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Compressibility, capacitance, and ground-state energy fluctuations
in a weakly interacting quantum dot
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We study the effect of electron-electron (e-e) interactions on compressibility, capacitance, and inverse
compressibility of electrons in a quantum dot or a small metallic grain. The calculation is performed in the
random-phase approximation. As expected, the ensemble-averaged compressibility and capacitance decreases
as a function of the interaction strength, while the mean inverse compressibility increases. Fluctuations of the
compressibility are found to be strongly suppressed by thee-e interactions. Fluctuations of the capacitance and
inverse compressibility also turn out to be much smaller than their averages. The analytical calculations are
compared with the results of a numerical calculation for the inverse compressibility of a disordered tight-
binding model. Excellent agreement for weak-interaction values is found. Implications for the interpretation of
current experimental data are discussed.@S0163-1829~97!04507-4#
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I. INTRODUCTION

The interplay between disorder and interactions is one
the most exciting topics in mesoscopic physics. Both fact
play an important role in determining the change of the nu
ber of electrons in a mesoscopic system as the chemica
tential of the system is changed. The investigation of t
problem is especially timely since ground-state properties
disordered interacting systems have recently become ex
mentally accessible. For example, by measuring the spac
between the gate voltages for which a quantum dot c
nected to external leads exhibits conductance peaks, one
infer the inverse compressibility of the electron gas in
dot.1–4 Devices of this type have recently been used to m
sure the many-particle ground-state energy as a functio
the number of electrons in a dot and large fluctuations~com-
pared to the single-electron level spacing! in this property
were observed.3–5 Large fluctuations have also been o
served in earlier experiments in which the inverse compre
ibility of an insulating indium-oxide wire was measured.6

In the absence of interactions the derivative of the che
cal potentialm with respect to the number of electronsN
~i.e., the inverse compressibility, equal also to the sec
derivative with respect toN of the ground-state energy! of a
system equals the single-electron level spacing. It is w
known that the single-electron level statistics in disorde
systems are connected to the statistical properties of ran
matrices.7–9 The level spacings exhibit fluctuations an
therefore one expects that the inverse compressibility of
ferent samples, as well as the inverse compressibility for
same sample at different chemical potentials, will also
hibit fluctuations of an order of the single-electron me
level spacingD. In the noninteracting regime there are ma
theoretical approaches which can be used to calculate t
fluctuations, among them are the random matrix the
~RMT!,9 perturbative diagrammatic calculations,8 and the su-
persymmetry method.10,11
550163-1829/97/55~8!/5297~9!/$10.00
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On the other hand, once electron-electron (e-e) interac-
tions are included the situation becomes more complica
In contrast to the high energy excitations of an interact
system for which a RMT description works very well~for
example, the high excitations of a nuclei9 and of disordered
interacting systems12!, the ground-stateenergy of an inter-
acting system as a function of the number of particles can
be understood by means of RMT.

The average compressibilitŷ]N/]m&, as well as the av-
erage capacitancêC&, are expected to decrease as a resul
interactions since it costs more energy to add partic
into the system. This is somewhat similar to the situat
for the average polarizability suppression by thee-e
interactions.13,14

It is not a priori clear how the interactions will influenc
the fluctuations. Previously we have calculated the influe
of e-e interactions on the sample-to-sample fluctuations
the polarizability.15 By analogy one might expect that th
relative magnitude of the compressibility and capacitan
fluctuations should be suppressed.

The average inverse compressibility^]m/]N& is expected
to increase as a function of interaction strength for repuls
interactions. From the experimental evidence it seems
the fluctuations in the inverse compressibility is proportion
to ^]m/]N&.3–6 From numerical calculations one learns th
for strong interactions the mean root square of the inve
compressibility is proportional to its average,5 with a propor-
tionality constant of about 0.15 for a very wide range
interactions and disorder strengths. However, it is evid
that for weak interactions this ratio cannot be constant. O
goal is to study the behavior of the inverse compressibi
for weak interactions, and to understand the transition to
strong-interaction regime.

In this paper we extend the perturbative diagrammatic c
culations to includee-e interactions. The average compres
ibility, capacitance, and inverse compressibility as a funct
of the interaction strength are calculated. The fluctuation
5297 © 1997 The American Physical Society
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5298 55R. BERKOVITS AND B. L. ALTSHULER
the compressibility and capacitance are found to be stron
suppressed by thee-e interactions. The fluctuations in th
inverse compressibility of the sample can also be dedu
from the fluctuations in the compressibility. It turns out th
the fluctuations in the inverse compressibility, while not su
pressed are relatively small.

This is checked by an exact diagonalization numeri
study of an interacting, spinless, disordered tight-bind
model for nearest-neighbor interactions as well as for lo
range Coulomb interactions. For weak interactions the
merical results follow the perturbative calculation. As m
be expected from earlier studies,5 deviations appear as th
strength of interaction is increased. Thus, a transition fr
weak-interaction behavior of the fluctuations to stron
interaction behavior is evident. In the end we discuss
significance of these results for the interpretation of the
periments.

II. AVERAGED COMPRESSIBILITY

The compressibility may be written in terms of the exa
Green function of the system as

]N

]m
52

1

p

]

]m
Im Tr ĜR~«!, ~1!

wherem is the Fermi energy of the system,N is the number
of particles. Given the HamiltonianH, the exact Green func
tion can be written as

ĜR~«!5„ĜA~«!…*5
1

«2H2 i0
. ~2!

For the noninteracting case Eqs.~1,2! take the form

]N

]m
52

1

p

]

]m
ImE

2`

m

d« E
V
drW GR~rW,rW,«!, ~3!

whereV is the volume and

GR~rW,rW8,«!5^rWuĜR~«!urW8&5(
n

cn~rW !cn* ~rW8!

«2«n2 i0
. ~4!

Herecn(rW) («n) is thenth eigenvector~eigenvalue! of the
system. This defines the density of states at the Fermi en
n

K ]N

]m L 5nV5
1

D
. ~5!

According to Eq.~5! in order to add one electron to th
system the Fermi energy should change byD. This can be
also represented in a diagrammatic perturbation theory
the diagram shown in Fig. 1~a! corresponding to

K ]N

]m L 5
i

pE2`

m

d« E
V
drW drW^GR~rW,rW8,«!GR~rW8,rW,«!&

2^GA~rW,rW8,«!GA~rW8,rW,«!& ~6!

where ^ & denotes an average over different realizations
disorder.
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Now let us discuss the influence ofe-e interactions on the
averaged compressibility. One would expect that repuls
e-e interactions will reduce the compressibility since it cos
additional interaction energy to insert an electron into
system. We begin by investigating the role of short-ran
interactions represented by

U~rW,rW8!5ln21d~rW2rW8!5adUd~rW2rW8! ~7!

and

U~qW !5ln215lVD5adU, ~8!

wherel5e2nad21 is a dimensionless coupling constant a
U5e2/a; herea is the range of the interaction andd is the
systems dimensionality. The compressibility in the intera
ing case may be represented by the diagrams shown in
1~b!, corresponding to

K ]N

]m L 5 lim
qW→0

nVx~qW !, ~9!

wherex(qW ) is the result of summing the diagrammatic ser
shown in Fig. 1~c!. For a short-range interaction

x~qW !5
1

11l
. ~10!

Inserting the result forx(qW ) into Eq. ~9!, one obtains

K ]N

]m L 5S 1

11l D S 1D D5S 1

11adU/VD D S 1D D . ~11!

Thus, the additional energy needed to add an electron du
thee-e interactions~the charging energy! is adU/V. This is
exactly the result expected if one assumes a constant de
of electrons in the system.

FIG. 1. Feynman diagrams representing the average~a! nonin-
teracting and~b! interacting compressibility, where the wavy line
correspond to the electron-electron interaction given in diagram~c!.
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55 5299COMPRESSIBILITY, CAPACITANCE, AND GROUND- . . .
The calculation of the compressibility for the long-rang
Coulomb interaction can be performed along similar lin
For the Coulomb interaction

U~rW,rW8!5
e2

urW2rW8u
~12!

and for an infinite system

U~qW !5S̃de
2/qd21 ~13!

~whereS̃252p andS̃354p), which for future convenience
in the numerical simulations may also be written
U(rW,rW8)5Ua/urW2rW8u. As can be seen in Eq.~9! the zero
mode (qW 50) determines the behavior of the average co
pressibility. Therefore, one must treat the zero mode c
fully, since simply inserting the infinite system value of th
interaction forqW 50 will lead to no compressibility, i.e., in
finite capacity. The zero component of the Fourier transfo
for a finite system is equal to

UqW 505
1

V2E
V
drW drW8

e2

urW2rW8u
5
Sde

2

L
, ~14!

where

Sd5
L

V2E
V
drW drW8

1

urW2rW8u
~15!

is a numerical constant which depends on the geome
Thus repeating the summation of the diagrammatic se
shown in Fig. 1~c! one obtains

x~qW 50!5
1

11~kL !d21, ~16!

wherekd215Sde
2n, which is the usual random-phase a

proximation~RPA! for thee-e interactions. Using the abov
result in Eq.~9! results in

K ]N

]m L 5S 1D D S 1

11SdaU/VD D5S 1D D S 1

11~kL !d21D .
~17!

Therefore, the compressibility tends to its noninteract
value for kL!1 ~i.e., large screening length, possible, f
example, in very small semiconducting grains! and to
(1/kL)d21 of its noninteracting value forkL@1 ~metallic
grains!.

III. FLUCTUATIONS IN COMPRESSIBILITY

In this section we shall calculate the fluctuations in t
compressibility in the presence ofe-e interactions. For the
noninteracting electrons the fluctuations are expected to
low the Wigner-Dyson statistics. As was noted in Ref. 8,
order to obtain the Wigner-Dyson statistics in the pertur
tive diagrammatic calculation one must insert a cutoff
energy ~or temperature! of an order of the single-electro
level spacingD. Explicitly the fluctuations can be calculate
using the diagrams appearing in Fig. 2~a!, which correspond
to
.

-
e-

y.
s

g

l-

-

K d2
]N

]m L 5T(
m

(
qW

vmDvm

4 ~qW !, ~18!

wherevm52pmT is the Matsubara frequency andT is the
temperature.Dvm

(q) is the Fourier transform of the diffusion
propagator which is the solution to the equation

~vm2D¹2!Dvm
~rW,rW8!5Dd~rW2rW8!, ~19!

with reflective boundary conditions¹ n̂Dvm
(rW,rW8)50, where

n̂ is the normal to the sample edge. For a rectangular grai
dimensionsL3, the solution is

Dvm
~rW,rW8!5

1

V (
ni52`

`
P i5x,y,zcos~kir i !cos~kir i8!

Dq21vm
, ~20!

whereq25knx
2 1kny

2 1knz
2 ~for a two-dimensional system th

ẑ component drops out! andki5pni /L. After inserting the
value of diffusion propagator given in Eq.~20! one is left
with the following summation:

K d2
]N

]m L 5T(
m

(
qW

vm~vm1Dq2!24. ~21!

The most significant contribution comes from the zero mo
(qW 50) resulting in

K d2
]N

]m L ;
1

D2 . ~22!

The fluctuations in the interacting case are represente
the diagrams shown in Fig. 2~b! corresponding to

FIG. 2. ~a! Feynman diagrams representing the fluctuations
the compressibility of a sample. Diagram~a! corresponds to the
noninteracting case, while diagram~b! to the interacting case.
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K d2
]N

]m L 5Tx4~0!(
m

(
qW

vmDvm

4 ~q!, ~23!

wherex(0) is given by Eqs.~10,16!. Note thatx appears in
the power of four, which is the result of the fact that wh
two RPA lines intersect, four lines appear. For the sho
range interactions we obtain

K d2
]N

]m L ;S 1

11adU/VD D 4 1D2 . ~24!

Thus, the fluctuations in the compressibility are suppres
by the interactions as compared to the noninteracting va
Even the relative fluctuations~defined as the fluctuations i
the compressibility divided by the averaged compressibil!
are suppressed by the interactions. According to Eq.~11!:

K d2
]N

]m L K ]N

]m L 22

;S 1

11adU/VD D 2. ~25!

A similar situation exists also for the Coulomb intera
tions. By using the value ofx given in Eq.~16! one obtains

K d2
]N

]m L ;S 1

11~kL !d21D 4 1D2 , ~26!

and @using Eq.~17!#

K d2
]N

]m L K ]N

]m L 22

;S 1

11~kL !d21D 2. ~27!

Thus, forkL!1 the relative fluctuations are the same as
the noninteracting case, whilekL@1 the relative fluctuations
are suppressed by a factor of (kL)22(d21). It is important to
note that for most metallic and semiconducting samples
above relation holds sincek is of the order of the Ferm
momentum i.e.,kL;1 for a grain with;1 electron.

IV. CAPACITANCE

From the experimental point of view, capacitance m
surements is one of the most accessible methods to inv
gate the spectral properties of quantum dots and gra2

Therefore, it is interesting to connect the fluctuations in
compressibility to fluctuations in the capacitance for intera
ing disordered systems. The capacitance of a grainC may be
related to its chemical potential in the following way:

e2

C
5

]m

]N
2D, ~28!

which is equivalent to

C5
1

2d21p
Vkd21S ]m

]N
2D D 21

, ~29!

whenkL@1 and thus one may write the average capacita
as

^C&5
1

2d21p
Vkd21D K ]N

]m L . ~30!

After inserting the calculated compressibility for the lon
range Coulomb interaction@Eq. ~17!# one obtains
t-

d
e.

e

-
ti-
s.
e
t-

e

^C&5
1

Sd
L, ~31!

which is the expected purely geometrical value of the cap
tance.

The fluctuations in the capacitance can be expressed
the fluctuations in the compressibility in the following wa

^d2C&5S 1SdVkd21D D 2K d2
]N

]m L , ~32!

which after inserting Eq.~27! results in

^d2C&5^C&2S 1

kL D 2~d21!

. ~33!

Thus whenkL@1 the fluctuations in the capacitance a
much smaller than the average capacitance.

V. INVERSE COMPRESSIBILITY

As mentioned briefly in the introduction, the inverse com
pressibility ]m/]N of a quantum dot can be deduced fro
measurements of the spacings between consecutive gate
ages for which the conductance through the dot peaks.
spacings in the gate voltage are proportional to the differe
between the chemical potential ofN11 andN electrons5

denoted byD2
N , which may be related to the ground-sta

energies in the following way:

D2
N5mN112mN5EN1122EN1EN21 , ~34!

whereEN is the ground-state energy of the dot populated
N electrons. In the continuum limitD25]m/]N, i.e., the
experiment actually measures the discrete limit of the inve
compressibility.

The first step in connecting the results obtained from
compressibility calculations to the behavior ofD2 is to relate
^]m/]N& to ^]N/]m&. With no loss of generality one ca
write

K ]m

]N L 5Š@^]N/]m&1d~]N/]m!#21
‹ ~35!

and

K d2
]m

]NL 5 K F K ]N

]m L 1dS ]N

]m D G22L 2 K ]m

]N L 2, ~36!

which if one assumes a well behaved distribution of the co
pressibility will result in

K ]m

]N L ; K ]N

]m L 21

. ~37!

In a similar manner

K d2
]m

]NL ; K d2
]N

]m L K ]N

]m L 24

. ~38!

These relations are valid as long as^d2]N/]m&,^]N/]m&2 .
From Eqs.~11,17! and ~24,26! it can be seen that this con
dition is usually fulfilled sincekL@1. The above condition
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also holds in the noninteracting metallic regime for whi
the usual diagrammatic expansion is valid.16–18Thus

K ]m

]N L ;S 11
adU

VD DD ~39!

for short-range interactions and

K ]m

]N L ;@11~kL !d21#D5S 11
SdaU

LD DD ~40!

for Coulomb interactions. The fluctuations in both cases
equal to

K d2
]m

]NL ;D2. ~41!

From Eqs.~39,40! it is clear that̂ ]m/]N& grows proportion-
ally to the interaction strengthU,while the fluctuations are
independent of the interaction strength. This behavior
plies that while thee-e interactions tend to shift the distri
bution of the inverse compressibility the width of the dist
bution will not change significantly.19

The results for̂ ]m/]N& could also be anticipated from
simple assumption on the distribution of the electron den
of the ground state. The electrostatic energy needed to ad
electron to a system ofN electrons is given by

« int
N 5E

V
drW drW8 U~rW,rW8!rN~rW !r1~rW8!, ~42!

where rN is the density of theN electrons already in the
system, andr1 is the density of the additional electron. A
suming that both densities are uncorrelated, and that on
average^rN&5N/V and ^r1&51/V, the average electro
static energy needed to add an electron is

^« int
N &5E

V
drW drW8 U~rW,rW8!

N

V2 , ~43!

which for short-range interactions results
^« int

N &5NadU/V and for the Coulomb interaction
^« int

N &5NSde
2Ld21/V5N(kL)d21D. Since under these as

sumptions^]m/]N&5^« int
N &2^« int

N21&1D, one immediately
obtains Eqs.~39,40!, which is the classical limit of the Cou
lomb blockade.20

Also the fluctuations in the inverse compressibility m
be deduced from similar assumptions, resulting in

^~« int
N !2&;^« int

N &2, ~44!

for both short- and long-range interactions. Thus, the fl
tuations in the charging energy a
^d2« int

N &5^(« int
N )2&2^« int

N &2;0. This leads to the conclusio
that there is no additional contribution to the inverse co
pressibility fluctuations beyond the fluctuations inD, in
agreement with Eq.~41!. Therefore, we expect that the re
sults presented in the previous sections will hold as long
the RPA assumptions hold, i.e.,v f@e2/h, wherev f is the
Fermi velocity.
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VI. NUMERICAL CALCULATION
OF THE INVERSE COMPRESSIBILITY

In this section we shall numerically test the properties
the inverse compressibility. Of course, in a numerical cal
lation we can only compute the discrete form of]m/]N, i.e,
D2 as a function of the strength ofe-e interactions in the
system. As a model system we chose a system of interac
electrons on a 2D cylinder of circumferenceLx and height
Ly , which has been previously used in the study of the
fluence of e-e interactions on persistent currents.21 The
model Hamiltonian is given by

H5(
k, j

ek, jak, j
† ak, j2V(

k, j
~ak, j11

† ak, j1ak11,j
† ak, j1H.c.!

1H int , ~45!

whereak, j
† is the fermionic creation operator,ek, j is the en-

ergy of a site (k, j ), which is chosen randomly betwee
2W/2 andW/2 with a uniform probability andV is a con-
stant hopping matrix element.H int is the interaction part of
the Hamiltonian given by

H int5
U

2 (
$k, j ; l ,p%

ak, j
† ak, jal ,p

† al ,p ~46!

for the short-range interactions~where $ % denotes nearest
neighbor pair of sites! and

H int5
U

2 (
k, j ; l ,p

ak, j
† ak, jal ,p

† al ,p

urWk, j2rW l ,pu/b
~47!

for the Coulomb interaction, whereb is the lattice constant
For a sample ofM sites andN electrons, the number o

eigenvectors spanning the many-body Hilbert space
m5(N

M). The many-body Hamiltonian may be represented
anm3m matrix which is numerically diagonalized for dif
ferent values of thee-e interaction. Here we consider
433, 434, and 435 lattices withM512, 16, 20 sites cor-
respondingly. For each value ofM the average and fluctua
tions of D2

M /2 are calculated. To obtainD2
M /2 in each case

Egs
N for N5M /221, N5M /2, andN5M /211 are calcu-

lated. For the largest system considered (M520,N510) the
calculation of the ground-state energy corresponds to dia
nalizing a 184 7563184 756 matrix. We choseW58 V for
which this system is in the metallic regime21 and average the
results over 500 realizations for each value of interact
strength for theM512 andM516 cases and 200 realiza
tions forM520.

The results for̂D2
M /2& and^(d2D2

M /2&)1/2 are given in Fig.
3~a! for the short-range interactions and in Fig. 3~b! for the
Coulomb interaction. It can be seen that in both ca
^D2

M /2& increases linearly for low values ofU while
^d2D2

M /2& remains constant. This is in qualitative agreeme
with Eqs. ~39!–~41!. In order to obtain also quantitativ
agreement one must take into account some finer details.
^D2

M /2& one must consider the fact that the calculations w
performed on a lattice. For short-range interactions, o
should replacead/V in Eq. ~39! by Z(M )/(M21), where
the average number of nearest neighbors,Z(M ), depends on
M due to the different ratio of sites close to the boundari
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FIG. 3. ^D2
M /2& and^d2D2

M /2& for different lat-
tice sizes (334, 434, and 534) as a function
of interaction strength for~a! short-range interac-
tions ~b! Coulomb interactions. The lines repre
sent the theoretical predictions given in the te
The full line corresponds to a 334, lattice, the
dotted line to 434, and the dashed line to
534.
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where forM512, 16, 20,Z(M )53.333, 3.5, 3.6 correspond
ingly. Using the values of the single-electron spacin
D50.42 V, 0.59 V, 0.77 V forM512, 16, 20 in Eq.~39!
results in the curves plotted in Fig. 3~a! for ^D2

M /2&. One can
see a good fit up toU5V. For the long range interactions i
our lattice system one should replace the integration in
~15! by a summation, i.e., S25(L/M2)(k, jÞ l ,purWk, j
2rW l ,pu21, which results inS252.35, 2.44, 2.48 correspond
ing to M512, 16, 20. After incorporatingS2 andD in Eq.
~40! one obtains the curves plotted in Fig. 3~b!. An excellent
fit is seen up to U53 V. The exact value of
^d2D2

M /2&5(4/p21)D2 is deduced from RMT and plotted i
Fig. 3. It can be seen that this prediction is also confirmed
weak interactions.22

It is possible to observe what is the influence of thee-e
interactions on the full distribution ofD2. In Fig. 4 the dis-
tribution for the noninteracting case (U50) is compared
with the distribution forU52 V in the long-range interac
tion case. As can be seen in Fig. 3~b!, for this value of
s

q.

r

interaction strength no significant change in the second
ment of the distribution̂d2D2

M /2& is expected, and indeed th
width of the distributions is almost identical. On the oth
hand, higher moments seem to be influenced by thee-e in-
teractions resulting in changes in the tails of the distributi
The effect of interactions on the higher moments of t
D2
M /2 merits further studies.
As has been mentioned in Ref. 5, and discussed in

previous section, we expect the analytical results based
the RPA approximation to hold as long as no correlatio
develop in the electron density. Following Ref. 5 we defin
two point correlation function:

C~r !5
(k, j. l ,pC~rWk, j2rW l ,p!d urWk, j2rW l ,pu,r

(k, j. l ,pd urWk, j2rW l ,pu,r
, ~48!

where
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FIG. 4. The full distribution
P(D 2

M /2/D), for a 434 lattice.
The full line corresponds the
GOE distribution P(x)5~px/2!
3exp~2px2/4!, where x5D2

M /2/
D, and the dashed line correspond
to the GOE distribution shifted by
the average charging energy fo
U52 V, i.e., by D2
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In Fig. 5 we present the correlationC(r5A2b) ~which cor-
responds to a pair of diagonal sites! for the long-range inter-
actions as function of the interaction strength. Under
RPA assumptions we expectC(r5A2b)→0. As can be seen
there is some correlation as result of the boundaries e
withoute-e interactions. As the interaction strength increas
there is no dramatic change inC(r5A2b) up toU52.5 V
and then one sees a strong deviation. A similar behavior
be seen for the short-range interactions where the devia
appear atU5V. This agrees well with the values of intera
tion for which the numerical results depart from the RP
analytical calculations.

One can roughly estimate the strength of interactionU for
which these correlations should appear. As mentioned in
previous section, we expect the RPA approximation to h
while e2/v f,1, which for long-range interactions corre
sponds tor s5Ap/2(U/4V),1 and for short-range interac
tions to r s5Ap/2(ZU/4V),1. This is surprisingly close to
the values for which deviations from RPA theory are se
numerically.

VII. DISCUSSION

The main conclusion that follows from the previous se
tions is that the RPA approximation fails to explain the lar
fluctuations in the inverse compressibility seen in t
experiment.3–5Under the assumptions of a RPA treatment
the e-e interactions the fluctuations are proportional to t
single-electron mean level spacing, therefore independen
e

en
s

an
on

e
d

n

-

f

of

the strength of thee-e interactions. In contrast, experimen
show that the fluctuations are substantially larger than
mean level spacing, and seem to be about 15% of the a
age inverse compressibility.

Actually, one could have anticipated the failure of th
RPA calculation for the experimental realizations, since th
densities are too low for the RPA approximation to rema
valid. For a 2DEG quantum dot one may rewrite the con
tion for which the RPA failsr s5e2/v f,1 as n,1/paB

2 ,
wheren is the electron density in the dot andaB is the Bohr
radius, which in GaAs is;100 Å. Thus one expects RPA t
fail at densitiesn,3310211 cm22. In all of the recent ex-
periments for which large fluctuations were observed3–5 the
2DEG density is about 3310211 cm22, and the density in
the dot is probably even lower.

The large fluctuations in the inverse compressibility a
caused by spatial fluctuations in the electron density wh
are not taken into account in the RPA approximation.5 It is
important to note that the charge distribution becomes in
mogeneous when the electron density is still much hig
than the one critical for Wigner crystallization. Thus the e
periments are apparently in an intermediate range of de
ties ~or intermediatee-e interaction strength!. In this regime
the RPA approximation does not hold anymore and so
density correlations do appear, however the systems are
very far from the Wigner crystallization.

Note that in the case of large dimensionless conducta
g@1 that was considered in this paper we found no influe
of the disorder on the structure of Coulomb blockade pea
For different physical reasons fluctuations of the order of
inverse compressibility may also appear in the localiz
regime.23 Fluctuations in the frequency dependent capa
tance for an open cavity with many channels were also
cently considered.24
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FIG. 5. The two point correlationC(r521/2b), for long-range interactions, as a function of the interaction strength.
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Finally, it is also interesting to compare the fluctuations
the compressibility to the fluctuations in the polarizability15

Although the calculation of both quantities show many sim
lar features, there is one crucial difference. The main con
bution to the fluctuations in the compressibility comes fro
the zero mode, which corresponds in the noninteracting c
to the single-electron level fluctuations. In the polarizabili
there is no contribution from the zero mode, and the fluct
tions stem from the other modes, which correspond to d
sity fluctuations. This results in the fact that the relative p
ol
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n
e
.
ar

G.

e

-
i-
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larization fluctuations are smaller than the relative compre
ibility fluctuations by a factor 1/g2.
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