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Bound states of two particles confined to parallel two-dimensional layers
and interacting via dipole-dipole or dipole-charge laws
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The problem of a bound state of two particles confined to parallel two-dimensional layers and interacting via
dipole-dipole or dipole-charge laws arises in connection with the study of bound states of charge-transfer
excitons at parallel interfaces or biexcitons and charged exciton complexes in double quantum wells. Binding
energies of the dipole-charge and the dipole-dipole complexes are calculated as functions of the corresponding
coupling constants. It is shown that for the dipole-charge interaction the bound state exists at an arbitrary small
coupling constant, though the binding energy decreases dramatically when the coupling constant falls below
some critical value. On the contrary, it is shown for the dipole-dipole interaction that the bound state exists
only when the coupling constant exceeds a critical value.@S0163-1829~97!05408-8#
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I. INTRODUCTION

The study of exciton-exciton and exciton-charge inter
tions in organic and semiconductor nanostructures is on
the hot topics of contemporary research.1 There is consider-
able interest in a bound complex of an exciton and an e
charge, as well as in a biexciton state, i.e., a bound stat
two excitons ~see, e.g., recent papers2,3 and references
therein!. The latter play an important role in nonlinear op
cal processes.4

Here we consider the case when excitons possess a
zero dipole moment. This is a characteristic feature of cha
transfer excitons at organic interfaces, as well as of Wann
Mott excitons in semiconductor quantum wells in the pr
ence of a static electric field, or excitons formed by spatia
separated electrons and holes in double quantum wells.
interaction of such excitons~or an exciton and a charge ca
rier! located in neighboring layers may lead to a bou
exciton-exciton~or exciton-charge! state. In a somewhat ide
alized treatment this puts forward a problem of a bound s
of two particles confined to parallel two-dimensional~2D!
layers and interacting via dipole-dipole or dipole-char
laws. This quantum-mechanical problem is the subject of
present paper. More extended physical applications of
obtained results will be considered in a separate publicati5

Below we calculate the binding energies of the dipo
dipole and dipole-charge complexes as functions of the
responding coupling constants. We show that for the dipo
charge interaction the bound state exists at an arbitrary s
coupling constant, though the binding energy decreases
matically when the coupling constant falls below some cr
cal value. On the contrary, for the dipole-dipole interacti
the bound state exists only when the coupling constant
ceeds a critical value. This seems contradictory with resp
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to the common opinion that a bound state may exist in
arbitrary shallow 2D potential well. We analyze the reason
this contradiction.

The present paper is organized as follows. In Sec. II
introduce the model. The cases of the dipole-charge and
dipole-dipole interactions are treated in the Secs. III and
respectively. The summary and discussion of the results
offered in Sec. V.

II. THE MODEL

We consider two particles, and each of them is confin
to one of two parallel 2D layers separated by the dista
l . The dipole moment of each particle~if nonzero! is as-
sumed to be oriented along theẑ axis perpendicular to the
layer plane. We study two cases:~1! one of the particles
bears a chargee while the other is neutral and possesse
nonzero dipole momentm such that the particle interaction i
attractive;~2! both particles are neutral and have dipole m
mentsm1 andm2 , respectively. The interaction potential ha
the form

V~r!52
em

e

l

~r21 l 2!3/2
~1!

for the dipole-charge interaction and

V~r!5
m1m2

e F 1

~r21 l 2!3/2
2

3l 2

~r21 l 2!5/2G ~2!

for the dipole-dipole interaction. Herer is the distance be-
tween the particles along the planes, ande is the dielectric
constant of the surrounding medium. The sign in Eq.~2!
corresponds to the case of equally oriented dipoles~normal
5214 © 1997 The American Physical Society
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55 5215BOUND STATES OF TWO PARTICLES CONFINED TO . . .
to the layer planes!. The opposite sign would correspond
the case of antiparallel dipoles, which we will discuss brie
in Sec. IV E. The interaction potentials~1! and ~2! are pre-
sented in Fig. 1.

The radial wave functionc(r) of the relative motion of
two particles with zero angular momentum obeys the Sch¨-
dinger equation

1

r

d

dr
r
d

dr
c~r!5F2mV~r!

\2 1k2Gc~r!, ~3!

where m is the reduced mass of the particles a
2\2k2/(2m)5E is the bound state energy.

We are not aware of an exact solution of Eq.~3! for the
potential given by Eqs.~1! and ~2!, so that in the following
analysis we will use various approximate approaches wh
choice will be determined by the value of a dimensionle
coupling constant

a5
mem

e\2 ~4!

for the dipole-charge interaction, and

a5
mm1m2

e\2l
~5!

for the dipole-dipole interaction.

III. DIPOLE-CHARGE INTERACTION

A. Large coupling constant

First, we consider the case of a large coupling cons
a ~4!. In this case, we expect that the in-plane radiusr0 of
the ground state is small as compared to the interlayer
tancel . Expanding the potential energy Eq.~1! in powers of
the small ratior/ l we have approximately

FIG. 1. Dimensionless potentialṼ5V(r)/uV(0)u of the dipole-
charge~dc! and the dipole-dipole~dd! interactions.
se
s

nt

s-

V~r!'2
em

e l 2
1
3em

2e l 4
r2, ~6!

which corresponds to the potential of an isotropic 2D h
monic oscillator with frequency

vo5A3em

eml4
. ~7!

The wave function of the ground state is given by the e
pression

c~r!5
Ap

r0
e2 r2/2r0

2
, ~8!

where

r05A \

mv0
5

l

~3a!1/4
~9!

is the characteristic radius of the bound state. As follo
from Eq. ~9!, at largea the assumptionr0! l is justified,
indeed. In this approximation, the ground-state energy of
bound particles is given by

E'E~0!52
em

e l 2
1\v0 , ~10!

where the second~quantum! term is smaller than the firs
~classical! one by the factor;1/Aa.

The next term of the expansion of the potentialV(r) Eq.
~1! is

dV~r!52
15emr4

8e l 6
.

The corresponding correction to the ground-state energy
~10! can be calculated in the first-order perturbation the
with respect todV:

dE5^dV&0 ,

where the matrix element̂ . . . &0 is calculated using the
ground state of the 2D harmonic oscillator~8!. We arrive at
the following expression for the bound state energy

E'
\2

2ml2 S 22a12A3a2
5

2D , ~11!

which is arranged according to decreasing powers ofAa.

B. Small coupling constant

Now we consider the opposite case of a small coupl
constant:a!1. At r50 the potential Eq.~1! equals

V~0!52em/~e l 2!522aS \2

2ml2D ,
and uV(r)u decays;1/r3 for r* l . A bound state at this
shallow 2D potential well may be found using a know
approach.6 The latter, introduced formally for potential well
of finite radii, should be modified to take into account
relatively slow power decay ofV(r) at larger.
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For smalla, we are looking for a solution to Eq.~3! that
corresponds to a weakly bound state withk!1/l . Introduc-
ing the parameterr̄ by the equality 2muV( r̄)u/\25k2, we
find

r̄'S 2mem l

e\2k2 D 1/35S 2a l

k2 D 1/3. ~12!

Here we have assumed that

l! r̄!1/k ~13!

and used the asymptotic expression forV(r) at larger. At
r! r̄ or at r@ r̄ one may neglect, respectively, the termk2

or 2mV(r)/\2 in the right-hand side~rhs! of Eq. ~3!. Mul-
tiplying both parts of Eq.~3! by r and integrating from 0 to
r1 ( l!r1! r̄), we obtain the following relation:

S r
d

dr
c~r! D

r1

5
2m

\2 E
0

r1
V~r!rc~r!dr

'
2m

\2 c~r1!E
0

`

V~r!rdr. ~14!

On the rhs of Eq.~14! we have neglected the change of t
wave function atr!1/k and set its argument equal tor1 .
Because of the fast convergence, the upper limit of the in
gral has been extended to infinity.

At r@ r̄ the functionc(r) is given by the solution of the
Schrödinger equation for a free particle:

c~r!;K0~kr!,

whereK0(x) is the zero-order Hankel function of the fir
kind. At small x K0(x); lnx. Therefore, for an arbitraryr2
in the interval r̄!r2!1/k we obtain for the derivative o
ln@c(r)#:

S r
d

dr
ln@c~r!# D

r2

5
1

ln~kr2!
. ~15!

Now we extrapolate Eq.~14! and Eq. ~15! to the case
r1→ r̄←r2 and obtain the relation

2m

\2 E
0

`

V~r!rdr5
1

ln~kr̄ !
. ~16!

Using Eqs.~12! and ~16! we find

k5
e\2

2mem l
expS 2

3

2m F E
0

`

uV~r!urdrG21D
5

1

2a l
expS 2

3

2a D , ~17!

with a given by Eq.~4!. It is easy to check that this value o
k justifies the assumption Eq.~13!. Thus, at small coupling
constanta, the binding energyE52\2k2/(2m) is exponen-
tially small,

uEu5
\2

2ml2
1

4a2 expS 2
3

a D , ~18!

which is typical for bound states in a weak 2D potential.6
e-

C. Intermediate values of coupling constant:
Variational approach

For intermediate values of the coupling constant Eq.~4!
we use the variational approach with a simple one-param
probe wave function

c~r!5A2

p

k

l
e2kr/ l . ~19!

Evaluating the kinetic and potential energies with this pro
function we obtain the averaged Hamiltonian as a function
the dimensionless variational parameterk:

H~k!5
\2

2ml2
f ~k,a!, ~20!

where

f ~k,a!5k222aE
0

` xexp~2x!dx

@11x2/~2k!2#3/2
. ~21!

The ground-state binding energy is determined as the m
mum value of the functionH(k):

E~a!5
\2

2ml2
f ~a!. ~22!

Here

f ~a!5minf ~k,a!5 f „k~a!,a…, ~23!

wherek(a) is a root of the equation:

15
3a

4k4E
0

` x3 exp~2x!dx

@11x2/~2k!2#5/2
5
3a

4 E
0

`x3 exp~2kx!dx

@11x2/4#5/2
.

~24!

Equation~24! makes obvious that the solutionk(a) exists
only ata exceeding some critical valueac:

a>ac5
4

3 F E
0

` x3dx

@11x2/4#5/2G21

5
1

8
. ~25!

This condition contradicts the above conclusion about
existence of the bound state at an arbitrary smalla and dem-
onstrates clearly the restricted validity of the variational a
proach for the range of small coupling constants. Howev
this formal restriction may be of no practical significanc
estimating the factor (2a)22 exp(23/a) in the rhs of Eq.
~18! at a51/8, we find the negligible value 6310210.

D. Comparison of analytical results
with numerical calculations

To conclude this section, we have found the bound-s
energies Eq.~11! and Eq.~18! for large and small values o
the coupling constant Eq.~4!, respectively. For intermediat
coupling we found the variational expression Eq.~22!. These
results are plotted in Fig.~2! as functions of the coupling
constanta. In order to check the accuracy of the analytic
approximations we present in the same figure results of
rect numerical solution of Eq.~3! for the potential~1!. We
see that the variational approach gives quite satisfactory
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sults for valuesa less than 5–6, while at largera the har-
monic oscillator approach is more adequate.

IV. DIPOLE-DIPOLE INTERACTION

In contrast to the dipole-charge interaction potential E
~1!, the potential of the dipole-dipole interaction Eq.~2! is
not a monotonous function ofr ~see Fig. 1!. It has a mini-
mum atr50 and a maximum atr52l .

A. Large coupling constant

As in the previous section, we begin with the case of lar
values of the coupling constant Eq.~5! ~a discussion about
physical realizations of this case is postponed for the co
cluding section!. We expect the bound state to be well loca
ized in the vicinity of the minimum ofV(r) at r50, so that
the in-plane radiusr0 of the state is small as compared to th
width ; l of the potential well. Expanding the potential en
ergy Eq.~2! in r/ l we have

V~r!'22
m1m2

e l 3
16

m1m2

e l 5
r2, ~26!

which corresponds to the potential of a harmonic oscillat
with the frequency

vo5A12m1m2

eml5
. ~27!

FIG. 2. Dimensionless ground-state energyẼ5(2ml2)/\2E vs
coupling constanta. The upper and the lower bunches of curve
correspond to the dipole-charge~dc! and the dipole-dipole~dd! in-
teractions, respectively. Dashed lines represent largea asymptotics
~11! and ~30!, filled circles correspond to variational calculations
and solid lines present the results of a direct numerical solution
the Schro¨dinger equation for the potentials~1! and ~2!.
.

e

-

r

The ground-state wave function is given by Eq.~8! where the
characteristic size

r05
l

~12a!1/4
~28!

of the ground state is, indeed, smaller thanl at largea. The
ground-state energy of the bound particles is given by

E'E~0!522
m1m2

e l 3
1\v0 , ~29!

where the second~quantum! term is smaller than the firs
~classical! one by the factor;1/Aa. Just as for the case o
the dipole-charge interaction, one may find the correction
the harmonic approximation Eq.~29!. As a result, we obtain
the following expression for the bound-state energy:

E'
\2

2ml2 S 24a14A3a2
15

4 D , ~30!

which is arranged according to decreasing powers ofAa.
We see that in the strong coupling limit the dipole-dipole a
dipole-charge interactions result in similar qualitative fe
tures of the bound states.

B. Small coupling constant

On the contrary, in the small coupling limit there is
drastic difference for the two interactions:no bound state
exists in the potential Eq.~2! ata!1. The standard method6

of finding a bound-state energy for a shallow 2D well do
not apply straightforwardly to the potential Eq.~2! because
the quantity

F E
0

`

V~r!rdrG21

~31!

that enters the expression for the binding energy does
exist: the integral equals zero. The reason is that the pote
V(r) Eq. ~2! has a repulsive part and its contribution to t
integral cancels exactly the contribution of the attractive p
Below we carry out a more careful analysis of this case.

Similar to the approach of the previous section we int
duce the parameterr̄ determined by the equality
2mV( r̄)/\25k2. Being expressed via the dimensionle
coupling constant, the parameterr̄ is given formally by the
same expressionr̄'(2a l /k2)1/3 as in the case of the dipole
charge interaction witha defined by Eq.~5!. Here we have
again assumed thatl! r̄!1/k and used the asymptotic ex
pression forV(r) at larger. At r! r̄ ~or r@ r̄) one may
neglect the termk2 @or 2mV(r)/\2] in the rhs of Eq.~3!.
The following derivation is similar to the one in the previou
section. However, now we keep finite the upper limitsr1 and
r̄ of the integrals in Eqs.~14! and ~16!, respectively~other-
wise these integrals would equal zero!. So, for the integral on
the left-hand side of Eq.~16! we obtain

E
0

r̄
V~r!rdr52E

r̄

`

V~r!rdr'2
m1m2l

2

e

1

r̄
.

As a result, we have instead of Eq.~16! the following rela-
tion:

of
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2a l

r̄
ln~kr̄ !521. ~32!

With the use of the definition ofr̄ this relation leads to an
equation fork:

1

3
~2akl !2/3ln~2akl !521. ~33!

This equation has no solution. Thus, we come to the con
sion about the absence of bound states at the limit of
weak dipole-dipole interaction Eq.~2!.

C. Intermediate values of coupling constant:
Variational approach

At intermediate values of the coupling constant~4! we use
the variational approach with the same probe wave func
Eq. ~19! as in the previous section. The averaged Ham
tonian is given by Eq.~20! with the following function
f (k,a):

f ~k,a!5k222aE
0

` x2 exp~2x!dx

@11x2/~2k!2#3/2
~34!

@note an additional power ofx in the integrand as compare
to Eq.~21!#. This function equals 0 atk50. With an increase
of k it reaches a maximum, then a minimum@at
k5k(a)], and grows monotonously atk.k(a). The value
of k(a) is determined as the largest of the two positive ro
of the equationd f(k,a)/dk50, which is equivalent to the
following equation:

15
3ak

4 E
0

`x4 exp~2kx!dx

@11x2/4#5/2
. ~35!

The ground-state binding energy is given by Eqs.~22! and
~23!. The solutionk(a) of Eq. ~35! exists only ata exceed-
ing some critical valueac :

ac5
4

3 FmaxH kE
0

` x4e2kxdx

~11x2/4!5/2J G21

50.491. ~36!

D. Comparison of analytical results
with numerical calculations

To summarize, we have found the bound-state ener
Eqs. ~30! and ~22! for large and intermediate values of th
coupling constant Eq.~5!, respectively. We have shown th
no bound state exists at small coupling constanta<ac and
found a variational estimation Eq.~36! for ac . These results
are plotted in Fig. 2 as functions of the coupling const
a. In the same figure we present also results of direct
merical solution of Eq.~3! for the potential~2!. Similar to the
case of the dipole-charge interaction, we see that the va
tional approach gives quite satisfactory results for valuea
less than 3–4, while at largera the harmonic oscillator ap
proach is more adequate.

E. Antiparallel dipoles

Now we discuss briefly the case of antiparallel dipo
that would result in the opposite sign of the rhs of Eq.~2!.
u-
e

n
l-

s

es

t
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ia-

s

The modified interaction potential has a minimum
r52l . In the strong coupling limit there exists a bound sta
localized in the vicinity of this minimum with the binding
energy

E'E~0!52
2A5m1m2

125e l 3
1

\v0

2
~37!

5
\2

2ml2 F2
4A5a

125
1S 24A5a

625 D 1/2G .
~38!

Here the frequency is

v05S 24A5m1m2

625eml5 D 1/2.
Note that in this case we deal not with an isotropic 2D h
monic oscillator~as in the case of parallel dipoles! but with a
1D oscillator ~for the radial degree of freedom!, while the
second degree of freedom corresponds to the free ang
rotation. This difference explains the origin of the factor 1
in the last term on the rhs of Eq.~37!. Another remark con-
cerns the difference between Eq.~3! and a standard 1D
Schrödinger equation with the kinetic energy ter
@;d2/dx2c(x)#. The substitutionc(r)5c̃(r)/Ar trans-
forms Eq.~3! to a 1D Schro¨dinger equation with the standar
kinetic energy operator and a new potential

Veff~r!5V~r!1
\2

8mr2
.

In the considered case of largea the corrections to the
ground-state energy caused by the additional term in the
fective potential are of zero order ina. These corrections are
small as compared to the terms (;a and;Aa) retained in
Eq. ~37!.

Similar to the previous case of parallel dipoles, there
no bound states in the weak coupling limit. However, t
range of intermediate values of the coupling constant Eq.~5!
requires a more delicate approach: the simplest choice o
probe functionc(r);exp(2kr/l) does not yield a minimum
of the averaged Hamiltonian. This is because such a w
function overestimates the contribution of the regi
r,A2l where the potential energy is positive. A more a
propriate probe function should model the decrease of
true wave function in that region. Actually it would force on
to go beyond the simple one-parameter variational appro
and here we will not pursue this aim.

V. CONCLUSION

Here we make some comments concerning physical r
izations of different regimes for excitons in a double qua
tum well. The weak coupling regime corresponds to the c
of a weak external static electric field applied perpendicu
to the QW plane, so that the induced static dipole mome
of the excitons are small. The realization of the strong c
pling case is more complicated. Assuming that the dip
moment of the particles is due to an electron displacemen
a distanced, so thatm5ed, the coupling constants Eqs.~4!
and ~5! may be rewritten asa5d/a for the dipole-charge
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interactions anda5d2/(al) for the dipole-dipole interac-
tions; a5e\2/(me2) is the effective Bohr radius. The cas
a@1 together with the validity conditiond! l of the dipole
approximation result in the following range of paramete
a!d! l andAal!d! l , respectively. Thus, the realizatio
of the strong coupling case would require a considera
electron-hole separation within ‘‘excitons.’’ This could b
provided by a strong electric field. The possibility of phys
cal realizations of various regimes and applications to e
tons in double quantum wells will be considered in a se
rate publication5 using the above results.

To conclude, we have studied a bound-state problem
two particles confined to parallel two-dimensional~2D! lay-
ers and interacting via dipole-charge Eq.~1! or dipole-dipole
Eq. ~2! laws. The existence and the energy of the bound-s
are determined by the corresponding coupling constant E
~4! and~5!. At a@1 the bound-state energy is given by Eq
~11! and ~30!, respectively. At intermediate values o
on

,

m

:

le

i-
-

or

te
s.
.

ac,a, the variational estimate for the binding energy
given by Eq.~22! with the functionf (a) Eq. ~23! determined
correspondingly via Eqs.~21! and ~34!. The critical values
ac , obtained within the framework of the variational a
proach are given by Eqs.~25! and ~36!. It has been demon
strated that no bound state exists for the dipole-dipole in
action ata!1, while for the dipole-charge interaction the
may exist a weakly bound state with an exponentially sm
binding energy.
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