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Recent advances in material synthesis have provided samples with CdSe quantum dots with a degree of
monodispersity high enough to allow for observation of excited exciton states and their size dependence
[Norris et al, Phys. Rev. Lett72, 2612(1994]. Here we report theoretical results for these exciton states
using the effective bond-orbital mod@BOM) for the hole and single-band effective-mass the@&@WIT) for
the electron in an iterative Hartree scheme including the Coulomb interaction and finite offsets. We present
results for hole energies, exciton energies, and exciton oscillator strengths and compare with experiments and
other theoretical results. Our results are found to account for most of the important features of the experimental
absorption spectra by Norret al. In particular, experimental states corresponding to the exciton ground state
(1I'g—1S,), as well as the Pg— 1S, and 33— 1S, excited states, have been identified. Also, a set of
experimental exciton states observed lifted with an energy close to the spin-orbit spliti#g0 meV above
the exciton ground state have been identifiedl'as- 1S, spin-orbit split-off states with large oscillator
strengths. A nonperturbative study of the effects of the crystal-field splitting, which is inherent in hexagonal
CdSe quantum dots, revealed patterns of avoided crossings, accompanied with redistribution of oscillator
strengths, between different exciton states for increasing values of the crystal-field splittings. In CdSe where
the crystal-field splitting is~25 meV, the splitting is not expected to have a significant effect on the present
guantum dot absorption spectf&0163-18227)06008-9

I. INTRODUCTION previously to study excited exciton states in CdSe quantum
dots.

Quantum confinement effects of excitons in quantum dots The SMEMT method was introduced by Baldereschi and
have been studied intensely in the past few y&ais.quan-  Lipari,'”*® who rewrote the Kohn-Luttinger Hamiltoni¥n
tum dots excitons may be confined in all spatial dimensionsfor the hole as a sum of terms with spherical and cubic sym-
and if the exciton Bohr radius is comparable to the quantunmetries. In SMEMT only the spherical terms are kept. Eki-
dot size, quantum confinement effects can be observed. Aov et al!! used the SMEMT to calculate the energy levels
variety of types of quantum dots have been investigated exfor excitons in spherical quantum dots. Both the light-hole,
perimentally and/or theoretically. They include CdS, ZnS,heavy-hole, and split-off valence bands were accounted for.
CuCl, CuBr, CdS, CdSe, CdTe, and GaAs quantum dot§he electron and hole energies were calculated indepen-
which usually are embedded in a large band-gap matrix suctiently, and for the electron levels a Kane mddletas used.
as glass, rocksalt, polymers, zeolites, or liquids. Both the electron and the hole offsets were assumed infinite,

Due to sample inhomogeneities such as distributions irand the Coulomb interaction was added only as a first-order
size and shape, the discrete nature of the exciton states perturbation.
usually not seen, and only the blueshift of the exciton ground The main advantage with the SMEMT compared to other
state due to confinement is observed. In the present theoretiumerically demanding methodge.g., the multiband
cal study we focus on CdSe quantum dbt¥ The reason is  effective-mass method, the tight-binding methods, and the
that advances in material synthesis for this material systerBEBOM) is that the hole energies are found by determining
have provided samples with CdSe quantum dots with a deroots of transcendental equatiotiddowever, in the applica-
gree of monodispersity which is high enough to allow alsotions of the SMEMT to excitons in CdSe quantum dots re-
for observation of excited exciton states and their sizeported so far, several simplifications have been made. First,
dependencé& Moreover, self-organization of CdSe quantumthe SMEMT introduces an artificially high symmetry com-
dots into three-dimensional quantum dot superlattices has r@ared to the symmetry of the hexagorial cubig CdSe
cently been demonstratéd. lattice. This results in an artificially high degeneracy of the

Different theoretical models have been used in the studgnergy states. Second, the assumption that the band offsets
of quantum dots. They include single-band effective-masgor the electron and the hole are infinite is probably not an
theory (EMT),'*"%6 spherical multiband effective-mass adequate approximation in most materiéilscluding CdSe
theory (SMEMT),!17=22 the empirical tight-binding quantum dots For finite offsets the exciton wave function
method?®?4 the empirical pseudopotential method?® and  will penetrate into the barrier material, and this leads to
the effective bond-orbital model(EBOM).2’~3! Both  lower confinement energies than for infinite offsets. For ex-
SMEMT (Ref. 1)) and EBOM (Ref. 31 have been used cited states where the wave functions are less localized, one
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must expect that the magnitude of the offsets will be particufunction is given and in the subsequent part the form of the
larly important. Third, the independent calculations of elec-hole wave function is chosen by group-theoretical argu-
tron and hole energies, which neglect the influence of thenents. In the last part expressions for calculating the oscil-
Coulomb interaction on the exciton wave function, are onlylator strengths are given. We will, however, only outline the
expected to provide a good approximation when the quanturnalculational schemes used in this study, since they are simi-
dot radius is small compared to the exciton Bohr radius. Fotar to schemes used in work reported eadfe?®3"*8These
larger quantum dots the Coulomb interaction between theeferences should be consulted for details. In Ref. 28 accep-
electron and hole should be included nonperturbatively.  tor states in semiconductors and quantum dots were investi-
In this study we calculate exciton energies and oscillatogated, in Ref. 37 excitons bound to isoelectronic impurities
strengths in CdSe quantum dots using the EBOM for then bulk ZnSe and in ZnSe-Zn ,Mn,Se quantum wells were
hole and the EMT for the electron in an iterative Hartreestudied, and in Ref. 29 excitons in CdS quantum dots were
scheme which incorporates the Coulomb interaction nonperconsidered.
turbatively in the calculations. The calculational scheme
readily includes finite electron and hole offsets. An addi- A. The iterative Hartree scheme
tional attractive feature of our scheme is that it allows for

studies of the effect of the crystal-field teftrdue to the Our model HamiltoniarH for the exciton is given by

hexagonal lattice in wurtzite CdSRefs. 12 and 36on the H=Hu (V. 1) +HA(Ve r)+o(lre—r 1
exciton energy spectrum and the corresponding oscillator n(Vno ") He(Veore) +o(lr=rel), @
strengths. whereH,, (H,) is the Hamiltonian for the holgelectron in

The EBOM is used for the hole since in hexagonal CdSehe quantum dot potential, and|r,—r.|) is the attractive
the light-hole and heavy-hole valence bands are nearly dé€=oulomb potential between the electron and the hole. The
generate at the zone center so that a single-band effectivexciton energies are found by minimizing
mass approach is insufficient to give quantitatively correct
results. The basic idea of EBOM is to use a minimum num- (W(re,rp)[H[W(re,rp))
ber of bond orbitals to describe the most relevant portion of (W(re,rp)|W(re,ry))
the band structure for the bulk materials. Both the light-hole, .
the heavy-hole, and the split-off valence bands are includelf’ & self-co_nS|stent Hartree scheme. We assume a separable
in the calculations. In EBOM the interaction parameters ardVave function
fitted to the experimentally observed bulk band structure _
around the zone center and are given in terms of the Lut- Vim(Te:rn) = dei(re) i m(rn). )
tinger parameters used in the SMEMT. As a consequenceéiere i (re) (41 m(rn)) denotes the wave function for the
EBOM (and SMEMT) predict much wider hole bands than |th (mth) energy state of the electrahole). This approxi-
what is experimentally observédEBOM can be viewed as mation is expected to be particularly suitable in the so-called
a discretized version of effective-mass theory and thus repstrong confinement regime where the electron and hole can
resents a link between the multiband effective-mass apbe regarded as nearly independent particles. This requires a
proach and the empirical tight-binding method. sufficiently small dot radiuf and sufficiently large electron

In Ref. 31 Ramaniah and Nair reported interesting EBOMand hole offsets. In the present application on CdSe quantum
results on CdSe quantum dots. They used interaction parandots we consider dots with radii of the order of the exciton
eters which grossly reproduced the main features of the bulBohr radiusa® and smaller. In order to test whether the
band structure. However, only infinite offsets were consid-Hartree procedure gives reasonable results for dots of this
erEd, and the Coulomb interaction was not included in th%ize, we have performed a Simp|e model Computation_ In
Hamiltonian. While the parametrization scheme in Ref. 3lsing|e-band EMT we calculated the ground-state energy of
may be advantageous for very small quantum dots, we Usgn exciton in a quantum dot with infinite offsets and with a
the standard fitting scherflein the present study since this (adius R=a}. For equal effective masses we obtained

scheme ensures agreement with multiband effective—mas&BEzy_ This is 4.4% higher than the result 5_97;@ of an

theory for Iarger .quantum dots. , extensive variational calculatibhwith the same parameters.
The organization of the rest of the paper is as follows. INEor smallerR the agreement is even better

Sec. Il the calculational method is outlined. In Sec. Il we Let us also mention that for infinite offsets using single-

discuss how the material parameters for CdSe are chosen. H&nd EMT for both the electron and the hole Kayantima

Sec. IV the hole energy spectra and, in particular, the eﬁecéstimated thaR had to be smaller than abou&®, in order

of the crys.tal-ﬂeld term are mvestlgated.. In Sec. V we Cal"[o be in the strong confinement regime. In this regime the
culate exciton energy spectra and oscillator strengths for

CdSe and compare the results with experiments as well a%round-state exciton enerdy is given by

@

other theoretical work. Some concluding remarks are given a*\2 a*
in Sec. VI. E/ER,~ w2(§> - 3.572EB —0.248, (4)

whereE’F;y is the exciton Rydberg energy. In Ref. 29, where
the present combined EBOM-EMT scheme was used on CdS
In the first part of this section we review the iterative qguantum dots, it was confirmed that the separable wave func-
Hartree scheme used in this work for calculating the excitoriion gives infinite-offset ground-state energies in good agree-
energies. In the second part the form of the electron wavenent with the last two terms in E¢4) for R<2a} We thus

Il. CALCULATIONAL METHOD
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expect the use of a separable wave function to be a good B. Electrons
approximation particularly for the lower-lying exciton states
with large offsets.

Insertion of the separable wave functi@) into Eq. (2)

In the single-band effective-mass theory the electron
HamiltonianH, is given by

yields %2
2

He: - ﬁVe+VQD(re), (12)

(nmlHnl¥nm  (eilHel Yer) N (0 mibe 0] Ye1¥n m) ¢

(Yn.ml ¥nm) (Peale)  (hml ¥nm){Werl Per) wEereme is the spherical effective mass of the electron, and
where
=™, (5)

whereE™! is the energy of the exciton corresponding to the Vop(Tre) = 0 forlrd<R (13

electron in staté and the hole in state. Ve forrg=R

_The energy spectrum for a hole in a quantum dot is ob~Is the quantum dot potential.
tained by minimizing

In the experiments on excitons in CdSe quantum ots,

(ol Hiol ) the CdSe dots were embedded in an optically transparent
A7hmlT Wl Phm/ = (6)  organic materialpoly(vinyl butyra)]. The effective mass for
(&, ml ¥, m) this material is unknown, and we assume for simplicity the

for properly chosen basis functions for the hole. HEfgis same effective mass in the surrounding material as inside the
the energy for thanth energy state for the hole alone, not quantum dot. Thls should be unproblematic when the exciton
interacting with the electron. We note that estimates for en' strongly gonflneq to the quantum dOt'. .

A Gaussian set is used as basis functions for the electron:

ergies of the excited states can be found by independent
minimization with respect to the variational parametérs.
For simplicity the indicesn andl for the hole and electron
states will be omitted below. o The B’s are chosen separately for each quantum dot state to
tiv;rr]rfineirﬁggtri]oing;gtfeghaglee fgrl:gdeIlte?:rt?gxe;l));o%{e(r:r?n'sl'i(i::-isminimiz‘e the energy of the state. A linear combination of
. i : H [P ;
done by Soling the secular equations for an apProiate SEEic 1o Those bads fnclions do not full he ifine-
of basis functions for the hole, offset (V=) boundary condition§y(R) = 0], and for the
(| Hint V| ) description of the treatment for,=o we refer to Ref. 29.
i ’h ™ Teffl 7/ _ (77 Note that our choice of basis functions for the electrons
(ol ) " makes it possible to study only electron states with spherical
symmetry(denotedS,). However, most of the exciton states

Yi(re)=e Aire, (14)

where identified in the experiments in Ref. 12 for CdSe dots are
(Yn Yoy 2 likely to correspond t&, states, and we therefore limit our-
Veir=Ver(rn) =———1—7=1 (8)  selves to such states here.
(e “le™) The interaction between the electron and hole is assumed

with [¢7~1) fixed. [In the first step f=1) V& is omitted] ~ '© P& Coulombic:

Thereafter we find the electron wave function by minimizing

(el Het+ Vil y2) _ ©
(el ) e’ Again for simplicity, the dielectric constantis taken as the
bulk value of CdSe both in the dot and in the surrounding

e2

v(|re—rp)= (15

B 4aelrg—ry|”

where material. In Ref. 37 the incorporation of the Coulomb inter-
n n action in the calculational scheme is described in detail.
h h <¢h| % | ¢h>
Veir= Verlle) = ny N (10
(4l ) C. Holes
with |47 fixed. HereVe; (V1) is the Hartree potential felt Because of the complexities of the valence-band structure,

by the electron(hole), while |43) (J41)) is the electron We use the effective bond-orbital mod&BOM) to describe
(hole) wave function after thath iteration. This alternating the holes. Here we study quantum dots of hexagonal CdSe
solution of the hole and electron problems is repeated untivhere a crystal-field terrhi ; splits the otherwise degenerate
the values foE,, andE, have converged. After convergence, vValence-band edge. Since the crystal-field splitting of the

the exciton binding energk is given by valence-band edges is relatively small in CdSe26
meV),*? it has usually been neglected or treated as a pertur-
(nibelv| othn) bation in theoretical studies of quantum d®'t$?
E=EntEBe— 7~/ 7 v (11) We use two different types of EBOM hole descriptions. In
(Il ) (el o)

the first descriptiorH , is omitted. Then the system is cubic
The desired accuracy is typically reached after four or fiveand corresponds to the point grodlg, and the hole basis
iterations. functions used in the variational calculations are constructed
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accordingly. Since the terms linear knare neglected in the
EBOM Hamiltonian, the correct point group for our model is |R,u
O;,. However, in accordance with previous studies we will
use the notation for th&, group?® .
In the other description the crystal-field term is included +'_ I's
. o : . : IRz)¢ %, (21
by adding to the Hamiltonian a diagonal term, which splits J3
the otherwise fourfold degenerate band-edge sfat&s® L , ,
With this additional term the symmetry of the hole Hamil- HereR denotes a lattice site in the cubic latti¢®, a) de-
tonian corresponds to the symmetry of the EBOM Hamil-Notes ana-like (a=x,y,z) bond orbital at siteR, and
tonian describing holes localized in quantum wells. We can.5,, denotes the two electron spinors with spin directed in
therefore apply previously derived basis functidh® cor-  two opposite directions. We have used the Koster-Dimmock-
responding to systems with,q symmetry, in the present Wheeler-Statz conventiéh(u') for the SOBOs to derive
calculations incorporating the crystal-field term. Eqgs.(16)—(21). The bond orbitals are assumed orthonormal,
In Ref. 12 Norriset al. found that states with odd-parity i.e., (R,a|R’,a')= g r'S,.o.- The bond orbitals are also
envelopes for the hole play a minor part in explaining theassumed sufficiently localized so that only nearest-neighbor
experimental absorption spectra of CdSe quantum dots. limteractions need to be included. The interaction matrix ele-
our present EBOM schemes for the holg;(andD,q) we  ments between the orbitalR,a) and|R’,a’) for a fcc lat-
thus only consider hole states with even-parity envelopes. tice are given b§/*?
Below we first describe the method used to investigate the
cubic (Ty) system, and thereafter we present the basis set for (R,a|H|R",a’)=Ep0r g/ 64,0’
the hexagonal,,) system.

Iy I_ I'g i I'g

—12? T \/§|R’X>¢1/2_\/§|R'y>¢1/z

+ E 5R7R’ ,T{ExyTaTa’(l_ 5a,a’)
1. Treatment of cubic system T

In T4 the electron sping=1/2) transforms a$'s, while H[Ex2+ Ejd1—72)16, 0} (22)
the p-like valence orbitals transform according to the HereE. is the i ion b bond orbital h
representation. Group theory givésX [g=I,+Tg. We ereE, is the interaction between bond orbitals at the same

want to incorporate both the heavy-hole, light-hole, andSIte: @ndE, . is the interaction between aa-like bond

split-off valence bands in the calculations. Thus we include?rbital located at the origin gnd ar'-like orbital Ioca_ted at
six spin-orbit-coupled bond orbitalSOBOS, two I'5, and (1,1,0/2, wherea is the lattice constant of the cubic struc-

four I'g, to describe the hol& ture'. 'The sum over goes over the twelve nearest-neighbor
position vectors in the fcc lattice.
The interaction parameteis,, E,,, E,,, andE,, are

1 T determined by expanding the tight-binding Hamiltonian,

E|R'y>¢—1/zv (16 pased on Eq22), to second order ik and requiring equiva-
lence with multiband effective-mass thedfyin terms of the
Luttinger parameters, the interaction parameters are found
(in the hole pictur®) to be given by the following expres-

r [ r
|R’u1/82 == E|R’X>¢—61/2_

r i r 1 r .
IR, u_® =E|R,X)¢1,Z—E|R,y>¢lfz, (17 sions:
72 2
= — _— = — + PR
N i N 1 . 5 ., Exy 6vs3 2m0a2a Exx (71 472)2m0a2,
IR, U3 :%|R’X>¢1/2+%IR’V>¢1/2+'%|R=Z>¢—1/2' ) ,
(18 Ezzz—(h—S)’z)W- Ep:_Ev+1271m2'
(23
i l" 1 1“ . .
|R,ur_s =——|RX)¢_5 +—|R,y) ¢ Here y4, y,, andy; are the Luttinger parametensy, is the
32 V6 vz e v rest mass of the electron, ailit) denotes the band edge of
the heavy-hole and light-hole valence bands. Hole offsets are
4 £|R Z>¢r6 (19 included in the model by choosing differefy in the dot and
J6 vz barrier material. In the calculational scheme we assume that

we have the same lattice structure on both sides of the quan-
tum dot boundary. We also use the same material parameters

r [ r 1 r in the barrier and dot materials. This is obviously not correct

IR, Uy 5=~ ﬁ|R7X>¢761/2+ﬁ|R'Y>¢761/2 in our casé? but for states sufficiently localized to the dot,
the error introduced should not be significant.

i In principle, we could have used in a variational calcula-

-—|R,2) ¢£f’2, (20)  tion a basis set consisting of six SOBOs per site in the cubic

V3 lattice. A large reduction of the basis set is, however,

achieved by exploiting the symmetry of the system. We do

and this by expanding the hole wave function in exponential ra-
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dial functions multiplied with symmetry-adapted angular ba- 2. Treatment of hexagonal system

sis functions. These symmetry-adapted basis functiops are in eor the hexagonal system we use basis functions with

turn combinations of products of cubic harmonicsK;#,  p,, symmetry, and they are constructed in a similar way as

multiplied with SOBOs?® The presuperscrift refers to the  the cubicTy basis functions above. The,; EBOM basis

order of the cubic harmonft functions have been used previously, and we refer to Refs.
We are interested in not only th& ground state, but also 29, 37, and 38 for a more thorough discussion.

in excited states, which have other symmetries as W]l ( In D,q the electron sping=1/2) transforms a§'g, while

andI';). However, thd’s states are not optically active, and the p-like valence orbitals transform according to figand

we will therefore focus only on th&'; andI'g states. The TI'c; representations. According to group theory

I'; states are doubly degenerate<(1/2,—1/2), and thel's ~ (I'y;+ ') xXI'¢=Ig+ T';+ 2I';. Thus in EBOM we de-

states are fourfold degeneratev=(3/2,1/2—1/2,—3/2).  scribe the hole state by six spin-orbit-coupled bond orbitals

Hence it is only necessary to consider, say, ﬂﬁz and (SOBOs3, a TI'g-like and two different I';-like pairs:

1/2 r r r r r
I'7* states. s |R,u1/62F=_|R,u1/82F, |R,u_§1/2 =|R,uF81/2, |L;;,1u1,72
- — 1 — 2 —
From Ref. 28 we have that thBg“ symmetry-adapted =[RU"%), |R,Mu"7 ) =|R,usg), |R,2uly=|R,ui%), and

basis functions are given by ten different combinations of|

. . . Fg 1
products of cubic harmonics and SOBO|é"/’3/2(R)>a’ symmetry have been related to the cubic SOBOs in Egs.

|Lz//g,82(R)>b, . ,|L<//£,32(R)>j .The expressions for thed®”  (16)—(21).
basis functions and the corresponding five differBHt ba- The crystal-field splitting of the valence-band edges is
sis functions can be found in Ref. 28, while the cubic har-included by adding the following on-site interactiém:
monics can be found in Ref. 43. ,

In our calculations cubic .harmonics corrgsponding to <Rau£|HA|R,vul,:'>:_5R,R’5vv’5FI"A(F)1 (26)
L=0, 2, 4, and 6 have been included, and this corresponds
to a total of 28 angular basis functions fbg and 15 for WwhereA(I')=A for '=T'g, andA(I')=0 for '=T';. Here
I';. In Sec. IVA and in the Appendix we will justify the A is the value of the splitting between theandB valence-
neglection of cubic harmonics with=8. Note that with band edges. We note in passing that holes in ellipsoidal
only evenL’s we restrict ourselves to states with even-parityquantum dots also can be approximately described by adding
envelopes.(To calculate states with odd-parity envelopesa term of the form given in Eq(26) to the spherical dot
one would have to use a separate hole basis set includirigamiltonian®®** The results presented for hole energies for

R,2u'” = |R,urjl,2), where the SOBOs for the hexagonal

only cubic harmonics with odd’s.) A in the range 0—100 meV can thus also be applied to ellip-
A spherical cluster with radiuB, is used in the calcula- soidal quantum dots.

tions, and we use the following basis functions for fhg As for the cubic case, the hole wave function is expanded

andT'; states: in a set of symmetry-adapted angular functions multiplied

with exponential radial functiors:*’ We need separate basis
function sets for thdg andI'; hole states. For example, the

J. _E mXe+yi+2z° I's basis functions are given by nine different combinations
I nmL= = €08 35 Reu of products of angular functions and SOBOs:
r r r . .
R [ (R as [ 5(R)p, - - [ AR))i. They are listed in
—an\XP+y?+ 2L ] i i
Xe~ % 1", (R))m, (24 Ref. 29. The angular functions for thé, case are given

accordingly’’ Note that these angular basis functions corre-
spond to cubic harmonics with=0 and 2 only.

herej, u=Ig, 3/2 orI';, 1/2. Th bscripta, m, and S ) . .
wherel, n="s or 7 © subscripta, m, an This gives the following basis functions:

L refer to the radial basis function, the symmetry-adapted
basis function 4,b, ... ,j for I'g anda,b,...,e for I'; in

2 2 2
Ref. 28, and the order of the cubic harmonic, respectively. Wfa, . mZE os(z M
The basis functions are chosen to satisfy the zero-amplitude 2 2 Reu

boundary condition at the cluster surface. The sum &ver
goes over all sites in the cluster, excép10,0. The largest

cluster used in the calculations had a radius of 63 A. The

appropriate bond orbital at the center site is included sepa¥nerem refers to one of the nine angular functions. We have
rately in the basi&® Up to twelve appropriately chosari's ~ introduced anisotropy parametégs, in the exponentials to
are used in the calculations. With up to 28 angular function&llow for more flexibility in the wave function. However, for

this gives a maximum of 1228+ 1=2337 basis functions.  Most optically important states the isotropic chojeg=1
The quantum dot radiuR is defined bg® was found to be favorable. We have used up to twelve dif-

ferenta’s (andu’s) in our computations which together with
the appropriate SOBO on the central-cell site give a total of

13 (12x9)+1=109 basis functions.
a, (25

_ 2.2 2
X @~ X+ + punz |¢1;/%7(R)>m, 27

(3N
~\ 167

D. Oscillator strengths

whereN is the number of sites in the quantum dot. In the In this subsection we derive expressions for the oscillator
infinite hole-offset cas®,, is equal toR. strength for localized excitons in the cubic system. For the
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corresponding expressions for the oscillator strength in the TABLE I. Material parameters for CdSe.
hexagonal system whef@,4 basis functions are used, we
refer to Ref. 37. Parameter Parameter valugxdSe

Within the effective-mass formalism the oscillator

. Dielectric constank(0) 9.2
6 0
strengthf for the bound exciton has the fofaf Band gapE, 1840 meV
2 . T Lattice constana 6.052 A
fi:ﬁz [(ucol pilul o) f d3r () gl(r)| , Electron effective masm, 0.13n,
0=0 ] (28 Electron offsetV, 600 meV,
Spin-orbit splitting\ 420 meV
when a separable wave function for the exciton, i.e., Hole offsetV,, 600 meV, 1000 meVee
First Luttinger set v1=1.66, y,=7y3=0.41
\p(re,rh):<2 %(rh)uio(rh)) Ye(re)Uco(re), (29 Second Luttinger set v1=1.66, v,=0.41, y3=0.53
] Third Luttinger set y1=1.66, y,=0.347, y3=0.452
is assumed. The subscripin Eq. (28) denotes the polariza- Crystal-field splittingA 25 meV

tion direction of the lightE, is the energy of the transition,
Ugo is theI'-point conduction-band Bloch function in bulk,
u), denotes thd -point valence-band Bloch function with

the same symmetry as the SOBR) u?j), and, and I#Jh are

envelope functions for the electron and hole, respectively. IIl. CHOICE OF MATERIAL PARAMETERS
Since we use the EBOM to describe the holes, (8 must
be modified correspondingly. In Ref. 37 the analog expres- | this section we discuss our choice of material param-
sion eters for CdSe used in the calculations. In Table | these pa-
2 rameters are summarized. The values for the electron effec-
tive massm,=0.13m,, the cubic lattice constarg=6.052
A, the spin-orbit splitting, =420 meV, and the crystal-field
(30 spliting A=25 meV have been taken from
for the oscillator strength for a bound exciton has been deLandolt-Banstein’® We have used the low temperatyfi&0

rived. HereG;(R) is related to the EBOM hole wave func- K) static dielectric constané(0)=9.2¢,, where ¢, is the
tion |y) via vacuum permittivity. This is an average of the dielectric

constant® €, (0)=9.15, and €(0)=9.2%,. The sub-

easily can be combined with the appropriate prefactor to de-
termine desired oscillator strengths.

; G;(R)¥e(R)

2 .
= T 2
fl mOEO; |<uc0|p||uv0>| VQ

_ r. scripts| and_L denote parallel and perpendicular to the hex-
|¢h>—% Gj(R)|R’UmJj>’ (32) agonal axis, respectively. Since there is some controversy
o whether to choose the static dielectric conste(it) or the
andVg, denotes the volume of the primitive cell. optical dielectric constant(=),*” we will also discuss the

In our calculations the symmetry of the electron waveconsequences of alternative choices for the dielectric con-
function ¢, is spherical. For cubic symmetry only the hole gignt.
basis functions consisting of angular symmetry-adapted Eximov etal!* used the Luttinger parameter set
functions withI'; symmetry may give nonzero contributions ,, =21 ,= y3=0.55 for CdSe. This Luttinger parameter
in Eq. (30). This is because only these basis functions belonget was adapted to experimental results on CdSe quantum
to the same irreducible representation as the spherically synots. We will, however, adapt our Luttinger parameters to
metric electron wave function. Thus only a small subset ofoxperimental values of bulk CdSe effective masses.

the hole basis functions will contribute in E@O0),*” and the For hexagonal bulk CdSe the effective masses corre-
expression for the oscillator strength forj dike bound ex-  sponding to the two upper valence bands, which are split by
citon simplifies to the crystal fieldA, are traditionally denoted by subscripts

2 A andB. Effective hole masses parallel and perpendicular to
. (32 the hexagonal axis are denoted by the subscfiipgad 1,
respectively. The Luttinger parameters are connected to the
effective hole massesya, m o, Mg, andm, g for bulk
CdsSe in the hexagonal phase’b$ ma=mg/ (y1—2y5),
Mya=Mo/(y1+ ¥2), Mp=Mo/(y1+27,), andm, g=my/
, (y1— 7v,). From Landolt-Bonsteirt® we find the following

(33 experimental values for the hole massesj,=1.17m,,

m, o=0.375n,, and m, 3=0.92m,.*°® To our knowledge

multiplied by a prefactor. The overlap factiirdepends only there are no experimental values fuofg .
on the envelopes of the exciton wave function and is the Our first set of Luttinger parameters;;=1.66, y,=
same for all the degeneralg states. In contrast, the prefac- y;=0.41, is found by minimizing m”A,t—mHA,expt)z
tor is different for thel's ¥* and 'y ? states and depends + (M, o= M, A expr) >+ (M, gt~ M g expr)> With respect to
also on the direction of polarization. In this paper we presenthe Luttinger parameters, assuming=y; and using the
only overlap factorgfor normalized wave functionsvhich ~ formulas given above for the connections between the Lut-

2 )
f; :mKucd pi|u{;0>|2VQ

; Gj(R)¢e(R)

From Eq.(32) we observe that the oscillator strength is given
by the overlap factor

K=Vg| 2 Gi(R)¥e(R)
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tinger parameters and the effective hole masses. Here the TABLE Il. Compatibility between spherical symmetfthe full
subscriptt (expt) on the effective masses denotes theoreticafotational grougd(3)] and cubic symmetrithe T point group for
(experimentgl values. The resulting theoretical effective states with even-parity envelopes.

hole masses nfja;=1.19M5,m, 5;=0.48n5, m,g;

=0.80m,, andmyg =0.40m) are in good agreement with  Spherical symmetryO(3)] Cubic symmetry Tq)
the corresponding experimental values for hexagonal CdSe. Su» r,
Note, however, that by choosing these Luttinger param- Sun I's

eters withy,= y3, we have neglected the nonspherical terms

. . o . D Ig+I

in the Luttinger Hamiltoniarf? To our knowledge the ratio DS/Z r +6F +8F

betweeny, and y; is not known for CdSe. Using the Lut- 7 S
Gop I'7+2Ig

tinger parameters listed in Lawaéfzye observe that the
ratio between y, and y; is quite similar for ZnSe
(v,=1.24, y3=1.67) and ZnTe 4,=1.07, y;=1.64). As- ) ] ) A
suming that the ratio betweep, and y; is the same for tations with spherical and cu_bl“Ed symmetry? Th|§ table _
CdSe and CdTey,=1.89, y5=2.46)%° we obtain the sec- shows how energy levels which are degenerate in a spheri-
ond set of Luttinger parametery,=1.66, y,=0.41, cally symmetric system are split by the cubic lattice struc-
v3=0.53 for CdSe. With this Luttinger parameter set thereture.
will be cubic terms in the Hamiltoniat:'® For reasons ex- ~ Cubic harmonics corresponding =0, 2, 4, and 6
plained in the next section we will also use the third Lut- have been included in the EBOM hole basis functions. In the
tinger parameter set in Table I. SMEMT this suffices to describe th®, D, and G states
The band-gap enerdy, is not a parameter in our EBOM since these states have contributions only fiom0 and 2,
calculations, but in order to compare EBOM results withL=2 and 4, andL=4 and 6, respectivel}t The lowest-
experiments, we need this parameter.  Fromlying hole states generally correspond to small angular mo-
Landolt-Bansteif® we have E;=1.84 eV for hexagonal menta, and an accurate description of $heD, andG states
CdSe. is sufficient for the present purpose. In the Appendix this is
CdSe quantum dots can be embedded in different types afemonstrated more clearly by showing the relative impor-
materials and the values of the electron offsetand the tance of contributions from differerit’s for the ten lowest
hole offsetV,, for these structures are generally not known.I'g and five lowest’; states.
Several values of the electron and hole offsets are therefore In Fig. 1 the energy spectrum for low-lying hole states in

used in the calculations. CdSe is shown as a function of the dot radius for an infinite
hole offset for the cubic EBOM and the SMEMT using iden-
IV. HOLE ENERGIES tical material parameters. The SMEMT results are found
_ from the transcendental equations used in Ref. 11.
A. Comparison of EBOM and SMEMT From Table Il and Fig. 1 we see that th&,}, state cor-

In the following the EBOM hole energy spectra are com-responds to the lowedtg state (I'g) and that the Dg,
pared with the corresponding hole spectra obtained using thgfate should generate bothl'g and al’s state in the cubic
SMEMT. The SMEMT used earlier by Ekimoet all! for ~ case. The SMEMT curves forS, and 1Ds, are seen to
CdSe quantum dots includes both the heavy-hole, the lightntersect aR~ 18 A. In the EBOM model this gives rise to
hole, and the split-off valence bands, and the hole offset igin avoided crossing betweed'@ and d'g. Note that we
assumed infinite. With SMEMT the hole energies can behave not included’ states because only states correspond-
found from numerical root-finding of transcendental equa-ing to theS,,, and Sz, states ['; andI'g) will be optically
tions, and this method thus requires less work than thactive. This negligible oscillator strength for the cullig
EBOM. Therefore it is important to compare the results ob-states was also verified directly for sorhig exciton states
tained by these methods to investigate when the simplemsing our hexagonal EBOM program.

SMEMT method is sufficient and when the more extensive According to Table Il the D, state should give rise to a
EBOM calculational scheme must be used. For the lowestFg, al'5, and al'g state. For large radiiR~30—50 A) the
lying hole energies such a comparison has previously beehD-, state is seen to correspond tb#and 1I';, which are
done for CdSeéRef. 31 and GaAs* nearly degenerate. The reason why tHg 4nd 1, states

With the spherically symmetric Hamiltonian inherent in are not completely degenerate even wjth= y; is presum-
the SMEMT the total angular momentuf and the parity ably the cubic lattice inherent in the EBOM method. The
are good quantum numbers. We recall thRatL +J, where influence of the cubic lattice is, however, less for large dot
L is the orbital angular momentum operator for the envelopeadii than for small dot radii as expected.
wave function, and represents the spin operator. We use the For small dot radii R<20—30 A) the SMEMT gives
common notatiomn,Qr (Q=S,P,D,F,G,...) where the considerably larger hole energies than the EBOM. This is in
states are labeled by the smallest angular momehtimthe  qualitative agreement with previous comparisons between
envelope, and, is the number of the level with a certain EBOM and effective-mass theori&sFor the largest dot ra-
symmetry'! Each hole state has contributions only fram  dii (R>40—50 A) the differences between the two models
andL+2 in the spherical approximation. The cubic lattice are small, at least for the lowest states.
structure of CdSe will split some of the energy levels that are In Fig. 2 we show the cubic EBOM hole spectra for finite
degenerate in the spherically symmetric system. In Table lbffsets (1000 meV and 600 mgVwhich will be needed
we have shown the compatibility table between the represerwhen calculating excitoinding energies in Sec. V C. As
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By increasingy; from 0.41 to 0.53, we not only include
cubic terms in the Hamiltonian, we also change the spherical
terms?”1852|n order to do a more transparent investigation
of the influence of cubic terms, we have done calculations
for the Luttinger parameter sety;=1.66, y,=0.347,
v3=0.452. With this parameter set cubic terms are intro-
duced in the Hamiltonian without changing the spherical
terms compared to the parameter set=1.66, v,
= y3=0.41. For infinite hole offset we find that the maximal
change from the cubic terms to the ground-state hole energy
for dot radii in the range 12 A-51 A is less than 3 meV. For
the five lowestl’g states we find the largest difference to be
17 meV, and for the two lowedf,; states we find, corre-
spondingly, 37 meV. The largest deviation between the hole
energies of the two Luttinger parameter sets is found for
small dot radii. However, we may conclude that inclusion of
cubic terms in the Hamiltonian has little effect on the ener-
gies of the lowest hole states.

Figure 4 exhibits the hole energy spectra as functions of
the spin-orbit energy for a fixed radius R=20.8 A) using
the cubic EBOM and the SMEMT with infinite offsets. The
0 cubicI'g states are not included. As observed in Fig. 1, sev-

20 30 40 50 . )
Radius (A) eral crossings of energy states in the SMENFIg. 4(b)] are
seen to correspond to avoided crossings in the EBOM results

FIG. 1. Hole energie€,, for several states as functions of the [Fig- 4@]. The crossing of, e.g., theDl;;, and the 5, state
dot radiusR for infinite hole offset for the cubic EBOMX=0)  for A~300 meV can be seen as an avoided crossing between
and SMEMT methods. The material parameters for CdSe in Tablethe 2I'g and 3’ states. Apart from this, the qualitative fea-
with y,=1.66, y,=7y3=0.41 have been used. The five solid tures are the same. As in Fig. 1, the EBOM hole states are
curves correspond to interpolations of numerical EBOM resultsobserved to have smaller energies than the corresponding
(marked as doisfor the five lowest's states, and correspondingly SMEMT states. The largest difference is observed for the
the two long-dashed curves give the two lowBststates. The six  pigher hole states. From Fig. 4 we can also see that for this
(iotted ) curvelsD Shfg’)" thleG SMEdMlTS rets‘t“ts hTOL the 4ot radius the decoupling of the spin-orbit split-off baie.,
th%/éfx Io%v/ezét holgzs’tatesw\fv’ith e\?ézr;-s;rity eﬁflesloapiz fvc\)lr Ilgrg:rreadii}\zoo) is a good approximation for CdSewith A=420
meV) for the four lowestl'g states. However, for thé';
states(except 1';) this approximation cannot be used since
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Sﬁgggtig’n ;ﬁlvgﬂe?]ftfi?ttshéeﬁg:; in lower energies due to "these states have major contributions from the split-off band.
We also tested EBOM for thé lowest energy states against We may conclude that the SMEMT and EBOM give

the finite-offset SMEMT scheme used 83)// Sercel gandqualitatively similar hole energy spectra. For large radii the

Vahala?® who did not include the spin-orbit split-off band. two methods also give quantitatively similar results, while

: for small dot radii the SMEMT gives larger hole energies
The comparison, not shown here, shows the same goo . . )
agreement for large radii as for the infinite-offset case. than the EBOM. This is reasonable since the EBOM disper-

In Fig. 3 we show the hole spectra for sion'relation, fitted to agree With_ the SME_MT dispgrsion
y1=1.66, y,=0.41, y3=0.53, andV,=o. The only dif- relation clo_se to the zone center, is predomlnantly !o(/uer
ference between the material parameters used in Fig. 1 arfge hole picturg th%‘;’m the SMEMT dispersion relation for
Fig. 3 is the value ofy;. By comparing the cubic EBOM arge wave vectors.
states in Fig. 1 and Fig. 3 carefully, we see that the hole
states withy;=0.53 have somewhat lower energies than the
corresponding states far;=0.41. For the ground-state en-
ergy 1I's we find the maximal difference between the two In this subsection the crystal-field term in the hole Hamil-
Luttinger parameter sets for dot radii in the range 12 A-51tonian due to the hexagonal structure of CdSe will be in-
A to be 14 meV. For the five lowedtg states we find the cluded in the calculations. The crystal-field term splits the
largest difference to be 115 meV, and for the two lowestfourfold degeneratd’s states in the cubic system into two
I'; states we find 100 meV. Generally, for both thgand  pairs of doubly degenerate states dendfgdandI'?. To
I'g states, we find the largest differences in the hole energieavoid confusion we have added the supersdbipb denote
for small dot radii and for the higher-lying states. that theD,4 (and not theT §) notation is used.

We have also done calculations for finite offset, Efros’! has derived expressions for the splitting of the
V,,=1000 meV, withy;=1.66, y,=0.41, y3=0.53. The 1I'g states as a function of the crystal-field splittitgn the
results lead to the same qualitative conclusions as for infinit€MEMT approximation. In Efros’ workA was treated as a
offset. perturbation. Some manipulations of Efros’ results give

B. Crystal-field term
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FIG. 2. (a) Hole energiek,, for several different states as functions of the dot raéidsr a hole offsetv,,= 1000 meV calculated with
the cubic EBOM A =0). Except for the hole offset the same material parameters as in Fig. 1 have been used. The five solid curves are

interpolations of numerical resul{snarked as dojsfor the five lowestl'g states, and correspondingly the two dotted curves show the two
lowestI'; states(b) Same as fofa), but V,=600 meV.

states due to the crystal-field term is less than the splitting
between the I'§ and I'? states.

The results foR=51.3 A are shown in Fig.(6). We see
that increasindR has a negligible influence on the effect of
the crystal-field term on the energy of th§@. state. How-
ever, the T'? is affected, and the deviation between EBOM
and SMEMT results is seen to be substantial for
A>30—-40 meV. The reason for the qualitative difference
between the results fdR=20.8 A andR=51.3 A is pre-
sumably that the perturbative Efros formulas are only appli-
cable as long a& is much less than typical hole confinement
energies, which are roughly proportional Ro 2.

Also for R=51.3 A we observe that the splitting between
he 2I'2 and 'Y states from the crystal-field term is less
than the splitting between the'® and '} states.

In conclusion, since the crystal-field splitting4s25 meV
for CdSe, our EBOM results indicate that Efros’ formulas,
a%q. (34), can be applied for the splitting of the ground state,
at least for dots with radi 50 A.

1 1
diro=—SA[1+v(B)],  Suwo=—A[1-v(B)].
(34)

Here 51FSD and 51r$ denote the splitting in energy

[6=En(A)—EL(A=0)] between the cubic 15 states and
the 1y and 'Y states, respectively, and=myg/ma.
Numerical values of the function(B) are found in Efros’
article?!

In EBOM the crystal-field term is included by adding the
on-site interaction term given in ER6) to the Hamiltonian.
We could have studied the effect af perturbatively using
the cubic EBOM program. However, by using our hexagonak
EBOM program withD,4 basis functions, we can do a full
nonperturbative calculation.

In Fig. 5 the splittings of the EBOM hole energies for the
1T's and X' cubic states into LY, 1T'2 and 'Y, 2T°
states, respectively, due to the crystal-field term are shown
functions of the crystal-field splittingd for the dot radii
R=20.8 A andR=51.3 A. Figure %) shows that for
R=20.8 A the agreement between the hexagonal EBOM
results and the perturbative SMEMT resulsg. (34)] is
generally good for both thelly and I'2 states. Figure @)
further shows that the spliting between thER2and I°?

V. EXCITON ENERGIES

This section is divided into five parts. In the first subsec-
tion the exciton ground-state energy is calculated and com-
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meV, V,=V,=600 meV, andV,==,V,=600 me\j. We
see from Fig. €) that the infinite-offset EBOM-EMT calcu-
lations overestimate the ground-state energy compared to the
experiments of Norriet al}?> We also see from Fig. 6 that
for the infinite-offset case the EBOM-EMT scheme gives
slightly lower ground-state energies than the combined
SMEMT-EMT scheme with the Coulomb interaction in-
cluded perturbatively. The finite-offset results, particularly
the case with/,,=V,=600 meV, are seen to fit these experi-
ments well, however. For the more scattered experimental
results shown in Fig. ®) the situation is less clear, but also
here the infinite-offset results seem to overestimate most of
the experimental results. Note, however, that the experiments
shown in Fig. §b) correspond to CdSe quantum dots in vari-
ous matrix materials, and the offsets will thus not be the
same for all experimental points shown. Note also that the
ground-state energies are much more susceptible to the elec-
tron offset than the hole offset. This is illustrated in Fig. 6 by
the relatively small difference between the EBOM-EMT re-
sults forV,,=o andV,, =600 meV with finite electron offset
(V=600 meV.
We have also performed EBOM-EMT calculations for the
20 30 20 50 ground-state exciton energy withy =1.66, v,=0.41, and
Radius (A) v3=0.53 with the other material parameters the same as in
Fig. 6. Both for infinite offsets {¥,=V,=2) and for finite
FIG. 3. Same as in Fig. 2, but with infinite hole offset Offsets /e=V,=1000 meV, we find that increasingys
(V=) andy,;=1.66, y,=0.41, andy;=0.53. from 0.41 to 0.53 lowers the ground-state energy with less
than 15 meV for dot radii in the range 15 A-51 A. The
pared with numerous experimental results. The second sulifference in the ground-state exciton energy between the
section contains results for the exciton energy spectra an@’© choices of Luttinger parameters is largest for small dot
oscillator strengths. The results are compared both with ref2dii. The main conclusion is, however, that the results for
cent experimenté and with SMEMT results. The binding the ground-state exciton energy are quite similar for the two
energies of different exciton states are presented in the thirfuttinger parameter sets. o
subsection. In the fourth subsection the influence of the Calculations based on tight-binding methti and
crystal-field splitting term on exciton energies and oscillatorPSeudopotential methods; which for numerical capacity
strengths is studied. Finally, in the last subsection we discug$asons so far have been limited to the infinite-offset case,

the effect of other choices of dielectric constants. predict lower confinement energies than EBOM and
effective-mass theori€d.Since EBOM is fitted to give the

correct bulk band structure for small wave vectors and pre-

dicts too wide hole band¥,it is to be expected that EBOM,

as well as effective-mass theories, overestimate confinement
In Fig. 6 we compare results for CdSe exciton ground-energies for small dot radii. However, the error involved in

state energies based on our combined cubic EBOM-EMTsing EMT for the electron and EBOM for the hole is ex-

scheme[cubic EBOM for the hole, single-band effective- pected to be reduced for smaller offsets when penetration of

mass theoryEMT) for the electrofwith various experimen- the wave functions into the barrier matrix becomes signifi-

tal results for CdSe quantum dots. In Figapwe have com- cant.

pared the EBOM-EMT results with the experimental results

of Norris et al!? In Fig. 6(b) the same EBOM-EMT results

are compared with other experimehis®®1for the exciton

600}

Vh:OO7727£73
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A. Exciton ground state

ground state. We have used the Luttinger parameters B. Exciton spectra and oscillator strengths
v1=1.66,y,= y3=0.41, while the other material parameters In Figs. 7—10 we present results for CdSe exciton ener-
are listed in Table I. gies and overlap factors based on our combined cubic

While the band gajy of CdSe is known to be close to EBOM-EMT scheme for comparison with the experimental
1.84 eV the electron and hole offsets are generally un-exciton spectra from Norriet al}> We use the notation
known. For instancet of optically clear polyvinyl butyral)  n,I'g 7—n.S. appropriate for cubic hole symmetry. Many of
is not known. However, if the material does not absorb vis-the lowest exciton states have a negligible oscillator strength
ible light, we can estimate th&,>3 eV. For the case with and are not expected to be seen experimentally. In order to
equal electron and hole offsets, we thus estimateompare with the experiments we have thus marked the
Ve,Vp=0.6 eV. states in the figures according to the magnitude of their over-

In Fig. 6 we show cubic EBOM-EMT exciton energies for lap factorK. As seen in the previous subsection the exciton
several choices of offsetsV(=V,=x, V,=V,=1000 ground-state energy depends sensitively on the electron off-
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FIG. 4. Cubic EBOM A =0) and SMEMT hole energies for several states as functions of the spin-orbit splitforga fixed dot radius
R=20.8 A. The results of the six loweb states(solid curve$ and the three lowedt, states(dotted curvescalculated with the EBOM
are drawn in(a). The curves are found by interpolations of the numerical results marked as dots. The parameters used are
v1=1.66, y,=vy3=0.41, andV,,=x. The corresponding SMEMT states are showtbin Note that to facilitate easy comparison the energy

scales are different in the two figures.

set. Since most of the experimentally observed transitionsverlap factor depends sensitively on the quantum dot radius
involve the same electron level §1),'? we have plotted the R. In Fig. 7(@) it is seen that many of thE,— 1S, transitions
transition energies relative to the exciton ground-state energwith a large overlap factor are lifted by approximately the
(1T'g—1S,) because this energy is measured experimentallgpin-orbit energyx =420 meV compared to thel’s—1S,
more precisely than the dot siZeand because this reduces transition.

the sensitivity to the choice of electron offset in our model. N Fig. 7(b) we compare theoretical exciton energies using
In Table Il we list the overlap factork for the SMEMT for the hole and EMT for the electron with the

nT'7 g~ 1S, exciton states in the infinite-offset case for a setSaMe experiments as in Figay. The Coulomb interaction is
of dot radii. For thel'g— 1S, states most of the oscillator treated as a perturbatldﬁF(Z)r transitions td, states we use
strength is seen to be distributed between thg-11S, and tEe Egof est||matyeh\—/1.§e1/;427/re4R), g”%{gﬁ Kans|:t|ons to
2I'g— 1S, states, with only minor contributions from the the 1P, level we useVep=1.7¢ (47eR). . collection
3T's— 1S, and higher-lying states. For thgI',— 1S, states of I_ow—Iymg exciton states, b.oth' even-parity and odd—panty,
g~ --e and Nig ying ste 7 e which were found to have significant oscillator strengths in
the situation is more complicated, and for large dots the;ot 11 zre shown.
states with large oscillator strengths are seen to correspond to Frorﬁ Figs. 7a) and 7b) we see that both the infinite-
Iarge_values ohy, (n,=23 for R=51.3 A). This feature is offset cubic EBOM-EMT results for the I2—1S, and
explained below. . . 3I'g—1S, states and the infinite-offset SMEMT-EMT results
In Fig. 7(a) our cubic EBOM-EMT results for infinite  for the 2S,,— 1S, state apparently underestimate the split-
hole and electron offsets are compared with the experimentging in energy from the ground-state energy when compared
As seen in Table Ill, only the three loweFg— 1S, states  with the corresponding experimental data. Figure 7 also in-
(II'g—1S,, 2I'g—1S,, 3I'3—1S,) have values for the dicates that thd';—1S, states with significant oscillator
overlap factor larger than 0.01 in the infinite-offset casestrength, which are split by=\ from the ground statél
Therefore only results for thel— 1S, and A'g— 1S, tran-  I'g—1S,) for a wide range of dot radii, correspond to
sitions are shown in Fig.(@). For thel';— 1S, states the S;,— 1S, states in the SMEMT-EMT scheme. This was con
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FIG. 5. The splittingd=E(A) —EL(A=0) of the two lowesT g states (T's, 2I'g) into (1I'S, 1I'?) and (A'§, 2I'?) as a function
of the crystal-field splitting\. The Luttinger parameters used arg=1.66, y,=y3;=0.41, andV,=~. The solid curves are interpolations
of hexagonal EBOM results shown as dots. The dotted curves are calculated using Efros’ expf&spitB¥] with identical material

parameters. The dotted curve with the smalléatgesi splitting & corresponds to thell> (1T'9) state. In(a) R=20.8 A and in(b)
R=51.3 A.

firmed by changing the spin-orbit energyin the EBOM-  2S;,—2S,, 4S;,—2S,, 1P3,—1P,, and 1P;,—1P,
EMT scheme and assuring that thg—1S, states with SMEMT-EMT exciton states are also insufficient in this re-
significant oscillator strength still were split byh from the  spect. Moreover, from the previous subsection we recall that
ground state. However, the infinite-offset models do not satthe EBOM-EMT and SMEMT-EMT methods in the infinite-
isfactorily fit the other experimentally observed excited ex-offset case predict too high ground-state energies. Below we
citon states. From Fig. (B) we observe that the therefore consider finite offsets in our EBOM-EMT scheme.
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FIG. 6. Comparison with experiments for exciton ground-state energies for CdSe quantum ¢gtsubic EBOM-EMT and SMEMT-
EMT results are compared with the experiments of Ref. 12 marked as st&bs the same theoretical results are compared with numerous
experimental results taken from Refs.(8pen circlg, 4 (square, 5 (stap, 6 (rectangle, 8 (triangle), 9 (five-sided polygoj and 11
(diamond. The three solid curves ita) and(b) correspond to EBOM-EMT results faf,= V=, 1000 meV, and 600 meWnarked with
o, 1000, and 600). The dotted curves correspond to EBOM-EMT resulig ferc andV,=600 meV. The long-dashed curves correspond
to infinite-offset results using SMEMT for the hole, EMT for the electron, ¥pg=1.82%/(4meR) for the Coulomb interactiofRefs. 53

and 54. The parameters for CdSe in Table | with=1.66, y,= y3=0.41 have been used. The band-gap energy has not been included in
the exciton energies.
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FIG. 7. Comparison with experiments for excited exciton states. The excited-state energies are shown as functions of the ground-state
exciton energy. Experimental results of Noresal. (Ref. 12 on CdSe quantum dots are marked as st@sComparison of even-parity
infinite-offset cubic EBOM-EMT results with experimental result®ef. 12. The parameters for CdSe in Table | with
v1=1.66, y,=7y3=0.41 have been used. Dotted curves correspond to the fifteen IdweslS, states and solid curves to the
2I'g— 1S, and 33— 1S, states. Filled dots outside curves correspond to other states with these symmetries and withTaegeurves are
obtained by interpolating results for a discrete set of quantum dot rReHil4.9, 17.8, 20.8, 27.1, 33.3, 39.3, 45.3, and 51)3The
magnitude of the overlap factdt is indicated by the size of the filled dots: The largest filled dots correspond K391, the second
largest filled dots correspond to 8:& <0.9, etc. The radii of the filled dots are nearly two times larger for states wita 091 than for
states with 0.0£K<0.1. States withK less than 0.01 have been marked with the smallest filled dots, indicating that these states are
optically weak. Thd'g— 1S, states and some of tH&,— 1S, states are labeled on the gragh). Comparison of SMEMT-EMT results with
experiments usiny,=1.8e?/(4meR) andV,,=1.7e?/(4mweR) for transitions to théS, and P, levels, respectivelyRefs. 53 and 54 with
the same material parameters agan

Figures 8a) and 8b) show the cubic EBOM-EMT exci- In the finite-offset cases we also get good fits between the
ton energy spectra with finite electron and hole offsetdowest band of experimentally observed states and the
(Ve=VL=1000 meV andV.=V,=600 meVj using the 2I'g—1S, and J'3—1S, states (especially for
same material parameters as in Figa)7 By comparison V.=V,,=1000 meV.
with the infinite-offset results we observe that for smaller The 1I';— 1S, and A", — 1S, states are found in the cal-
offsets more states have a significant oscillator strengthculations to have large oscillator strengths, especially for
Moreover, this effect is most pronounced for the smallessmall radii. Even though there are some experimental data
dots where the penetration into the barrier is most extensivepoints for the larger dots which are energetically close to the
For both choices of offsets in Fig. 8 we find, as in thetheoretical values for these states, the assignment of these to
infinite-offset casel’;— 1S, states with large overlap factors I';— 1S, states is questionable. For instance, transitions in-
for states which are split by approximately the spin-orbitvolving higher-lyingI'g states[e.g., the 103— 1S, transi-
energy from the T'g—1S, ground state. This supports the tion seen in Fig. &)] are also candidates. Norrit all?
assignment of the experimentally observed exciton statesuggested that the experimentally observed states in the
with energies~=\ higher than the ground states for a wide range~ 200—-300 meV above the ground state could corre-
range of radii asl’;— 1S, states. Such spin-orbit split-off spond to the $,,—1S, state. This would correspond to
states have also been observed in other experimights. I';— 1S, states in our scheme. We will, however, later in this
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FIG. 8. (a) Same as Fig. (3) but V.=V,,=1000 meV. Additional results fdR=12.3 A have been includeh) Same as Fig. @) but
V=V,=600 meV.

subsection show results which indicate that these experimen- From Fig. 9b) it appears that with finite electron offset
tal points may also correspond to thé&g,— 1P, exciton the 1P5;,— 1P, state can account for the experimental data
state, which is expected to be optically strongly actit& points observed between tt#®,,— 1S, spin-orbit split-off

In Fig. 9a) the cubic EBOM-EMT exciton energy spec- states and the &,,— 1S, state for large radii(The unbind-
trum for V=600 meV andv,=« is shown. Again we can ing of the 1P5,— 1P, exciton in the model even occurs close
assign (i) the I';—1S, transition with large oscillator to the dot radius for which this exciton state apparently van-
strength(corresponding td5;,— 1S, state$ to the band of ishes in the experimentAs discussed above, these experi-
exciton states with energiessA =420 meV above the mental observations did not convincingly fit any of the even-
ground-state energy, ar@d) the 2'g—1S, and I'3—1S,  parity states in our EBOM-EMT scheme.
transitions to the lower band of experimentally observed When comparing Figs.(8) and 9b) we see that the re-
transitions. As for the previous choices of offsets, the assignsults for the exciton energy spectra using the SMEMT-EMT
ment of the experimentally observed transitions betweemnd the EBOM-EMT schemes give qualitatively similar re-
these two bands is not obvious. Note also that the results faults for the 2;,—1S, state and Pg—1S/3l'g— 1S,
V,,=»,V,=600 meV in Fig. 9a) are similar to the results states. However, for small dot radii the EBOM-EMT results
for V,,=V,=600 meV illustrating that the results are rather (which in contrast to the SMEMT-EMT scheme used here

insensitive to the hole offset. also incorporates the Coulomb interaction nonperturbatively
In Fig. 9(b) we have shown the corresponding results forseem to fit the experimental data better.
the SMEMT-EMT scheme fol,=600 meV andV,=c. In Fig. 10 we present cubic EBOM-EMT exciton energy

We have used the same perturbational restifsfor the  spectra for a case wherg,# ys, i.e., y;=1.66, y,=
Coulomb interaction as in Fig.(B) (even though these were 0.41, y;=0.53, andV,=V,=1000 meV. By comparing
derived for the infinite-offset cagen Fig. 9 curves for some with Fig. 8a), we see that the results for the exciton energies
of the states (P3,—1P., 1P;,—1P., 2S;,—2S., and for y,= y3 andy,# y; are qualitatively similar, even though
4S;,—2S,) are not drawn for large ground-state energiesthe agreement with thel3—1S, and I'3— 1S, states ap-
(1S;,—1S,), or, equivalently, for small dot radii. The rea- parently are slightly less good for the case wjg§# y5. The
son is that the dot must have a minimum size to bind themain difference between Figs(a88 and 10 for the EBOM-
electron when the electron offset is finfte. EMT oscillator strengths is that there are more states with
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FIG. 9. () Same as Fig. (3 butV,=600 meV. The calculations have been done for the same set of dot radii as irfdrign addition,
results forR=12.3 A and 57.5 A have been includgd) Same as Fig. (b) but V.= 600 meV.

non-negligible oscillator strengths foty,# y3 than for
v>=7y3. This is as expected since when cubic terms are in-
cluded in the exciton Hamiltonian by setting # y;, more
hole states will have contributions fron=0 than in the
spherical cas&’®

Finally, we illustrate in Fig. 11 how the cubic EBOM-
EMT overlap factor varies with the dot radius for the exciton
case €=9.2¢;) and the independent particle case=()
for both the infinite-offset case and fot,=V,,=600 meV.
In Fig. 11(a) we observe for the infinite-offset exciton case
that the T'g— 1S, overlap factor decreases monotonically,
while the A"g— 1S, overlap factor increases monotonically
as the dot radiuR increases and the confinement is reduced.
In the infinite-offset case we also observe that the
1I'g— 1S, overlap is smaller and thel— 1S, overlap is
larger for the exciton than for independent particles. How-
ever, for small radii the Tg— 1S, overlap approaches the
same value for the independent-particle case and the exciton
case. This is expected since the influence of the Coulomb
interaction on the wave function disappears in this limit.

Efros?! has calculated the overlap factor for the two low-
est exciton states &,—1S. and 2S;,—1S,) in the
infinite-offset independent-particle SMEMT-EMT scheme,
and his results are found to be in accordance with ours.

For the finite-offset case thel'’s— 1S, overlap is gener-
ally smaller than for infinite offsets. The difference is large

700

Excited State Energies - Energy of 1I's—1S. (meV)
g g g g g g

o

2000 2200 2400 2600
Energy of 1I's—15, (meV)

FIG. 10. Same as Fig.(8 (V.=V,,=1000 meV, but the Lut-

for small dot radii where the wave-function penetration intotinger parameters, =1.66, y,=0.41, andy;=0.53 are used.
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TABLE lll. The overlap factorK for different cubic EBOM- e ] 1{8
EMT states and dot radii. The offsets are assumed infinite and 5 B =
v1=1.66, y,=y3;=0.41. Other material parameters are taken from +© 0.8 v
Table I. Overlap factors less thanTOhave been rounded off to the E 06/ 115, 600
nearest power of ten. o ’
0.4
Exciton Dot radiusR (A) E 0.2} 3rs. 600 ary 2T, 600
state 149 178 208 27.1 333 393 453 513 S, A At
1y 095 095 095 094 093 092 091 0.90 20 A %0
2lg 0.013 0.027 0.041 0.058 0.072 0.084 0.093 0.10 Radius ( )
3l 0.016 0.010 0.002 0.001 16 10°° 105 10°° (a)
4T 104 108 10° 10° 10°® 10% 107 107
5Ig 10°% 10° 104 104 10* 104 10°° 0.001
6I'g 1074 10°% 10°° 10°° 10°° 10°% 0.001 107
Ty 1075 10°% 107® 1077 10°° 10°° 10 10°°®
8l'g 1074 1077 1007 107 107 1077 10°% 1077
al'g 1004 10° 108 10° 107 108 108 1078
g 10° 10% 10® 10% 104 104 108 10°¢
30
ir, 065 027 10* 10* 10° 10° 10° 1077 Radius (A)
2r, 0.035 0.14 0.18 0.036 0.001 19 107 107 (b)
3r; 0.29 0.58 104 104 0.010 0.004 0.002 0.001
4r;  0.001 0.003 0.001 10 10°° 10°° 107° 10°° _ _
5T, 0.003 0001 0.81 10 10 108 108 10°° I_:IG. 11. ngrlap factoK asafunctlon of the dqt radius for the
6T, 0004 10° 10* 011 10° 10® 108 108 exciton casésolid curve$ and the |ndependen'F-part|cIe ce(sletted.
4 6 5 _ 5 curveg. The parameters for CdSe in Table | with

7, 0.001 0.001 10* 0.79 10" 10 10 10 - - - -

o T T s s g g v1=1.66, y,=1vy3=0.41 have been used in the cubic EBOM-EMT
8l' 10 10 10 0.009 10~ 10 10 10 scheme. In(a) the overlap factors for the optically important
or; 0.002 0.003 0.005 0.001 0.002 10 10 ° 10°° I's— 1S, states are shown both for infinite offsets and finite offsets
10r;  0.001 10* 0.001 0.032 0.028 0.003 16 10°°  wjth V,=V,=600 meV(labeled 600 on the graphThe calculated
11r, 0.001 10* 10°* 0.001 0.001 10* 0.001 10°* values are shown by dots on the curves. Due to an avoided crossing
12r';  0.001 10“ 0.001 104 096 10° 108 1077 for Vo=V,,=600 meV, between thel%,— 1S, and A'g— 1S, states
13r, 107% 107* 107° 10°% 105 10¢ 1077 1077 in the range 20 A<R<33 A, these states have significant oscilla-
14r, 0.004 10° 10® 107 10°% 10® 107 1077 tor strength only for a limited range of dot radii and are thus not
157, 0011 10° 105 10°® 10°° 10 108 10°° shown for all dot sizes. Ifb) the overlap factor for the three lowest
161, 099 106 10710 I';— 1S, states is shown for infinite offsets.
17, 100* 10° 10°  cubic EBOM and EMT is plotted as a function of the dot
18I, 10°° 10° 10°° radiusR in Fig. 12. The parameters for CdSe in Table | with
191, 10°® 0.004 10*  y,=1.66, y,=v3=0.41 have been used. In Figs. (42
20r', 0.19 0.002 12(d) the binding energies for the statesl'g-1S,,
21I°, 0.79 10° 2l'g—1S,, 1I';—1S,, and A";—1S,, respectively, are
221, 108 1074 shown for various values of the electron and hole offsets.
23r, 1006 099  The binding energies for all the states shown in Fig. 12 are,

as expected, found to decrease with decreasing electron and
hole offsets due to the increased penetration of the wave

the barrier is large, while it is seen to nearly disappear for thdunction into the barrier when the offsets are lowered.
largest dots considered where the barrier penetration is small. The curves forV,=V,=600 meV and forVy=o,

The corresponding results for tie— 1S, states are less Ve=600 meV in Figs. 1&)—-12d) show that there exists a
tidy, however, since the overlap factor changes rapidly whefadius for which the binding energy is maximal. This has
R varies. In Fig. 11b) we show the overlap factor for the prewou;ly been demonstrated for the exciton ground-state
three lowest infinite-offsel',— 1S, states which share most €nergy in both type-I quantum ddtSwhere both the elec-
of the oscillator strength between themselves for srall tron and hole are confined to the dot, and in typeiantum

6 . . .
For R>20 A the large oscillator strengths corresponding todOts.” where one of the particles is confined to the dot ma-
the split-off S;,— 1S, states are distributed to,[';—1S, terial, with the other free to move. In the limi&—0 and

states withn,> 3. R— o, the binding energy approaches the bulk binding en-
ergy of the barrier and dot materi@hhich are identical in
our calculationy respectively. It follows that the finite-offset
binding energies will necessarily exhibit a maximum for a

The difference between the exciton energy and the sum dfnite R. The curves forV,=V,=1000 meV in Fig. 12
the single-particle energies is commonly called the bindingvould show a maximum if calculations for smaller dot radii
energy. The binding energy in the combined scheme witthad been included.

C. Exciton binding energies
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FIG. 12. Exciton binding energies in the cubic

EBOM-EMT scheme for CdSe quantum dots as

functions of the dot radiuR for (a) 1I's—1S;,

20 30 40 50 20 30 40 50 (b) 2I'g—1S,, (o) 1I';—1S,, and (d)
Radius (A Radius (A) 2I';—1S,. The parameters for CdSe in Table |
(a) (b) with y,=1.66, y,=7y3=0.41 have been used.
The three solid curves if@)—(d) correspond to

results forV,=V,=, 1000 meV, and 600 meV
(marked with o, 1000, and 600). The dotted
curves correspond to results for,=< and
V=600 meV. The calculated values are shown
as dots. The perturbative res(Refs. 53 and 54
Ven=1.82%/(4meR) for the Coulomb interaction
is shown as long-dashed curves.
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For comparison we have also plotted the perturbative exenergy spectra. Here we study the effect of the crystal-field
pression for the Coulomb interaction for the infinite-offsetterm on the exciton energies and the exciton overlap factors
1S,,— 1S, ground state Ve,=1.82%/(4meR)], which was which determine the oscillator strength. The crystal-field
used in Ref. 11 and in our present SMEMT-EMT calcula-term causes a splitting of the cubig— 1S, exciton states
tions. We observe in Fig. 18 a good agreement between into I'g —1S, and I'?— 1S, exciton states. In Fig. 13 the
our infinite-offset results for Ig— 1S, and the perturbative overlap factor in the hexagonal EBOM-EMT scheme has
expression. However, it should be noted that the perturbativBeen plotted as a function of the crystal-field splittisgfor
expression is seen to overestimate the infinite-offset binding€ optically most important states for a quantum dot with
energy for the Pg—1S,, 1I',—1S,, and X', 1S, states. radius R=20.8 A in the infinite-offset caseThe corre-

sponding splitting of thel'g hole states is shown in Fig.
. 5(a).]
D. Influence of crystal-field term In Fig. 13 we observe that the difference in overlap fac-

In Sec. IV B we investigated the influence of the crystal-tors between the 1§ — 1S, and I'?— 1S, states and be-
field term due to the hexagonal structure of CdSe on the holaween the Z2—1S, and XY 1S, states, respectively,
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FIG. 13. Overlap factoK as a function of the crystal-field split- é
ting A for the fixed dot radiu®R=20.8 A for some of the optically o 100
most important states. The parameters for CdSe in Table | with %0
v1=1.66, y,=7y3;=0.41, andV,=V,=x, have been used in the g
hexagonal EBOM-EMT scheme. The electronic part of the wave H s0
function corresponds in all cases to th&.Istate. The calculated g
values are shown by dots on the curves. Note that there is no direct =
correspondence between the numbering of hexagonal and cubic §i 0
EBOM statesRef. 57. ~
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gradually increases whekis increased. However, no abrupt (b)
changes in the overlap factors for these two pairs of states
occur in the range oA considered here. For the cubit
states, on the other hand, we observe an interchange of os- FIG. 14. Hexagonal EBOM-EMT results for the overlap factor
cillator strength due to avoided-crossing behavior betweeif (&) and the corresponding exciton energdiegas functions of the
the 41“$_ 1S, and 5‘7'3_ 1S, states and E?—lSe and _crystal-field splittingA for a fixed dot radiuR=51.3 A. Optically
10r? - 1S, states respectively, forA between 60 and 100 :cmpogzr;t CUPICFBT—;Se Sltates_tﬁzo) ereGShOW”- Thg Zirametgrs
meV. The optically importans,,— 1S, spin-orbit split-off " e In fable 1 wih y,=1.00, y,=y5=0.4L, an
states are seen to correspond FF9- 1S, for A less than 60 V1~ Ve~ > have been used. The band-gap endgias not been

. - . included in the exciton energies. Note that there is no direct corre-
mev. Fl_gure 14a) displays the same as Fig. 1.3 for the Iargerspondence between the numbering of hexagonal and cubic EBOM
dot ra_dlus R=51_.3 A and here a complicated pattern states(Ref. 57).
of avoided crossings is revealed for more modest values of
A. This is not surprising since the crystal-field splitting is

expected to have a large impact only whns comparable . ) )
to the hole confinement energies, which decrease with inth®I'7— 1S, states corresponding to the optically important

creasing dot radii. As seen in Fig. 1, the infinite-offset holeS12— 1S split-off states. For this large dot radius these split-
confinement energy for thEg ground state is 119 meV for off states correspond to a large number of energetically simi-
R=20.8 A while it is 22 meV forR=51.3 A. The compli- larI';— 1S, states which interchange optical strength\ais
cated behavior of the overlap factor for the large dot revealedncreased.

in Fig. 14@a) is easier understood by also considering the For CdSeA~25 meV* From Figs. 5 and 1) we see
exciton energy spectra shown in Fig. (4 [see also Fig. that for the T'g— 1S, and A'3— 1S, states, the splitting of
5(b)]. The energies for the two Ioweﬂg — 1S, states de- absorption peaks due to the hole state splitting from the
crease roughly linearly with increasiny with no abrupt crystal-field term is expected to be less than The main
changes in the overlap factor. However, the energy spectreontribution to the width of the absorption features in Ref. 12
for the 1“7'3—15e states exhibit avoided-crossing behavior for comes almost certainly from sample inhomogeneities. This
approximately those values df for which the overlap factor justifies our present approximation of neglecting the crystal-
is susceptible to changes in The overlap factors and thus field term and using the cubic EBOM description when com-
the oscillator strengths are seen to redistributeAais in-  paring our theory with the experimental absorption spectra
creased to give more optical weight to highEl?—lSe by Norris et al. Note, however, that recent studies have in-
states. FOR=51.3 A we have not shown the effect Afon  dicated that in order to interprgthotoluminescencepectra
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both the crystal-field splitting term and the electron-hole ex- TABLE IV. Cubic EBOM hole energiesin meV) of the ten

change interaction must be taken into accolint. lowest I'y states and the five lowedt, states forR=20.8 A,
v1=1.66,y,=vy3=0.41, andV,=. The rest of the material pa-
rameters are taken from TableU=0,2,. . . L, cubic harmonics

LT ;
E. Choice of dielectric constants K; # are included.

In this paper we have used the static dielectric constant ofigje state L max=2 L =4 L max=6
CdSe, e(0)=9.2¢,, even though there is some controversy
whether the static dielectric consta(0) or the optical di- 1l's 120 119 119
electric constang() should be used?*’ For CdSe, the op- 2I's 242 242 241
tical dielectric constank(~)~6.0e, (15 K).*° The use of 3l 254 246 246
€() instead ofe(0) would significantly increase the bind- 4l's 440 363 361
ing energies shown in Fig. 12. The effect on the excitondl's 452 439 438
spectra in Figs. 7—10 would be less since the kinetic energ§l's 528 467 455
terms dominate the Coulomb energies for small quantunil'g 569 483 463
dots. The overlap factor is generally found to be not verysT'y 764 498 494
sensitive to changes in the dielectric constant for our range T, 843 512 508
dot radii, and a choice of(>) instead ofe(0) would have 101, 864 526 521
small effects on the oscillator strengths for the dot radii and
offsets considered here. ir, 418 369 368

In our calculations we have neglected possible s.urfacezr7 469 418 416
polarization e_ffec@ by using the same value for the dielec- 3, 553 486 472
tric constant in the dot an_d barrler_mater_lals. Takagefﬁara 4r, 763 523 520
has studied the effect of different dielectric constants in the» 1057 553 552

dot and barrier in an infinite-offset model using single-band !
effective-mass theory for both the electron and the hole. In
the strong-confinement limit the expression

to the exciton ground state [3—1S,), experimental states

x 2 a corresponding to Pg— 1S, and 3'3— 1S, have been iden-

R +A13+A0 (35 tified. Moreover, the band of experimental exciton states ob-
served lifted with an energy close to the spin-orbit splitting

was found for the ground-state energy. The coefficidhts A =420 meV above the exciton ground state has been iden-

andA,, which are tabulated in Ref. 59, depend on the dielectified asI';— 1S, spin-orbit split-off states with large oscil-

tric constant ratioeyy/ epanier- FOr the usual case with lator strengths. The assignment of a collection of experimen-

€40t/ €parie= 1, EQ.(35) reduces to Kayanuma's well-known tally observed exciton states lifted 200-300 meV above

result Eq.(4). We have used Eq35) to study the influence the ground state is less clear, but several candidate states

of the surface polarization on the exciton ground-state enhave been suggestéd.g., 1P3,— 1P,).

ergy using parameters suitable for CdSs, €50 A and The assumption of finite offsets has been found to be

€40=9.2€,). Due to the lack of reliable values for the dielec- crucial in order to obtain quantitative agreement between our

tric constant for the matrix material used by Noreisal,’>  model and the experimental exciton spectra of Noetisl.

we have studied the case with CdSe dots embedded in sillndependent experimental assessment of the electron and

cate glass Whereyy/ €parrier~3—4. In this case the exciton hole offset is thus of significant interest.

ground-state energy will be larger than feg.,/ eparie= 1. The nonperturbative study of the effects of the crystal-

For dot radii between 10 and 50 A, we find that the devia-field splitting A revealed patterns of avoided crossings ac-

tions between the calculated ground-state ener@iesin-  companied with redistribution of oscillator strengths between
cluding the band-gap energyE,=1.84 eV} for different states. In CdSe\~25 meV and the main contri-

€dot! €barmie=4 aNd €4o/ €pamie=1 Vary from 2% forR=10  bution to the width of the absprption peaks in Ref. 12 is
A to 13% for R=50 A. However, further theoretical work €xpected to come from sample inhomogeneities and not from

on the full exciton spectra which incorporates finite offsetsthe crystal-field splitting term.

and degenerate valence bands is needed to clarify the impor- For the largest dot radii considered, the EBOM hole con-
tance of surface polarization. finement energies are in excellent agreement with results

from the spherical multiband effective-mass theory
(SMEMT). However, for small dot radii the EBOM predicts
lower confinement energies, apparently in better agreement
with experiments. The EBOM confinement energies are also
Our theoretical results from using the effective bond-closer to results from the empirical tight-binding method and
orbital model (EBOM) for the hole and single-band the empirical pseudopotential methid2°-2°
effective-mass theoryEMT) for the electron in an iterative In other calculational schemes that incorporate the com-
Hartree scheme, including the Coulomb interaction and finiteplicated valence-band structure, the Coulomb interaction is
offsets, have been found to account for most of the importanonly included perturbatively. Often the strong-confinement
features of the experimental absorption spectra for CdSeesult for the Coulomb energy for the infinite-offset exciton
guantum dots obtained by Norris and co-workers. In additiorground state is used, even for excited exciton states. As re-

*

E/Ef,= 172(
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vealed by the binding energies shown in Fig. 12, this may
give inaccurate results for all exciton states for systems with

finite offsets and for excited exciton states in the infinite-
offset case.
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APPENDIX

In the cubic EBOM calculations reported here cubic har-
monics corresponding ta=0, 2, 4, and 6 have been in-
cluded in the hole basis functions to describe the lowest hole
states. This is expected to be a good approximation for
S, D, andG states. The relative importance of the contribu-
tions from different_’s is illustrated in Table IV by means of

a special example: the first tdig hole states and the first
ive T'; ’s&,‘tates have been calculated for the dot radius
=20.8 A.

In Sec. IVA the Ty state was identified as thes],, state
and should have its main contributions from=0 and
L=2. From Table IV we see that, as expected, the hole
energy for the I'y state changes by only 1 meV when
L max iS increased from 2 to 6. We observe that most states

of the Cray Research Inc. Y-MP4D/464 and the Cray Re-ave small changes in energies wheg,, is increased from
search Inc. J90 at the Norwegian University of Science and to 6, and this contributes to justifying that cubic harmonics

Technology is acknowledged.

with L=8 can be neglected in our calculations.

“Present address: Institutt for tekniske
Landbrukstigskole, N-1432 As, Norway.

1A. D. Yoffe, Adv. Phys.42, 173(1993.

2U. Woggon and S. V. Gaponenko, Phys. Status SolitiBB 285
(1995.

3M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M.
Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. L6é8§.
1623(1990.

4U. Woggon, M. Miler, U. Lembke, I. Rekmann, and J. Cesnu-
levicius, Superlatt. Microstruc®, 245(1991).

fag,

5N. Nogami, S. Suzuki, and K. Nagasaka, J. Non-Cryst. Solids

135, 182(199)).

6S. H. Park, R. A. Morgan, Y. Z. Hu, M. Lindberg, S. W. Koch,
and N. Peyghambarian, J. Opt. Soc. Am7R097(1990.

“N. Chestnoy, R. Hull, and L. E. Brus, J. Chem. Ph§5, 2237
(1986.

8A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald,
and L. E. Brus, J. Chem. Phy&9, 4001(1988.

°N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, J.
Appl. Phys.61, 5399(1987.

G, Hodes, A. Albu-Yaron, F. Decker, and P. Motisuke, Phys.
Rev. B36, 4215(1987.

A, I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C.
Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and
Al. L. Efros, J. Opt. Soc. Am. B0, 100(1993.

2p. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Phys.
Rev. Lett.72, 2612(1994.

13C. B. Murray, C. R. Kagan, and M. G. Bawendi, Scier&#0,
1335(1995.

Al. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovodag, 1209
(1982 [Sov. Phys. Semicond.6, 772(1982)].

15y, Kayanuma, Phys. Rev. B8, 9797(1988.

16y, Kayanuma and H. Momiji, Phys. Rev. &1, 10 261(1990.

YN. O. Lipari and A. Baldereschi, Phys. Rev. Le5 1660
(1970.

18 Baldereschi and N. O. Lipari, Phys. Rev.82697(1973.

193.-B. Xia, Phys. Rev. BIO, 8500(1989.

20p. . Sercel and K. J. Vahala, Phys. Rev4B 3690(1990.

2IAl L. Efros, Phys. Rev. B46, 7448(1992.

22, L. Efros, Physica B185, 575(1993.

23Y. Wang and N. Herron, J. Phys. Che®d, 257(1987); 92, 4988

Norges

(1988; 95, 525(1991); Phys. Rev. B42, 7253(1990.

24p. E. Lippens and M. Lannoo, Phys. Rev.38, 10 935(1989;
41, 6079(1990; Semicond. Sci. Technob, A157 (1991).

25M. V. Rama Krishna and R. A. Friesner, Phys. Rev. L&#.629
(1992); J. Chem. Phys95, 8309(1991).

28| -W. Wang and A. Zunger, Phys. Rev. 3, 9579(1996.

2y -C. Chang, Phys. Rev. B7, 8215(1988.

%G, T. Einevoll and Y.-C. Chang, Phys. Rev.4B, 9683 (1989.

29G. T. Einevoll, Phys. Rev. B5, 3410(1992.

303, V. Nair, L. M. Ramaniah, and K. C. Rustagi, Phys. Revi53

5969(1992.

31L. M. Ramaniah and S. V. Nair, Phys. Rev.48, 7132(1993.

323, M. Luttinger and W. Kohn, Phys. Re97, 869 (1955.

33E. 0. Kane, J. Phys. Chem. Sdl. 249 (1957).

34G. B. Grigoryan, E. M. Kazaryan, Al. L. Efros, and T. V. Yazeva,
Fiz. Tverd. Tela(Leningrad 32, 1772(1990 [Sov. Phys. Solid
State32, 1031(1990].

35@G. L. Bir and G. E. PikusSymmetry and Strain-Induced Effects
in SemiconductoréWiley, New York, 1975.

36M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L. Efros,
and M. Rosen, Phys. Rev. Lef#ts, 3728(1995.

37G. T. Einevoll, D. S. Citrin, and Y.-C. Chang, Phys. Rev4&
8068(199).

38G. T. Einevoll and Y.-C. Chang, Phys. Rev.4B, 1447(1990.

%95ee E. A. HylleraasMathematical and Theoretical Physics
(Wiley, New York, 1970, Vol. 1, p. 109.

4Ophysics of I1-VI and I-VII Compounds, Semimagnetic Semicon-
ductors edited by O. Madelung, M. Schultz, and H. Weiss,
Landolt-Banstein, New Series, Group Ill, Vol. 17, Pt. b
(Springer, Berlin, 198p Intrinsic Properties of Group IV Ele-
ments and 111-V, 1I-VI and I-VII Compoundsdited by O. Made-
lung, Landolt-Benstein, New Series, Group lIl, Vol. 22, Pt. a
(Springer, Berlin, 198y

41G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. StRinp-
erties of the Thirty-Two Point Group®IT Press, Cambridge,
MA, 1963).

423, C. Slater and G. F. Koster, Phys. Ry, 1498(1954).

43F. C. Von der Lage and H. A. Bethe, Phys. R&¢, 612(1947.

44|, L. Efros and A. V. Rodina, Phys. Rev. B7, 10 005(1993.

45C. H. Henry and K. Nassau, Phys. Rev1B1628(1970.

46 C. Andreani and A. Pasquarello, Europhys. L61259(1988.



5204 U. E. H. LAHELD AND G. T. EINEVOLL 55

a7, Banyai, P. Gilliot, Y. Z. Hu, and S. W. Koch, Phys. Rev.4B, (Leningrad 32, 3512 (1990 [Sov. Phys. Solid Stat82, 2037
14 136(1992. (19901
“85ee C. Weisbuch and B. VinteQuantum Semiconductor Struc- 5°F. B. Pedersen, U. E. H. Laheld, and P. C. Hemmer, Superlatt.
tures (Academic, San Diego, 1991p. 15. Microstruct.17, 431(1999; 18, 332E) (1995.
49mHA is found from the exciton effective mass combined with 5U. E. H. Laheld, F. B. Pedersen, and P. C. Hemmer, Phys. Rev. B
me=0.13Mn,. m, ,=0.375n, is an average of a value oh, 5 52, 2697(1995.
found from the exciton mass and a separately listed value in Ref’Note that the labeling of the hole stateshrg)) refers to the
40. numbering of hole states in our hexagonal EBOM method which
50p. Lawaetz, Phys. Rev. B 3460(1971). includes angular basis functions corresponding to angular mo-
51 . M. Ramaniah and S. V. Nair, PhysicaB2, 245(1995. mentumL =0 and 2, only. Since in contrast to the cubic EBOM
52|n Refs. 17 and 18 it was found that wheg= y; the cubic terms schemelL =4 and 6 are not included, there is no direct corre-
vanish both without spin-orbit coupling.&0) and in the limit spondence between the numbering of hexagonal and cubic
of infinite spin-orbit coupling X =«). states.
S3Al. L. Efros and A. V. Rodina, Solid State Commuii2, 645  58M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.
(1989. I. EKimov, Phys. Rev. B3, 1336(1996.

54G. B. Grigoryan, A. V. Rodina, and Al. L. Efros, Fiz. Tverd. Tela 5°T. Takagahara, Phys. Rev. &, 4569(1993.



