
iv, Israel

PHYSICAL REVIEW B 15 FEBRUARY 1997-IIVOLUME 55, NUMBER 8
Elastic scattering and absorption of surface acoustic waves by a quantum dot
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The piezoelectric interaction of a surface acoustic wave~SAW! with a quantum dot is studied. Electron-
electron interactions are accounted for by solving the screening problem in real space. The absorption and the
scattering cross sections for SAW’s as a function of the area of the dot,A, the sound wave vector,q, and the
diffusion coefficient,D, of the electrons are calculated analytically in all cases where the quantitiesq2A and
Av/D are larger or smaller than unity;v is the SAW frequency. Numerical results cover the intermediate
regimes. Based on the calculation of the weak localization corrections to the cross sections it is argued that
scattering and absorption of sound as noninvasive probes may be advantageous in comparison to transport
experiments for the investigation of small electronic systems, because for the former the phase coherence is
enhanced as the system size shrinks.@S0163-1829~97!05808-6#
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I. INTRODUCTION

During the last decade, several theoretical papers add
ing the application of ultrasound for the investigation
quantum effects in disordered electronic systems have b
published. Mainly, quantum corrections to the sound abso
tion in infinite systems have been studied.1–5 The interaction
of sound with electrons confined to a finite mesoscopic s
tem has only been discussed with respect to the fluctuat
of the ultrasound absorption,6,7 emphasizing the idea that th
is a noninvasive probe which can be used to investigate
lated metallic samples~no leads attached!. The above calcu-
lations have essentially been done for the deformation po
tial interaction of bulk phonons with three-dimensional@3D#
electron systems. To ensure an efficient coupling to the
phonon wave, the dimensionality of the electron system c
not be reduced, though this is necessary in order to enh
the weak localization~WL! effects. To overcome this restric
tion, we propose to consider the interaction of surface aco
tic waves8,9 ~SAW’s! with 2D electron systems.10 This inter-
action is very strong in GaAs/AlxGa12xAs heterostructures
where it is caused by the piezoelectric field accompany
the SAW. Indeed, the SAW technique has been used
cessfully to investigate both the integer and the fractio
quantum Hall regime.11–15Though the absorption of SAW’s
in these experiments is used to study extended electron
tems, the SAW technique might be applied to mesosco
systems as well. In this case, the noninvasive character o
measurement could prove advantageous. In a very re
experiment,16 the direct acousto-electric current induced by
SAW through asingle quantum point contact as small a
0.5mm has been observed.

It is the main purpose of this paper to consider theor
cally some of the effects associated with a noninvasive pr
ing of mesoscopic 2D electron systems by SAW’s. Spec
cally, we address the scattering and absorption of SAW’s
to the electrons confined to an isolated quantum dot; see
1. The main quantities to be calculated are the elastic dif
550163-1829/97/55~8!/5325~12!/$10.00
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ential scattering cross sectionhsc(q8,q) and the absorption
cross sectionhabs(q). ~Though they have the dimension of
length in two dimensions, we use the familiar term cro
section.! We compute the WL corrections to bothhsc and
habs. Since the sample is isolated, the phase coherenc
not reduced by leads which are necessarily attached to
dot in an electron transport measurement. This in turn affe
the magnitude of the WL corrections and their depende
on the size of the dot. Though WL effects contribute on
correction terms to the classical cross-sections, their dep
dence on weak magnetic fields and the phase coherence
~i.e., the temperature! can be used to detect them. Their pa
ticular dependence on the frequency is superimposed on
of the classical components ofhsc andhabs and might there-
fore be difficult to resolve.

The screening of the electron-phonon coupling ari
from the electrons confined to the dot and is not a negligi
effect. We account for the screening in the linear respo
approximation, where the change of the electron density a

FIG. 1. Schematic drawing of the experiment. The quantum d
shown in black, is of sizeL and is separated by a spacer layer
thicknessd from the surface. The dielectric constants of the sam
and the half-space above it are denoted bye0 ande1, respectively.
The incoming and the transmitted waves have the wave vectoq,
whereasq8 is the wave vector of the scattered wave.
5325 © 1997 The American Physical Society
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5326 55KNÄBCHEN, LEVINSON, AND ENTIN-WOHLMAN
ing from the external perturbation is proportional to the ma
nitude of the perturbation. This approach is justified by
small SAW intensities used in experiments. Since we c
sider a system without translational invariance, the equat
for the screened potential, the charge redistribution, etc. h
to be formulated in real space. Consequently, screening
not be taken into account by simply multiplying the u
screened potential by a dielectric functione(v,q) but in-
volves the inversion of the dielectric function~or matrix!
e(r,r8). To do this accurately, i.e., to account for the sha
of the dot and the direction of the incoming SAW, we ha
performed numerical calculations. Analytically, one can e
ploit the fact that the screening is strong. In particular,
wavelengths 2p/q which are larger than the sizeL of the
dot, a series expansion ofe21 in terms of the small param
eter aB /L can be utilized, whereaB is the effective Bohr
radius. This provides a rather complete qualitative und
standing of the relations between the bare and the scre
SAW potential and the charge redistribution in the dot.

In the calculation of the cross sectionshsc andhabs we
mainly focus on the cases whereqL is of the order of or
smaller than unity, and consider the diffusive limit, i.e., t
sizeL of the dot is large compared to the elastic mean f
path l . In addition,l has to be small compared to the wav
length 2p/q of the SAW, ql!1. This relation guarantee
vt!1, because the velocity of sound,s5v/q, is much
smaller than the Fermi velocity,vF5 l /t. From an experi-
mental point of view, these conditions are satisfied in a
of size L.1 mm, patterned in an electron gas with a lo
mobility (m.104 cm2/Vs! corresponding tol.100 nm.

This paper is organized in the following way. In Sec.
we summarize the main equations for the scattering and
absorption cross sections, the bare SAW potential aris
from the piezoelectric coupling, and the dielectric functio
The cross sectionshsc and habs and, within the linear
screening approach, the dielectric functione(r,r8) are essen-
tially determined by the density-density correlat
Pv(r,r8). This quantity is specified in Sec. III for the case
a diffusive system, where it comprises besides the class
term WL corrections. Based on these results, we disc
e(r,r8) and its appropriate matrix representation in Sec.
An approximate inversion ofe is carried out analytically in
the strong screening regime. This yields the screened po
tial in the dot in terms of the bare SAW field. Combinin
these results with the equations forPv(r,r8), we evaluate
the cross-sections in the limiting casesqL!1 andqL@1 in
Sec. V. The weak localization corrections tohsc andhabsare
related to the cooperonCv(r,r). Its equation is solved in Sec
VI. Results of a numerical computation of the scattering a
the absorption cross sections are presented in Sec. VI
discussion is given in the last section.

II. BASIC EQUATIONS

The elastic scattering cross section,hscdw, is the ratio of
the sound intensity flux scattered into a ‘‘solid’’ angledw
aroundq8 and the flux intensityI of the incoming surface
wave with wave vectorq, q5q8. The absorption cross sec
tion determines the energy per unit time absorbed by
electrons in the dot from the acoustic wave field,Ihabs.
Hence, it is directly associated with electron heating. T
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cross sections can be calculated from Fermi’s golden r
The amplitude for the absorption of a phonon results from
first-order process between the~phonon! statesuq& and u0&,
see Fig. 2;q is the 2D phonon wave vector. Scattering is
second-order process involving the two intermediate sta
uq,q8& andu0,0& with two or no phonons. The absorption an
~elastic! scattering cross sections have the form~a factor of 2
accounting for the spin degeneracy is included!

habs~q!52
4L2

s\
Im@Pv~q,q!# ~1!

and

hsc~q8,q!5
qL4

ps2\2 uPv~q8,q!u2, ~2!

wheres is the velocity of surface sound and

Pv~q,q8![E d3RE d3R8Vq* ~R!Pv~R,R8!Vq8~R8!.

~3!

Here,R is a 3D vector andVq denotes thescreenedpotential
associated with one surface phonon with wave vectorq in
the normalization areaL2 @which is canceled by a corre
sponding term originating from the SAW potential, see E

FIG. 2. Electron–surface-acoustic phonon interaction proces
The phonons are represented by wavy lines, and the electron
depicted by straight lines. Diagram~a! shows the absorption of an
incoming phonon~wave vectorq, energyv). Diagrams~b! and~c!
show scattering processes with two different intermediate state
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~8! below#. The retarded density-density correlat
Pv(R,R8) of the electrons in the dot is defined by

Pv~R,R8!52~ i /\!E
0

`

dteivt^@r~R,t !,r~R8,0!#&, ~4!

wherer(R,t) is the electron density operator for one sp
component andv5qs is the SAW frequency. Below, we us
the impurity-averaged density-density correlator in Eqs.~1!
and ~2!.

Equation ~3! can be simplified using the fact that th
thickness of the 2D electron gas~2DEG! is much smaller
than the penetration depth of the SAW into the interior of
sample. This allows one to neglect the finite extension of
2DEG in the z direction, replacing r(R,t) by
d(z2d)r(r,t), whered is the distance between the 2DE
and the surface of the sample andr(r,t) is the areal density
of 2D electrons.@We haveR5(r,z) wherer is a vector in the
plane of the 2DEG andz is the coordinate perpendicular t
it; see Fig. 1.# Substituting this replacement into Eq.~4!
yields

Pv~R,R8!5d~z2d!d~z82d!Pv~r,r8!, ~5!

wherePv(r,r8) is the 2D density-density correlator. Partic
number conservation implies

E d2rPv~r,r8!5E d2r8Pv~r,r8!50. ~6!

Substituting Eq.~5! into Eq. ~3!, we obtain

Pv~q,q8![E d2rE d2r8Vq* ~r,z5d!Pv~r,r8!

3Vq8~r8,z85d!. ~7!

The integrations run over the areaA of the dot.
The bare potentialVph created by the SAW in the plane o

the 2DEG can be represented in the form17

Vq
ph~r,z5d!5

1

Lgqe
iqr. ~8!

For GaAs/AlxGa12xAs heterostructures and the range
wavelengths used in SAW experiments, the piezoelec
electron-phonon interaction is dominant. We may thus id
tify gq with the piezoelectric vertexgq

PA , neglecting the de-
formation potential coupling. In addition, sinceqd is usually
much smaller than unity, the dependence ofgq

PA on d can be
disregarded.~For qd;1, gq depends nonmonotonously o
the parameterqd, see the discussion in Ref. 18.! Then we
have

gq5gq
PA5~\/rsaPA!1/2beq̂xq̂y53.7q̂xq̂y10

210 eV cm,
~9!

wherer is the mass density of the lattice,e is the electron
charge, andaPA represents a numerical factor that can
expressed in terms of the elastic constants of the lattice
Ref. 17. Equation~9! is valid for a GaAs-type crystal with
the SAW propagating along the~100! plane and electrically
free8 boundary conditions for the piezoelectric potential
the surface. In this case all~nonzero! piezoelectric moduli
e
e

f
ic
-

f.

t

are equal tob. q̂x ~and, similarly,q̂y) is the component of
q̂ in the direction of the lattice axisx on the surface. The
numerical value@3.7# applies to GaAs/AlxGa12xAs hetero-
structures.

The potentialVph associated with the SAW acts on th
electrons in the dot and leads to their redistribution. T
creates a potentialVch that adds toVph,

V5Vch1Vph, ~10!

whereV determines the interaction of surface phonons w
the electrons in the quantum dot; see Eq.~3!. The calculation
of V and the corresponding charge redistributiondr(r) has
to be done self-consistently. Bearing in mind that the qu
tum dot is embedded in a 3D semiconductor with dielec
constante0, we have

dr~r!52E d2r8Pv~r,r8!V~r8,z85d!, ~11!

¹2Vch~R!52
4pe2

e0
d~z2d!dr~r!, ~12!

where the factor of 2 is due to spin degeneracy and the
tentials anddr(r) refer to thev component in the corre
sponding Fourier expansions.

The solution of Poisson’s equation~12! can be expressed
in terms of the corresponding Green’s function

¹2G~R,R8!524pd~R2R8!, ~13!

which has to satisfy the boundary conditions at the interf
between the sample and the halfspace~dielectric constant
e1) above it. Addressing the case where bothR andR8 lie in
the plane of the dot (z5z85d), we have

G~R,R8!5G~r2r8!5
1

ur2r8u
1

e02e1
e01e1

1

Aur2r8u21~2d!2
.

~14!

The Green’s functionG can be combined with Eqs.~10!–
~12! to relate the total potential directly to the SAW field

E d2r8e~r,r8!V~r8,z85d!5Vph~r,z5d!. ~15!

The kernel of this integral equation is the dielectric functi

e~r,r8!5d~r2r8!22
e2

e0
E d2r9G~r2r9!Pv~r9,r8!.

~16!

Using Eq.~6!, one can see that*d2r8e(r,r8)51. This means
that a potential that is spatially constant within the dot is n
screened, cf. Eq.~15!.

III. DENSITY-DENSITY CORRELATOR
FOR A DIFFUSIVE SYSTEM

In the diffusive regime, the density-density correlato19

has the form

Pv~r,r8!52n@d~r2r8!1 ivDv~r,r8!#, ~17!
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whereDv is the diffusion propagator andn is the~2D! den-
sity of states for one spin projection. This result is valid f
small frequenciesvt!1, small wave vectorsql!1, and low
temperaturesv,T!eF ;eF is the Fermi energy. The wav
number of the SAW,q, describes the spatial modulation
an external potential, the response to which can be expre
in terms ofPv , Eq. ~17!. Neglecting WL corrections, the
diffusion propagator is given by19

@2 iv2D¹2#Dv~r,r8!5d~r2r8!, ¹nDvub50, ~18!

whereD5 l 2/2t is the 2D diffusion coefficient and¹n is the
outer normal component of the gradient with respect to
boundary of the quantum dot. The boundary condition f
lows from the requirement that there is no flow of electro
through the boundary of the system. This is in contrast t
system coupled to leads, whereDuc50 at the contacts.

The diffusion propagator, Eq.~18!, can be expressed i
terms of its~real! eigenfunctionscm ,

Dv~r,r8!5 (
m50

`
cm~r!cm~r8!

2 iv1Dlm
, ~19!

defined by

@¹21lm#cm~r!50, ¹ncmub50. ~20!

These form an orthonormal set,*d2rcmcn5dm,n . It is a
peculiar feature of an isolated quantum dot that there exis
zeroth eigenfunctionc051/AA, A being the area of the dot
The corresponding eigenvaluel050 is well separated from
the remaining sequence of eigenvalueslm;A21. The zeroth
mode determines the behavior of the diffusion propagato
the case of a ‘‘small’’ dot,Av/D!1. In this regime, the
particle is able to diffuse through the whole system with
one period of the external potential. Boundary effects
crucial and we obtain from Eq.~19! Dv(r,r8).(2 ivA)21.
In the opposite, ‘‘big-dot’’ case,Av/D@1, the particle dif-
fuses only over a distanceAD/v!AA before the externa
potential is reversed. Thus, the diffusion process is bulk-li
Disregarding all boundary effects, Eq.~19! reduces in this
case to the translational invariant formDv(r2r8), corre-
sponding to an infinitely extended system. In the interme
ate regime,Av/D.1, the diffusion propagator exhibit
sample-specific properties.

Weak localization effects yield a correction,dD, to the
classical diffusion coefficientD which basically describes
the slowing down of the diffusion processes due to enhan
backscattering.19,20 Generally,dD may depend on the fre
quencyv, the electron phase coherence timetf , a weak
magnetic fieldB, and other physical parameters. In additio
the WL correction acquires in a finite system a spatial
pendence. To account for this, we replace20 in Eq. ~18!

D¹2→¹@D1dD~r!#¹. ~21!

This replacement guarantees particle number conserva
Since we are only interested in first order corrections due
dD(r), we write the diffusion propagator in the form
Dv1dDv . Substituting this ansatz in the modified Eq.~18!
yields
r

ed
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dDv~r,r8!5E d2r9Dv~r,r9!$¹9dD~r9!¹9%Dv~r9,r8!.

~22!

Neglecting spin scattering, the WL correction can be e
pressed in terms of the cooperon20,19C

dD~r!52
D

p\n
Cv~r,r!. ~23!

In real space, the cooperon obeys the equations19

$2 iv1tf
211D@ i¹1~2e/c\!A~r!#2%Cv~r,r8!5d~r2r8!,

@ i¹n1~2e/c\!An~r!#Cvub50. ~24!

The effect of a~weak! magnetic fieldB, oriented perpendicu-
larly to the plane of the 2DEG, is described by the vec
potentialA(r). The boundary condition in Eq.~24! ensures
that there is no flow of ‘‘coherence’’ (C) through the bound-
ary of an isolated system. The evaluation of the coope
will be done in Sec. VI. For the rest of this and the next tw
sections it will be sufficient to bear in mind thatdD(r) is a
well-defined quantity that can be calculated according to
~23!.

Let us now return to the density-density correlator. Su
stituting Eqs.~19! and~22! into Eq. ~17! yieldsPv in terms
of the diffusion modes

Pv~r,r8!52n (
m,n51

`

bmncm~r!cn~r8!, ~25!

where

bmn5bmdm,n1dbmn ~26!

is decomposed into the classical term

bm5
Dlm

2 iv1Dlm
~27!

and the WL contribution

dbmn5
2 iv

~2 iv1Dlm!~2 iv1Dln!

3E d2rdD~r!¹cm~r!¹cn~r!. ~28!

The sums over modes in Eq.~25! start fromm,n51 since
bm05b0m50 form50,1, . . . . This is a consequence of th
structure of the diffusion propagator and holds true even
the case wheredD(r) is treated exactly~i.e., not only to first
order!. The restriction of the summations ensures thatPv

fulfills Eqs. ~6! since*d2rcm50 for m>1.

IV. SCREENING

In order to apply Eq.~15! to the diffusive dot, we conside
its representation in terms of the diffusion modes, Eq.~20!.
The matrix elements of the Green’s functionG, Eq.~14!, can
be written as

Gmn5E d2r8E d2rcm~r!G~r2r8!cn~r8!. ~29!
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55 5329ELASTIC SCATTERING AND ABSORPTION OF . . .
For the potentialV ~and, similarly, forVph), we introduce
the expansion

V~r,z5d!5 (
n50

`

Vncn~r!, Vn5E d2rcn~r!V~r,z5d!.

~30!

Using these definitions, the complete set of equations wh
follows from Eq.~15! becomes

V0
ph5V012

e2n

e0
(
n,l>1

G0lb lnVn , ~31!

Vm
ph5Vm12

e2n

e0
(
n,l>1

Gmlb lnVn , m>1. ~32!

These equations have to be solved with respect to$Vn%. Not
all of these quantities are coupled to each other. For
ample, as emphasized by Eqs.~31! and ~32!, the $Vn%,
n>1, form a closed system of equations. Its solution can
substituted into Eq.~31! determining the elementV0. This
property of the screening equations results from the fact t
due to charge conservation,b l050, cf. the discussion afte
Eq. ~28!.

The formal solution of Eq.~32! can be given in terms o
an inverse dielectric matrix

Vm5 (
n>1

~e21!mnVn
ph . ~33!

The full numerical calculation of (e21)mn is described in
Sec. VII. Here, we present an analytical approach based
the following facts. First, the SAW potential is slowly vary
ing on the scale of the dot,qL&1. Consequently, only the
first few elementsVn

ph are significantly different from zero
and we can concentrate on the matrix elementsGmn , bmn ,
and (e21)mn with indicesm andn which are of order unity.
Secondly, the screening in experimentally relevant sam
is strong. To see this, we estimate the magnitude of the
ferent terms in Eqs.~31! and ~32!. Using n5m* /2p\2, the
prefactor 2e2n/e0 can be written in the form 1/paB , where
aB5e0 /e

2m* is the effective Bohr radius of the lattice an
m* is the effective electron mass. SinceaB510.6 nm for
GaAs, the Bohr radius represents the smallest length sca
the system. The matrix elementGmn is of order
1/Alm.L/m for m'n, L[AA being the size of the dot, an
it decreases sharply form or n much larger than unity and
very different from each other. Hence, we ha
(2e2n/e0)Gmn.L/aB for the relevantm and n of order
unity. We therefore expectVm to be of order
(aB /L)Vm

ph!Vm
ph .

An approximate inversion of Eq.~32! providing the lead-
ing terms in an expansion with respect toaB /L can be ac-
complished by introducing the inverse matrix (G21)ml to the
reduced matrixGml with indicesm and l equal to or larger
than unity. Similarly, we define (b21)ml . Multiplying Eq.
~32! with b21G21 yields for the inverse dielectric operato

~e21!mn5
paB
L (

l>1
~b21!ml~G̃

21! ln1O~aB
2/L2!, ~34!
h

x-

e

t,

on
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in

whereG̃[G/L is a dimensionless Green’s function depen
ing only on the shape of the dot.

Substituting Eqs.~34! and ~33! into Eq. ~31!, we obtain
for the r-independent part of the total potential

V05V0
ph2 (

n,l>1
G0l~G

21! lnVn
ph1O~aB /L !. ~35!

This equation confirms explicitly the conclusion followin
from the general Eq.~16!, namely that the spatially uniform
part of an external potential, hereV0

ph , contributes un-
screened toV0. Moreover, since the productGG21 is of
order unity, it shows that also the spatially varying comp
nentsVn

ph contribute effectively unscreened toV0. Combin-
ing Eqs.~34! and ~35!, we find for the total potential

V~r!'
1

AA
V01

paB
L (

m,n,l>1
cm~r!~b21!mn~G̃

21!nlVl
ph .

~36!

Thus, in contrast to an open or an infinitely extended syst
in the case of strong screening in an isolated dot one h
large but spatially constant background~the first term of or-
der Vph) in addition to the small, varying component~the
second term! of the total potential. This behavior is based o
particle conservation, for the charge on the dot can only
redistributed to some extent but cannot be increased or
duced via electrons flowing to or coming from the leads. B
the absorption and scattering of phonons are associated
with the spatially varying component of the total potent
which carries the factoraB /L!1. The screening of the SAW
potential by the electrons in the quantum dot is thus an ef
that reduces considerably the magnitude of the scattering
the absorption cross sections.

In concluding this section let us consider the charge
distribution dr(r). Substituting Eqs.~25! and ~36! into Eq.
~11! yields

dr~r!522nd~z2d! (
m,n>1

cm~r!bmnVn

522nd~z2d!
paB
L (

m,n>1
cm~r!~G̃21!mnVn

ph

1O~aB
2/L2!. ~37!

That is, even in the strong screening case, whereaB is very
small compared to other length scales,dr(r) is determined
by the distribution of the external potential within the who
dot. Indeed, theVn

ph couple via nondiagonal elements o
G̃21 to other modesm. In this sense, screening in an isolat
dot is strongly nonlocal.

V. SCATTERING AND ABSORPTION CROSS SECTIONS

In this section we study analytically the absorption a
the scattering cross sections, Eqs.~1! and~2!, in the limiting
casesqL@1 andqL!1. The substantiation of these resu
by numerical calculations, addressing also the angular
pendence of the cross sections, their sensitivity to the sh
of the dot, etc., will be deferred until Sec. VII.
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A. The caseqL@1

This regime resembles the case of an infinitely exten
2DEG. One may therefore use the usualq representation,
leading to the relationV(r)5Vq

ph(r)/e(v,q) between the to-
tal potential and the SAW field. The dielectric function

e~v,q!511
2pe2

e0q
F11

12e1 /e0
11e1 /e0

e2qdG2nb~v,q!

'112
b~v,q!

aBq
~38!

is derived from Eq.~16!. Here,

b~v,q!5
~D1dD !q2

2 iv1~D1dD !q2
~39!

is ~except for the factor2n) the Fourier representation o
the density-density correlator, Eq.~5!, which replaces the
expressionbmn @Eq. ~25!# valid in the diffusion mode repre
sentation. To obtain Eq.~39!, the WL correctiondD(r) has
been replaced by the spatial averagedD5const. Using
qd!1 and assuminge151!e0, the dielectric function sim-
plifies to the result given on the right-hand side of Eq.~38!.
The effective dielectric constant in the vicinity of the surfa
is then given by (e01e1)/2'e0/2.

Substituting the bare SAW potential@Eq. ~8!# and the di-
electric functione(v,q) @Eq. ~38!# in Eq. ~7! for the quantity
Pv(q,q8), we obtain for the absorption cross section

habs~q!/A5
4n

s\
ugqu2

Im@b~v,q!#

ue~v,q!u2
[Gq , ~40!

where Gq is the attenuation coefficient8 of a SAW in an
infinite 2DEG. Neglecting WL corrections, the attenuati
coefficient given in Eq.~40! coincides with the result follow-
ing from the well-known treatment of sound absorption d
to the piezoelectric interaction~see, e.g., Refs. 12 and 18!. In
the case of strong screening, Eq.~40! becomes

Gq5
n

s\
ugqu2~aB!2

v

D S 12
Re@dD#

D D
5
1

2
Keff
2 q

sm

s S 12
Re@ds#

s D , ~41!

where the right-hand side uses the ‘‘standard’’ notation, i
Gq is given in terms of the 2D conductivitys, the conduc-
tivity sm[e0s/4p, and the effective electromechanical co
pling coefficientKeff

2 5ugqu2e0/2pse2\. Equation~41! shows
that the WL corrections can be incorporated into the class
result by replacingD by Re@D1dD# or s by Re@s1ds#,
whereds is the corresponding correction of the conduct
ity. Since the WL effects slow the diffusion processes dow
Re@dD#;Re@ds#,0, they reduce the screening of th
SAW field which in turn gives rise to an enhancement of
absorption. The enhancement factor 12Re@dD#/D has been
found in previous work1,3–5 on the absorption of bulk soun
in a 3D electron system. A different result has been obtai
in Ref. 2. The reason for this, as discussed in Ref. 4, is
insufficient number of diagrams incorporated in that calcu
tion.
d

e

.,

al

,

e

d
e
-

Equation~2! for the scattering cross section can be trea
similarly. In the limitqL@1, hsc has a dominating forward
scattering component

hsc~q8,q!;d~q82q!. ~42!

This property results from the momentum conservation i
translational invariant system.

B. The caseqL!1

Here, we exploit the diffusion mode representation int
duced above. Substituting the density-density correlator,
~25!, and the total potential in the strong screening limit, E
~36!, into Eq. ~7! yields

Pv~q,q8!52n
~paB!2

A (
m,n,k,l>1

3~b21!mn* ~G̃21!nk~Vk
ph!* ~G̃21!mlVl

ph .

~43!

Expanding the bare SAW potential@Eq. ~8!# in a series with
respect touqru!1, we find

(
l>1

~G̃21!mlVl
ph5

1

LgqiqAam~ q̂!, ~44!

where

am~ q̂![ (
n>1

~G̃21!mnE d2r

A
q̂rcn~r!. ~45!

The dimensionless integral in this equation is of order un
for small n’s, and it decreases asn increases.am(q̂) is ex-
pected to have the same properties. Introducing result~44! in
Eq. ~43!, we obtain

Pv~q,q8!52n~paBgqq!2AL22

3 (
m,n>1

~b21!mn* am~ q̂!an~ q̂8!. ~46!

Up to first order indbmn , the inverse ofbmn , Eq. ~26!, is
given by

~b21!mn5bm
21dm,n2

dbmn

bmbn
~47!

wheredbmn is defined in Eq.~28!.
We are now in the position to use Eq.~46! in the evalu-

ation of the absorption and the scattering cross sections. S
stituting Eq.~46! into Eq. ~1! yields

habs~q!5
4n

s\
ugqu2~paB!2q2A2

v

D (
m,n>1

1

Alm

3S dm,n2
1

ln
E d2r¹cm~r!¹cn~r!

3
Re@dD~r!#

D Dam~ q̂!an~ q̂!. ~48!
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Note thatAlm is a dimensionless quantity independent
A, cf. Eq.~20!. A significant simplification of this equation i
achieved whendD(r) does not vary in space. This is no
always the case, of course. We believe, however, that, qu
tatively, the influence of the WL effects is described by
average quantitydD5 const, which will be defined in Sec
VI. ReplacingdD(r) by dD and using the diffusion mode
equation~20!, Eq. ~48! reduces to

habs~q!5
4n

\
ugqu2~paB!2A2

q3

D S 12
Re@dD#

D D
3H (

m>1

am
2 ~ q̂!

Alm
J . ~49!

The dependence on the shape of the dot and the directio
the SAW is comprised in the quantity in braces. The dep
dences on all other parameters is completely described b
prefactor. As in the case of an infinite system, Eq.~41!, the
WL corrections enhance the absorption. Comparing E
~41! and~49! we see thathabs is smaller by a factor (q

2A) in
the caseqL!1. That is, a small system absorbs per unit a
much less than an extended one. This can be attributed t
fact that the electrons in an extended system can move
the whole period 1/q of the piezoelectric field, while a sma
system restricts this motion by its size.

We evaluate now the scattering cross section. Substitu
Eq. ~46! into Eq. ~2! yields

hsc~q8,q!5
qn2

ps2\2 ugq8u
2ugqu2~paBq!4A2

3 (
m,n,k,l>1

~b21!mn* ~b21!klam~q8̂!an~ q̂!

3ak~ q̂8!al~ q̂!. ~50!

Here, we should replace the matrix elements ofb21 by the
explicit expressions given in Eq.~47!. As far as the WL
contributions are concerned, we have to calculate the
over foura-terms with theb21b21 part replaced by

22 ReF 1bm*
dbkl

bkb l
G .

This can be rewritten as

22
v

D2lkl l
E d2r¹ck~r!¹c l~r!H Im@dD~r!#

1
v

Dlm
Re@dD~r!#J , ~51!

showing that the relevant quantity is either Re@dD(r)# or
Im@dD(r)# depending on whether the diffusion time throu
the dot,A/D, is large or small compared to the period of t
SAW.

The replacement ofdD(r) by dD5const allows a consid
erable simplification of expression~51!, leading to explicit
estimates in the limits of a small and a big dot:
f

li-

of
-
its

s.

a
the
er

g

m

hsc~q8,q!'
n2

ps2\2 ugq8u
2ugqu2~paB!4q5A2

3 (
m>1

am~ q̂8!am~ q̂! (
n>1

an~ q̂8!an~ q̂!

3H 122
v

Dln

Im@dD#

D J vA/D!1

3S (
m>1

am~ q̂8!am~ q̂!

Alm
D 2S vA

D D 2
3H 122

Re@dD#

D J , vA/D@1. ~52!

The classical contribution and the prefactor of the WL c
rections depend strongly on the parameterAv/D. For a big
dot, Av/D.1, the scattering of SAW’s rises faster tha
A2 with increasing areaA of the dot because the diffusio
processes are too slow to screen long wavelength den
variations as effectively as short wavelength ones. Inde
the enhancement factorvA/D results from the classical par
of (b21)mn , bm

21512 iv/Dlm @Eq. ~28!#, which enters Eq.
~50! via the inverse of the dielectric matrix. In the small d
case,bm

21.1 for allm starting from unity, and, hence, ther
is no enhancement factor in the second line of Eq.~52!.
While the quantum corrections contribute tohsc according to
their relative magnitude for big dots, they acquire a sm
prefactor oncevA/D becomes smaller than unity. Moreove
since their imaginary part is the relevant quantity in th
case, they are small forv,tf

21 , cf. Eq. ~63! below. This is
contrary to the dependence of WL corrections on freque
and phase coherence time as far as the real part of the
ductivity is concerned.

VI. WEAK LOCALIZATION CORRECTIONS

The absorption and the scattering cross sections dep
on WL corrections viadD(r), which in turn is directly re-
lated to the cooperonCv(r,r); see Eq.~23!. In the first part of
this section, we evaluate the cooperon equation~24!. Special
attention is devoted to the magnetic field dependence. In
second part, we discuss the approximation ofdD(r) by a
spatially independent quantitydD.

A. Magnetic field dependence

In comparison with the diffusion propagator, Eq.~19!, the
cooperon, Eq.~24!, depends on the two additional leng
scaleslf5ADtf andl B5Ac\/2eB. Due to the sensitivity of
quantum corrections to weak magnetic fields, it is sufficie
to account perturbatively for theB-dependent terms in Eq
~24!. To this end, we expand the cooperon in a power se
with respect toA(r):

Cv~r,r8!5Cv
~0!~r,r8!1Cv

~1!~r,r8!1Cv
~2!~r,r8!1•••,

~53!

whereCv
(m);Am. This expansion can be terminated with

negligible error at the first nonvanishing correction
Cv
(0)(r,r) if L/ l B!1 and u2 iv1tf

21u@DL2/ l B
4 . Using ex-
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perimental values~see Sec. VII!, we havev&tf
21 , i.e., the

second inequality can be written asLlf / l B
2!1. Since

lf&L in the cases of practical interest, the first conditi
L/ l B!1 determines the range of applicability of the pertu
bative treatment. Substituting Eq.~53! in Eq. ~24! yields

@2 iv1tf
212D¹2#Cv

~0!~r,r8!5d~r2r8!,

@2 iv1tf
212D¹2#Cv

~1!~r,r8!

522iD ~2e/c\!A~r!¹Cv
~0!~r,r8!,

@2 iv1tf
212D¹2#Cv

~2!~r,r8!

522iD ~2e/c\!A~r!¹Cv
~1!~r,r8!

2D@~2e/c\!A~r!#2Cv
~0!~r,r8!,

~54!

where we have used the gauge¹A(r)50. The boundary
conditions are given by

¹nCv
~0!ub50,

¹nCv
~m11!ub5 i ~2e/c\!AnCv

~m!ub , for m50,1, . . . .
~55!

The equation forCv
(0) can be solved using the diffusio

modes defined in Eq.~20!

Cv
~0!~r,r8!5 (

m50

lm& l22

cm~r!cm~r8!

2 iv1Dlm1tf
21 . ~56!

There is a cut-off on the summation because the diffus
approximation is valid on scales larger than the mean
path. The relevant frequency scale is given
u2 iv1tf

21u'tf
21 .

SinceCv
(0) is the Green’s function for the differential op

erator of all three equations~54!, it enables us to write down
solutions forCv

(1) andCv
(2) as well. The result forCv

(1) reads

Cv
~1!~r,r8!5D R dS1@ i ~2e/c\!An~r1!Cv

~0!~r1 ,r8!#Cv
~0!~r1 ,r!

1E d2r1@22iD ~2e/c\!A~r1!¹1Cv
~0!~r1 ,r8!#

3Cv
~0!~r1 ,r!. ~57!

The first term represents an integral over the boundary of
dot and includes the inhomogeneity of the boundary con
tion ~55!, whereas the second one accounts for the sou
term in the differential equation. Rewriting the surface in
gral in terms of a volume integral shows thatCv

(1)(r,r)50,
i.e., the quantum corrections do not depend linearly on
magnetic field. The expression forCv

(2) has the same structur
as Eq. ~57!, one has just to substitute the correspond
source terms given in Eqs.~54!. That is,

Cv
~2!~r,r8!5D R dS1@ i ~2e/c\!An~r1!Cv

~1!~r1 ,r8!#Cv
~0!~r1 ,r!
-

n
e

e
i-
ce
-

e

g

1E d2r1$22iD ~2e/c\!A~r1!¹1Cv
~1!~r1 ,r8!

2D@~2e/c\!A~r1!#
2Cv

~0!~r1 ,r8!%Cv
~0!~r1 ,r!.

~58!

This equation and Eq.~56! determine the WL correction to
the diffusion coefficient in the form dD(r)
52(D/p\n)@Cv

(0)(r,r)1Cv
(2)(r,r)#. Since Cv

(2);B2, the
physical quantities calculated in the preceding section
invariant with respect to a reversal of the direction of t
magnetic field.

B. The average quantitydD

The spatially constant quantitydD that was used in Sec
V is introduced by

dD~r!→dD[2
D

p\nAE d2rCv~r,r!. ~59!

This approximation captures the essential features of
problem and becomes exact in two limiting cases. For sm
frequencies and large phase coherence tim
u2 iv1tf

21u!D/A, the cooperon is determined by th
zeroth diffusion modec0, and henceCv(r,r)'const. In the
opposite case, the bulklike diffusion process guarantees
at leastCv

(0)(r,r) is spatially uniform except near the boun
aries. In the intermediate regime,u2 iv1tf

21u.D/A, we ex-
pect a smooth cross-over between these two limiting cas

In the limiting cases one is able to obtain explicit resu
for the averaged WL correctiondD. Depending on whethe
Au2 iv1tf

21u/D is smaller or larger than unity, it is conve
nient to replace the zero-field cooperonCv

(0) in the solution
for Cv

(2) Eq. ~58!, by its diffusion mode representation~56! or
its Fourier representation for an infinite 2D system,

Cv
~0!~r,r8!5E d2q

~2p!2
eiq•~r2r8!

2 iv1Dq21tf
21 , ~60!

respectively. In the former case, we are able to separate
large contributions due to the zero mode from the correcti
resulting from all other modes. In the latter, the particle d
fuses on scales small compared to the size of the sys
hence, the boundary conditions imposed on a finite dot
be disregarded.

1. Small dot case

Substituting Eq.~56! in Cv
(2) , Eq. ~58!, yields

E d2rCv~r,r!5 (
m50

lm& l22 F2 iv1Dlm1tf
21

1DE d2rcm
2 ~r!@(2e/c\)A~r!#2

1D2 (
n50

ln& l22

~Fnm2Fmn!
2

2 iv1Dln1tf
21G21

,

~61!
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where

Fmn5E d2rcm~r!i ~2e/c\!A~r!¹cn~r!. ~62!

For Au2 iv1tf
21u/D,1, we restrict the sum to them50

term and obtain

dD52
D

p\nA

1

2 iv1tf
211c1DA/ l B

4 , ~63!

wherec1 is a real positive constant of order unity. The low
est eigenmodec0 leads to an increase of the WL correctio
as the areaA of the dot decreases. This behavior results fr
the fact that the boundaries of an isolated system caus
phase breaking. In the case where the dot is connecte
leads, the summation over modes starts atm51 and yields21

dD52(p\n)21ln(A/l2) for B50. That is, the correction
term decreases as the dot shrinks, since the effective p
coherence length is determined by the separation of the
tacts. The scales of the critical magnetic field at which
phase coherence is significantly reduced are different for
lated and open systems as well. This field can be dedu
from Eq. ~61! by equating the two field dependent term

FIG. 3. Double logarithmic plot of the absorption and the sc
tering cross sections as a function of the wave vector.

FIG. 4. Polar diagrams of the absorption cross section of a r
angular~main plot! and a square dot~inset! as a function of the
angle of incidence of the SAW. Results for three different wa
numbersq are given.
no
to

se
n-
e
o-
ed

~which are of the same order! to the first one. For an isolate
dot, the first term is of orderu2 iv1tf

21u, Eq. ~63!, whereas
it is given byD/A for a dot coupled to leads. This results
the estimates

~ l B
4 ! iso.Amin$D/v,lf

2 %, ~ l B
4 ! lead.A2. ~64!

The critical field for an isolated small dot is thus much larg
than for a dot with leads.

2. Big dot case

For Au2 iv1tf
21u/D.1, we substitute Eq.~60! in Cv

(2) ,
Eq. ~58!, and obtain

dD5
c2

p\n
ln$t@2 iv1tf

211c3DA/ l B
4 #%, ~65!

wherec2 andc3 are real positive constants of order unity.
this case, the zeroth mode plays no role; Eq.~65! is valid
independently of the boundary conditions imposed.

We note that the characterization as ‘‘big’’ or ‘‘small’
dot does not necessarily apply simultaneously to both
diffusion propagator@Eq. ~19!# and the cooperon@Eq. ~56!#.
In particular, forvtf!1, there exists the situation where th
diffusion propagator@responsible for the classical contribu
tions# is determined by the zeroth mode sinceAv/D!1,
whereas the cooperon@determiningdD# behaves bulklike
sinceAtf

21/D@1.

VII. NUMERICAL CALCULATIONS

To compute numerically the scattering and the absorp
cross sections, we have used an accurate inversion of
dielectric functione(r,r8); see Eq.~33!. This procedure cov-
ers small and large values of the parameterqL. Thus, the
numerical results bridge the gap left by the analytical stu
of limiting cases in Sec. V, and provide information abo
the angular dependence of the cross sections. The scalin
the numerically calculated cross sections with respect
A,q,D, etc. can be used to confirm the predictions deriv
analytically, cf. Eqs.~41!–~52!. In Figs. 3–5 discussed be
low, results for different wave vectorsq are shown; all other
parameters are kept fixed. This means that the two dim
sionless quantitiesqL andAv/D vary. Since the latter, even
for the largest wave vectors used is smaller than unity, i
essentially the effects of the variation ofqL which we focus
on. In this small dot case, the WL corrections are essenti
described by the quantity 12Re@dD#/D, cf. Eqs.~49! and
~52!, which is discussed in connection with Fig. 6.

-

t-

e

FIG. 5. Polar diagram of the elastic scattering cross section
square dot as a function of the directionq8 of the outgoing wave.
The angle of incidence~q! is kept fixed; see inset.
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The dot has the shape of a square~lengthsLx5Ly) or a
rectangle (Lx.Ly). In the first case emphasis is put on t
angular dependence associated with the value ofqL. We use
the following values for the physical quantities which app
to GaAs/AlxGa12xAs heterostructures: n51.5531010

meV21cm22, s52.73105 cm s21, D5140 cm2 s21

( l50.1 mm!, t50.4 ps, tf50.03 ns, d50.1 mm,
aB510.6 nm, e0512.8, e151, and, e.g.,Lx5Ly50.66
mm for the square dot. The phase coherence time~corre-
sponding toT50.1 K and lf50.63mm! and the diffusion
coefficient for a low mobility electron gas are taken fro
Ref. 22. The choice of a small diffusion coefficient is di
tated by the condition that the size of the dot is larger th
the mean free path, but small enough to allow forqL,1 and
qL.1 in the range of reasonable sound frequencies.
these frequencies and the quantities given above,v and
tf

21 are smaller thanD/A. Thus, the diffusion propagato
@Eq. ~19!# and the cooperon@Eq. ~56!# are essentially deter
mined by the zeroth mode. Since the very existence of
zeroth mode relies on the assumption of an isolated dot,
this physical regime that puts the most emphasis on the n
invasive character of the proposed SAW measurement.
ing the requirement q, l21 yields q'105 cm21

(v'2p34.3 GHz! as the upper limit for the applicability o
the diffusion approximation. A lower limitv.D could arise
from the finiteness of the mean level spacingD5(nA)21 in
the quantum dot. ForA.1 mm2, we haveD.6 meV cor-
responding tov.1010 s21. We argue, however, that inelas
tic level broadening smears out the discreteness of the
particle levels, rendering the spacingD irrelevant. Indeed,
using the phase coherence time introduced above, we
\/tf.20 meV.D. That is, a lower limit for the frequency
is not required.

Figure 3 shows in a double-logarithmic plot the abso
tion and the scattering cross sections for a rectangular
(Lx51.7 mm, Ly51 mm! as a function of the wave vecto
qix. Here and in Figs. 4 and 5 the termq̂xq̂y of the electron-
surface phonon vertex, Eq.~9!, has been replaced by it
maximum1

2; its angular dependence is not taken into acco
because it depends on the orientation of the dot with res

FIG. 6. Weak localization enhancement 12Re@dD#/D, Eq.
~59!, of the absorption cross section, Eq.~49!, as a function of the
magnetic fieldB for three different wave numbers.
n
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to the lattice axes. Quantum corrections forB50 are incor-
porated. The absorption cross section is given by curve
The part to the left of label 1 exhibits the behavi
habs;q3, confirming the power law predicted by Eq.~49!
for the limit qL!1. The remaining part of the curve corre
sponds tohabs;q. This behavior is anticipated in the regim
qL@1; see Eq.~41!. The oscillations ofhabs(q) represent
geometric resonances. Maxima appear aroundqLx52pm,
m51,2, . . . , whereas minima occur forqLx5p(2m11).
The curve labeled 2~corresponding to the direction 2! rep-
resents results for the scattering cross section for a scatte
angle of 30°. It follows the power lawhsc;q5, Eq. ~52!, in
the limit qL!1. ForqL@1, the scattering cross-section b
haves in a sample and angle specific way. In this case,
magnitude ofhsc(q8Þq) is small compared to the forward
scattering component, which continues to grow asq5; cf. Eq.
~42! and Fig. 5.

Figure 4 shows results for the absorption cross section
a rectangular (Lx51.2 mm, Ly50.4 mm; main plot! and a
square dot (Lx5Ly50.66 mm; inset!. The abscissa of the
figure agrees with thex axis of the dot. Figure 4 represents
polar diagram forhabs(q), i.e., the distance of a data poin
from the origin corresponds to the magnitude ofhabs,
whereas the orientation of the wave vectorq of the SAW
agrees with the direction of the line joining the data po
and the origin. The curves labeled 1, 2, and 3 correspon
the wave vectorsq15104 cm21, q2553104 cm21, and
q35105 cm21, respectively. The magnitude of the curv
labeled 1 is increased by a factor of 20. The main plot in F
4 for the rectangular dot shows a strong anisotropy of
absorption cross section for the two smaller wave vecto
For instance,habs for q1ix andhabs for q1iy deviate by a
factor of about 20 from each other. This pronounced anis
ropy can be attributed to the fact that the relevant size of
dot ~eitherLx or Ly) enters Eq.~49! for habs as a high power
in the limit qL,1. In contrast, for the largest wave vect
q3, habs exhibits only a minor dependence on the angle
incidence, reflecting that only the total area is relevant in
regimeqL@1; cf. Eq.~40!. That is, for an approximate isot
ropy of habs to appear, bothqLx andqLy have to be suffi-
ciently larger than unity. As can be seen from the inset
Fig. 4, the situation is somewhat different in the case o
square dot. Here,habs is completely independent of the d
rection of incidence for the smallest wave vectorq1. The
absorption cross section acquires a weak angular depend
with increasing wave vector, which can be attributed to g
metrical resonances occurring forqL>2p.

The curves presented in Fig. 4 include WL corrections
zero magnetic field, which increase the absorption. This
hancement is given by the factor 12Re@dD#/D independent
of q for the ‘‘small-dot’’ case; cf. Eqs.~49! and~63!. Indeed,
all numerical calculations indicated that the curves with a
without quantum corrections exhibit practically the same
gular dependence, merely the magnitudes differ by a c
stant factor. We discuss the enhancement fac
12Re@dD#/D separately below.

Figure 5 presents results for the elastic scattering cr
section of a square dot. A polar representation is chosen
respect to the direction of the outgoing phononq̂8. The di-
rection of incidenceq̂ is shown in the inset. The labels 1, 2
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55 5335ELASTIC SCATTERING AND ABSORPTION OF . . .
and 3 of the curves indicate the wave vectors us
q352q2510q15105 cm21. Because of the significant de
pendence ofhsc on the magnitude ofq, the data of curve 1
are multiplied by 103, while that of curve 3 are divided by 1
and those of curve 2 are not changed. Generally, the sca
ing cross section of the square dot shows a weak depend
on the angle of incidence but varies considerably with
scattering angleu, i.e., u5\(q̂8,q̂). In particular, the angu-
lar dependence ofhsc in the regimeqL,1 ~curve 1! is given
by hsc;cos2u5(q̂q̂8)2. With increasing wave numberq, the
cos2u law is gradually replaced by an enhancement of f
ward scattering and a suppression of back scattering~Mie
effect, cf. Ref. 23, p. 654.!. For q5q2, only a small back-
scattering component is left. For even largerq, e.g.,q5q3,
this component is not resolved on the scale of Fig. 5. T
confirms Eq.~42!. In agreement with our qualitative analysi
quantum corrections are extremely small for the parame
introduced above. The curves in Fig. 5 correspond there
essentially to the classical part of the scattering cross-sec

In the small dot case, the WL corrections to the abso
tion cross section are significant, whereas the scattering c
section remains practically unaffected. To illustrate the
pendence of the WL corrections on the magnetic field,
frequency and the temperature, we have evalua
12Re@dD#/D for the cooperon expression~61!. For the
small dot, we expectdD to be determined by the lowes
mode. According to Eq.~63!,

2dD/D5Dtf /p\50.23, ~66!

where we have usedv,tf
21 andB50. The right-hand side

follows from the numerical values listed above. In Fig.
12Re@dD#/D is shown as a function of the magnetic fie
for a square dot (Lx5Ly50.66mm!. The deviations of the
numerical results from the estimate~66! arise from the con-
tributions of the higher modes. The assumptionl B.L used
in Sec. V is valid forB,1.4 mT. The continuation of the
curves to stronger magnetic fields can only serve as an i
cation for the further suppression of the WL corrections w
increasingB. The three curves in Fig. 6 show how the e
hancement factor decreases with increasing freque
Assuming22 tf;T21, the increase of the temperature fro
T50.1 K toT51 K corresponds to a reduction of the pha
coherence length fromlf50.63mm ~which is used in Fig. 6!
to lf50.2mm. The latter value is significantly smaller tha
the size of the dot, L50.66 mm, leading to
12Re@dD#/D'1.07 forB50. The relative differences be
tween the three curves shown in Fig. 6 become much sm
as well.

VIII. DISCUSSION

We have calculated the absorption and the scattering c
sections of a SAW for an isolated quantum dot. The dep
dence of these quantities on WL corrections has been fo
In addition, we have calculated the WL corrections to t
attenuation coefficientGq of an extended 2DEG@Eq. ~41!#.
Since these corrections can~at least! approximately be ex-
pressed in terms of the spatial average of the change o
diffusion coefficient, they are given in a similar way as tho
to the conductivity. One can therefore use results derive
d,

er-
nce
e

-
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rs
re
n.
-
ss
-
e
d

,

i-

y.

ler

ss
n-
d.
e

he
e
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that case to establish the dependence of the cross sec
andGq on spin-orbit scattering, scattering by magnetic im
purities, etc.19 We emphasize the WL corrections becau
they are expected to play a significant role in the experim
tal investigation of the effects discussed in this paper.
deed, though the classical cross sections depend strong
A andv, these parameters are fixed once the dot and in
digital transducers are defined on a sample. But it is re
tively easy to vary the temperature and the magnetic fie
which both affect only the WL corrections. Note also that t
SAW technique allows precise measurements of the rela
changes of the transmitted wave intensity, whereas the a
lute attenuation is much less easily detectable. That is,
more difficult to resolve the large but constant classical
fects than the quantum corrections, which can be ‘‘tune
by external parameters. The measurement of the absorp
cross section~or Gq) as a function of the temperature direct
yields the dependence of the phase coherence time onT. For
typical values,vtf,1, and, hence, it is the paramet
A/ lf

2 that determines whether the dot has to be considere
a small or big one. Thus, the temperature can also shift
dot from one regime to another.

One may also consider an array of quantum dots. Si
the electron-phonon coupling is weak~even for the piezo-
electric interaction!, it is reasonable to assume that the r
sponse of a dot array to a SAW can be represented b
superposition of the effects associated with isolated dots
underscore this point, let us give some numerical estima
for the SAW attenuation and the electron heating. To e
mate whether the calculated cross sections are within
experimental sensitivity, we convert the absorption cro
section to an attenuation coefficient byGq.habs/A; cf. Eq.
~40!. This amounts to densely covering the area between
transducers with quantum dots. Usinghabs.1024 mm and
A.1 mm2 yields an attenuation of about 10 dB/cm. Th
relative change of the attenuation due to WL effects is th
about 1 dB/cm. This value is about ten times larger than
highest resolution achieved, suggesting that the signal
much less dense arrangement of dots can be measured

To estimate the effect of electron heating, one has to co
pare the temperature of the dot withDT[Ihabste /kB ,
where I is the flux intensity of the incoming surface wav
andte is the energy relaxation time. Usingw'2 mm for the
length and the width of a macroscopic SAW delay line a
P'1 mW for the total SAW intensity,13 we determine
I5P/w. The energy relaxation timete can roughly be iden-
tified with the phase coherence timetf . ~This is a good
estimate in the case where bothte and tf result from
electron-electron scattering.19! Using the valuestf530 ps
and habs.1024 mm, we obtainDT.0.1 K, which repre-
sents a significant change in the temperature range of in
est.
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