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Bound states of two particles confined to parallel two-dimensional layers
and interacting via dipole-dipole or dipole-charge laws
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The problem of a bound state of two particles confined to parallel two-dimensional layers and interacting via
dipole-dipole or dipole-charge laws arises in connection with the study of bound states of charge-transfer
excitons at parallel interfaces or biexcitons and charged exciton complexes in double quantum wells. Binding
energies of the dipole-charge and the dipole-dipole complexes are calculated as functions of the corresponding
coupling constants. It is shown that for the dipole-charge interaction the bound state exists at an arbitrary small
coupling constant, though the binding energy decreases dramatically when the coupling constant falls below
some critical value. On the contrary, it is shown for the dipole-dipole interaction that the bound state exists
only when the coupling constant exceeds a critical val86163-18207)05408-9

[. INTRODUCTION to the common opinion that a bound state may exist in an
arbitrary shallow 2D potential well. We analyze the reason of
The study of exciton-exciton and exciton-charge interacthis contradiction.
tions in organic and semiconductor nanostructures is one of The present paper is organized as follows. In Sec. Il we
the hot topics of contemporary reseafchhere is consider- introduce the model. The cases of the dipole-charge and the
able interest in a bound complex of an exciton and an extradipole-dipole interactions are treated in the Secs. Il and IV,
charge, as well as in a biexciton state, i.e., a bound state ¢eéspectively. The summary and discussion of the results are
two excitons (see, e.g., recent papéfsand references offered in Sec. V.
therein. The latter play an important role in nonlinear opti-
cal processe$. Il. THE MODEL
Here we consider the case when excitons possess a non-
zero dipole moment. This is a characteristic feature of charge We consider two particles, and each of them is confined
transfer excitons at organic interfaces, as well as of Wanniet® one of two parallel 2D layers separated by the distance
Mott excitons in semiconductor quantum wells in the pres!- The dipole moment of each particlé nonzerg is as-
ence of a static electric field, or excitons formed by spatiallysumed to be oriented along tlzeaxis perpendicular to the
separated electrons and holes in double quantum wells. THayer plane. We study two case&) one of the particles
interaction of such exciton@r an exciton and a charge car- bears a charge while the other is neutral and possesses a
rier) located in neighboring layers may lead to a boundnonzero dipole moment such that the particle interaction is
exciton-exciton(or exciton-chargestate. In a somewhat ide- attractive;(2) both particles are neutral and have dipole mo-
alized treatment this puts forward a problem of a bound statenentsu; andu,, respectively. The interaction potential has
of two particles confined to parallel two-dimensior{dD)  the form
layers and interacting via dipole-dipole or dipole-charge
laws. This quantum-mechanical problem is the subject of the eu I
present paper. More extended physical applications of the V(ip)=— TW’? @)
obtained results will be considered in a separate publication.
Below we calculate the binding energies of the dipole-for the dipole-charge interaction and
dipole and dipole-charge complexes as functions of the cor-
responding coupling constants. We show that for the dipole- Mfho 1 312
charge interaction the bound state exists at an arbitrary small Vip)= e |(pZ+19) (pZ+12)52 2
coupling constant, though the binding energy decreases dra-
matically when the coupling constant falls below some criti-for the dipole-dipole interaction. Here is the distance be-
cal value. On the contrary, for the dipole-dipole interactiontween the particles along the planes, ant the dielectric
the bound state exists only when the coupling constant exsonstant of the surrounding medium. The sign in E).
ceeds a critical value. This seems contradictory with respeatorresponds to the case of equally oriented dipGhesmal
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0 which corresponds to the potential of an isotropic 2D har-

monic oscillator with frequency
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. The wave function of the ground state is given by the ex-
\ pression
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- 0 1' ,;, é :,{ 5 is the characteristic radius of the bound state. As follows

p/l from Eq. (9), at largea the assumptiopy<<l is justified,

indeed. In this approximation, the ground-state energy of the

FIG. 1. Dimensionless potentigd:V(p)/|V(0)| of the dipole- bound particles is given by

charge(dc) and the dipole-dipolédd) interactions. e
o E~E<°>=——’é+ﬁwo, (10)
to the layer planes The opposite sign would correspond to €l
the case of antiparallel dipoles, which we will discuss briefly
in Sec. IV E. The interaction potentia(4) and (2) are pre-
sented in Fig. 1.
The radial wave functions(p) of the relative motion of

where the secondquantum term is smaller than the first
(classical one by the factor INES
The next term of the expansion of the potentidp) Eq.

two particles with zero angular momentum obeys the 'Schro(l) IS
dinger equation 15eup*
NVN(p)=——(5-
e e e TS T o
p dppdp P h P The corresponding correction to the ground-state energy Eq.

where m
—#2k?/(2m)=E is the bound state energy.

We are not aware of an exact solution of E8). for the SE=(6V)
potential given by Eqs(1) and(2), so that in the following 0
analysis we will use various approximate approaches whosghere the matrix element...), is calculated using the
choice will be determined by the value of a dimensionlesgyround state of the 2D harmonic oscillat®. We arrive at

is the reduced mass of the particles and(lo) can be calculated in the first-order perturbation theory
with respect tosV:

coupling constant the following expression for the bound state energy
meu h? 5
a= —— 4 ~ _ Ry_ =
Py 4 E >ml2 2a+243 2 (11

for the dipole-charge interaction, and which is arranged according to decreasing powerg ®f

Mg 5 .
= "7 5) B. Small coupling constant

Now we consider the opposite case of a small coupling

for the dipole-dipole interaction. constanta<1. At p=0 the potential Eq(1) equals

lll. DIPOLE-CHARGE INTERACTION V(0) I |2) 5 ( h? )

=—eul(el)=-2a| =—3],
A. Large coupling constant a 2m|
First, we consider the case of a large coupling constanand |V(p)| decays~1/p® for p=I. A bound state at this

a (4). In this case, we expect that the in-plane ragigof  shallow 2D potential well may be found using a known

the ground state is small as compared to the interlayer disapproact?. The latter, introduced formally for potential wells

tancel. Expanding the potential energy E@) in powers of  of finite radii, should be modified to take into account a

the small ratiop/l we have approximately relatively slow power decay df (p) at largep.
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For smalla, we are looking for a solution to E@3) that
corresponds to a weakly bound state witk 1/1. Introduc-
ing the parametep by the equality ™|V(p)|/A%2=k?, we
find

— (2meul 1/3_ 2al |13 12
o 12

Here we have assumed that
l<p<1k (13

and used the asymptotic expression ¥{ip) at largep. At
p<<p or atp>p one may neglect, respectively, the tekh
or 2mV(p)/#2 in the right-hand sidérhs) of Eq. (3). Mul-
tiplying both parts of Eq(3) by p and integrating from 0 to
p1 (I<p;<<p), we obtain the following relation:

d 2m (r
(p@wm)p =ﬁ7f0 V(p)py(p)dp

m 0
7 ¥(p1) fo V(p)pdp. (14)

On the rhs of Eq(14) we have neglected the change of the

wave function atp<1/k and set its argument equal tq .

Because of the fast convergence, the upper limit of the inte-

gral has been extended to infinity.
At p>p the functiony(p) is given by the solution of the
Schralinger equation for a free particle:

¥(p)~Ko(kp),

where Ky(x) is the zero-order Hankel function of the first

kind. At smallx Kq(x)~Inx. Therefore, for an arbitrary,
in the intervalp<p,<1/k we obtain for the derivative of

In[(p)]:

(19

_1
In(kpz)

Now we extrapolate Eq(14) and Eq. (15 to the case
p1— p<p», and obtain the relation

d
p—ln[l/f(p)]) =
dp oo

o 1
%2 fO V(p)pdp= In(kﬁ (16)
Using Eqs.(12) and (16) we find
B eh? 3 J‘” v q -1
= 2meat &1 " 2m) J, IV(p)|pdp
1 3 1
_Z_aIeX T oal (17)

with « given by Eq.(4). It is easy to check that this value of

k justifies the assumption E¢13). Thus, at small coupling
constaniz, the binding energ¥ = —#2k?/(2m) is exponen-
tially small,

£l h? 1 3
EI= 2mP 222 & ~ 3

which is typical for bound states in a weak 2D poterttial.

(18
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C. Intermediate values of coupling constant:
Variational approach

For intermediate values of the coupling constant €.
we use the variational approach with a simple one-parameter
probe wave function

W)= \Efekﬂ“
P | '

Evaluating the kinetic and potential energies with this probe
function we obtain the averaged Hamiltonian as a function of
the dimensionless variational parameker

(19

ﬁZ
H(K):Wf(K,a’), (20
where
xexp(—x)dx
f(K a ZQJ W (21)

The ground-state binding energy is determined as the mini-
mum value of the functiond («):

52
E(a)sz(a). (22

Here
f(a)=minf(x,a)=f(x(a),a), (23)

x® exp—x)dx  3a
1+x%(2)21P% 4

wherex(«) is a root of the equation:
»x3 exp( — kX)dx
o [1+x%/4]72 ~

B 3af°°
T4kt
(29)

Equation(24) makes obvious that the solutiof(«) exists
only at @ exceeding some critical value,:

jw x3dx |71
0 [1+X /4]5

This condition contradicts the above conclusion about the
existence of the bound state at an arbitrary smalhd dem-
onstrates clearly the restricted validity of the variational ap-
proach for the range of small coupling constants. However,
this formal restriction may be of no practical significance:
estimating the factor (@) 2 exp(—3/«) in the rhs of Eq.
(18) at a=1/8, we find the negligible value>610~°.

4 1
=5 (25)

a/ac

D. Comparison of analytical results
with numerical calculations

To conclude this section, we have found the bound-state
energies Eq(11) and Eq.(18) for large and small values of
the coupling constant Ed4), respectively. For intermediate
coupling we found the variational expression E2R). These
results are plotted in Figi2) as functions of the coupling
constante. In order to check the accuracy of the analytical
approximations we present in the same figure results of di-
rect numerical solution of Eq.3) for the potential(1). We
see that the variational approach gives quite satisfactory re-
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The ground-state wave function is given by E8).where the
characteristic size

|
PO= (12014 (28)

of the ground state is, indeed, smaller theat largea. The
ground-state energy of the bound particles is given by

E%E<0)=—2—TM€1|M2+ﬁwo, (29

where the secondquantum term is smaller than the first
(classical one by the factor1/\/a. Just as for the case of
the dipole-charge interaction, one may find the correction to
the harmonic approximation EQR9). As a result, we obtain
the following expression for the bound-state energy:

h? 15
E*W —4a’+4\/£_z , (30)

which is arranged according to decreasing powers/of
We see that in the strong coupling limit the dipole-dipole and
dipole-charge interactions result in similar qualitative fea-
tures of the bound states.

FIG. 2. Dimensionless ground-state eneBy (2ml?)/42E vs
coupling constant. The upper and the lower bunches of curves
correspond to the dipole-chargéc) and the dipole-dipolédd) in-
teractions, respectively. Dashed lines represent larggsymptotics On the contrary, in the small coupling limit there is a
(11) and (30), filled circles correspond to variational calculations, drastic difference for the two interactionso bound state
and solid lines present the results of a direct numerical solution oéxists in the potential Eq2) at a<1. The standard methd
the Schrdinger equation for the potential) and (2). of finding a bound-state energy for a shallow 2D well does

not apply straightforwardly to the potential E) because
sults for valuesx less than 5-6, while at larger the har-  the quantity
monic oscillator approach is more adequate.

B. Small coupling constant

0 -1
[ f V(p)pdp} (3D
IV. DIPOLE-DIPOLE INTERACTION 0

In contrast to the dipole-charge interaction potential Eqthat enters the expression for the binding energy does not

(1), the potential of the dipole-dipole interaction E@) is exist: the integral equals zero. The reason is that the potential

not a monotonous function gf (see Fig. 1 It has a mini- y(p) Eg. (2) has a repulsive part' anq its contribution to the
mum atp=0 and a maximum ab=2I. integral cancels exactly the contribution of the attractive part.

Below we carry out a more careful analysis of this case.
. Similar to the approach of the previous section we intro-
A. Large coupling constant duce the parameterp determined by the equality

As in the previous section, we begin with the case of large2MmV(p)/A*=k?. Being expressed via the dimensionless
values of the coupling constant E() (a discussion about coupling constant, the parameteris given formally by the
physical realizations of this case is postponed for the consame expressiop~(2al/k?)*? as in the case of the dipole-
cluding section We expect the bound state to be well local- charge interaction withe defined by Eq(5). Here we have
ized in the vicinity of the minimum o¥(p) atp=0, so that again assumed that<p<1/k and used the asymptotic ex-
the in-plane radiug, of the state is small as compared to the pression forV(p) at largep. At p<p (or p>p) one may

width ~| of the potential well. Expanding the potential en- neglect the ternk? [or 2mV(p)/#?] in the rhs of Eq.(3).
ergy Eq.(2) in p/l we have The following derivation is similar to the one in the previous

section. However, now we keep finite the upper linpi{sand
Lify  Hifho p of the integrals in Eqs(14) and (16), respectively(other-
V(p)~— ZT + 67 p?, (26)  wise these integrals would equal zgr8o, for the integral on
€ € the left-hand side of Eq(16) we obtain

which corresponds to the potential of a harmonic oscillator — pal? 1
1/~2

with the frequency fopv(p)pdp:_ﬁv(p)pdp%_ .
P p

_ 120115 As a result, we have instead of E{.6) the following rela-
wo=\/——5— (27) -
eml® tion:
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24l o The modified interaction potential has a minimum at
—In(kp)=—1. (32  p=2l. In the strong coupling limit there exists a bound state
P localized in the vicinity of this minimum with the binding

With the use of the definition of this relation leads to an €Nergy

equation fork:
a 2\Buipy  hag

~E0) _
1 BB t 7 @7
§(2ak|)2’3|n(2ak|)=—1. (33
_ _ _ 72 [ 4\5a (24\/§a)1/2
This equation has no solution. Thus, we come to the conclu- =c—0| — + :
sion about the absence of bound states at the limit of the 2mi 125 625
weak dipole-dipole interaction Eq2). (38)
Here the frequency is
C. Intermediate values of coupling constant: 12
Variational approach _ ( 24\/51/«1,“«2)
@0~ | "625em®

At intermediate values of the coupling constéf)twe use
the variational approach with the same probe wave functiomote that in this case we deal not with an isotropic 2D har-
Eq. (19 as in the previous section. The averaged Hamil-monic oscillator(as in the case of parallel dipoldsut with a
tonian is given by Eq.(20) with the following function 1D oscillator (for the radial degree of freeddmwhile the
f(k, a): second degree of freedom corresponds to the free angular

rotation. This difference explains the origin of the factor 1/2
(34) in the last term on the rhs of E¢B7). Another remark con-
cerns the difference between E(B) and a standard 1D
Schradinger equation with the kinetic energy term
[~d?/dx?y(x)]. The substitutiony(p)=(p)/\p trans-
forms Eq.(3) to a 1D Schrdinger equation with the standard
kinetic energy operator and a new potential

= x? exp(—Xx)dx
o =2 | i e

[note an additional power of in the integrand as compared
to Eqg.(21)]. This function equals 0 at= 0. With an increase
of «k it reaches a maximum, then a minimurat
k= «(a)], and grows monotonously at> «(«). The value
of k() is determined as the largest of the two positive roots 72
of the equatiordf(«,a)/dx=0, which is equivalent to the Verp)=V(p)+ 5.
following equation: 8mp

In the considered case of large the corrections to the
. (35) ground-state energy caused by the additional term in the ef-
o [1+x9/4] fective potential are of zero order in These corrections are

The ground-state binding energy is given by E@®2) and small as compared to the terms & and ~ ) retained in

: : Eq. (37).
23). Th I f Eq. I - > . .
i(ng)somz Sct:itlfg;nce(lﬁl); ) a. (35) exists only atw exceed Similar to the previous case of parallel dipoles, there are
-

no bound states in the weak coupling limit. However, the

B 3aKJ°°X4 exp( — kXx)dx
4

4 o xde rXdx )11 range of intermediate values of the coupling constant(&q.
a.==| max KJ 5 =0.491. (36  requires a more delicate approach: the simplest choice of the
3 o (1+x4/4) . : s
probe functiony(p) ~exp(—«pl/l) does not yield a minimum
of the averaged Hamiltonian. This is because such a wave
D. Comparison of analytical results function overestimates the contribution of the region

with numerical calculations p<+/2| where the potential energy is positive. A more ap-

To summarize, we have found the bound-state energieRfopriate probe function should model the decrease of the
Egs. (30) and (22) for large and intermediate values of the true wave function in that region. Actually it would force one
coupling constant Eq5), respectively. We have shown that t0 go beyond the simple one-parameter variational approach
no bound state exists at small coupling constasta, and ~ @nd here we will not pursue this aim.
found a variational estimation E6) for «.. These results
are plotted in Fig. 2 as functions of the coupling constant V. CONCLUSION

a. In the same figure we present also results of direct nu- Here we make some comments concerming ohvsical real-
merical solution of Eq(3) for the potential2). Similar tothe ._ .. . . ; rning pny
zations of different regimes for excitons in a double quan-

case of the dipole-charge interaction, we see that the vari m well. The weak counling regime corresponds to the case
tional approach gives quite satisfactory results for values ' pling reg P

less than 3—4, while at larger the harmonic oscillator ap- g ?hév?\b(\/e)?;er:galsgt?r::t f:\eeCti;:glljlceelg zfeﬁ:fgipglrg%]g:ﬁzlnirs
proach is more adequate. P ’ P

of the excitons are small. The realization of the strong cou-

pling case is more complicated. Assuming that the dipole

moment of the particles is due to an electron displacement by
Now we discuss briefly the case of antiparallel dipolesa distanced, so thatu=ed, the coupling constants Eq&l)

that would result in the opposite sign of the rhs of E). and (5) may be rewritten agsx=d/a for the dipole-charge

E. Antiparallel dipoles
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interactions anda=d?/(al) for the dipole-dipole interac- a.<a, the variational estimate for the binding energy is
tions; a= ek ?/(me?) is the effective Bohr radius. The case given by Eq.(22) with the functionf («) Eq.(23) determined
a>1 together with the validity conditiod<| of the dipole  correspondingly via Eq921) and (34). The critical values
approximation result in the following range of parameters.a., obtained within the framework of the variational ap-
a<d<| and \al<d<l, respectively. Thus, the realization proach are given by Eq$25) and(36). It has been demon-
of the strong coupling case would require a considerablestrated that no bound state exists for the dipole-dipole inter-
electron-hole separation within “excitons.” This could be action ate<<1, while for the dipole-charge interaction there
provided by a strong electric field. The possibility of physi- may exist a weakly bound state with an exponentially small
cal realizations of various regimes and applications to excibinding energy.
tons in double quantum wells will be considered in a sepa-
rate publication using the above results.

To conclude, we have studied a bound-state problem for
two particles confined to parallel two-dimensioiiaD) lay- This work was supported in part by the Deutsche Fors-
ers and interacting via dipole-charge E#). or dipole-dipole  chungsgemeinschaft and by the Russian Foundation for Fun-
Eq. (2) laws. The existence and the energy of the bound-statdamental Investigation§RFFI No. 96-03-34040 (V.Y.).
are determined by the corresponding coupling constant Eq#4. R. acknowledges the support of the Alexander von Hum-
(4) and(5). At a>1 the bound-state energy is given by Egs.boldt Stiftung, NORDITA, and the Estonian Science Foun-
(11)) and (30), respectively. At intermediate values of dation under Grant No. 2274.
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