAW frequency. Numerical results cover the intermediate
regimes. Based on the calculation of the weak localization corrections to the cross sections it is argued that
scattering and absorption of sound as noninvasive probes may be advantageous in comparison to transport
experiments for the investigation of small electronic systems, because for the former the phase coherence is
enhanced as the system size shrin&9163-18207)05808-4

. INTRODUCTION ential scattering cross sectiop(q’,q) and the absorption
cross sectiom,,{0). (Though they have the dimension of a

During the last decade, several theoretical papers addresgngth in two dimensions, we use the familiar term cross
ing the application of ultrasound for the investigation of section) We compute the WL corrections to both,. and
quantum effects in disordered electronic systems have been,,s. Since the sample is isolated, the phase coherence is
published. Mainly, qguantum corrections to the sound absorprot reduced by leads which are necessarily attached to the
tion in infinite systems have been studied The interaction  dot in an electron transport measurement. This in turn affects
of sound with electrons confined to a finite mesoscopic systhe magnitude of the WL corrections and their dependence
tem has only been discussed with respect to the fluctuatiorsn the size of the dot. Though WL effects contribute only
of the ultrasound absorptidt,emphasizing the idea that this correction terms to the classical cross-sections, their depen-
is a noninvasive probe which can be used to investigate isadence on weak magnetic fields and the phase coherence time
lated metallic samplego leads attachedThe above calcu- (i.e., the temperatuyean be used to detect them. Their par-
lations have essentially been done for the deformation poteriicular dependence on the frequency is superimposed on that
tial interaction of bulk phonons with three-dimensiof@D]  of the classical components gf . and 7,,s and might there-
electron systems. To ensure an efficient coupling to the 3Dore be difficult to resolve.
phonon wave, the dimensionality of the electron system can- The screening of the electron-phonon coupling arises
not be reduced, though this is necessary in order to enhanéem the electrons confined to the dot and is not a negligible
the weak localizatiolfWL ) effects. To overcome this restric- effect. We account for the screening in the linear response
tion, we propose to consider the interaction of surface acousapproximation, where the change of the electron density aris-
tic wave$® (SAW’s) with 2D electron system®. This inter-
action is very strong in GaAs/AGa; _,As heterostructures

where it is caused by the piezoelectric field accompanying free surface &

the SAW. Indeed, the SAW technique has been used suc- d g, side view
cessfully to investigate both the integer and the fractional 2| et O -

quantum Hall regimé!~'°*Though the absorption of SAW'’s —_—

in these experiments is used to study extended electron sys- L '

tems, the SAW technique might be applied to mesoscopic v v ,

systems as well. In this case, the noninvasive character of the :l/”/
measurement could prove advantageous. In a very recent . :

experiment® the direct acousto-electric current induced by a HHH~ - = top view
SAW through asingle quantum point contact as small as q q

0.5 um has been observed.

It is the main purpose of this paper to consider theoreti- £, 1. Schematic drawing of the experiment. The quantum dot,
cally some of the effects associated with a noninvasive probshown in black, is of sizé¢ and is separated by a spacer layer of
ing of mesoscopic 2D electron systems by SAW’s. Specifithicknessd from the surface. The dielectric constants of the sample
cally, we address the scattering and absorption of SAW'’s dugnd the half-space above it are denotedeyand e,, respectively.
to the electrons confined to an isolated quantum dot; see Fighe incoming and the transmitted waves have the wave vegtor
1. The main quantities to be calculated are the elastic differwhereasy’ is the wave vector of the scattered wave.
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ing from the external perturbation is proportional to the mag-

nitude of the perturbation. This approach is justified by the

small SAW intensities used in experiments. Since we con-

sider a system without translational invariance, the equations g, ® £+

for the screened potential, the charge redistribution, etc. have

to be formulated in real space. Consequently, screening can-

not be taken into account by simply multiplying the un- €

screened potential by a dielectric functiefw,q) but in-

volves the inversion of the dielectric functidior matrix (@)

e(r,r'). To do this accurately, i.e., to account for the shape

of the dot and the direction of the incoming SAW, we have

performed numerical calculations. Analytically, one can ex-

ploit the fact that the screening is strong. In particular, for

wavelengths z/q which are larger than the siZe of the

dot, a series expansion ef ! in terms of the small param-

eterag/L can be utilized, whereyg is the effective Bohr

radius. This provides a rather complete qualitative under-

standing of the relations between the bare and the screened

SAW potential and the charge redistribution in the dot. (b)
In the calculation of the cross sectiomg. and 7,,s We

mainly focus on the cases whegd is of the order of or

smaller than unity, and consider the diffusive limit, i.e., the

sizeL of the dot is large compared to the elastic mean free

pathl. In addition,| has to be small compared to the wave-

length 27/q of the SAW, ql<1. This relation guarantees

w7<1, because the velocity of sound=w/q, is much

smaller than the Fermi velocitysr=1/7. From an experi-

mental point of view, these conditions are satisfied in a dot

of sizeL=1 um, patterned in an electron gas with a low ©
mobility (uw=10* cm?/Vs) corresponding té=100 nm.
This paper is organized in the following way. In Sec. Il,  FIG. 2. Electron—surface-acoustic phonon interaction processes.

we summarize the main equations for the scattering and thEhe phonons are represented by wavy lines, and the electrons are
absorption cross sections, the bare SAW potential arisin§epicted by straight lines. Diagrafe) shows the absorption of an
from the piezoelectric coupling, and the dielectric function.incoming phonor(wave vectom, energyw). Diagrams(b) and(c)

The cross sectionsys. and 7., and, within the linear show scattering processes with two different intermediate states.

screening approach, the dielectric functiefm,r’) are essen- . .,
tially determined by the density-density correlator S'9SS sections can be calculated from Fermi’'s golden rule.

I1,(r,r'). This quantity is specified in Sec. Ill for the case of The amplitude for the absorption of a phonon results from a

a diffusive system, where it comprises besides the classicgliIrSt'Ord(':'r process between thehonon states|q) and|0),

term WL corrections. Based on these results, we discusie® Fig. 2 is the 2D phonon wave vector. Scattering is a

e(r,r') and its appropriate matrix representation in Sec. Nsecond-order process involving the two intermediqte states
An approximate inversion of is carried out analytically in Iq,lq )iand|0,0> .W'th two or no phorr:ons. ;—h? it:fsorpnor]: gnd
the strong screening regime. This yields the screened potelg(-3 astig scattering cross sections have the fdenfactor o

tial in the dot in terms of the bare SAW field. Combining 2ccounting for the spin degeneracy is included

these results with the equations fOr,(r,r'), we evaluate Ar2

the cross-sections in the limiting casgls<1 andgL>1 in Napd ) = — glm[Hw(q,q)] (]
Sec. V. The weak localization corrections#g. and »,,s are

related to the coopera®,(r,r). Its equation is solved in Sec. and
VI. Results of a numerical computation of the scattering and
the absorption cross sections are presented in Sec. VII. A
discussion is given in the last section.

’ q£4 ’ 2
Usc(q vq):W“_[w(q rq)| ) (2)

wheres is the velocity of surface sound and
II. BASIC EQUATIONS

The elastic scattering cross sectiopde, is the ratio of Hw(q’q’)zf ngf d*R'V: (R, (RR)Vy(R').
the sound intensity flux scattered into a “solid” angle 3)
aroundq’ and the flux intensity of the incoming surface
wave with wave vector, g=q'. The absorption cross sec- Here,Ris a 3D vector and/, denotes thescreenegotential
tion determines the energy per unit time absorbed by thassociated with one surface phonon with wave veqtam
electrons in the dot from the acoustic wave fields,,s. the normalization area? [which is canceled by a corre-
Hence, it is directly associated with electron heating. Thesponding term originating from the SAW potential, see Eq.
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(8 below]. The retarded density-density correlator gre equal to. q, (and, similarly,q,) is the component of

I1,(R,R’) of the electrons in the dot is defined by q in the direction of the lattice axig on the surface. The

_ numerical valug3.7] applies to GaAs/AlGa; _,As hetero-

Hw(R,R')z—(i/ﬁ)f dte“Y[p(Rt),p(R",0)]), (4)  structures.

0 The potentialVP" associated with the SAW acts on the
where p(R;t) is the electron density operator for one spin €l€ctrons in the.d(ﬁ] and leads top}}helr redistribution. This
component and = gsis the SAW frequency. Below, we use Créates a potential™ that adds to/™",
gwned Lr;)purlty—averaged density-density correlator in Hds. VERVERYS (10

_Equation (3) can be simplified using the fact that the whereV determines the interaction of surface phonons with
thickness of the 2D electron gd2DEG) is much smaller the electrons in the quantum dot; see B3). The calculation
than the penetration depth of the SAW into the interior of theof v and the corresponding charge redistributigp(r) has
sample. This allows one to neglect the finite extension of th@o be done self-consistently. Bearing in mind that the quan-

2DEG in the z direction, replacing p(R,t) by  tum dotis embedded in a 3D semiconductor with dielectric
d(z—d)p(r,t), whered is the distance between the 2DEG constante,, we have

and the surface of the sample apt,t) is the areal density

of 2D electrons[We haveR=(r,z) wherer is a vector in the 9, , L
plane of the 2DEG and is the coordinate perpendicular to 6p(r)=2f dr' I, (r,r)Vv(r',2" =d), (12)
it; see Fig. 1] Substituting this replacement into E¢4)
yields 4re?
V2Veh(R)= — 8(z—d)8p(r), (12
O,(RR)=38(z—d)é(z' —d)II(r,r'), (5) €0

where the factor of 2 is due to spin degeneracy and the po-
tentials andsp(r) refer to thew component in the corre-
sponding Fourier expansions.

wherell ,(r,r") is the 2D density-density correlator. Particle
number conservation implies

The solution of Poisson’s equatigh2) can be expressed
f erHw(r,r’):f d?r'IT,,(r,r’')=0. (6) in terms of the corresponding Green’s function
Substituting Eq(5) into Eqg. (3), we obtain V2G(R,R)=—-478(R—R’), (13
which has to satisfy the boundary conditions at the interface
Hw(q,Q')EJ dzrf d?r' Vi (r,iz=d)I,(r,r') between the sample and the halfspddilectric constant
€;) above it. Addressing the case where bBthndR’ lie in
XVg(r',z'=d). (7) the plane of the dota=2z'=d), we have
The integrations run over the aréaof the dot. 1 e e 1
The bare potentia¢™" created by the SAW in the plane of G(R,R')=G(r—r')= —+ ———* _
the 2DEG can be represented in the fofm r=r| €o+€1\/|r—r’|2+(2d)(2 )
14
1 , . . .
Vgh(r,zzd)zzyqelqr_ (8) The Green'’s functiorG can be combined with Eq$10)—

(12) to relate the total potential directly to the SAW field

For GaAs/AlLGa;_,As heterostructures and the range of
wavelengths used in SAW experiments, the piezoelectric f d2r'e(r,r')V(r',z’ =d)=VP"(r,z=d). (15)
electron-phonon interaction is dominant. We may thus iden-
tify v, with the piezoelectric vertex, ~, neglecting the de-  The kernel of this integral equation is the dielectric function
formation potential coupling. In addition, singel is usually
much smaller than unity, the dependence/pf ond can be , - . .
disregarded(For qd~1, y, depends nonmonotonously on e(r,r’)=46(r—r )_ze_of dor'G(r—r")I,(r",r").
the parameterd, see the discussion in Ref. 18 hen we (16)
have
Using Eq.(6), one can see thdtd?r’ e(r,r’')=1. This means
Vo= 7§A= (il pSap,) 1/2I3eqqu: 3.70,0,10 1 eV cm, that a potential that is spatially constant within the dot is not
(9)  screened, cf. Eq15).

wherep is the mass density of the lattice,is the electron
charge, andap, represents a numerical factor that can be
expressed in terms of the elastic constants of the lattice, cf.
Ref. 17. Equatior(9) is valid for a GaAs-type crystal with In the diffusive regime, the density-density correlator
the SAW propagating along th@00) plane and electrically has the form

fre® boundary conditions for the piezoelectric potential at

the surface. In this case alhonzerg piezoelectric moduli I, (r,r")y=—y[8(r—r")+iwD,(r,r')], (17

[ll. DENSITY-DENSITY CORRELATOR
FOR A DIFFUSIVE SYSTEM
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whereD,, is the diffusion propagator andis the (2D) den-

sity of states for one spin projection. This result is valid for ww(f,f'):j d?r"D,,(r,1"){V" 8D (r")V"} D (r",1").

small frequencies 7<1, small wave vectorgl<1, and low (22)
temperaturesn, T<eg ;e is the Fermi energy. The wave

number of the SAW(, describes the spatial modulation of ~ Neglecting spin scattering, the WL correction can be ex-
an external potential, the response to which can be expressegessed in terms of the coopef8i°C

in terms ofIl,, Eq. (17). Neglecting WL corrections, the

diffusion propagator is given BY SD(r)=— 772 C,(1.1). 23)

i 2 N — et _
[~i0=DVID,(r,r")=8(r=1"), ViDu[p=0, (18 |, real space, the cooperon obeys the equations
whereD =12/27 is the 2D diffusion coefficient anll , is the ; -1 ; 2 "n_ ,

i . —iw+ +DJ[iV+(2elch)A J)=0o(r—r"),
outer normal component of the gradient with respect to the{ 1OT Ty [ (2eleh)AMNIIC(rr)=dlr=r)
boundary of the quantum dot. The boundary condition fol- iV +(2e/ch)A(NIC | =0 24
lows from the requirement that there is no flow of electrons [IVa+( ) . ”(_ J1Culo e ( _)
through the boundary of the system. This is in contrast to & he effect of aweak magnetic fieldB, oriented perpendicu-

system coupled to leads, whef$.=0 at the contacts. larly to the plane of the 2DEG, is described by the vector
The diffusion propagator, Eq18), can be expressed in potentialA(r). The boundary condition in Eq24) ensures
terms of its(real) eigenfunctionsy,, that there is no flow of “coherence’() through the bound-
ary of an isolated system. The evaluation of the cooperon
(D (1) will be done in Sec. VI. For the rest of this and the next two
D,(r,r')= 2 T Ak (19 sections it will be sufficient to bear in mind thaD(r) is a

m=0 ~lo+DAp well-defined quantity that can be calculated according to Eq.

(23.
Let us now return to the density-density correlator. Sub-

2 B _ stituting Egs.(19) and(22) into Eq. (17) yieldsII,, in terms
[V Aml¢m() =0, Vanp=0. (20 of the diffusion modes

defined by

These form an orthonormal sefd?r = Spmn- It is a o
peculiar feature of an isolated quantum dot that there exists a ,rr)=—v 2 Buntm(Dn(r'), (25)
zeroth eigenfunctiony,= 1/\/A, A being the area of the dot. m,n=1
The corresponding eigenvalug=0 is well separated from ;are
the remaining sequence of eigenvaligs-A 1. The zeroth
mode determines the behavior of the diffusion propagator in Bmn=BmOmnT 6Bmn (26)
the case of a “small” dotAw/D<1. In this regime, the
particle is able to diffuse through the whole system within
one period of the external potential. Boundary effects are D)
crucial and we obtain from Eq19) D, (r,r')=(—iwA) L. Bm m
In the opposite, “big-dot” caseAw/D>1, the particle dif-
fuses only over a distancgD/w< JA before the external and the WL contribution
potential is reversed. Thus, the diffusion process is bulk-like. )
Disregarding all boundary effects, EQL9) reduces in this 5B = “lo
case to the translational invariant forfd, (r—r'), corre- M (—iw+DAy)(—iw+D\y)
sponding to an infinitely extended system. In the intermedi-
ate regime,Aw/D=1, the diffusion propagator exhibits Xf d2r 8D (1) V (1) V (). (28)
sample-specific properties.

Weak localization effects yield a correctiodD, to the  The sums over modes in ES) start fromm,n=1 since
classical diffusion coefficienD which basically describes o=Bom=0 form=0,1, . .. . This is a consequence of the

the slowing .dogvzr?) of the diffusion processes due to enhancegcture of the diffusion propagator and holds true even for
backscattering”*’ Generally, 65D may depend on the fre- the case wheréD(r) is treated exactlyi.e., not only to first

quency », the electron phase coherence timg, a weak  qrgep. The restriction of the summations ensures tHaj
magnetic fieldB, and other physical parameters. In addition, fjills Egs. (6) since [d2ry,,=0 for m=1.

the WL correction acquires in a finite system a spatial de-
pendence. To account for this, we repf&de Eq. (18)

is decomposed into the classical term

:—iw+D7\m @7

IV. SCREENING

DV2-V[D+ éD(r)]V. (21 In order to apply Eq(15) to the diffusive dot, we consider
its representation in terms of the diffusion modes, &4).

This replacement guarantees particle number conservatiorhe matrix elements of the Green’s functién Eq.(14), can
Since we are only interested in first order corrections due t@e written as

6D(r), we write the diffusion propagator in the form

3&555&, Substituting this ansatz in the modified E§8) Gmn:j dzr’f e (G(r—1") (1), 29



55 ELASTIC SCATTERING AND ABSORPTION OF ... 5329

For the potentiaV (and, similarly, forvP"), we introduce  whereG=G/L is a dimensionless Green’s function depend-
the expansion ing only on the shape of the dot.
Substituting Eqs(34) and (33) into Eq. (31), we obtain

- ) for ther-independent part of the total potential
V(r,z=d)=n§=:O Voaba(r), Va=| doryg,(r)V(r,z=d).

(30 Vo=V§'~ X Go(G HinVE'+ Oag/L). (35
Using these definitions, the complete set of equations which T

follows from Eq.(15) becomes This equation confirms explicitly the conclusion following

) from the general Eq.16), namely that the spatially uniform

h_ ey part of an external potential, hergl", contributes un-
Ve _V°+25_0nél GoBinVi, 3D screened toV,. Moreover, since the produ@&G™ ! is of
order unity, it shows that also the spatially varying compo-
e?y nentsvﬁh contribute effectively unscreened Y. Combin-
VA=Vt 26_0n|§;1 GmiBinVa, m=1. (32  ing Egs.(34) and(35), we find for the total potential

These equations have to be solved with respe¢vig. Not 1 7ap _ ~_

all of thgse quantities are coupled to eacr? (fth‘;gr. For ex- V(r)%\/_KVO“LTm ;}l Um(D (B e G~ HaVP".

ample, as emphasized by Eq&1) and (32), the {V,}, o (36)
n=1, form a closed system of equations. Its solution can be

substituted into Eq(31) determining the element,. This  Thus, in contrast to an open or an infinitely extended system,
property of the screening equations results from the fact thath the case of strong screening in an isolated dot one has a
due to charge conservatio,,=0, cf. the discussion after large but spatially constant backgrougte first term of or-

Eq. (29). der VPM in addition to the small, varying componefthe
The formal solution of Eq(32) can be given in terms of second termof the total potential. This behavior is based on
an inverse dielectric matrix particle conservation, for the charge on the dot can only be

redistributed to some extent but cannot be increased or re-
. oh duced via electrons flowing to or coming from the leads. But
Vm=n§1 (€ DmnVp - (33  the absorption and scattering of phonons are associated only
with the spatially varying component of the total potential
The full numerical calculation of { %),,, is described in Which carries the factasig /L <1. The screening of the SAW
Sec. VII. Here, we present an analytical approach based dpotential by the electrons in the quantum dot is thus an effect
the following facts. First, the SAW potential is slowly vary- that reduces considerably the magnitude of the scattering and
ing on the scale of the dotjL=<1. Consequently, only the the absorption cross sections.
first few elements/?" are significantly different from zero, ~ In concluding this section let us consider the charge re-
and we can concentrate on the matrix elem@ys,, Bn,,  distribution dp(r). Substituting Eqs(25) and (36) into Eq.
and (e~ 1),,, with indicesm andn which are of order unity. (11) yields
Secondly, the screening in experimentally relevant samples
is strong. To see this, we estimate the magnitude of the dif- — _
ferent terms in Eqs(31) and (32). Using v=m*/27%2, the op(r)=—2vs(z d)m%l V(1) BV
prefactor 22v/€, can be written in the form Hag, where
a%(=.eole2m* is 'ghe effective Bohr rad.ius o_f the lattice and _ —2V5(Z—d)7T—aB 2 wm(r)(’é—l)mn\/gh
m* is the effective electron mass. Sineg=10.6 nm for L min=1
GaAs, the Bohr radius represents the smallest length scale in ap 2
the system. The matrix elemenG,,, is of order +0(ag/L?). (37)

1\ m=L/m for m~n, L=/A being the size of the dot, and is, even in the strong screening case, wiagrés very

it decreases sharply fon or n much larger than unity and g4 compared to other length scalé(r) is determined
very different from each other. Hence, we havepy ihe gistribution of the external potential within the whole
(2e%v/€9)Gmp=L/ag for the relevantm and n of order o hdeed, thevP! couple via nondiagonal elements of
unity. We therefore expectV,, to be of order =_) ’ " . o .
(ag/L)VPh<\/Ph. G~ to other modesn. In this sense, screening in an isolated
mo=Sim-o . - dot is strongly nonlocal.

An approximate inversion of Eq32) providing the lead-
ing terms in an expansion with respectag/L can be ac-
complished by introducing the inverse matri@ (%), to the V- SCATTERING AND ABSORPTION CROSS SECTIONS
reduced matrixG,, with indicesm andl equal to or larger
than unity. Similarly, we defineg1),,;. Multiplying Eq.
(32) with 871G~ yields for the inverse dielectric operator

In this section we study analytically the absorption and
the scattering cross sections, E¢8.and(2), in the limiting
casegiL>1 andqL<1. The substantiation of these results

a by numerical calculations, addressing also the angular de-

-1 T8 -1y (~-1 2/ 2 pendence of the cross sections, their sensitivity to the shape

=— G +0O(ag/L?), (34 X I
(e Dmn=" ;1 (B ImlG It O@E/LY), (34 of the dot, etc., will be deferred until Sec. VII.
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A. The caseqlL>1 Equation(2) for the scattering cross section can be treated
This regime resembles the case of an infinitely extendedmilarly. In the limitqL>1, 7. has a dominating forward-
2DEG. One may therefore use the usgatepresentation, SCattering component
leading to the relatioV(r) =Vgh(r)/e(w,q) between the to-

tal potential and the SAW field. The dielectric function 75dd’,0)~ 5(d" = q). (42
o2 1 / This property results from the momentum conservation in a
_ 77 —€1'€ _qa translational invariant system.
e(w,q)=1+ s + 1+El/60e 2vB(w,q)

N B(w,0) B. The caseqL<1

~1+2 agq (38) Here, we exploit the diffusion mode representation intro-
. . duced above. Substituting the density-density correlator, Eq.
is derived from Eq(16). Here, (25), and the total potential in the strong screening limit, Eq.

36), into Eq.(7) yields
D+ 6012 (36), into Eq.(7) y
(39

Al D=7 D+ D) (map)?

I1,(0.9)=—v» A

is (except for the factor-v) the Fourier representation of m.n.k,1=1
the density-density correlator, E¢5), which replaces the s =1 s =1 h
expressions,,, [Eq. (25)] valid in the diffusion mode repre- X (B (G VRN (G HmVP™
sentation. To obtain Eq39), the WL correctionsD(r) has (43
been replaced by the spatial averagP®=const. Using
gd<1 and assuming;= 1<t ¢, the dielectric function sim-
plifies to the result given on the right-hand side of E2B).
The effective dielectric constant in the vicinity of the surface

Expanding the bare SAW potentiq. (8)] in a series with
respect tdqr|<1, we find

. : ~ 1 N
is then given by &+ €1)/2~ €,/2. G H_wvPh="1 igA , 44

Substituting the bare SAW potentigq. (8)] and the di- ;1 (G m £ Yd'9A3n(a) (49
electric functione(w,q) [Eq. (38)] in Eq. (7) for the quantity h
I1,(9,9"), we obtain for the absorption cross section where

2
4v, Im[B(w,q)] H=S (Gt j dre
Taod WA= [ g gz =Tar (40 (@)= 2 (G~ mn| R rn(r). (45)

where T, is the attenuation coefficighbf a SAW in an  The dimensionless integral in this equation is of order unity
infinite 2DEG. Neglecting WL corrections, the attenuationfor smalln’s, and it decreases asincreasesa(q) is ex-
coefficient given in Eq(40) coincides with the result follow- pected to have the same properties. Introducing ré4djtin

ing from the well-known treatment of sound absorption duekq. (43), we obtain

to the piezoelectric interactiaisee, e.g., Refs. 12 and)1$n

the case of strong screening, E40) becomes IT,(0,9)=—»( 7raByqq)2A11*2
v 1) Rg 6D ] —1\* - o
rq=s—h|vqlz(a3)25(1— 5 ) Xm%l (B Hmdm(@an(@).  (46)
1, onm Rg So] Up to first order indB,,, the inverse ofB,,, EQ.(26), is
=5 Keia—| 1-———|. (41)  given by

where the right-hand side uses the “standard” notation, i.e., . 1 8Bmn

I’y is given in terms of the 2D conductivity, the conduc- (B Imn=Bm Omn— m (47)

tivity o= €gs/4m, and the effective electromechanical cou-

pling coefficientk 3= y,|*ep/2ms €. Equation(41) shows ~ Where5Bn, is defined in Eq(28).

that the WL corrections can be incorporated into the classical We are now in the position to use E@6) in the evalu-
result by replacind® by R€D+ 8D] or o by Rd o+ do ], ation of the absorption and the scattering cross sections. Sub-
where 8¢ is the corresponding correction of the conductiv- Stituting Eq.(46) into Eq. (1) yields

ity. Since the WL effects slow the diffusion processes down,

Rd 6D]~R{ 85]<0, they reduce the screening of the _Av 242022 D 1
SAW field which in turn gives rise to an enhancement of the Tabd B =7 |7dl"(mag)%q D maZ1 ANy
absorption. The enhancement factor Rg 6D /D has been
found in previous work®=°on the absorption of bulk sound

in a 3D electron system. A different result has been obtained
in Ref. 2. The reason for this, as discussed in Ref. 4, is the
insufficient number of diagrams incorporated in that calcula- % R 6D(r)]
tion. D

X

1
5m,n_ R_f dZI‘V (,//m(l’)Vl/In(I')

am(9)an(9). (48)
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Note thatA\,, is a dimensionless quantity independent of V2 o 1o 45nD
A, cf. Eq.(20). A significant simplification of this equation is nsc(q’,q)kaI Yo%l vdl “(mag) *a*A

achieved whensD(r) does not vary in space. This is not
always the case, of course. We believe, however, that, quali-

tatively, the influence of the WL effects is described by an Xmél am(q,)am(Q)ngl an(q’)an(q)
average quantityyD = const, which will be defined in Sec.
VI. Replacing 6D(r) by 6D and using the diffusion mode o Im[éD]
equation(20), Eq. (48) reduces to Xy 11— DX D wA/D<1
n
)—ﬂ| |2( a )2A2q_3 1— ngD] 2 am(a,)am(a) 2 wA 2
Tt e A 5| 1 AP e i

. (49

an(9)
><| 2 A,

m=1

foote

5 ] wAID>1. (52

The dependence on the shape of the dot and the direction dhe classical contribution and the prefactor of the WL cor-
the SAW is comprised in the quantity in braces. The depenrections depend strongly on the parameies/D. For a big
dences on all other parameters is completely described by iiot, Aw/D>1, the scattering of SAW's rises faster than
prefactor. As in the case of an infinite system, i), the A? with increasing are@ of the dot because the diffusion
WL corrections enhance the absorption. Comparing Egsprocesses are too slow to screen long wavelength density
(41) and(49) we see thaty, s is smaller by a factord?A) in ~ variations as effectively as short wavelength ones. Indeed,
the casejL<1. That is, a small system absorbs per unit aredhe enhancement factarA/D results from the classical part
much less than an extended one. This can be attributed to e (8™ %) mn, Bm'=1—iw/D\y, [Eq. (28)], which enters Eq.
fact that the electrons in an extended system can move ov€b0) via the inverse of the dielectric matrix. In the small dot
the whole period 1 of the piezoelectric field, while a small case,,B,;lzl for all m starting from unity, and, hence, there

system restricts this motion by .its size. . ~_is no enhancement factor in the second line of E5p).
We eyaluate now t'he scattering cross section. Substitutingvhile the quantum corrections contributesg, according to
Eq. (46) into Eq. (2) yields their relative magnitude for big dots, they acquire a small

prefactor oncevsA/D becomes smaller than unity. Moreover,
since their imaginary part is the relevant quantity in that
case, they are small fas< 7-;1, cf. Eq.(63) below. This is
contrary to the dependence of WL corrections on frequency
and phase coherence time as far as the real part of the con-

AN L
7sd(d iQ):Wh’q’

% yql*(magq)*A?

X 3 (BB ian(d)an(a)

m, ductivity is concerned.
Xa(q")a(q). (50 VI. WEAK LOCALIZATION CORRECTIONS
Here, we should replace the matrix elements3of by the The absorption and the scattering cross sections depend

explicit expressions given in Eq47). As far as the WL on WL corrections viasD(r), which in turn is directly re-

contributions are concerned, we have to calculate the sumated to the coopero@,(r,r); see Eq(23). In the first part of

over foura-terms with the8~ 181 part replaced by this section, we evaluate the cooperon equafih. Special
attention is devoted to the magnetic field dependence. In the

1 6By second part, we discuss the approximationddf(r) by a
-2R ,3_* BB spatially independent quanti§D.
m
This can be rewritten as A. Magnetic field dependence

In comparison with the diffusion propagator, E9), the
w , Eq.24), depends on the two additional length
) d2rv v Imr 8D cooperon, Eq(
Dz)\kMJ Vidn) ¢|(r): mLaD(1)] scaled ;= VD74 andlg= \/c#/2eB. Due to the sensitivity of
quantum corrections to weak magnetic fields, it is sufficient
+LRe[ 5D(r)]], (51) to account perturbatively for thB-dependent terms in Eq.
DA (24). To this end, we expand the cooperon in a power series

. L with respect toA(r):
showing that the relevant quantity is either[@B(r)] or

Im[ 6D(r)] depending on whether the diffusion time through C(rr)=CO%r, 1) +CV(r i) +CP(r )+ - -,
the dot,A/D, is large or small compared to the period of the (53)
SAW.

The replacement oD (r) by 8D = const allows a consid- Where C{"~A™. This expansion can be terminated with a
erable simplification of expressiofs1), leading to explicit negligible error at the first nonvanishing correction to
estimates in the limits of a small and a big dot: cOr,r) if L/lg<1 and|—iw+7,'[>DL%I§. Using ex-
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perimental valuegsee Sec. VI, we havew= 7;1, i.e., the ) ) 1) ,
second inequality can be written dsl,/I5<1. Since +jd ri{—2iD(2e/ch)A(r)VCy (ry,r')
l,=<L in the cases of practical interest, the first condition 2 D) 0
L/Ig<1 determines the range of applicability of the pertur- —D[(2e/ch)A(r1)]°C,, (r1,r")}C, (ry,r).
bative treatment. Substituting EG3) in Eq. (24) yields (58)
[—iw+7,'=DVZCO(r,r")=8(r—r"), This equation and E¢(56) determine the WL correction to
the diffusion coefficient in the form &D(r)
[~iw+r,t-DV2IeH(r,r) =—(D/7hv)[CO®r, 1)+ (r,r)]. Since C'P~B?, the
physical quantities calculated in the preceding section are
= —2iD(2e/cﬁ)A(r)VCf,f’)(r,r’), invariant with respect to a reversal of the direction of the

magnetic field.
[—iw+7,'=DVZCI(r,1)
. (1) , B. The average quantity 6D
=—2iD(2e/ch)A(r)VC, ' (r,r") _ _ _
The spatially constant quantityD that was used in Sec.
—D[(2€/Ch)A(r)]2C(wO)(r,r’), V is introduced by
(54)

D
— 2
where we have used the gau§e\(r)=0. The boundary oD(r)— oD=— WﬁVAf drCy(r.r). (59)
conditions are given by
This approximation captures the essential features of the

Vncg’)|b:o, problem and becomes exact in two limiting cases. For small
frequencies and large phase coherence times,
V,CM Y| =i(2e/ch)AC™],, for m=0,1 |—iw+ r;1|<D/A, the cooperon is determined by the
nCer nColb s I

(55) zeroth diffusion mode),, and hence (r,r)=~const. In the
opposite case, the bulklike diffusion process guarantees that
The equation forC!”) can be solved using the diffusion at leastC{?)(r,r) is spatially uniform except near the bound-

modes defined in Eq20) aries. In the intermediate reginie; i w+ r(;l|=D/A, we ex-
pect a smooth cross-over between these two limiting cases.
Am=1"2 Yon(0) (1) In the limiting cases one is able to obtain explicit results
clrr= 2 (56)  for the averaged WL correctiofD. Depending on whether

m=0 _|w+D)\m+T;l . -1 . . o -
Al—iw+7,7|/D is smaller or larger than unity, it is conve-

There is a cut-off on the summation because the diffusiorient to replace the zero-field cooper6f}’ in the solution
approximation is valid on scales larger than the mean freéorcff) Eq. (58), by its diffusion mode representati¢b) or
path. The relevant frequency scale is given byits Fourier representation for an infinite 2D system,
|—iw+7;1|~7(_/)1.

SinceC!? is the Green’s function for the differential op- o d%q glar=r"
erator of all three equatior(§4), it enables us to write down Co(rir ):J (2m)?2 —i0+ D2+ 7, (60)
solutions forc!*) andC?) as well. The result foc'" reads ¢

respectively. In the former case, we are able to separate the
e s _ ) - large contributions due to the zero mode from the corrections
C,'(r,r)=D f]g dSi[i(2e/ch)An(ry)C, (r1,r")1C, (r1,r)  resulting from all other modes. In the latter, the particle dif-
fuses on scales small compared to the size of the system;
. hence, the boundary conditions imposed on a finite dot can
2 _ (0) ’
+f d“r[ —2iD(2e/ch)A(r)V,C,, (r1,r")] be disregarded.

XCO(ry,r). (57) 1. Small dot case

The first term represents an integral over the boundary of the Substituting Eq(56) in C!?), Eq. (59), yields
dot and includes the inhomogeneity of the boundary condi-
tion (55), whereas the second one accounts for the source
term in the differential equation. Rewriting the surface inte- f d?rC,(r,r)= 2
gral in terms of a volume integral shows th@f)(r,r)=0, m=0

Aps| 2

—ilw+DNy+ T;l

i.e., the quantum corrections do not depend linearly on the

magnetic field. The expression f6f?) has the same structure + Df d?rym(n[(2e/ch)A(r)]?
as Eq.(57), one has just to substitute the corresponding

source terms given in Eqgs4). That is, =172 (Fnm—F mn)? -t

+D2 D,

h=0 —ilw+DN,+ 7;1
c(rr)=D 35dsl[i<2e/ch>An(rl>ci}><r1,r'>]c<w°>(r1,r> 61)
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‘ FIG. 5. Polar diagram of the elastic scattering cross section of a
10* 10° square dot as a function of the directigh of the outgoing wave.
qem™) The angle of incidencéy) is kept fixed; see inset.

FIG. 3. Double logarithmic plot of the absorption and the scat-(Which are of the same ordeto the first one. For an isolated

tering cross sections as a function of the wave vector. dot, the first term is of order—iw+ 7, |, Eq.(63), whereas
it is given byD/A for a dot coupled to leads. This results in
where the estimates

(19)*°=Amin{D/w,13}, (I3)'®2=A% (64)

The critical field for an isolated small dot is thus much larger
than for a dot with leads.

an:j d2ripm(r)i(2e/ch) ANV do(r). (62)

For A|l—iw+ 751|/D<1, we restrict the sum to the=0

term and obtain 2. Big dot case

D 1 For A|—iw+7,'/D>1, we substitute Eq60) in ¢,
o=~ ThvA —iw+ 7';14— ClDA/Ié’ €3 Eq. (58), and obtain

whergcl is a real positive constant of order unity. The Ipw— SD = C2 In{+ —iw+ r;1+c3DA/I‘é]}, (65)
est eigenmode, leads to an increase of the WL corrections why

as the ared of the dot decreases. This behavior results fronM . .
. . herec, andcy are real positive constants of order unity. In
the fact that the boundaries of an isolated system cause rf 2 3 P y
R

phase breaking. In the case where the dot is connected fis case, the zeroth mode plays no role; &) is valid

leads, the summation over modes starmatl and yieldé! dependently of the boundary conditions imposed.
' y We note that the characterization as “big” or “small”

— _ -1 2 — H o
oD =—(mhv) "In(AI%) for B_.O' Th'?t is, the correonn dot does not necessarily apply simultaneously to both the
term decreases as the dot shrinks, since the effective phaﬁﬁfusion propagatofEq. (19)] and the cooperofEq. (56)].
coherence length is determined by the separation of the COly o icylar, foror,<1, there exists the situation where the

tacts. The scales of the critical magnetic field at which theyig sjon propagatofresponsible for the classical contribu-
phase coherence is significantly reduced are different for isqs nsl is determined by the zeroth mode sinde/D <1

lated and open systems as well. This field can be deduc L .
from Eq. (61) by equating the two field dependent terms _hereas_}he cooperofdetermining D] behaves bulklike
sinceAr, /D>1.

| sx10”

5x10-5 VII. NUMERICAL CALCULATIONS

fc

5x1075
Sx10° 0

To compute numerically the scattering and the absorption
cross sections, we have used an accurate inversion of the
dielectric functione(r,r’); see Eq(33). This procedure cov-
ers small and large values of the parametér Thus, the
numerical results bridge the gap left by the analytical study
of limiting cases in Sec. V, and provide information about
the angular dependence of the cross sections. The scaling of
the numerically calculated cross sections with respect to
A,q,D, etc. can be used to confirm the predictions derived
analytically, cf. Eqs(41)—(52). In Figs. 3—-5 discussed be-

-
e
7

-5x1073

51075 0 5%10°5 low, results for different wave vectorsare shown; all other
parameters are kept fixed. This means that the two dimen-
Nas @ (M) sionless quantitiegL andAw/D vary. Since the latter, even

for the largest wave vectors used is smaller than unity, it is
FIG. 4. Polar diagrams of the absorption cross section of a rectessentially the effects of the variation gE which we focus
angular(main ploy and a square doinsed as a function of the ~ ON. In this small dot case, the WL corrections are essentially
angle of incidence of the SAW. Results for three different wavedescribed by the quantity-1Rq 6D]/D, cf. Egs.(49) and
numbersq are given. (52), which is discussed in connection with Fig. 6.
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128 ' ' ' . . to the lattice axes. Quantum corrections Bx-0 are incor-
porated. The absorption cross section is given by curve 1.
The part to the left of label 1 exhibits the behavior
Nans~ 0>, confirming the power law predicted by EG9)
for the limit gL<<1. The remaining part of the curve corre-
sponds ton,,s~q. This behavior is anticipated in the regime
gL>1; see Eq.(41). The oscillations ofy,,{q) represent
geometric resonances. Maxima appear aroghg=2mm,
m=1,2,..., whereas minima occur fogL,=m(2m+1).
The curve labeled 2corresponding to the direction 2ep-
resents results for the scattering cross section for a scattering
angle of 30°. It follows the power laws.~q°, Eq.(52), in
1-‘60 05 3 s p Y "'“3 the limit gqL<1. ForqL> 1, the scattering cross-section be-
haves in a sample and angle specific way. In this case, the
B (mT) magnitude ofps(q’ # q) is small compared to the forward-

o scattering component, which continues to grovgaiscf. Eq.
FIG. 6. Weak localization enhancement-Rg éD]/D, Eg. (42) and Fig. 5

(59), of the absorption cross section, E¢49), as a function of the
magnetic fieldB for three different wave numbers.

126

1.241

1.22}

1-Re( 3DY/D

1.2}

Figure 4 shows results for the absorption cross section of
a rectangular l(,=1.2 um, L,=0.4 um; main plo} and a
square dot I(,=L,=0.66 um; inse}. The abscissa of the

The dot has the shape of a squdengthsL,=L,) or a figure agrees with the axis of the dot. Figure 4 represents a
rectangle [,>L,). In the first case emphasis is put on the polar diagram fory,,40), i.e., the distance of a data point
angular dependence associated with the valuglofWe use  from the origin corresponds to the magnitude 9f.,
the following values for the physical quantities which apply whereas the orientation of the wave vectpof the SAW
to GaAs/ALGa;_,As heterostructures: »=1.55<10"  agrees with the direction of the line joining the data point
meV - lcm™2, s=2.7x10° cms !, D=140 cn?s !  and the origin. The curves labeled 1, 2, and 3 correspond to
(1=0.1 um), 7=0.4 ps, 7,=0.03 ns, d=0.1 um, the wave vectors);=10* cm %, q,=5x10* cm™?, and
ag=10.6 nm, ¢,=12.8, ¢;=1, and, e.g.,L,=L,=0.66 g;=10° cm™?, respectively. The magnitude of the curves
pm for the square dot. The phase coherence tiowre- labeled 1 is increased by a factor of 20. The main plot in Fig.
sponding toT=0.1 K andl ,=0.63 um) and the diffusion 4 for the rectangular dot shows a strong anisotropy of the
coefficient for a low mobility electron gas are taken from absorption cross section for the two smaller wave vectors.
Ref. 22. The choice of a small diffusion coefficient is dic- For instance s, for o;/|x and #,,s for ||y deviate by a
tated by the condition that the size of the dot is larger tharfactor of about 20 from each other. This pronounced anisot-
the mean free path, but small enough to allowdbr<1 and  ropy can be attributed to the fact that the relevant size of the
qL>1 in the range of reasonable sound frequencies. Fodot (eitherL, orL,) enters Eq(49) for 7,5 as a high power
these frequencies and the quantities given abeveand in the limit qL<<1. In contrast, for the largest wave vector
7-;,1 are smaller tharD/A. Thus, the diffusion propagator qs, 7., €xhibits only a minor dependence on the angle of
[Eqg. (19)] and the cooperofEq. (56)] are essentially deter- incidence, reflecting that only the total area is relevant in the
mined by the zeroth mode. Since the very existence of theegimeqlL>1; cf. Eq.(40). That is, for an approximate isot-
zeroth mode relies on the assumption of an isolated dot, it isopy of 7,,s to appear, botlyL, andqlL, have to be suffi-
this physical regime that puts the most emphasis on the norciently larger than unity. As can be seen from the inset of
invasive character of the proposed SAW measurement. Po&ig. 4, the situation is somewhat different in the case of a
ing the requirement q<I~! vyields g~10° cm~! square dot. Herey,,s is completely independent of the di-
(w~2mx 4.3 GH2 as the upper limit for the applicability of rection of incidence for the smallest wave vectpr. The
the diffusion approximation. A lower limi>A could arise  absorption cross section acquires a weak angular dependence
from the finiteness of the mean level spacihg (vA) "t in  with increasing wave vector, which can be attributed to geo-
the quantum dot. FoA=1 um?, we haveA=6 ueV cor-  metrical resonances occurring fQt.= 2.
responding tan=10'"s~1. We argue, however, that inelas-  The curves presented in Fig. 4 include WL corrections for
tic level broadening smears out the discreteness of the oneero magnetic field, which increase the absorption. This en-
particle levels, rendering the spacidg irrelevant. Indeed, hancement is given by the factor-Re 6D ]/D independent
using the phase coherence time introduced above, we finof g for the “small-dot” case; cf. Eqs(49) and(63). Indeed,
hl7,~=20 ueV>A. That is, a lower limit for the frequency all numerical calculations indicated that the curves with and
is not required. without quantum corrections exhibit practically the same an-

Figure 3 shows in a double-logarithmic plot the absorp-gular dependence, merely the magnitudes differ by a con-
tion and the scattering cross sections for a rectangular detant factor. We discuss the enhancement factor
(Lx=1.7 um, Ly=1 um) as a function of the wave vector 1—Rg éD]/D separately below.
gl|x. Here and in Figs. 4 and 5 the teﬁmy of the electron- Figure 5 presents results for the elastic scattering cross
surface phonon vertex, Eq9), has been replaced by its Section of a square dot. A polar representation is chosen with
maximumy; its angular dependence is not taken into accounfespect to the direction of the outgoing phorgn The di-
because it depends on the orientation of the dot with respecection of incidencey is shown in the inset. The labels 1, 2,
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and 3 of the curves indicate the wave vectors usedthat case to establish the dependence of the cross sections
03=20,=10q,=10> cm~ L. Because of the significant de- and I'y on spin-orbit scattering, scattering by magnetic im-
pendence ofy,. on the magnitude ofj, the data of curve 1 purities, etc:® We emphasize the WL corrections because
are multiplied by 18, while that of curve 3 are divided by 15 they are expected to play a significant role in the experimen-
and those of curve 2 are not changed. Generally, the scatteial investigation of the effects discussed in this paper. In-
ing cross section of the square dot shows a weak dependendeed, though the classical cross sections depend strongly on
on the angle of incidence but varies considerably with theA and w, these parameters are fixed once the dot and inter-

scattering angl#, i.e., 6= <(q’,q). In particular, the angu- digital transducers are defined on a sample. But it is rela-
lar dependence af. in the regimegL<1 (curve 3 is given  ltively easy to vary the temperature and the magnetic field,
by 7.~ co26=(3a’)2. With increasing wave number, the which both affect only the WL corrections. Note also that the

cos”-ngclaw is gradually'/ replaced by an enhancemen,t of for-SAW technique allows precise measurements of the relative

vard scaterng and a suppresion of bck scatastg [ "% o e eI e uere, wheres e bso
effect, cf. Ref. 23, p. 654. For q=q,, only a small back- Y ' '

scattering component is left. For even largere.g..q= s, more difficult to resolve the large but constant classical ef-

15 component i ot resoved o the scale of g, 5 TridS€S 11 e cuartum conectons, whicr can be luned
confirms Eq(42). In agreement with our qualitative analysis, y b ' P

. ross sectioifor I' ;) as a function of the temperature directly
ntum corrections are extremely small for th rameter g .
quantum corrections are extremely small for the paramete %lelds the dependence of the phase coherence tinie &or

introduced above. The curves in Fig. 5 correspond thereforg ~. s
pical values,w74<1, and, hence, it is the parameter

essentially to the classical part of the scattering cross-sectiory.™ . :
In the small dot case, the WL corrections to the absorletb that determines whether the dot has to be considered as

tion cross section are significant, whereas the scattering crofsSmall or big one. Thus, the temperature can also shift the

section remains practically unaffected. To illustrate the dedot from one regime to another. _
One may also consider an array of quantum dots. Since

pendence of the WL corrections on the magnetic field, the S ;
frequency and the temperature, we have evaluatelf!® €lectron-phonon coupling is wedkven for the piezo-

1-Rd 6D]/D for the cooperon expressiof6l). For the electric interactiop it is reasonable to assume that the re-
small dot, we expectD to be determined by the lowest sponse of a dot array to a SAW can be represented by a

mode. According to Eq(63) superposition of the effects associated with isolated dots. To
' ’ underscore this point, let us give some numerical estimates
~8D/ID=Ar,/7h=0.23, (66) for the SAW attenuation and the electron heating. To esti-

mate whether the calculated cross sections are within the
where we have used< 7-:/)1 andB=0. The right-hand side €experimental sensitivity, we convert the absorption cross
follows from the numerical values listed above. In Fig. 6,S€ction to an attenuation coefficient by= 7,,s/A; cf. Eq.
1-Rg 5D]/D is shown as a function of the magnetic field (40). This amounts to densely covering the area between the
for a square dotl(,=L,=0.66 um). The deviations of the transducers with quantum dots. Using,s= 10"* um and

numerical results from the estima@6) arise from the con- A=1 um? yields an attenuation of about 10 dB/cm. The
tributions of the h|gher modes. The assumpﬂgn>|_ used relative Change of the attenuation due to WL effects is then

in Sec. V is valid forB<1.4 mT. The continuation of the about 1 dB/cm. This value is about ten times larger than the
curves to stronger magnetic fields can only serve as an indhighest resolution achieved, suggesting that the signal of a
cation for the further suppression of the WL corrections withmuch less dense arrangement of dots can be measured.
increasingB. The three curves in Fig. 6 show how the en-  To estimate the effect of electron heating, one has to com-
hancement factor decreases with increasing frequencpare the temperature of the dot WithT=I7aps7c/Ksg,
Assuming?® T¢"‘T_1, the increase of the temperature from wherel is the flux intensity of the incoming surface wave
T=0.1 K toT=1 K corresponds to a reduction of the phaseandr. is the energy relaxation time. Usimg~2 mm for the
coherence length froy,=0.63 um (which is used in Fig. . !ength and the width of a macroscopic SAW delay line and
to1,=0.2 um. The latter value is significantly smaller than P~1 w«W for the total SAW intensity’ we determine
the size of the dot, L=0.66 um, leading to |=P/w.The energy relaxation time, can roughly be iden-
1-Rg 56D]/D~1.07 forB=0. The relative differences be- tified with the phase coherence timg. (This is a good

tween the three curves shown in Fig. 6 become much smallé@stimate in the case where boty and 74 result from
as well. electron-electron scattering. Using the valuesr,=30 ps

and 7,,s=10"* um, we obtainAT=0.1 K, which repre-
sents a significant change in the temperature range of inter-
est.

We have calculated the absorption and the scattering cross
sections of a SAW fo_r_an isolated quantum dot. The depen- ACKNOWLEDGMENTS
dence of these quantities on WL corrections has been found.
In addition, we have calculated the WL corrections to the Financial support by the German-Israeli Foundation, the
attenuation coefficienf' of an extended 2DEGEQ. (41)]. Fund for Basic Research of the Israel Academy of Sciences
Since these corrections cdat least approximately be ex- and Humanities, and the Deutsche Forschungsgemeinschaft
pressed in terms of the spatial average of the change of thHé. K.) is gratefully acknowledged. We thank Y. Galperin,
diffusion coefficient, they are given in a similar way as thoseA. Kamenev, D. Khmelnitzkii, D. Klakow, C. Rocke, M.
to the conductivity. One can therefore use results derived ifRotter, A. Tilke, and A. Wixforth for valuable discussions.

VIIl. DISCUSSION
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