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Closed-form solutions to surface Green’s functions

A. Umerski
Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom

~Received 31 May 1996!

We obtain closed-form analytic solutions for surface Green’s functions within arbitrary multiorbital models.
The formulation is completely general, and is equally valid for empirical tight binding, linear-muffin-tin-orbital
tight binding, screened Korringa-Kohn-Rostoker and other Green’s-function equivalent formalisms, where the
Hamiltonian can be put into a localized~i.e., block-band! form. The solutions are applicable to finite or
semi-infinite surface systems, with quite general substrate and overlayers, or even to superlattices. This is
achieved by solving Dyson’s equations by means of a matrix-valued extension of the Mo¨bius transformation.
The analytical properties of the solutions are discussed, and by considering their asymptotic limit, a simple
closed form for the exact~semi-infinite! surface Green’s function is obtained. The numerical calculation of the
surface Green’s function~or of observable quantities such as the density of states! using this closed form is
compared with previously known iterative procedures. We find that it is far faster, far more stable, and more
accurate than the best iterative method.@S0163-1829~97!03804-6#
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I. INTRODUCTION

There are a wide variety of interesting and importa
physical models which correspond to a class of syste
which are quasi-one-dimensional, i.e., translationally inva
ant in two dimensions, but with the translational symme
broken in the third dimension. We can think of them as a
of ~possibly nonidentical! atomic planes, stacked parallel to
chosen crystallographic orientation. The stack may be fin
semi-infinite, or infinite. Such systems are referred to as m
tilayers. Metallic, semiconductor, and, in particular, ma
netic multilayers1 are currently the subject of intense r
search, both experimental and theoretical.

There are a wide variety of theoretical treatments of s
systems, including empirical tight binding,2 linear-muffin-
tin-orbital ~LMTO! tight binding,3 and screened Korringa
Kohn-Rostoker~KKR!,4 where the Hamiltonian assumes
localized ~i.e., block-band! form. Within such schemes, th
fundamental problem is to calculate the surface Gree
function, which can then be related to the physical proper
of the system~such as the density of states!. All the methods
currently used for calculating the surface Green’s function
a finite or semi-infinite system are recursive5 or iterative,6,7

and therefore, the surface Green’s function can be obta
only numerically.

Numerical calculation of the Green’s function has a nu
ber of disadvantages. Firstly, for semi-infinite systems,
convergence becomes slow when the imaginary part of
complex energy is small~which is required, for example, in
transport applications!, or near van Hove singulark points.
Second, a purely numerical calculation gives little or no
sight into the behavior of the surface Green’s function, a
ultimately to the behavior of the system. For example,
applications to magnetic multilayers, the explicit depende
of the Green’s function on the number of atomic planes i
stack is required if one is to understand the origin of
oscillatory coupling or giant magnetoresistance~GMR!.8,9

All these problems are eliminated, and the computatio
effort is greatly reduced when one can use a closed-f
550163-1829/97/55~8!/5266~10!/$10.00
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expression for the surface Green’s function which has~to
date! been available only for simple single-orbital models
layered structures.10–12

In this paper, we show that for any model with a loc
~i.e., block-band! Hamiltonian–arbitrary lattice,N orbitals,
and hopping toRth nearest neighbors~hereafter referred to
as anN band,Rth-order local Hamiltonian model!—it is
always possible to obtain closed-form solutions to the s
face Green’s function for a general surface system compo
of n adlayers on an arbitrary~finite or semi-infinite! sub-
strate.

We begin by defining the general local Hamiltonia
model for an arbitrary multilayer system in a mixed$ki ,R%
basis. We then introduce matrix-valued extensions of
Möbius or bilinear transformations, familiar from comple
variable theory. Central to these transformations are
‘‘Mö bius transformation matrices’’X and Y, which are
simple functions of the on-site layer self-energy (u) and hop-
ping (t) matrices. These transformations are then used
solve Dyson’s adlayering equations, for then adlayer surface
Green’s functionGnn

(n) . We show that the solution is expres
ible in closed form~even for fractionaln), in terms of the
eigenvalues and eigenvectors of the Mo¨bius transformation
matrices. These eigenvalues and eigenvectors are relat
the eigenstates of the bulk adlayer material. For a given
ergy «, we show that the surface Green’s functio
Gnn
(n)(«) are asymptotically quasiperiodic inn, with periods

determined by the bulk adlayer propagating states.~This
agrees with the intuitive view that, as we grow an overlay
on top of any substrate, eventually the surface characteris
are governed by the overlayer.! Further, by taking the as
ymptotic limit n→`, we are able to determine simple close
formulas for the left- and right-surface Green’s functions o
semi-infinite crystal. Finally, we compare the time taken
compute these surface elements using the closed forms
sented here, with the fastest iterative technique previou
available.

The core of this paper is contained in Sec. III, where
develop a mathematical construct—the@N#-dimensional
5266 © 1997 The American Physical Society
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55 5267CLOSED-FORM SOLUTIONS TO SURFACE GREEN’S FUNCTIONS
Möbius transformation. These transformations and all the
sults following from their application are~to the best of our
knowledge! entirely new. Although many results have be
known for the relatively trivial case of a single-ban
(N51) model.13 This paper is somewhat mathematica
dense, so it may help the reader if I point out some of the
features contained herein.

~i! A mathematical technique — the@N#-dimensional Mo¨-
bius transformation~Sec. III! — is introduced, and applied to
the solution of the surface Green’s function adlayering eq
tions ~Secs. IV and IX!.

~ii ! Easy to evaluate closed forms for the surface Gree
function of finite and semi-infinite systems are obtain
~Secs. VII and VIII!.

~iii ! For thick-finite, or semi-infinite multilayer~or super-
layer! surfaces, these forms are more accurate and fast
calculate than previous techniques~Sec. X!.

~iv! For adlayers of thicknessn, on top of an arbitrary
substrate, these closed forms have a~asymptotically! simple
and physicaln dependence. This simple dependence is
key to understanding many physical features of multila
systems~Sec. VII!.

In the first part of this paper, an analysis is performed
the special case of nearest-neighbor interaction o
(R51). However, in the second part, we show that it
extendible to arbitraryRth-order interactions, and explai
why the results derived in theR51 case are true generally
For the sake of clarity, the main text of this paper is devo
solely to the case of the left-hand surface Green’s funct
while the right-hand case is dealt with in the Appendixes

II. MULTIORBITAL LOCAL-HAMILTONIAN
FORMULATION

Consider a general surface system composed of a sta
n homogeneous atomic planes~adlayers! on top of an arbi-
trary finite or semi-infinite substrate~grown in the1d direc-
tion!. Then for a large class of physical models, includi
empirical tight-binding2 layered LMTO tight binding3 and
screened KKR~Ref. 4! formulations, the Hamiltonian for
this system can be expressed~in a mixed$ki ,R% basis! in the
form

~H~n!! i j

55
H i j
0 , i , j<0

u, i5 j ; i51, . . . ,n

ta , j5 i1a; i512a, . . . ,n2a;a51, . . . ,R

ta
† , i5 j1a; j512a, . . . ,n2a;a51, . . . ,R

0, otherwise

~1!

which we call local, or block-band. HereHL
(0) is the left-hand

(1d) finite or semi-infinite substrate Hamiltonian, whileu
and ta are theN3N self-energy and (ath order! hopping
matrices for the bulk adlayer.

We will use suffixesL andR ~left and right! to denote
overlayers grown in the1d and2d directions, respectively
e-

y
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As mentioned above, we will deal solely with the left-han
case here, while the right-hand case will be dealt with in
Appendix.

For realistic three-dimensional systems, these matr
will depend on the in-plane momentumki , but the form of
this dependence is immaterial to this communication, and
will therefore ignore this parameter. Clearly this form
Hamiltonian is somewhat idealized, since the true se
energies and hoppings of such a system may vary from p
to plane.14 However, from the study of self-consisten
density-functional calculations,14–18 it is known that such
variation is localized to within one or two planes of th
substrate/adlayer interface. Therefore this Hamiltonian i
very good approximation of the true one, so long as we t
the interface to be insideH i j

0 ,19,20 i.e., we consider adlayer
of more than a few planes thickness. A similar Hamiltoni
is available for a right-hand adlayer grown in the2d direc-
tion.

III. N-DIMENSIONAL MO¨ BIUS TRANSFORMATIONS

In this section we present a matrix-valued extension of
‘‘Mö bius’’ or ‘‘bilinear’’ transformation. We recall that, in
complex variable theory,21 the most general rigid conforma
transformation of the complex planeC is given by the Mo¨-
bius transformationz→(az1b)/(cz1d) for $a,b,c,d%
PC, and ad2bcÞ0. These transformations form a grou
— the Möbius group — which can be represented by 232
matricesA5(b

a
d
b) — in which successive transformation

are represented by matrix multiplication.
Now, let a, b, c, d, and z be N3N matrices over the

complex planeC, and letA be a 2N32N-dimensional ma-
trix given by

A5S a b

c dD . ~2!

Then, if we define the ‘‘left-hand’’ and ‘‘right-hand’’
N-dimensional Mo¨bius transformation~LHMT, RHMT! of z
by A as

Adz[~az1b!~cz1d!21 @N# LHMT, ~3!

zdA[~a1zc!21~b1zd! @N# RHMT. ~4!

Then it is not difficult to show that these transformations a
associative with respect to multiplication,

Ad~Bdz!5~AB!dz, ~5!

~zdA!dB5zd~AB!. ~6!

WhenN51, the LHMT and RHMT are equal, and reduce
the usual Mo¨bius transformation of complex variable theor

It is clear that the@N# LHMT and @N# RHMT form real-
izations @or nonlinear representations ofGL(2N,C) on
M (N,C) — the algebra ofN3N matrices#. We are unaware
of any reference to theseN-dimensional extensions in th
mathematical literature.
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5268 55A. UMERSKI
IV. LEFT-HAND, N-BAND ADLAYERING PROBLEM
FOR R51

Consider a one-dimensional system ofn adlayers on top
of a finite or semi-infinite substrate, grown in the1d direc-
tion. Then the local~block-band! Hamiltonian with first-
nearest-neighbor hoppings (R51) looks like

~HL
~n!! i j55

~HL
~0!! i j , i , j<0

u, i5 j ; i51, . . . ,n

t, j5 i11;i50, . . . ,n21

t†, i5 j11; j50, . . . ,n21

0, otherwise.

~7!

The Green’s function for this system~at energy«) is defined
by GL

(n)[(«2HL
(n))21. Now, if we deposit an extra adlaye

on the surface of this system, then the Hamiltonian beco
HL
(n11)5HL

(n)1DH, where

~DH! i j55
u, i5 j5n11

t, i5n; j5n11

t†, i5n11; j5n

0, otherwise.

~8!

We can, therefore, use Dyson’s equations to relate the
face Green’s-function element22 for this system
(GL

(n11))n11,n11 to the surface Green’s-function element f
the system withn adlayers (GL

(n))n,n ,

gn11
L 5~«2u2t†gn

Lt!21 where gn
L[~GL

~n!!n,n . ~9!

Clearly we can use the@N# LHMT to obtain

gn11
L 5~XL!dgn

L where XL[S 0 t21

2t† vt21D ~10!

and where we definev[«2u. Hence by associativity we
deduce that

gn
L5~XL!ndg0

L where XL[S 0 t21

2t† vt21D , ~11!

where g0
L is the surface Green’s function element for t

system with no adlayers, i.e.,HL
(0) . Similarly using the@N#

RHMT we obtain the alternative form

gn
L5g0

Ld~YL!n where YL[S t†21v t†21

2t 0 D . ~12!

Thus Eqs.~11! and ~12! provide the solution to the Dyso
adlayering equations for the left-hand surface Green’s fu
tion ~9!. It is important to note that for non-Hermitiant, the
2N32N matricesX andY cannot in general be block diago
nalized~although this is certainly algebraically possible f
N51, and probably also forN52). For Hermitiant how-
ever, it is always possible to reduce these solutions to a
braic formulas inN3N matrices. For example, forXL , we
have
es

r-

c-

e-

S21XLS5S x2 0

0 x1
D where S5S t21x1 t21x2

1 1 D ,
S215d1

21S t 2x2

2t x1 D . ~13!

Here dn[(x1
n 2x2

n ), and x6 are the solutions to the qua
dratic matrix equation

x22vt21x1150⇒x65 1
2~vt

216Avt21vt2124!.
~14!

Hence we obtain23

gn
L5t21d1

21~dn2dn21tg0!~dn112dntg0!
21d1. ~15!

For the remainder of the main text, we will deal with th
@N# LHMT solution to the left-hand adlayering equation
~11!. The results for the other three possible cases will
presented in the Appendix.

V. CONNECTION BETWEEN THE SPECTRUM
OF XL AND THE BULK BAND STRUCTURE

In order to understand the analytic and asymptotic pr
erties of our Green’s-function elements, we need to disc
some features of the spectrum and eigenvectors of the¨-
bius transformation matrices. It is not difficult to deduce th
~for t nonsingular24!

det~XL2l1!5~21!Ndet~lt21!det~v2lt2l21t†! ~16!

and hence~taking l50) det(XL)5det(t)* /det(t)PC1—
i.e., lies on the unit circle in the complex plane. That
XL has no zero eigenvalues and is therefore invertible.
assume hereafter that it is also diagonalizable.

Hence by taking the Hermitian conjugate of Eq.~16!, we
obtain

det~v2lt2l21t†!5det~v†2l*21t2l* t†!50 ~17!

as a necessary and sufficient condition forl to be an eigen-
value of XL . Hence~for « real!, if l is an eigenvalue of
XL , then so isl*

21.25Therefore there are N2P eigenvalues
l inside C1, N2P outsideC1, and 2P on C1 (for some
integer P).

Now, we can rewrite Eq.~17! as

det~C~l!2«1!50 whereC~l![u1lt1l21t†

~18!

as being a necessary and sufficient condition forl to be an
eigenvalue ofXL .

Now for l[eikdPC1, thenC(l)5E(k) — the ‘‘energy
matrix’’ of the bulk adlayer system. Hence we have sho
that if an energy band (of the bulk adlayer system) cuts« at

k8 @i.e., det(E(k8)2«1)50#, then l5eik8d is a C1 eigen-
value ofXL — and vice versa.We will see in Sec. VII that
this is a crucially important result, since it implies that for a
adlayer system, the behavior of the surface Green’s func
~for thick adlayers! is entirely determined by the bulk adlaye
system.
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VI. DIAGONALIZATION OF X L

The 2N32N matrix XL can ~in general! only be diago-
nalized numerically. Let us assume that this has been
formed, so that its eigenvalue and eigenvector matrices
L andOL ~i.e.,OL

21XLOL5L). Then let us define six new
e

h
at

u

it
in

e

r-
re

N3N submatrices as follows. LetL1 andL2 be theN3N
upper-left and lower-right submatrices ofL. Let o1 ando2 be
theN3N upper-left and upper-right submatrices ofOL . Let
v1 andv2 be theN3N upper-right and lower-right subma
trices of OL

21 . Then it is easy to show thatL, OL , and
OL

21 have the form
OL
21XLOL5L where L[diag~l1 ,l2 , . . . ,l2N!5S L1 0

0 L2
D , OL[S o1 o2

to1L1 to2L2
D , OL

21[S 2L1
21v1t

† v1

2L2
21v2t

† v2
D .

~19!
his
ther
in-

ous
re-

ar-

ir
in

nc-

it
Thus, onceL andOL have been calculated numerically, w
can simply read off theN3N submatricesL1, L2, o1, o2,
v1, andv2.

Now these submatrices are not independent, since t
ansatz form ~19! must satisfy the demands th
OLOL

215OL
21OL51 andOL

21XLOL5L. This leads to four
independent constraints that the numerical form of the s
matrices satisfy identically:

o1v11o2v250, ~20!

o1L1v11o2L2v25t21, ~21!

o1L1
21v11o2L2

21v252t†21, ~22!

o1L1
2v11o2L2

2v25t21vt21. ~23!

We will see in Appendix A, Sec. 3 that onceXL has been
diagonalized, and theN3N submatrices read off, then
becomes immediately possible to diagonalize the remain
Möbius transformation matricesXR , YL , andYR in terms of
these submatrices.

VII. SURFACE GREEN’S-FUNCTION SOLUTION
AND ASYMPTOTIC PERIODICITY

The solution to the@N# adlayering problem for the surfac
Green’s functionsgn

L andgn
R is now given by Eqs.~11! and

~19!,

gn
L5~OLLnOL

21!dg0
L

5OLd~L1
nf 0

LL2
2n!, where f 0

L[OL
21

dg0
L,

~24!
eir

b-

g

and hence by Eq.~3! we obtain

gn
L5Dn

LDn11
L 21t21

where

Dn
L[o1L1

nf 0
L1o2L2

n and f n
L[OL

21
dgn

L. ~25!

This solution explicitly demonstrates then ~i.e., adlayer
thickness! dependence of the surface Green’s function. T
expression can be used to deduce closed forms for the o
Green’s-function elements, for both surface systems and
finite multilayers.

We note that sinceL1 andL2 are diagonal, thenL1
n and

L2
n and hencegn

L andgn
R are defined for nonintegern. These

solutions have been used recently to determine continu
underlying curves for the magnetic-coupling and magneto
sistance of magnetic multilayers.8,9.

Furthermore, the matrixf L defined above, which is the
bilinearly transformed surface Green’s function, has a p
ticularly simple dependence uponn:

f n
L5L1

nf 0
LL2

2n. ~26!

Let us examine the asymptotic~i.e., thick adlayer! behavior
of the surface Green’s function. Let the eigenvaluesl of
XL be ordered such that

ul1u<ul2u<•••<ul2Nu, ~27!

then, considering the restrictions on the
positions in the complex plane as discussed
Sec. V, let us say that $l1,l2, . . . ,lN2P%
lie inside C1, $lN1P11,lN1P12, . . . ,l2N% lie
outside C1, and $lN2P11, lN2P12, . . . ,lN1P%
[$eidkN2P11,eidkN2P12, . . . ,eidkN1P% lie on C1. Now let
us consider the bilinearly transformed surface Green’s fu
tions f L. It is clear@from Eq.~26!# that, asn increases, many
of the elements of this matrix die away, and that in the lim
n→`,
lim
n→`

~ f n
L!rs5H eidnkr~ f 0L!rse

2 idnkN1s for r5N2P11, . . . ,N, s51, . . . ,P

0, otherwise
~28!
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5270 55A. UMERSKI
so that~in the asymptotic limit! the elements of the matrix
f n
L are functions of 2P plane waves $eidnka;a5N

2P11, . . . ,N1P% with periods$pa52p/dka%.26

Now, we can define an extended matrix function of 2N
parameters$nr ;r51, . . . ,2N% by

~ f̃ n1 . . .n2N
L !rs[S l r

nr

lN1s
nN1sD ~ f 0

L!rs. ~29!

Then, in the asymptotic limit$nr%→`, this whole matrix is
periodic inna with periodpa (a as defined above!. Hence if
we define the extended surface Green’s function
g̃n1 . . .n2N
L [OLd f̃ n1 . . .n2N

L . Then ~in the asymptotic limit

$nr%→`) this matrix must also be periodic inna , with pe-
riod pa . Now clearly, if we setn15•••5n2N5n, then
g̃n . . .n
L 5gn

L , and hence we obtain the following importa
result:For large n, gn

L is a matrix whose elements are qu
siperiodic functions of2P plane waves, with period
2p/dka . By Sec. V, we see that these periods are dictated
the k-point values at which the bulk adlayer energy ban
cut «.27,28

This is what is expected physically, and is the multiba
generalization of a conjecture by Mathonet al.,20 made for
the very special case ofP51. As the thickness of the over
layer increases, the surface states are increasingly re
sented by the bulk adlayer system. The decaying states~rep-
resented by the eigenvalues ofX not lying onC1) die away,
leaving only the propagating states (C1 eigenvalues ofX).

This result is crucially important if one wishes to devel
analytic expressions for the asymptotic behavior of multila
ered systems. Using Eq.~29!, one can perform multidimen
sional Fourier decompositions of arbitrary scalar functions
the surface Green’s function, such as the spectral density
conductivity. Such a procedure has recently been develo
in order to obtain analytic expressions for the magnetic c
pling of realistic~multiband! magnetic multilayer systems.8,9

Furthermore, this asymptotic behavior is the key to und
standing many physical features of realistic multilayered s
tems.

VIII. SEMI-INFINITE SURFACE GREEN’S FUNCTIONS

In Sec. VII we saw that~for « real! for n large, the surface
Green’s function is an oscillatory function of 2P plane
waves, and is therefore not defined in then→` limit. How-
ever, if we add a small imaginary part to the ener
(«→«1 id), then the degeneracies of the eigenvaluesl of
X are lifted so thatul1u,ul2u,•••,ul2Nu. Then for any
N3N matrix x: limn→`L1

nxL2
2n50. Hence defining the

semi-infinite surface Green’s function byg`5 limn→`gn , we
obtain the following simple closed forms for the sem
infinite left-hand surface Green’s function:

g`
L5OLd05o2L2

21o2
21t21. ~30!

We note thatg` does not depend ong0 — i.e., all memory of
the substrate is lost in the infinite limit.
y

y
s

d

re-

-

f
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-
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-

IX. EXTENSION TO RTH-ORDER NEIGHBOR
INTERACTIONS

So far we have considered adlayering in the local Ham
tonian model with only first-nearest-neighbor interaction
Higher-order interactions can of course always be reduce
first-nearest-neighbor form by the method of princip
layering.29,30 In particular, if we haveRth-order nearest
neighbor interactions, then the adlayered Hamiltonian fon
adlayers~1!, can always be reduced to form~7!, by defining
u and t to be theNR3NRmatricesU andT:

u→U[S u t1 . . . tR21

t1
† u tR22

A � A

tR21
† tR22

† . . . u
D ,

t→T[S tR 0 . . . 0

tR21 tR 0

A � A

t1 t2 . . . tR
D . ~31!

The @NR#-M.T’s will then provide solutions to the surfac
Green’s functions Gnn

(n) , which are correct for
n50,R,2R, . . . — i.e., an integral number of principal lay
ers,

GRn,Rn
~Rn! 5Xd

n G00
~0! for n51,2, . . . . ~32!

The question arises, however, as to whether we can ex
this solution to fractional numbers of principal layers, and
particular to single layers; i.e., doesG11

(1)5(X1/R)dG00
(0)?

However, for X nondegenerate there areR2NR roots of
X1/R, leading toR2NR21 different solutions toG11

(1) . Worse
still, for X degenerate~such as might occur at the Brillouin
zone boundary of a three-dimensional system! there are an
infinite number of solutions. Only one of these solutio
might represent a single adlayer.

In this section we show that it is always possible to obt
the surface Green’s functionG11

(1) for a single adlayer within
anRth-order local Hamiltonian model, by means of a su
able Möbius transformation, and we construct the cor
sponding Mo¨bius transformation matrix. Let us consider a
layering a single adlayer on top of a~left-hand! substrate
with Rth-order interactions. Let the adlayer self-energy
u and the adlayer-substrate hoppings be$ta ;a51, . . . ,R%.
Now, because of the finite range of the interaction,
N3N surface Green’s functionGn11,n11

(n11) can be obtained by
solving a reduced Dyson’s matrix-equation, which involv
only theNR3NR bottom right-hand submatrix ofG(n),
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55 5271CLOSED-FORM SOLUTIONS TO SURFACE GREEN’S FUNCTIONS
J̃~n11!5~12J~n!DH!21J~n!, ~33!

whereJ(n), J̃(n11), andDH areN(R11)3N(R11) matri-
ces, given by

J~n!5S S gL
~n! D S 0D

~ 0 !
1

«
1
D ,

DH5S S 0 D tR
A
t1

tR
† . . . t1

† u
D , ~34!

J̃~n11!5S Gn112R,n112R
~n11! . . .Gn112R,n11

~n11!

A
Gn11,n112R

~n21! S gL
~n11! D D .

~35!

Here gL
(n) and gL

(n11) are theNR3NR bottom right-hand
submatrices of the total Green’s functionsG(n) andG(n11),

gL
~n![S Gn112R,n112R

~n! . . . Gn112R,n
~n!

A � A

Gn,n112R
~n! . . . Gn,n

~n!
D . ~36!

Now it is clear from the reduced Dyson equation~33! that
Gn11,n11
(n11) is a function of all the elements ofgL

(n) . What we
require, therefore, is an iterative equation~in n) for gL

(n11)

~and henceGn11,n11
(n11) ) in terms of gL

(n) . However, the re-
duced Dyson equation does not fit the bill, sinceJ(n) and
J̃(n11) do not have the same form. Such an equation d
exist, however, in terms of the@NR#-M.T. In particular, the
following can be shown:For the N-band local Hamiltonian
model with Rth-order neighbor interaction, the NR3NR
bottom right-hand submatrix of the total Green’s functi
(gL

(n)), for the n (left-hand) adlayer system is given by t
Möbius transformation

gL
~n!5~JL!ndgL

~0! where JL[S a b

c dD , ~37!

and wherea, b, c, andd areNR3NRmatrices given by
s

a5S S 0D S 1 D
0 ~ 0 !

D , b5S S 0D S 0 D
tR
21 ~ 0 !

D ,

c5S S 0D S 0 D
2tR

† ~2tR21
† . . .2t1

†!

D , ~38!

d5S S 2tR21tR
21

2tR22tR
21

A
D S 1 D

~«2u!tR
21 ~ 0 !

D ,

The verification of this fundamental result is rather length
but follows straightforwardly by substitution of Eq.~37! into
the reduced Dyson equation~33!.

For R51, we have a50, b5t21, c52t†, and
d5(«2u)t21, so that we clearly recover the matrix~11!.
Since, by construction,JL is proportional to anRth root of
the first order, principal layer, interaction matrixXL @with
u andt matrices given by Eq.~31!#, then all the results abou
X derived so far readily generalize toJ: its eigenvalues
$m i5l i

1/R% are the appropriateRth roots of those belonging
to X, with N2P lying inside C1, N2P outsideC1, and
2P on C1; it is not difficult to show that these eigenvalue
satisfy the equation@cf. Eq. ~18!#

det~C~m!2«1!50

where

C~m![u1mt11m21t1
†1•••1mRtR1m2RtR

† ; ~39!

therefore theC1 eigenvalues$m5eikd/R% ~Ref. 31! corre-
spond to the 2P k points at which« crosses the bulk adlaye
energy bands, as defined in theprincipal Brillouin zone
2pR/d>k>pR/d ~with d/R being the interatomic-plane
distance!; the diagonalization matricesOL andOL

21 and the
diagonalized forms~19!–~23! are correct, the only alteration
being in the matrix L ~i.e., its correct Rth root
M5diag(m1 , . . . ,m2NR) must be taken!;32 the asymptotic
periodicity properties of the surface Green’s functions as d
cussed in Sec. VII still hold true; the forms for the sem
infinite surface Green’s functions~30! remain correct.

X. COMPUTATIONAL ADVANTAGES AND APPLICATION
TO SUPERLATTICES

To date, the most efficient computational method for c
culating the semi-infinite surface Green’s-function eleme
has been the decimation technique.7 This is an iterative
scheme, where, at thei th iteration, one has calculated th
surface Green’s function for a finite slab of width 2i layers.
The computational effort is therefore proportional to the to
number of iterations required, and hence is a function of b
the accuracy imposed and the convergence rate. The con
gence rate itself depends in the imaginary part of the ene
parameter~Im@«#!, and the proximity of any singular value
of the Green’s function.6 In contrast, the present metho
based on Eq.~30!, is independent of all these parameters, a
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FIG. 1. CPU time~arbitrary units! to calculate
the semi-infinite surface Green’s function, v
log10@Im(«)#, for fcc Cu~100! and Rh~100!.
The decimation method is depicted for thre
convergence criteria:............, j51023; •2•2•2,
j51026; and – – – –,j51029, while the ana-
lytic Mobius technique is seen to be constan
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in addition provides machine value accuracy. It is theref
somewhat unfair simply to compare the CPU times for
two procedures. However, in Fig. 1, we depict the times
compute the surface spectral density~i.e., summed overki)
for various accuracies (j) and Im@«#, for the case of fcc
Co~100! and Ru~100! with s, p, andd tight-binding param-
eters taken from Ref. 33.

We observe that the CPU time for the decimation te
nique ~tdec! depends logarithmically on the Im@«#
(tDEC;2 ln(Im@«#)) but only weakly on the accuracyj. Our
analytic method is constant, and faster for Im@«#,1022 Ry.

Now, although the present technique is already sign
cantly faster than decimation for pure materials, its real co
putational power is in its application to superlattices. Co
sider, for example, the case of a superlattice, compose
S different principal layersA1, A2, . . . ,AS , so that schemati-
cally the semi-infinite left-hand system looks lik
. . . (A1A2 . . .AS)(A1A2 . . .AS)(A1A2 . . .AS). Then the
Hamiltonian for this system can be written like Eq.~7!,
where the self-energy and hopping matrices are given by
NS3NSmatrices

u5S uA1 tA1A2

tA1A2
† uA2 0

�

uAS21
tAS21AS

0 tAS21AS
† uAS

D ,

t5S 0
A
0

S 0 D
tASA1 0•••0

D . ~40!

Now, since the decimation technique scales asN3 ~where
N is the order of theu and t matrices!, then for fixedj,
Im@«#, andki , the time to calculate the semi-infinite surfa
e
e
o

-

-
-
-
of

e

Green’s function in this case will beTDEC(SN)
;S3TDEC(N) @whereTDEC(N) is the time to calculate the
semi-infinite surface Green’s function forN3N self-energy
and hopping matrices#.

On the other hand, we can write the semi-infinite sup
lattice surface Green’s function as

g`5 lim
n→`

~X12 . . .S!d
n g0 where X12 . . .S[XSXS21 . . .X1 ,

~41!

whereX12 . . .S is anN3N matrix.
Now, we assume thatX12 . . .S is diagonalizable,

X12 . . .S5O12 . . .SL12 . . .SO12 . . .S
21 . ~42!

Then for Im@«# Þ0, its eigenvalues$l i% can be ordered such
that ul1u,ul2u,•••,ul2Nu. Hence we may use the argu
ments of Sec. VIII to deduce that

g`5O12 . . .Sd0. ~43!

Since the time taken to diagonalize a matrix; 63 the time
taken to multiply two such matrices, then the time to calc
late the semi-infinite surface Green’s function in this case
TMOB(SN);(61S)TMOB(N) @where TMOB(N) is the time
taken to calculate the semi-infinite surface Green’s funct
using the Mo¨bius transformation technique, forN3N self-
energy and hopping matrices#. In other words, the time to
calculate the semi-infinite surface Green’s function forS lay-
ers per superlayer scales asS3 using the decimation method
but only ~weakly! asS using the closed form.

XI. CONCLUSION

We have shown that there are two realizations
GL(2N,C) onM (N,C), which are matrix-valued extension
of the Möbius transformation familiar from complex variab
theory. We have used these transformations to solve the
eral Green’s-function adlayering problem~arbitrary growth
direction, lattice, and number of bands! within a local Hamil-
tonian model. We have shown that~for a given value of the
energy parameter«) the surface Green’s functions are a



nd
r
r
m

t
in
-
rl
ed
al
an

r
e

c

-
re
u
c-

ce

r a
’s

f

of

y,

ly
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ymptotically quasiperiodic, with the number of periods a
their values dictated by thek points at which the bulk adlaye
energy bands cut«. We have given closed form solutions fo
the finite and semi-infinite surface Green’s functions in ter
of the eigenvalues and eigenvectors of the Mo¨bius transfor-
mation matrices. Finally we have shown that the time
calculate the semi-infinite surface Green’s functions us
the closed form is~for Im@«#,1022 Ry! faster than the pre
viously known decimation technique, and scales linea
with the complexity of the multilayer. We have develop
similar techniques to obtain closed-form solutions to
Green’s function elements, for general local Hamiltoni
multilayers~for both bulk and surface systems!. This will be
the subject of a forthcoming publication.
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APPENDIX: FURTHER RESULTS

The results of the main text are for the left-hand surfa
Green’s function, whose adlayering equations~11! are
solved by use of the@N# LHMT, i.e., by use of the Mo¨bius
transformation matrixXL . In this appendix, we briefly de
scribe the corresponding results for the remaining th
cases: the left-hand surface Green’s function solved by
of the @N# RHMT; and the right-hand surface Green’s fun
tion solved by use of the@N# LHMT and RHMT.
s

o
g

y

l

to

e

e
se

1. Right-hand, N-band adlayering problem for R51

For the case of the right-hand system, the surfa
Green’s-function adlayering equations are@cf. Eq. ~9!#

gn11
R 5~«2u2tgn

Rt†!21 where gn
R[~GR

~n!!n,n. ~A1!

These equations relate the surface Green’s function fo
right-hand system withn11 adlayers, to the surface Green
function for a system withn adlayers.

They can be solved~as in Sec. IV! in terms of the@N#
LHMT and RHMT. Analogous expressions to Eqs.~11! and
~12! are obtained forgn

R in terms of 2N32N Möbius trans-
formation matricesXR andYR — which are obtained from
XL andYL by interchangingt↔t†.

2. Connection between the spectrum of XR , YL , YR

and the bulk band structure

It is easy to show that if$l i% are the eigenvalues o
XL , then they are also the eigenvalues ofYR , while $l i

21%
are the eigenvalues ofXR andYL . It follows that the results
of Sec. V are immediately applicable to the eigenvalues
XR , YL , andYR .

3. Diagonalization of XR, YL , and YR

Once the matrixXL has been diagonalized numericall
and one has read off theN3N submatricesL1, L2, o1, o2,
v1, andv2, as described in Sec. VI. Then it is immediate
possible to diagonalize the remaining Mo¨bius transformation
matrices XR , YL , and YR in terms of these and the
2N32N transposition matrixP[(1

0
0
1) via
OR
21XROR5PL21P whereOR[S o2 o1

t†o2L2
21 t†o1L1

21D , OR
21[S L2v2t 2v2

L1v1t 2v1
D , ~A2!

QL
21YLQL5L21 where QL[S 2o1 2o2

to1L1 to2L2
D , QL

21[S L1
21v1t

† v1

L2
21v2t

† v2
D , ~A3!

QR
21YRQR5PLP whereQR[S o2 o1

2t†o2L2
21 2t†o1L1

21D , QR
21[S L2v2t v2

L1v1t v1
D . ~A4!

Equations~A2!–~A4! can be verified using constraints~20!–~23!.

4. Surface Green’s-function solution and asymptotic periodicity

Using Eqs.~11!, ~12!, and~A2!–~A4!, we can deduce similar closed-forms to Eq.~25! for the surface Green’s functions

gn
L5t†21Vn11

L 21Vn
L where Vn

L[L1
2nv11h0

LL2
2nv2 and hn

L[gn
LdQL , ~A5!

gn
R5Dn

RDn11
R 21t†21 where Dn

R[o2L2
2nf 0

R1o1L1
2n and f n

R[OR
21

dgn
R , ~A6!

gn
R5t21Vn11

R 21Vn
R where Vn

R[L2
nv21h0

RL1
nv1 and hn

R[gn
RdQR , ~A7!
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where the bilinearly transformed surface Green’s-funct
matricesf andh have a particularly simple dependence up
n:

hn
L5L1

nh0
LL2

2n f n
R5L2

2nf 0
RL1

n hn
R5L2

2nh0
RL1

n.
~A8!

Because we can solve the surface adlayering equations u
either the LHMT or the RHMT, then we obtain two form
for both gn

L @Eqs. ~25! and ~A5!# and gn
R @Eqs. ~A6! and

~A7!#. The equivalence of these two forms can be dem
strated using the constraints~20!–~23!. The argument which
was used in Sec. VII to obtain the asymptotic~i.e., thick
adlayer! properties off n

L can now be directly applied to
hn
L , fn

R , andhn
R :gn

R is a matrix whose elements are quas
eriodic functions of 2P plane waves, with periods
2p/dka . The ka are thek-point values at which the bulk
adlayer energy bands cut«.

5. Semi-infinite surface Green’s functions

The analysis of Sec. VIII can be applied to the remain
three cases, giving an alternative closed form for the se
infinite left-hand surface Green’s functiong`

L , and two
forms for the semi-infinite right-hand surface Green’s fun
tion g`

R :

g`
L50dQL

215t†21v1
21L1v1 ,

g`
R5ORd05o1L1o1

21t†21, ~A9!

g`
R50dQR

215t21v2
21L2

21v2 .

Once again, the equivalence of the two forms forg`
L and

g`
R can be deduced from the constraints~20!–~23!.

6. Extension toRth-order neighbor interactions

Consider a right-hand adlayer — grown in the2d direc-
tion. LetgR

(n) be theNR3NR top left-hand submatrix of the
total Green’s functionG(n) for this system,
c-

s

ys

.

s.

s.

.

n

ing

-

-

g
i-

-

gR
~n![S Gn,n

~n! . . . Gn,n112R
~n!

A � A

Gn112R,n
~n! . . . Gn112R,n112R

~n! D .

~A10!

Then this submatrix can be deduced from the right-hand s
strate Green’s function via a@2NR# LHMT @cf. Eqs. ~37!
and ~38!#,

gR
~n!5~JR!ndgR

~0! where JR[S a b

c dD , ~A11!

and wherea, b, c, andd areNR3NRmatrices given by

a5S ~ 0 ! 0

S 1 D S 0D D , b5S ~ 0 ! tR
†21

S 0 D S 0D D ,

c5S ~2t1 . . .2tR21! 2tR

S 0 D S 0D D , ~A12!

d5S ~ 0 ! ~«2u!tR
†21

S 1 D S 2t1
†tR
†21

A
2tR21

† tR
†21

D D .

Similar forms to Eqs.~38! and~A12! can also be derived fo
generalizations to the right-hand Mo¨bius transformation ma-
tricesYL andYR .
.
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