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Closed-form solutions to surface Green’s functions
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We obtain closed-form analytic solutions for surface Green’s functions within arbitrary multiorbital models.
The formulation is completely general, and is equally valid for empirical tight binding, linear-muffin-tin-orbital
tight binding, screened Korringa-Kohn-Rostoker and other Green’s-function equivalent formalisms, where the
Hamiltonian can be put into a localize@e., block-band form. The solutions are applicable to finite or
semi-infinite surface systems, with quite general substrate and overlayers, or even to superlattices. This is
achieved by solving Dyson’s equations by means of a matrix-valued extension of thiasMmnsformation.

The analytical properties of the solutions are discussed, and by considering their asymptotic limit, a simple
closed form for the exadsemi-infinite surface Green'’s function is obtained. The numerical calculation of the
surface Green’s functiofor of observable quantities such as the density of stateisg this closed form is
compared with previously known iterative procedures. We find that it is far faster, far more stable, and more
accurate than the best iterative methj@i0163-182607)03804-9

I. INTRODUCTION expression for the surface Green'’s function which fas
date been available only for simple single-orbital models of
There are a wide variety of interesting and important'ayeredSUUC'foego-_12 )

physical models which correspond to a class of systems N this paper, we show that for any model with a local
which are quasi-one-dimensional, i.e., translationally invari-(i-€:» block-bangl Hamiltonian—arbitrary latticeN orbitals,
ant in two dimensions, but with the translational symmetry2nd hopping tcRth nearest neighbordereafter referred to
broken in the third dimension. We can think of them as a sef®S @1N band, Rth-order local Hamiltonian modgt-it is
of (possibly nonidenticalatomic planes, stacked parallel to a @Ways possible to obtain closed-form solutions to the sur-
chosen crystallographic orientation. The stack may be finitefac€ Green’s function for a general surface system composed
semi-infinite, or infinite. Such systems are referred to as mul©f N adlayers on an arbitrargfinite or semi-infinit¢ sub-

tilayers. Metallic, semiconductor, and, in particular, mag-Strate.

netic multilayerd are currently the subject of intense re- e begin by defining the general local Hamiltonian
search, both experimental and theoretical. model for an arbitrary multilayer system in a mixgj ,R}

There are a wide variety of theoretical treatments of suctp@sis. We then introduce matrix-valued extensions of the
systems, including empirical tight bindifglinear-muffin- Mo_blus or bilinear transformations, familiar from complex
tin-orbital (LMTO) tight binding® and screened Korringa- vangb_le theory. Cen_tral to these transformatlo_ns are the
Kohn-Rostoker(KKR),% where the Hamiltonian assumes a Mo bius transformation matrices’X and Y, which are
localized (i.e., block-bany form. Within such schemes, the Simple functions of the on-site layer self-energy and hop-
fundamental problem is to calculate the surface Green’®iNg (t) matrices. These transformations are then used to
function, which can then be related to the physical propertie§0lve Dyson’s adlayering equations, for thedlayer surface
of the systen{such as the density of stateall the methods ~ Green’s functiorGY) . We show that the solution is express-
currently used for calculating the surface Green’s function ofble in closed form(even for fractionain), in terms of the
a finite or semi-infinite system are recurshar iterative®’  eigenvalues and eigenvectors of the Bites transformation
and therefore, the surface Green’s function can be obtaine@atrices. These eigenvalues and eigenvectors are related to
only numerically. the eigenstates of the bulk adlayer material. For a given en-

Numerical calculation of the Green'’s function has a num-ergy &, we show that the surface Green’s functions
ber of disadvantages. Firstly, for semi-infinite systems, theﬁfﬂ?(s) are asymptotically quasiperiodic im, with periods
convergence becomes slow when the imaginary part of thdetermined by the bulk adlayer propagating stat@is
complex energy is sma{which is required, for example, in agrees with the intuitive view that, as we grow an overlayer
transport applicationsor near van Hove singulds points.  on top of any substrate, eventually the surface characteristics
Second, a purely numerical calculation gives little or no in-are governed by the overlayefurther, by taking the as-
sight into the behavior of the surface Green’s function, and/mptotic limit n— o, we are able to determine simple closed
ultimately to the behavior of the system. For example, informulas for the left- and right-surface Green'’s functions of a
applications to magnetic multilayers, the explicit dependencsemi-infinite crystal. Finally, we compare the time taken to
of the Green'’s function on the number of atomic planes in acompute these surface elements using the closed forms pre-
stack is required if one is to understand the origin of thesented here, with the fastest iterative technique previously
oscillatory coupling or giant magnetoresistan@MR).®°  available.

All these problems are eliminated, and the computational The core of this paper is contained in Sec. lll, where we
effort is greatly reduced when one can use a closed-forndevelop a mathematical construct—tHé&]-dimensional
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Mobius transformation. These transformations and all the reAs mentioned above, we will deal solely with the left-hand
sults following from their application ar@o the best of our case here, while the right-hand case will be dealt with in the
knowledge entirely new. Although many results have beenAppendix.
known for the relatively trivial case of a single-band For realistic three-dimensional systems, these matrices
(N=1) model*® This paper is somewhat mathematically will depend on the in-plane momentuky, but the form of
dense, so it may help the reader if | point out some of the keyhis dependence is immaterial to this communication, and we
features contained herein. will therefore ignore this parameter. Clearly this form of

(i) A mathematical technique — thié ]-dimensional Me  Hamiltonian is somewhat idealized, since the true self-
bius transformatiofSec. Ill) — is introduced, and applied to energies and hoppings of such a system may vary from plane
the solution of the surface Green’s function adlayering equato plane!* However, from the study of self-consistent
tions (Secs. IV and IX. density-functional calculation$; 2 it is known that such

(i) Easy to evaluate closed forms for the surface Green'sariation is localized to within one or two planes of the
function of finite and semi-infinite systems are obtainedsubstrate/adlayer interface. Therefore this Hamiltonian is a

(Secs. VII and VII).

(i) For thick-finite, or semi-infinite multilayefor super-
layen surfaces, these forms are more accurate and faster
calculate than previous techniqu&ec. X).

(iv) For adlayers of thickness, on top of an arbitrary

very good approximation of the true one, so long as we take
the interface to be insidel; ,***i.e., we consider adlayers
&f more than a few planes thickness. A similar Hamiltonian
is available for a right-hand adlayer grown in thed direc-
tion.

substrate, these closed forms hav@symptotically simple
and physicaln dependence. This simple dependence is the
key to understanding many physical features of multilayer
systemgSec. VII). In this section we present a matrix-valued extension of the
In the first part of this paper, an analysis is performed for‘Ma bius” or “bilinear” transformation. We recall that, in
the special case of nearest-neighbor interaction onlgomplex variable theor§: the most general rigid conformal
(R=1). However, in the second part, we show that it istransformation of the complex plar@ is given by the Me
extendible to arbitraryRth-order interactions, and explain bius transformationz— (az+b)/(cz+d) for {a,b,c,d}

why the results derived in the@=1 case are true generally. ¢ C, andad—bc#0. These transformations form a group
For the sake of clarity, the main text of this paper is devoted— the Mabius group — which can be represented by 2

solely to the case of the left-hand surface Green'’s funCtionmatricesA:(g ) — in which successive transformations

Now, let a, b, ¢, d, andz be NXN matrices over the
complex planeC, and letA be a 2N X 2N-dimensional ma-
trix given by

Then, if we define the “left-hand” and *“right-hand”
N-dimensional Mbius transformatiofLHMT, RHMT) of z

Ill. N-DIMENSIONAL MO BIUS TRANSFORMATIONS

Il. MULTIORBITAL LOCAL-HAMILTONIAN
FORMULATION

Consider a general surface system composed of a stack of
n homogeneous atomic planésdlayers on top of an arbi-
trary finite or semi-infinite substratgrown in the+d direc-
tion). Then for a large class of physical models, including
empirical tight-binding layered LMTO tight binding and
screened KKR(Ref. 4 formulations, the Hamiltonian for

a b
c d

A

. 2

this system can be express@ua mixed{k,R} basig in the by A as
form
Agz=(az+b)(cz+d)"! [N] LHMT, ®))
(H(n))ij On_ -1
Z°A=(a+zc) “(b+zd) [N] RHMT. 4
(HY, i,j<0
i1 Then it is not difficult to show that these transformations are
v, ==L associative with respect to multiplication,
= t,, j=itai=l-a,...n—a;a=1,... R
tz, i=j+a;j=1-a,... N"—a;a=1,... R Ag(Bez)=(AB)gz, 5
0, otherwise
‘ " (Z°A)®B=2°(AB). (6)

WhenN=1, the LHMT and RHMT are equal, and reduce to
the usual Mbius transformation of complex variable theory.
It is clear that thd N] LHMT and[N] RHMT form real-

izations [or nonlinear representations d&L(2N,C) on
M(N,C) — the algebra oN X N matrice§. We are unaware
of any reference to thesd-dimensional extensions in the
mathematical literature.

which we call local, or block-band. Het¢{” is the left-hand
(+d) finite or semi-infinite substrate Hamiltonian, while
andt, are theNXN self-energy and ¢th orde) hopping
matrices for the bulk adlayer.

We will use suffixesL and R (left and righ} to denote
overlayers grown in the-d and —d directions, respectively.
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IV. LEFT-HAND, N-BAND ADLAYERING PROBLEM e iy
FOR R=1 1 x- 0 * -
S X, . S= where S= 1 1 |

0 x
Consider a one-dimensional systemroadlayers on top "
of a finite or semi-infinite substrate, grown in thed direc-

tion. Then the local(block-band Hamiltonian with first- 1 1 t =X

nearest-neighbor hopping®€ 1) looks like S =67 -t x, (13
(H?);, 1,j<0 Here 8,=(x" —x"), and x.. are the solutions to the qua-
u, i=ji=1,...n dratic matrix equation

(HM)j=4 t j=i+1i=0,...n-1 () X2— vt Ix+1=0=x, = §(vt 1= Wt vt 1—4),

t", i=j+1;j=0,...n-1 (14
0, otherwise. Hence we obtaff?

The Green’s function for this systefat energye) is defined gr=t"167 1(8,— 6n—1t90) (Bns1— Onltdo) 161. (15

by G{"=(e—H{) 1. Now, if we deposit an extra adlayer

on the surface of this system, then the Hamiltonian becomeg®" the remainder of the main text, we will deal with the
H(L”+1)=H(L”)+AH where [N] LHMT solution to the left-hand adlayering equations

(11). The results for the other three possible cases will be
presented in the Appendix.

u, i=j=n+1
(AH), = toi=mj=n+l ®) V. CONNECTION BETWEEN THE SPECTRUM
1t i=n+1;j=n OF X_ AND THE BULK BAND STRUCTURE
0, otherwise. In order to understand the analytic and asymptotic prop-

W heref D , . | h erties of our Green’s-function elements, we need to discuss
e can, t er(,a ore, use Dyson's equations to relate the sUg, e featyres of the spectrum and eigenvectors of the Mo
face Green's-function eleméft for this

(n+1) . system bius transformation matrices. It is not difficult to deduce that
(Gl )nt+1n+1 to the surface Green's-function element for (for t nonsingula®)

the system witm adlayers G(,_“))n'n,
de( X, —\1)=(—1)Nde(rt"1)de(v—rt—r"1tT) (16)

and hence(taking A=0) det(X,)=det(t)*/det(t) e C'—

Clearly we can use theN] LHMT to obtain i.e., lies on the unit circle in the complex plane. That is,
X has no zero eigenvalues and is therefore invertible. We

Ohi1=(e—u—tigit) ™ where gi=(G{"),,. (9)

0o t! assume hereafter that it is also diagonalizable.
th:(XL).g,'; where XLE( _¢t th) (10 Hgnce by taking the Hermitian conjugate of E#6), we
obtain
and where we defing=e—u. Hence by associativity we def(v—rt—\ ") =de(vi—\* “L—r*th=0 (17)

deduce that
as a necessary and sufficient condition Xoto be an eigen-
. . value of X, . Hence(for ¢ real), if A\ is an eigenvalue of
On=(X.)"egy Where X, = it w1 @D X, thensois* ~1%Therefore there are N P eigenvalues
\ inside C!, N—P outsideC!, and 2P on C! (for some
where g; is the surface Green’s function element for theinteger P). _
system with no adlayers, i.e4{%). Similarly using the/ N] Now, we can rewrite Eq(17) as

RHMT we obtain the alternative form de(C(\)—£1)=0 where C(\)=u+At+x~1t!

tfl

tT*lV tT*l (18)

gh=0s®(Y)" where YLE< _t 0 ) (120 as being a necessary and sufficient conditionNfdo be an
eigenvalue ofX, .

Thus Egs.(11) and (12) provide the solution to the Dyson ~ Now for x\=e™*?e C*, thenC(\) =E(k) — the “energy
adlayering equations for the left-hand surface Green’s funcmatrix” of the bulk adlayer system. Hence we have shown
tion (9). It is important to note that for non-Hermitianthe  thatif an energy band (of the bulk adlayer system) eust
2N 2N matricesX andY cannot in general be block diago- k' [i.e., detE(k’)—£1)=0], thenx=e*'? is a C! eigen-
nalized (although this is certainly algebraically possible for value of X, — and vice versaWe will see in Sec. VII that
N=1, and probably also foN=2). For Hermitiant how- this is a crucially important result, since it implies that for an
ever, it is always possible to reduce these solutions to algeadlayer system, the behavior of the surface Green'’s function
braic formulas inNX N matrices. For example, foX, , we  (for thick adlayersis entirely determined by the bulk adlayer
have system.
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VI. DIAGONALIZATION OF X |

The 2NX 2N matrix X, can(in general only be diago-

NXN submatrices as follows. Lex; and A, be theNXN
upper-left and lower-right submatrices &f Let o, ando, be
the NX N upper-left and upper-right submatrices@f . Let

nalized numerically. Let us assume that this has been perw; andw, be theN XN upper-right and lower-right subma-
formed, so that its eigenvalue and eigenvector matrices areices of O[l. Then it is easy to show thak, O, and

A andO, (i.e., O[leO,_:A). Then let us define six new

A O
O[lXLOL:A where AEdiagAl,)\z, P !)\ZN):( ! ) y OLE(

0 A,

O, ! have the form

Thus, onceA andO, have been calculated numerically, we and hence by Eq.3) we obtain

can simply read off theN XN submatricesA;, A,, 04, 0,
w1, and wr.

Now these submatrices are not independent, since their

ansatz form (19) must satisfy the demands that where

0,0, '=0;'0,=1 andO; X, 0, =A. This leads to four

independent constraints that the numerical form of the sub-

matrices satisfy identically:

0,w1+0,w,=0, (20

01 A w1+ 0 Apw,=1"1, (21)
01A] to1+ 0,A, tw,=—17 1, (22)
01 A2+ 0, A0y =t" vt L, (23

We will see in Appendix A, Sec. 3 that oneg has been
diagonalized, and thé&d X N submatrices read off, then it

Ol 02 1 _AIl(DltT wq
to1A; 10A5)" Tt | = A lwotT w,
(19
|
gl
AL=0,ATf§+0,A] and f;=0, g (25

This solution explicitly demonstrates the (i.e., adlayer
thicknes$ dependence of the surface Green'’s function. This
expression can be used to deduce closed forms for the other
Green’s-function elements, for both surface systems and in-
finite multilayers.

We note that sincé\; and A, are diagonal, therA}] and
AJ and hencay; andg® are defined for noninteger. These
solutions have been used recently to determine continuous
underlying curves for the magnetic-coupling and magnetore-
sistance of magnetic multilaye?s.

Furthermore, the matrit- defined above, which is the
bilinearly transformed surface Green’s function, has a par-
ticularly simple dependence upon

becomes immediately possible to diagonalize the remaining fr=ANGA;". (26)

Mobius transformation matrice$z, Y, , andYg in terms of
these submatrices.

VII. SURFACE GREEN'S-FUNCTION SOLUTION
AND ASYMPTOTIC PERIODICITY

The solution to th¢ N] adlayering problem for the surface

Green’s functiongy; andgR is now given by Eqs(11) and
(19),

gh=(0,A"O. " eJ5

=0, o(ANf5A, "), wherefs=0, 1qdt,
L® 1' 0422 0 L @®Y0 (24)

lim (fY),s= _
,Hx( n)rs 0, otherwise

Let us examine the asymptotice., thick adlayer behavior
of the surface Green’s function. Let the eigenvalue®f
X be ordered such that

INg|<[Ng|<---<[\al, 27
then, considering the restrictions on their

positions in the complex plane as discussed in
Sec. V, let wus say that {\i;,Ao, ... An_p}

lie inside C', {AnyipiiANipi2s---Aan)  lie
outside C! and {AN_pi1, AN_pi2s .- ANip)
={e'dkn-pr1 gldkn-p+2  eldknipl lie on CL. Now let

us consider the bilinearly transformed surface Green'’s func-
tionsft. Itis clear[from Eq.(26)] that, asn increases, many
of the elements of this matrix die away, and that in the limit

n— oo,

ednki(fh) e 19"N+s  for r=N—P+1,... N, s=1,...pP

(28)
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so that(in the asymptotic limik the elements of the matrix IX. EXTENSION TO RTH-ORDER NEIGHBOR
f. are functions of P plane waves {€%";a=N INTERACTIONS
—P+1,... N+P} with periods{p,=2m/dk,}.2°

Now, we can define an extended matrix function & 2

parametergn, ;r=1, ..., N} by So far we have considered adlayering in the local Hamil-

tonian model with only first-nearest-neighbor interactions.
Higher-order interactions can of course always be reduced to
first-nearest-neighbor form by the method of principal
(?rL]l__ nZN)rSE( nhrﬁs) (f6)rs- (29 Iay_ering.zg_'30 In particular, if we haveRth-order nearest
Auts neighbor interactions, then the adlayered Hamiltoniannfor
adlayers(1), can always be reduced to fortv), by defining
u andt to be theNRX NR matricesU andT:

Ny

Then, in the asymptotic limifn,}— oo, this whole matrix is
periodic inn, with periodp, (« as defined aboyeHence if
we define the extended surface Green’'s function by

Gn, ...y =OLefn . .n, - Then (in the asymptotic limit Li E

{n,}—) this matrix must also be periodic im,, with pe- t u tr-2

riod p,. Now clearly, if we setn;=-.-=n,y=n, then u—Us= : i '

O- ,=g-, and hence we obtain the following important &gt u

result: For large n, g is a matrix whose elements are qua- R Re2

siperiodic functions of2P plane waves, with periods

2m/dk,. By Sec. V, we see that these periods are dictated by

the k—2p702ig1t values at which the bulk adlayer energy bands t 0 ... O

cute.””
This is what is expected physically, and is the multiband tr-1 Tr 0

generalization of a conjecture by Mathenal.?’ made for t=T= : P I (31)

the very special case ¢f=1. As the thickness of the over- b te

layer increases, the surface states are increasingly repre-

sented by the bulk adlayer system. The decaying steegs

resented by the eigenvaluesXfot lying onC?) die away, . . .

leaving only the propagating state§Y( eigenvalues okK). The [NR]-M.T’s will then provide solutions to the surface
This result is crucially important if one wishes to develop Green’s  functions G, which are correct for

analytic expressions for the asymptotic behavior of multilay-n=0R,2R, ... — i.e., an integral number of principal lay-

ered systems. Using EQR9), one can perform multidimen- e€rs,

sional Fourier decompositions of arbitrary scalar functions of

the surface Green’s function, such as the spectral density and

conductivity. Such a procedure has recently been developed Gka=XeGhy for n=12,.... (32)

in order to obtain analytic expressions for the magnetic cou-

pling of realistic(multiband magnetic multilayer systenfs.

Furthermore, this asymptotic behavior is the key to under-

standing many physical features of realistic multilayered sysThe question arises, however, as to whether we can extend

tems. this solution to fractional numbers of principal layers, and in
particular to single layers; i.e., doeB{})=(X'R)gG{Y?
VIIl. SEMI-INFINITE SURFACE GREEN'S FUNCTIONS However, for X nondegenerate there aR*"® roots of

XR leading toR?NR~1 different solutions toG{}. Worse
s S . ) still, for X degeneratésuch as might occur at the Brillouin-
Green's function is an oscillatory function ofP2plane ..o boundary of a three-dimensional systéhere are an

waves, and is therefore not defined in the-« limit. HOW- infinite number of solutions. Only one of these solutions
ever, if we add a small imaginary part to the eNnergymight represent a single adlayer.

(e—e+id), then the degeneracies of the eigenvaliesf In this section we show that it is always possible to obtain

X are lifted so th.aﬂM|<|n>\z|fn' - <INanl. Then for any o qurface Green's functio®(Y for a single adlayer within
NXN matrix x: limy,_..AjxA; "=0. Hence defining the 5 pep-order local Hamiltonian model, by means of a suit-
semi-infinite surface Green's function oy =1Iim,_...0,, W apje Mibius transformation, and we construct the corre-
obtain the following simple c!osed forms for the semi- snonding Mius transformation matrix. Let us consider ad-
infinite left-hand surface Green’s function: layering a single adlayer on top of (eft-hand substrate
with Rth-order interactions. Let the adlayer self-energy be
u and the adlayer-substrate hoppings{bg;a=1, ... R}.
Now, because of the finite range of the interaction, the
Nx N surface Green’s functioG{;'}%), ; can be obtained by
We note thaty,. does not depend o — i.e., all memory of  solving a reduced Dyson’s matrix-equation, which involves
the substrate is lost in the infinite limit. only the NRX NR bottom right-hand submatrix a&(",

In Sec. VIl we saw thaffor & real) for n large, the surface

g-=0, ¢0=0,A, 0, 1t71, (30)
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D= (21— JMAH) 1™, (33

whereJ™, J+1) and AH are N(R+1)x N(R+1) matri-
ces, given by

’j(n+1):

Here g™ and g{""?) are theNRXNR bottom right-hand

9" 0
Jn= ,
1
( 0 ) -1
&
tr
0 :
AH= b | (34
th...tl u
G§1n++ll—)R,n+l—R e 'Gm:rll—)R,n-#l
: (n+1)
- 9
Gi the1-r L
(39

submatrices of the total Green’s functioB8§” andG("™1),

(n) G
n+1-Rn+1-R e n+1-R,n

(36)

Gih+1-R Gih

Now it is clear from the reduced Dyson equati(88) that

(n+1)
Gn+1,n-¢—1

is a function of all the elements of" . What we

require, therefore, is an iterative equation n) for g(L“”)

(and henceG{\"}}),,) in terms of g™ . However, the re-

duced Dyson equation does not fit the bill, sint® and
J*1 do not have the same form. Such an equation doe¥. COMPUTATIONAL ADVANTAGES AND APPLICATION

exist, however, in terms of tHeNR]-M.T. In particular, the
following can be shownEor the N-band local Hamiltonian

model with Rth-order neighbor interaction, the MRIR

bottom right-hand submatrix of the total Green’s function

5271
0 1 0 0
a= y b: )
0 ( 0) tg* (0 )
0 0
c= , (38
—th (~thg...—t])
~tr_1tr’
e _tRjztﬁl 1 ’

(e—wtg" (0 )

The verification of this fundamental result is rather lengthy,
but follows straightforwardly by substitution of E7) into
the reduced Dyson equatid83).

For R=1, we have a=0, b=t"! c=-t", and
d=(e—u)t 1, so that we clearly recover the matrig1).
Since, by constructiorg, is proportional to arRth root of
the first order, principal layer, interaction matr¥ [with
u andt matrices given by Eq.31)], then all the results about
X derived so far readily generalize t8: its eigenvalues
{,ui:)\im} are the appropriat®th roots of those belonging
to X, with N—P lying inside C!, N—P outside C!, and
2P on C!; it is not difficult to show that these eigenvalues
satisfy the equatioficf. Eq. (18)]

def{C(u)—el)=0
where

Clp)=u+uty+u i+ +uftetp Rtk (39

therefore theC! eigenvalues{u=e*¥R} (Ref. 31 corre-
spond to the P k points at whiche crosses the bulk adlayer
energy bands, as defined in tipeincipal Brillouin zone
—mwR/d=k==wR/d (with d/R being the interatomic-plane
distance; the diagonalization matrice®, andO; * and the
diagonalized form$19)—(23) are correct, the only alteration
being in the matrix A (i.e., its correct Rth root
M=diag(uy, . . . ,unr) Must be taken® the asymptotic
periodicity properties of the surface Green'’s functions as dis-
cussed in Sec. VII still hold true; the forms for the semi-
infinite surface Green’s function80) remain correct.

TO SUPERLATTICES

To date, the most efficient computational method for cal-
culating the semi-infinite surface Green’s-function elements
has been the decimation techniqu&his is an iterative

(gin))v for the n (left-hand) adlayer system is given by thegcheme, where, at thigh iteration, one has calculated the
Mobius transformation

a b
where E, = ¢ d

: (37)

—_ 0
g(Ln):(ﬂL)nog(L )

and wherea, b, c, andd are NRXNR matrices given by

surface Green’s function for a finite slab of width [ayers.

The computational effort is therefore proportional to the total
number of iterations required, and hence is a function of both
the accuracy imposed and the convergence rate. The conver-
gence rate itself depends in the imaginary part of the energy
parameteflm[ ]), and the proximity of any singular values

of the Green’s functiofi.In contrast, the present method,
based on Eq30), is independent of all these parameters, and
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120.0 T T T ;

100.0 |~ ' .

80.0
FIG. 1. CPU timegarbitrary unit$ to calculate
w the semi-infinite surface Green’s function, vs
= 60.0 - log;dIm(e)], for fcc Cu100 and RHK100).
'5 The decimation method is depicted for three
o convergence criterig::««---- ;€=103% ———,
O 40 £=105 and ————,£=10"%, while the ana-

lytic Mobius technique is seen to be constant:

20.0 F =

-8.0 7.0 .0 5.0 4.0 -3.0
log,,[Im(g)]

in addition provides machine value accuracy. It is thereforeGreen’s function in this case will beTpec(SN)
somewhat unfair simply to compare the CPU times for the~ SgTDEC(N) [where Tpec(N) is the time to calculate the
two procedures. However, in Fig. 1, we depict the times tosemi-infinite surface Green'’s function forxX N self-energy
compute the surface spectral dengitg., summed ovek) and hopping matricds

for various accuraciesé&j and Inje], for the case of fcc On the other hand, we can write the semi-infinite super-
Co(100 and RY100 with s, p, andd tight-binding param- lattice surface Green’s function as

eters taken from Ref. 33. . n _

We observe that the CPU time for the decimation tech- gm:iﬂ(le---S)Ogo where X3, s=XXs-1... Xy,
nique (t49 depends logarithmically on the [m] (41)
(tpec~ —In(Im[ &])) but only weakly on the accuracy Our ) .
analytic method is constant, and faster fof <10 2 Ry. ~ WhereXiz  sis anNXN matrix. _

Now, although the present technique is already signifi- NOW, we assume th&X,, s is diagonalizable,
cantly faster than decimation for pure materials, its real com- _ -1
putational power is in its application to superlattices. Con- Xi2.. 57012 shiz. Oz s 42
sider, for example, the case of a superlattice, composed dihen for Infe] #0, its eigenvalue\;} can be ordered such
S different principal layers;, A,, ... As, so that schemati- that [\ q|<[\p|<---<|\\|. Hence we may use the argu-
cally the semi-infinite left-hand system looks like ments of Sec. VIl to deduce that
o (AAS LAY (ALAS L LAY (AA, L Ag). Then the -0 0 43)
Hamiltonian for this system can be written like E), 9-="12...c07
where the self-energy and hopping matrices are given by th8ince the time taken to diagonalize a matrix6 X the time
NSx NS matrices taken to multiply two such matrices, then the time to calcu-

late the semi-infinite surface Green'’s function in this case is

UA]_ tAlA2 TMOB(Sl\I)N(G"'S)TMOB(N) [Where TMOB(N) |S the t'me )

+ taken to calpulate the semi-infinite surface Green'’s function
taa, U, 0 using the Mdius transformation technique, fotxX N self-
energy and hopping matricedn other words, the time to
calculate the semi-infinite surface Green'’s functionSday-
Ung ,  tag ,Ag ers per superlayer scales $5using the decimation method,

T but only (weakly) as S using the closed form.

Xl. CONCLUSION

. 0 We have shown that there are two realizations of
t= 0 _ (40) GL(2N,C) onM(N,C), which are matrix-valued extensions
of the Mdbius transformation familiar from complex variable
taga, 0---0 theory. We have used these transformations to solve the gen-
eral Green’'s-function adlayering probletarbitrary growth
Now, since the decimation technique scalesNds(where  direction, lattice, and number of bandsithin a local Hamil-
N is the order of theu andt matrices, then for fixed¢, tonian model. We have shown th@d@ior a given value of the
Im[e], andk, the time to calculate the semi-infinite surface energy parametes) the surface Green’s functions are as-
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ymptotically quasiperiodic, with the number of periods and 1. Right-hand, N-band adlayering problem for R=1

their values dictated by thepoints at which the bulk adlayer  gor the case of the right-hand system, the surface
energy bands cut. We have given closed form solutions for Green's-function adlayering equations &cé Eq. (9)]

the finite and semi-infinite surface Green’s functions in terms R Rt 1 & .

of the eigenvalues and eigenvectors of thébids transfor- ohi1=(e—u—tgfth ™! where gi=(GE")nn. (A1)

mation matrices. Finally we have shown that the time to _ , ,
calculate the semi-infinite surface Green’s functions using Nese equations relate the surface Green’s function for a

the closed form igfor Im[s]< 102 Ry) faster than the pre- right-hand system witin+ 1 adlayers, to the surface Green’s

viously known decimation technique, and scales linearlyfunction for a system witm adlayers.

with the complexity of the multilayer. We have developed = 'N€y can be solvedas in Sec. 1V in terms of the[N]
similar techniques to obtain closed-form solutions to all-HMT and RHMT. Analogous expressions to E¢s1) and

. R . .
Green’s function elements, for general local Hamiltonian(12) are obtained fogy in terms of NX2N Mobius trans-
multilayers(for both bulk and surface systemhis will be ~ formation matricesXg and Yg — which are obtained from
the subject of a forthcoming publication. X, andY by interchanging«t'.
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It is easy to show that if\;} are the eigenvalues of
X, , then they are also the eigenvaluesYgf, while nh
are the eigenvalues &fg andY, . It follows that the results

of Sec. V are immediately applicable to the eigenvalues of
APPENDIX: FURTHER RESULTS Xo. Y, . andY
R» L R-

The results of the main text are for the left-hand surface
Green’s function, whose adlayering equatiofikl) are
solved by use of theN] LHMT, i.e., by use of the Mbius Once the matrixX; has been diagonalized numerically,
transformation matrixX, . In this appendix, we briefly de- and one has read off tiéxX N submatrices\, A,, 0y, 0,,
scribe the corresponding results for the remaining threev;, andw,, as described in Sec. VI. Then it is immediately
cases: the left-hand surface Green'’s function solved by usgossible to diagonalize the remaining Mos transformation
of the[[ N] RHMT; and the right-hand surface Green’s func- matrices Xg, Y., and Y in terms of these and the
tion solved by use of theN] LHMT and RHMT. 2N X 2N transposition matriPE((f (1, via

3. Diagonalization of Xz, Y., and Yg

O=1XnOn=PA~'P where On=| . o _1[Aewdt T (A2)

R RER™ where R™ tTOZAEl tTolAfl ' B A]_C!)]_t — w7 ’

1 +
_01 _02 Al wlt wq
-1 A1 _ —1_

Y =A where Q = , =|  _ , A3
QY o (tolAl tozAz) - (A2 Lot w2> (A3)
1y, 0n=PAP whereQu=| . 2 o _1 [ Azt @2 (Ad)

QrYRQR= w Qr= —tfo,A;t —tTopAL)” Qr'= Aot )

Equations(A2)—(A4) can be verified using constraint80)—(23).

4. Surface Green's-function solution and asymptotic periodicity

Using Eqgs.(11), (12), and(A2)—(A4), we can deduce similar closed-forms to E2H) for the surface Green’s functions
gr=t""1QL,  T1OL where Qt=A; "w;+h5A, "0, and hi=g-®Q,, (A5)
R=ARAR "1 where AR=0,A,"f}+0,A;" and fR=0g'edR, (AB)

R=t"1QF, 1O} where Qf=A%w,+hiAlw; and h}=gR®Qg, (A7)
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where the bilinearly transformed surface Green’s-function G G
. . . n,n Tt n,n+1-R
matricesf andh have a particularly simple dependence upon

n: OR'=

G(n) B . (n) B B
hthThl(_)A;n szAgnngE hﬁzAgnhSAg n+1-R,n n+1-R,n+1—-R

(A8) (A10)
Because we can solve the surface adlayering equations usi
either the LHMT or the RHMT, then we obtain two forms s ) :
for both gh [Egs. (25) and (A5)] and QE [Egs. (A6) and strate Green'’s function via p2NR] LHMT [cf. Egs.(37)
(A7)]. The equivalence of these two forms can be demonf’lnd (38)],
strated using the constraintd0)—(23). The argument which
was used in Sec. VIl to obtain the asymptotie., thick a b
adlayey properties off- can now be directly applied to g'=(ER)"ed? whereEg=|. ¢
hy, fR, andhf:gR is a matrix whose elements are quasip-
eriodic functions of 2 plane waves, with periods
2mldk,. Thek, are thek-point values at which the bulk and wherea, b, ¢, andd are NRXNR matrices given by
adlayer energy bands cat

q’%en this submatrix can be deduced from the right-hand sub-

. (Al

(0) o0 (0 tht
5. Semi-infinite surface Green’s functions
The analysis of Sec. VIII can be applied to the remaining@= 1 0 ., b= 0 0 '
three cases, giving an alternative closed form for the semi-
infinite left-hand surface Green's functiog:, and two
forms for the semi-infinite right-hand surface Green’s func-
thﬂ gon (_tl"'_tRfl) _tR
g-=0%Q, '=t""tw; A0, c= 0 ol | (A12)
ofi=Ore0=01A;0; 1'%, (A9)
R=0%Qr =t 1w, 'A; tw,. (0) (e—utht
Once again, the equivalence of the two forms @br and —tIt;Q_l
gﬁ can be deduced from the constraif@€)—(23). d= 1 :
R-1'R

6. Extension toRth-order neighbor interactions

Consider a right-hand adlayer — grown in thed direc-  Similar forms to Eqs(38) and(A12) can also be derived for
tion. Let g(R”) be theNRX NR top left-hand submatrix of the generalizations to the right-hand Mias transformation ma-
total Green’s functiorG(™ for this system, tricesY, andYg.
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