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Compressibility, capacitance, and ground-state energy fluctuations
in a weakly interacting quantum dot
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We study the effect of electron-electror-¢) interactions on compressibility, capacitance, and inverse
compressibility of electrons in a quantum dot or a small metallic grain. The calculation is performed in the
random-phase approximation. As expected, the ensemble-averaged compressibility and capacitance decreases
as a function of the interaction strength, while the mean inverse compressibility increases. Fluctuations of the
compressibility are found to be strongly suppressed bythénteractions. Fluctuations of the capacitance and
inverse compressibility also turn out to be much smaller than their averages. The analytical calculations are
compared with the results of a numerical calculation for the inverse compressibility of a disordered tight-
binding model. Excellent agreement for weak-interaction values is found. Implications for the interpretation of
current experimental data are discus4&01163-18207)04507-4

[. INTRODUCTION On the other hand, once electron-electr@re] interac-
tions are included the situation becomes more complicated.
The interplay between disorder and interactions is one ofn contrast to the high energy excitations of an interacting
the most exciting topics in mesoscopic physics. Both factorsystem for which a RMT description works very welbr
play an important role in determining the change of the numexample, the high excitations of a nudland of disordered
ber of electrons in a mesoscopic system as the chemical pinteracting systent$), the ground-stateenergy of an inter-
tential of the system is changed. The investigation of thisacting system as a function of the number of particles cannot
problem is especially timely since ground-state properties obe understood by means of RMT.
disordered interacting systems have recently become experi- The average compressibilityyN/du), as well as the av-
mentally accessible. For example, by measuring the spacingsage capacitanc€), are expected to decrease as a result of
between the gate voltages for which a quantum dot coninteractions since it costs more energy to add particles
nected to external leads exhibits conductance peaks, one cario the system. This is somewhat similar to the situation
infer the inverse compressibility of the electron gas in thefor the average polarizability suppression by tleee
dot!~* Devices of this type have recently been used to meainteractions:>4
sure the many-particle ground-state energy as a function of It is not a priori clear how the interactions will influence
the number of electrons in a dot and large fluctuati@mmn-  the fluctuations. Previously we have calculated the influence
pared to the single-electron level spagirig this property of e-e interactions on the sample-to-sample fluctuations of
were observed:® Large fluctuations have also been ob-the polarizability'® By analogy one might expect that the
served in earlier experiments in which the inverse compresselative magnitude of the compressibility and capacitance
ibility of an insulating indium-oxide wire was measurzd.  fluctuations should be suppressed.
In the absence of interactions the derivative of the chemi- The average inverse compressibilgu/dN) is expected
cal potentialu with respect to the number of electrods  to increase as a function of interaction strength for repulsive
(i.e., the inverse compressibility, equal also to the seconéhteractions. From the experimental evidence it seems that
derivative with respect tdl of the ground-state energpf a  the fluctuations in the inverse compressibility is proportional
system equals the single-electron level spacing. It is welto (9u/dN).3~® From numerical calculations one learns that
known that the single-electron level statistics in disorderedor strong interactions the mean root square of the inverse
systems are connected to the statistical properties of randooompressibility is proportional to its averagwiith a propor-
matrices’® The level spacings exhibit fluctuations and tionality constant of about 0.15 for a very wide range of
therefore one expects that the inverse compressibility of difinteractions and disorder strengths. However, it is evident
ferent samples, as well as the inverse compressibility for théhat for weak interactions this ratio cannot be constant. Our
same sample at different chemical potentials, will also exgoal is to study the behavior of the inverse compressibility
hibit fluctuations of an order of the single-electron meanfor weak interactions, and to understand the transition to the
level spacingA. In the noninteracting regime there are manystrong-interaction regime.
theoretical approaches which can be used to calculate these In this paper we extend the perturbative diagrammatic cal-
fluctuations, among them are the random matrix theoryculations to includes-e interactions. The average compress-
(RMT),? perturbative diagrammatic calculatiohand the su- ibility, capacitance, and inverse compressibility as a function
persymmetry methotf:!! of the interaction strength are calculated. The fluctuations in
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the compressibility and capacitance are found to be strongly @
suppressed by the-e interactions. The fluctuations in the
inverse compressibility of the sample can also be deduced
from the fluctuations in the compressibility. It turns out that
the fluctuations in the inverse compressibility, while not sup-
pressed are relatively small.

This is checked by an exact diagonalization numerical
study of an interacting, spinless, disordered tight-binding
model for nearest-neighbor interactions as well as for long-
range Coulomb interactions. For weak interactions the nu-
merical results follow the perturbative calculation. As may
be expected from earlier studigsleviations appear as the
strength of interaction is increased. Thus, a transition from ©
weak-interaction behavior of the fluctuations to strong- NN = 1+
interaction behavior is evident. In the end we discuss the
significance of these results for the interpretation of the ex-
periments.

(b)

Il. AVERAGED COMPRESSIBILITY

The compressibility may be written in terms of the exact FIG. 1. Feynman diagrams representing the avetagaonin-
Green function of the system as teracting andb) interacting compressibility, where the wavy lines
correspond to the electron-electron interaction given in diagm

oN 1

M - &—Im Tr GR(e), (1) Now let us discuss the influence efe interactions on the
averaged compressibility. One would expect that repulsive
wherep is the Fermi energy of the systei,is the number e interactions will reduce the compressibility since it costs
of particles. Given the Hamiltonial, the exact Green func- additional interaction energy to insert an electron into the
tion can be written as system. We begin by investigating the role of short-range

interactions represented by

GR(e)=(GAe))* = — 2 . - - . -
(e)=(G"e) H-i0 @ ucr,r)y=xv ts(r—r")y=a%us(r—r’) 7)
For the noninteracting case Ed4,2) take the form and
N - -1 d
—=—— —|mf de f dr GR(rr,e), 3 U(g)=Av "=NQA=a"U, 8
&,LL T I
_ wherex=e?va’ ! is a dimensionless coupling constant and
where(} is the volume and U=e?/a; herea is the range of the interaction anfis the
. systems dimensionality. The compressibility in the interact-
() g (r') ing case may be represented by the diagrams shown in Fig.

R/Z 21 _/7IAR F\ —
GR(r,r',e)=(r|G™(e)|r )—zn: e—e,—10 4 1(b), corresponding to

Here y,(r) (e, is the nth eigenvectoreigenvalug of the N\ im vOv(G
system. This defines the density of states at the Fermi energy e ‘Imov x(@), ©)
q*,
14
N 1 wherey(q) is the result of summing the diagrammatic series
<£> =10 = 1 (5)  shownin Fig. 1c). For a short-range interaction

According to Eq.(5) in order to add one electron to the X(d):i- (10)
system the Fermi energy should changeyThis can be 1+
also represented in a diagrammatic perturbation theory b?/ ) . _
the diagram shown in Fig.(4) corresponding to nserting the result fox(q) into Eqg.(9), one obtains

N i (m . - . N 1 1 1

— )= d dr dr(GR(r,r",&)GR(r",re)) ol il Bl 1 el il v vreerl e (11

oul 7l "% )a oE e o/ \1+n/\A) |1+a%U/QA) A

_<GA(F’Fr,8)GA(Fr,F18)> (6) Thus, the additional energy needed to add an electron due to

the e-e interactions(the charging energyis a®U/Q. This is
where( ) denotes an average over different realizations ofxactly the result expected if one assumes a constant density
disorder. of electrons in the system.
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The calculation of the compressibility for the long-ranged (@

Coulomb interaction can be performed along similar lines.

For the Coulomb interaction

e2

u(r,r')=———= (12
[r=r’|
and for an infinite system
.~ ®)
U(q)=S4e?/q"* (13

(where§=2w and§3,=477), which for future convenience
in the numerical simulations may also be written as

U(r,r')=Ual/|r—r'|. As can be seen in Eq9) the zero
mode 620) determines the behavior of the average com-
pressibility. Therefore, one must treat the zero mode care-
fully, since simply inserting the infinite system value of the

interaction ford=0 will lead to no compressibility, i.e., in-
finite capacity. The zero component of the Fourier transform
for a finite system is equal to

2 2
Ui 1fd*d*’ © % 14
=07 02), rar |F_ F/| L (14) FIG. 2. (8) Feynman diagrams representing the fluctuations in
the compressibility of a sample. Diagraf@) corresponds to the
where noninteracting case, while diagrafi) to the interacting case.
- f of o —— (15) N
= —s r r = = -
02), IF—r'] <52@>=T§ 2 oD} (a), (18)
q

is a numerical constant which depends on the geometr

Thus repeating the summation of the diagrammatic serie herewm=27;rmT is_ thﬁ I\f:atsqbara frefquencfy ﬁﬁ-(éi.?fth.e
shown in Fig. 1c) one obtains temperatureD,, (q) is the Fourier transform of the diffusion

propagator which is the solution to the equation

- 1
X(@=0)= reT (18 (0m—DV?)D, (FF)=D8(f—F), (19
where k97 1=S,e?v, which is the usual random-phase ap-

proximation(RPA) for the e-e interactions. Using the above YV'th reflective boundary cond|t|on§;,Da,m(r,r )=0, where

result in Eq.(9) results in n is the normal to the sample edge. For a rectangular grain of
dimensiond_3, the solution is
N\ (1
ow| \A

Therefore, the compressibility tends to its noninteractingw
value for kL<1 (i.e., large screening length, possible, for ~
example, in very small semiconducting grginand to z component drops ouandk;=7n; /L. After inserting the
(1/kL)9~1 of its noninteracting value fokL>1 (metallic  value of diffusion propagator given in E¢20) one is left
grains. with the following summation:

1
1+(KL) 1). = Hi:x,y,zcosikiri)cosikiri,)

D, (Ffi=s 5
17) “’m(r’r )_ﬁni:—:)c D%+ o,

1 e
1+S;aU/QA] |\ A

. (20

hereq’=k? + kﬁy+ k: (for a two-dimensional system the

IIl. FLUCTUATIONS IN COMPRESSIBILITY oN _
<52(9—>=T§ > op(ont+Dg?) 4 (21)
q

In this section we shall calculate the fluctuations in the
compressibility in the presence efe interactions. For the 5 ot significant contribution comes from the zero mode
noninteracting electrons the fluctuations are expected to fol: - L
low the Wigner-Dyson statistics. As was noted in Ref. 8, in(q=0) resulting in
order to obtain the Wigner-Dyson statistics in the perturba-
tive diagrammatic calculation one must insert a cutoff in <52ﬁ>~i (22)
energy (or temperature of an order of the single-electron du/ A%
level spacingA. Explicitly the fluctuations can be calculated
using the diagrams appearing in FigaR which correspond The fluctuations in the interacting case are represented by
to the diagrams shown in Fig(ld corresponding to
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N 1
<52£>=TX4(0)2 2 oD, (@, (23 (©=5L (31)
m q

wherex(0) is given by Eqs(10,16. Note thaty appears in  which is the expected purely geometrical value of the capaci-
the power of four, which is the result of the fact that whentance.
two RPA lines intersect, four lines appear. For the short- The fluctuations in the capacitance can be expressed via

range interactions we obtain the fluctuations in the compressibility in the following way:
on) | T¥a%Uiaa) a7 (24 (6°C)=| 5,0 il (32

Thus, the fluctuations in the compressibility are suppresseghich after inserting Eq(27) results in
by the interactions as compared to the noninteracting value.

Even the relative fluctuationglefined as the fluctuations in 5 5
the compressibility divided by the averaged compressibility (6°C)=(C)
are suppressed by the interactions. According to(Ef).

ey

A similar situation exists also for the Coulomb interac-

1 \2d-1)
) (33

KL

Thus whenkL>1 the fluctuations in the capacitance are
much smaller than the average capacitance.

1 2
1+aaU/QA) ' @9
V. INVERSE COMPRESSIBILITY

tions. By using the value of given in Eq.(16) one obtains As mentioned briefly in the introduction, the inverse com-
A pressibility du/dN of a quantum dot can be deduced from

< 52 ﬁ> _ 1 ) 1 (26) measurements of the spacings between consecutive gate volt-

u 1+(;<L)a‘l A%’ ages for which the conductance through the dot peaks. The

spacings in the gate voltage are proportional to the difference
between the chemical potential df+1 andN electron3
1 )2 denoted byAY, which may be related to the ground-state

T (/)T T (270 energies in the following way:

and[using Eq.(17)]

2

Thus, forkL<1 the relative fluctuations are the same as in AY=pne1— un=Eni1— 2En+En-1, (34
the noninteracting case, whilde>1 the relative fluctuations
are suppressed by a factor afl() 2~ It is important to
note that for most metallic and semiconducting samples th
above relation holds since is of the order of the Fermi
momentum i.e.xL~1 for a grain with~1 electron.

whereEy is the ground-state energy of the dot populated by
N electrons. In the continuum limiA,=du/dN, i.e., the
%xperiment actually measures the discrete limit of the inverse
compressibility.

The first step in connecting the results obtained from the
compressibility calculations to the behavior®f is to relate
(dplIN) to (IN/dw). With no loss of generality one can

From the experimental point of view, capacitance meaVrte
surements is one of the most accessible methods to investi-
2

. . Jd
gate the spectral properties of quantum dots and gfains. IR _ -1
on | = LN/ )+ S(aNTap) 177) (35
e _(9,u

Therefore, it is interesting to connect the fluctuations in the
oN s N\]72 au\? 36
o u N/’ (36)

compressibility to fluctuations in the capacitance for interact- d
ing disordered systems. The capacitance of a gtamay be

C 0N ' which if one assumes a well behaved distribution of the com-
pressibility will result in

IV. CAPACITANCE

related to its chemical potential in the following way: < o
N

which is equivalent to

-1
1 yfom T k[N
szﬂxd 1(6'_N_A> , (29 <(9N> <6',u ' 37
whenkL>1 and thus one may write the average capacitancé @ similar manner
as
e N\ [N\ ~4
P~ =) {—) . (38)
L e R
= d=1A( — )\ du

These relations are valid as long@SdN/du)<(IN/du)? .
After inserting the calculated compressibility for the long- From Eqgs.(11,17 and (24,26 it can be seen that this con-
range Coulomb interactiofEqg. (17)] one obtains dition is usually fulfilled sincexL>1. The above condition
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also holds in the noninteracting metallic regime for which VI. NUMERICAL CALCULATION
the usual diagrammatic expansion is vafid*® Thus OF THE INVERSE COMPRESSIBILITY
P =y In this section we shall numerically test the properties of
<_'u> ~l1+=—1|A (39)  the inverse compressibility. Of course, in a numerical calcu-
N QA lation we can only compute the discrete formagf/ N, i.e,

A, as a function of the strength @-e interactions in the
system. As a model system we chose a system of interacting
electrons on a 2D cylinder of circumferentge and height
SqaU L,, which has been previously used in the study of the in-
1+ A (40 y ) . .
LA fluence of e-e interactions on persistent curreftsThe

for short-range interactions and

<Z—ﬁ>~[l+(KL)dl]A:

. : . . model Hamiltonian is given by
for Coulomb interactions. The fluctuations in both cases are

equal to
_ T T T
H= kz Gk’jak'jak’j _VKE (ak’Hlak,j + akHJak’j + HC)
] ]

I
< a4 m> A% 4y +Hip (45)

wherea;j is the fermionic creation operatogy ; is the en-
ergy of a site Kk,j), which is chosen randomly between
—WI/2 andW/2 with a uniform probability and/ is a con-
stant hopping matrix element; is the interaction part of
the Hamiltonian given by

From Eqgs(39,40 it is clear that du/JdN) grows proportion-
ally to the interaction strengtb),while the fluctuations are
independent of the interaction strength. This behavior im
plies that while thee-e interactions tend to shift the distri-
bution of the inverse compressibility the width of the distri-
bution will not change significantl}? U

The results fokdu/dN) could also be anticipated from a Him=5 X  alaxalpaip (46)
simple assumption on the distribution of the electron density gy P

of the ground state. The electrostatic energy needed to add #g the short-range interactiorshere{ } denotes nearest-

electron to a system adfl electrons is given by neighbor pair of siteésand
N S E EN e (e (T U Ay 8, o p
ging= | drdr’ U(r,r")pn(r)pa(r’), (42) HintZE ) = = (47
Q k.j:l.p |rk'j_r|‘p|/b

where py is the density of theN electrons already in the for the Coulomb interaction, whete s the lattice constant.
system, ang; is the density of the additional electron. As-  For a sample oM sites andN electrons, the number of
suming that both densities are uncorrelated, and that on ttgigenvectors spanning the many-body Hilbert space is
average(pn)=N/Q and (p;)=1/Q, the average electro- M= (k",). The many-body Hamiltonian may be represented by
static energy needed to add an electron is an mXm matrix which is numerically diagonalized for dif-
ferent values of thee-e interaction. Here we consider a
N . -~ N 4X3,4X4, and 4x5 lattices withM =12, 16, 20 sites cor-
(&)= L}dr dr’ U(r,rgz, (43)  respondingly. For each value & the average and fluctua-
tions of AM? are calculated. To obtainy’? in each case
which  for  shortrange interactions results in Egs for N=M/2—1, N=M/2, andN=M/2+1 are calcu-
<8i“r‘n>=NadU/Q and for the Coulomb interactions lated. F(_)r the largest system considerbti= 20, N=10) the.
(eNy=NSe?L9" Q0 =N(kL)4"*A. Since under these as- calpglatlon of the ground-state energy corresponds to diago-
sumptions(du/IN)=(eN)—(eN"1+ A, one immediately nalizing a 184 756184 756 matrix. We chos#&/=8 V for

obtains Eqs(39,40, which is the classical limit of the Cou- which this system is in the metallic regiftend average the

lomb blockade® results over 500 realizations for each value of interaction
Also the fluctuations in the inverse compressibility mayStrength for theM =12 andM =16 cases and 200 realiza-
be deduced from similar assumptions, resulting in tions for M =20. /o Mo S
The results fof A% and((52A%"))Y2 are given in Fig.
((s-’\‘ )2>~<8-N )2, (44) 3(a) for the short-range interactions and in FigbBfor the
nt nt Coulomb interaction. It can be seen that in both cases
for both short- and long-range interactions. Thus, the fluc{A}"”) increases linearly for low values of) while
tuations in the charging energy are (5°AY’?) remains constant. This is in qualitative agreement

(82N =((eN)?) —(eN)2~0. This leads to the conclusion with Egs. (39)—(41). In order to obtain also quantitative
that there is no additional contribution to the inverse com-agreement one must take into account some finer details. For
pressibility fluctuations beyond the fluctuations i in (AZM/2> one must consider the fact that the calculations were
agreement with Eq(41). Therefore, we expect that the re- performed on a lattice. For short-range interactions, one
sults presented in the previous sections will hold as long ashould replacea®/ Q) in Eq. (39) by Z(M)/(M—1), where
the RPA assumptions hold, i.a:;>e?/h, wherev; is the the average number of nearest neighb@($/), depends on

Fermi velocity. M due to the different ratio of sites close to the boundaries,
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(a)
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00 b o - v S FIG. 3. (A}"?) and(82A%"?) for different lat-
uv ’ ’ tice sizes (X4, 4X4, and 5<4) as a function
of interaction strength fofa) short-range interac-
tions (b) Coulomb interactions. The lines repre-
sent the theoretical predictions given in the text.
o The full line corresponds to a>34, lattice, the
dotted line to 44, and the dashed line to
5.0 . . . oX4.
o 3x4, <8°A°>"*
o 3x4, <A62> o®
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where forM =12, 16, 20Z(M)=3.333, 3.5, 3.6 correspond- interaction strength no significant change in the second mo-
ingly. Using the values of the single-electron spacingsment of the distributiorszzM/2> is expected, and indeed the
A=0.42 V, 059V, 0.77 V fotM =12, 16, 20 in Eq(39) width of the distributions is almost identical. On the other
results in the curves plotted in Fig(e for (Ag"”). One can hand, higher moments seem to be influenced byetleein-

see a good fit up t&) =V. For the long range interactions in teractions resulting in changes in the tails of the distribution.
our lattice system one should replace the integration in EqThe effect of interactions on the higher moments of the
(15 by a summation, i.e., S,=(L/MA)Z, ;. pllk; AY'"? merits further studies. . .
—F|,p|_1, which results inS,=2.35, 2.44, 2.48 correspond- As has been mentioned in Ref. 5, and discussed in the

ing to M=12, 16, 20. After incorporating, and A in Eq. previous section, we expect the analytical results based on

(40) one obtains the curves plotted in Figbg An excellent the RPA approximation to hold as long as no correlations
fit is seen up toU=3 V. The exact value of develop in the electron density. Following Ref. 5 we define a

(62AM2) = (4/7— 1)A? is deduced from RMT and plotted in WO POINt correlation function:
Fig. 3. It can be seen that this prediction is also confirmed for
weak interactiond?

It is possible to observe what is the influence of the Skjsl pC(FkJ._FI DS i I
interactions on the full distribution of,. In Fig. 4 the dis- C(r)y= —— DM e (48)
tribution for the noninteracting casdJ&0) is compared Ek,i>',95\fk,j*f|,pl'f

with the distribution forU=2 V in the long-range interac-
tion case. As can be seen in FiglbB for this value of where
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0.8 , ‘ : :
o U=0
o U=2v
FIG. 4. The full distribution
P(AY?IA), for a 4x4 lattice.
The full line corresponds the
| GOE distribution P(x)=(wx/2)
xexp(—mx?44), where x=A}"?
A, and the dashed line corresponds
to the GOE distribution shifted by
the average charging energy for
U=2 V, ie, by AY?+aA
j — (A,
=]
\\ m}
(u]
~ [m} o a
S SN~ P
6.0
C(Fk o F| ) the strength of the-e interactions. In contrast, experiments
Johe show that the fluctuations are substantially larger than the
ek ja—(akaclla)l a () pap)] g mean level spacing, and seem to be about 15% of the aver-
- <al,jak,j><ar,pal,p> : age inverse compressibility.

Actually, one could have anticipated the failure of the

In Fig. 5 we present the correlati®®(r = \2b) (which cor-  RPA calculation for the experimental realizations, since their
responds to a pair of diagonal sitder the long-range inter- densities are too low for the RPA approximation to remain
actions as function of the interaction strength. Under thevalid. For a 2DEG quantum dot one may rewrite the condi-
RPA assumptions we expe€(r = y2b)—0. As can be seen tion for which the RPA failsrg=€%/v;<1 asn< 1/7-ra§,
there is some correlation as result of the boundaries evefheren is the electron density in the dot aag is the Bohr
without e-e interactions. As the interaction strength increasegadius, which in GaAs is- 100 A. Thus one expects RPA to
there is no dramatic change @(r=2b) up toU=2.5V fail at densitiesn<3x10 1 ¢cm 2. In all of the recent ex-
and then one sees a strong deviation. A similar behavior caperiments for which large fluctuations were obsefvédhe
be seen for the short-range interactions where the deviatioPDEG density is about 810 ** ¢cm~?, and the density in
appear atJ=V. This agrees well with the values of interac- the dot is probably even lower.
tion for which the numerical results depart from the RPA  The large fluctuations in the inverse compressibility are
analytical calculations. caused by spatial fluctuations in the electron density which

One can roughly estimate the strength of interactiofor ~ are not taken into account in the RPA approximafidhis
which these correlations should appear. As mentioned in thenportant to note that the charge distribution becomes inho-
previous section, we expect the RPA approximation to holdnogeneous when the electron density is still much higher
while e?/v;<1, which for long-range interactions corre- than the one critical for Wigner crystallization. Thus the ex-
sponds tor = /7/2(U/4V)<1 and for short-range interac- periments are apparently in an intermediate range of densi-
tions tor = \/ﬁ(ZU/4V)<1. This is surprisingly close to ties (or intermediatee-e interaction strength In this regime
the values for which deviations from RPA theory are seerthe RPA approximation does not hold anymore and some
numerically. density correlations do appear, however the systems are still
very far from the Wigner crystallization.

Note that in the case of large dimensionless conductance
g>1 that was considered in this paper we found no influence

The main conclusion that follows from the previous sec-of the disorder on the structure of Coulomb blockade peaks.
tions is that the RPA approximation fails to explain the largeFor different physical reasons fluctuations of the order of the
fluctuations in the inverse compressibility seen in theinverse compressibility may also appear in the localized
experiment > Under the assumptions of a RPA treatment ofregime®® Fluctuations in the frequency dependent capaci-
the e-e interactions the fluctuations are proportional to thetance for an open cavity with many channels were also re-
single-electron mean level spacing, therefore independent aently considered’

VII. DISCUSSION
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FIG. 5. The two point correlatio@(r =2%%), for long-range interactions, as a function of the interaction strength.

Finally, it is also interesting to compare the fluctuations inlarization fluctuations are smaller than the relative compress-
the compressibility to the fluctuations in the polarizabify. ibility fluctuations by a factor 4.
Although the calculation of both quantities show many simi-
lar features, there is one crucial difference. The main contri-
bution to the fluctuations in the compressibility comes from ACKNOWLEDGMENTS
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