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Excitons in CdSe quantum dots
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Recent advances in material synthesis have provided samples with CdSe quantum dots with a degree of
monodispersity high enough to allow for observation of excited exciton states and their size dependence
@Norris et al., Phys. Rev. Lett.72, 2612 ~1994!#. Here we report theoretical results for these exciton states
using the effective bond-orbital model~EBOM! for the hole and single-band effective-mass theory~EMT! for
the electron in an iterative Hartree scheme including the Coulomb interaction and finite offsets. We present
results for hole energies, exciton energies, and exciton oscillator strengths and compare with experiments and
other theoretical results. Our results are found to account for most of the important features of the experimental
absorption spectra by Norriset al. In particular, experimental states corresponding to the exciton ground state
(1G821Se), as well as the 2G821Se and 3G821Se excited states, have been identified. Also, a set of
experimental exciton states observed lifted with an energy close to the spin-orbit splittingl'420 meV above
the exciton ground state have been identified asG721Se spin-orbit split-off states with large oscillator
strengths. A nonperturbative study of the effects of the crystal-field splitting, which is inherent in hexagonal
CdSe quantum dots, revealed patterns of avoided crossings, accompanied with redistribution of oscillator
strengths, between different exciton states for increasing values of the crystal-field splittings. In CdSe where
the crystal-field splitting is'25 meV, the splitting is not expected to have a significant effect on the present
quantum dot absorption spectra.@S0163-1829~97!06008-6#
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I. INTRODUCTION

Quantum confinement effects of excitons in quantum d
have been studied intensely in the past few years.1,2 In quan-
tum dots excitons may be confined in all spatial dimensio
and if the exciton Bohr radius is comparable to the quant
dot size, quantum confinement effects can be observed
variety of types of quantum dots have been investigated
perimentally and/or theoretically. They include CdS, Zn
CuCl, CuBr, CdS, CdSe, CdTe, and GaAs quantum d
which usually are embedded in a large band-gap matrix s
as glass, rocksalt, polymers, zeolites, or liquids.

Due to sample inhomogeneities such as distributions
size and shape, the discrete nature of the exciton stat
usually not seen, and only the blueshift of the exciton grou
state due to confinement is observed. In the present theo
cal study we focus on CdSe quantum dots.3–12The reason is
that advances in material synthesis for this material sys
have provided samples with CdSe quantum dots with a
gree of monodispersity which is high enough to allow a
for observation of excited exciton states and their s
dependence.12 Moreover, self-organization of CdSe quantu
dots into three-dimensional quantum dot superlattices ha
cently been demonstrated.13

Different theoretical models have been used in the st
of quantum dots. They include single-band effective-m
theory ~EMT!,14–16 spherical multiband effective-mas
theory ~SMEMT!,11,17–22 the empirical tight-binding
method,23,24 the empirical pseudopotential method,25,26 and
the effective bond-orbital model~EBOM!.27–31 Both
SMEMT ~Ref. 11! and EBOM ~Ref. 31! have been used
550163-1829/97/55~8!/5184~21!/$10.00
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previously to study excited exciton states in CdSe quan
dots.

The SMEMT method was introduced by Baldereschi a
Lipari,17,18 who rewrote the Kohn-Luttinger Hamiltonian32

for the hole as a sum of terms with spherical and cubic sy
metries. In SMEMT only the spherical terms are kept. E
mov et al.11 used the SMEMT to calculate the energy leve
for excitons in spherical quantum dots. Both the light-ho
heavy-hole, and split-off valence bands were accounted
The electron and hole energies were calculated indep
dently, and for the electron levels a Kane model33 was used.
Both the electron and the hole offsets were assumed infin
and the Coulomb interaction was added only as a first-or
perturbation.

The main advantage with the SMEMT compared to oth
numerically demanding methods~e.g., the multiband
effective-mass method, the tight-binding methods, and
EBOM! is that the hole energies are found by determin
roots of transcendental equations.34 However, in the applica-
tions of the SMEMT to excitons in CdSe quantum dots
ported so far, several simplifications have been made. F
the SMEMT introduces an artificially high symmetry com
pared to the symmetry of the hexagonal~or cubic! CdSe
lattice. This results in an artificially high degeneracy of t
energy states. Second, the assumption that the band of
for the electron and the hole are infinite is probably not
adequate approximation in most materials~including CdSe
quantum dots!. For finite offsets the exciton wave functio
will penetrate into the barrier material, and this leads
lower confinement energies than for infinite offsets. For e
cited states where the wave functions are less localized,
5184 © 1997 The American Physical Society
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55 5185EXCITONS IN CdSe QUANTUM DOTS
must expect that the magnitude of the offsets will be parti
larly important. Third, the independent calculations of ele
tron and hole energies, which neglect the influence of
Coulomb interaction on the exciton wave function, are o
expected to provide a good approximation when the quan
dot radius is small compared to the exciton Bohr radius.
larger quantum dots the Coulomb interaction between
electron and hole should be included nonperturbatively.

In this study we calculate exciton energies and oscilla
strengths in CdSe quantum dots using the EBOM for
hole and the EMT for the electron in an iterative Hartr
scheme which incorporates the Coulomb interaction non
turbatively in the calculations. The calculational sche
readily includes finite electron and hole offsets. An ad
tional attractive feature of our scheme is that it allows
studies of the effect of the crystal-field term35 due to the
hexagonal lattice in wurtzite CdSe~Refs. 12 and 36! on the
exciton energy spectrum and the corresponding oscill
strengths.

The EBOM is used for the hole since in hexagonal Cd
the light-hole and heavy-hole valence bands are nearly
generate at the zone center so that a single-band effec
mass approach is insufficient to give quantitatively corr
results. The basic idea of EBOM is to use a minimum nu
ber of bond orbitals to describe the most relevant portion
the band structure for the bulk materials. Both the light-ho
the heavy-hole, and the split-off valence bands are inclu
in the calculations. In EBOM the interaction parameters
fitted to the experimentally observed bulk band struct
around the zone center and are given in terms of the L
tinger parameters used in the SMEMT. As a conseque
EBOM ~and SMEMT! predict much wider hole bands tha
what is experimentally observed.27 EBOM can be viewed as
a discretized version of effective-mass theory and thus
resents a link between the multiband effective-mass
proach and the empirical tight-binding method.

In Ref. 31 Ramaniah and Nair reported interesting EBO
results on CdSe quantum dots. They used interaction pa
eters which grossly reproduced the main features of the b
band structure. However, only infinite offsets were cons
ered, and the Coulomb interaction was not included in
Hamiltonian. While the parametrization scheme in Ref.
may be advantageous for very small quantum dots, we
the standard fitting scheme27 in the present study since th
scheme ensures agreement with multiband effective-m
theory for larger quantum dots.

The organization of the rest of the paper is as follows.
Sec. II the calculational method is outlined. In Sec. III w
discuss how the material parameters for CdSe are chose
Sec. IV the hole energy spectra and, in particular, the ef
of the crystal-field term are investigated. In Sec. V we c
culate exciton energy spectra and oscillator strengths
CdSe and compare the results with experiments as we
other theoretical work. Some concluding remarks are gi
in Sec. VI.

II. CALCULATIONAL METHOD

In the first part of this section we review the iterativ
Hartree scheme used in this work for calculating the exci
energies. In the second part the form of the electron w
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function is given and in the subsequent part the form of
hole wave function is chosen by group-theoretical arg
ments. In the last part expressions for calculating the os
lator strengths are given. We will, however, only outline t
calculational schemes used in this study, since they are s
lar to schemes used in work reported earlier.28,29,37,38These
references should be consulted for details. In Ref. 28 acc
tor states in semiconductors and quantum dots were inv
gated, in Ref. 37 excitons bound to isoelectronic impurit
in bulk ZnSe and in ZnSe-Zn12xMnxSe quantum wells were
studied, and in Ref. 29 excitons in CdS quantum dots w
considered.

A. The iterative Hartree scheme

Our model HamiltonianH for the exciton is given by

H5Hh~¹h ,rh!1He~¹e ,re!1v~ urh2reu!, ~1!

whereHh (He) is the Hamiltonian for the hole~electron! in
the quantum dot potential, andv(urh2reu) is the attractive
Coulomb potential between the electron and the hole. T
exciton energies are found by minimizing

^C~re ,rh!uHuC~re ,rh!&

^C~re ,rh!uC~re ,rh!&
5E, ~2!

in a self-consistent Hartree scheme. We assume a sepa
wave function

C l ,m~re ,rh!5ce,l~re!ch,m~rh!. ~3!

Herece,l(re) „ch,m(rh)… denotes the wave function for th
l th (mth! energy state of the electron~hole!. This approxi-
mation is expected to be particularly suitable in the so-ca
strong confinement regime where the electron and hole
be regarded as nearly independent particles. This requir
sufficiently small dot radiusR and sufficiently large electron
and hole offsets. In the present application on CdSe quan
dots we consider dots with radii of the order of the excit
Bohr radiusaB* and smaller. In order to test whether th
Hartree procedure gives reasonable results for dots of
size, we have performed a simple model computation.
single-band EMT we calculated the ground-state energy
an exciton in a quantum dot with infinite offsets and with
radius R5aB* . For equal effective masses we obtain
6.237ERy* . This is 4.4% higher than the result 5.974ERy* of an
extensive variational calculation15 with the same parameters
For smallerR the agreement is even better.

Let us also mention that for infinite offsets using sing
band EMT for both the electron and the hole Kayanum15

estimated thatR had to be smaller than about 2aB* , in order
to be in the strong confinement regime. In this regime
ground-state exciton energyE is given by

E/ERy* 5p2S aB*R D 223.572
aB*

R
20.248, ~4!

whereERy* is the exciton Rydberg energy. In Ref. 29, whe
the present combined EBOM-EMT scheme was used on C
quantum dots, it was confirmed that the separable wave fu
tion gives infinite-offset ground-state energies in good agr
ment with the last two terms in Eq.~4! for R,2aB* We thus
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5186 55U. E. H. LAHELD AND G. T. EINEVOLL
expect the use of a separable wave function to be a g
approximation particularly for the lower-lying exciton stat
with large offsets.

Insertion of the separable wave function~3! into Eq. ~2!
yields

^ch,muHhuch,m&

^ch,much,m&
1

^ce,l uHeuce,l&

^ce,l uce,l&
1

^ch,mce,l uvuce,lch,m&

^ch,much,m&^ce,l uce,l&

5Em,l , ~5!

whereEm,l is the energy of the exciton corresponding to t
electron in statel and the hole in statem.

The energy spectrum for a hole in a quantum dot is
tained by minimizing

^ch,muHhuch,m&

^ch,much,m&
5Eh

m ~6!

for properly chosen basis functions for the hole. HereEh
m is

the energy for themth energy state for the hole alone, n
interacting with the electron. We note that estimates for
ergies of the excited states can be found by indepen
minimization with respect to the variational parameters39

For simplicity the indicesm and l for the hole and electron
states will be omitted below.

The exciton energiesE are found iteratively by consecu
tive minimization of the hole and electron problem. This
done by solving the secular equations for an appropriate
of basis functions for the hole,

^chuHh1Veff
e uch&

^chuch&
5Eh , ~7!

where

Veff
e 5Veff

e ~rh!5
^ce

n21uvuce
n21&

^ce
n21uce

n21&
~8!

with uce
n21& fixed. @In the first step (n51) Veff

e is omitted.#
Thereafter we find the electron wave function by minimizi

^ce
nuHe1Veff

h uce
n&

^ce
nuce

n&
5Ee , ~9!

where

Veff
h 5Veff

h ~re!5
^ch

nuvuch
n&

^ch
nuch

n&
~10!

with uch
n& fixed. HereVeff

e (Veff
h ) is the Hartree potential fel

by the electron~hole!, while uce
n& (uch

n&) is the electron
~hole! wave function after thenth iteration. This alternating
solution of the hole and electron problems is repeated u
the values forEh andEe have converged. After convergenc
the exciton binding energyE is given by

E5Eh1Ee2
^chceuvucech&

^chuch&^ceuce&
. ~11!

The desired accuracy is typically reached after four or fi
iterations.
od

-

-
nt
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B. Electrons

In the single-band effective-mass theory the elect
HamiltonianHe is given by

He52
\2

2me
¹e
21VQD~re!, ~12!

whereme is the spherical effective mass of the electron, a
where

VQD~re!5H 0 for ureu,R

Ve for ureu>R
~13!

is the quantum dot potential.
In the experiments on excitons in CdSe quantum dot12

the CdSe dots were embedded in an optically transpa
organic material@poly~vinyl butyral!#. The effective mass for
this material is unknown, and we assume for simplicity t
same effective mass in the surrounding material as inside
quantum dot. This should be unproblematic when the exc
is strongly confined to the quantum dot.

A Gaussian set is used as basis functions for the elect

ce
i ~re!5e2b i r e

2
. ~14!

Theb ’s are chosen separately for each quantum dot stat
minimize the energy of the state. A linear combination
sevence

i (re) with appropriately chosenb ’s is used in the
calculations. These basis functions do not fulfill the infinit
offset (Ve5`) boundary conditions@ce(R)50#, and for the
description of the treatment forVe5` we refer to Ref. 29.
Note that our choice of basis functions for the electro
makes it possible to study only electron states with spher
symmetry~denotedSe). However, most of the exciton state
identified in the experiments in Ref. 12 for CdSe dots a
likely to correspond toSe states, and we therefore limit our
selves to such states here.

The interaction between the electron and hole is assu
to be Coulombic:

v~ ure2rhu!52
e2

4peure2rhu
. ~15!

Again for simplicity, the dielectric constante is taken as the
bulk value of CdSe both in the dot and in the surround
material. In Ref. 37 the incorporation of the Coulomb inte
action in the calculational scheme is described in detail.

C. Holes

Because of the complexities of the valence-band struct
we use the effective bond-orbital model~EBOM! to describe
the holes. Here we study quantum dots of hexagonal C
where a crystal-field termHD splits the otherwise degenera
valence-band edge. Since the crystal-field splitting of
valence-band edges is relatively small in CdSe ('25
meV!,40 it has usually been neglected or treated as a per
bation in theoretical studies of quantum dots.21,22

We use two different types of EBOM hole descriptions.
the first descriptionHD is omitted. Then the system is cub
and corresponds to the point groupTd , and the hole basis
functions used in the variational calculations are construc
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55 5187EXCITONS IN CdSe QUANTUM DOTS
accordingly. Since the terms linear ink are neglected in the
EBOM Hamiltonian, the correct point group for our model
Oh . However, in accordance with previous studies we w
use the notation for theTd group.

28

In the other description the crystal-field term is includ
by adding to the Hamiltonian a diagonal term, which sp
the otherwise fourfold degenerate band-edge states.21,22,35

With this additional term the symmetry of the hole Ham
tonian corresponds to the symmetry of the EBOM Ham
tonian describing holes localized in quantum wells. We c
therefore apply previously derived basis functions,37,38 cor-
responding to systems withD2d symmetry, in the presen
calculations incorporating the crystal-field term.

In Ref. 12 Norriset al. found that states with odd-parit
envelopes for the hole play a minor part in explaining t
experimental absorption spectra of CdSe quantum dots
our present EBOM schemes for the hole (Td andD2d) we
thus only consider hole states with even-parity envelope

Below we first describe the method used to investigate
cubic (Td) system, and thereafter we present the basis se
the hexagonal (D2d) system.

1. Treatment of cubic system

In Td the electron spin (s51/2) transforms asG6, while
the p-like valence orbitals transform according to theG5
representation. Group theory givesG53G65G71G8 . We
want to incorporate both the heavy-hole, light-hole, a
split-off valence bands in the calculations. Thus we inclu
six spin-orbit-coupled bond orbitals~SOBOs!, two G7, and
four G8, to describe the hole:28

uR,u1/2
G8&52

i

A2
uR,x&f21/2

G6 2
1

A2
uR,y&f21/2

G6 , ~16!

uR,u
21/2
G8 &5

i

A2
uR,x&f1/2

G62
1

A2
uR,y&f1/2

G6 , ~17!

uR,u3/2
G8&5

i

A6
uR,x&f1/2

G61
1

A6
uR,y&f1/2

G61 i
2

A6
uR,z&f21/2

G6 ,

~18!

uR,u
23/2
G8 &52

i

A6
uR,x&f21/2

G6 1
1

A6
uR,y&f21/2

G6

1 i
2

A6
uR,z&f1/2

G6 , ~19!

uR,u1/2
G7&52

i

A3
uR,x&f21/2

G6 1
1

A3
uR,y&f21/2

G6

2
i

A3
uR,z&f1/2

G6 , ~20!

and
l

-
n

In

e
or

d
e

uR,u
21/2
G7 &52

i

A3
uR,x&f1/2

G62
1

A3
uR,y&f1/2

G6

1
i

A3
uR,z&f21/2

G6 . ~21!

HereR denotes a lattice site in the cubic lattice,uR,a& de-
notes ana-like (a5x,y,z) bond orbital at siteR, and
f

61/2
G6 denotes the two electron spinors with spin directed

two opposite directions. We have used the Koster-Dimmo
Wheeler-Statz convention41 (un

G) for the SOBOs to derive
Eqs.~16!–~21!. The bond orbitals are assumed orthonorm
i.e., ^R,auR8,a8&5dR,R8da,a8. The bond orbitals are also
assumed sufficiently localized so that only nearest-neigh
interactions need to be included. The interaction matrix e
ments between the orbitalsuR,a& and uR8,a8& for a fcc lat-
tice are given by27,42

^R,auHuR8,a8&5EpdR,R8da,a8

1(
t

dR2R8,t$Exytata8~12da,a8!

1@Exxta
21Ezz~12ta

2 !#da,a8%. ~22!

HereEp is the interaction between bond orbitals at the sa
site, andEa,a8 is the interaction between ana-like bond
orbital located at the origin and ana8-like orbital located at
(1,1,0)a/2, wherea is the lattice constant of the cubic stru
ture. The sum overt goes over the twelve nearest-neighb
position vectors in the fcc lattice.

The interaction parametersEp , Exx , Exy , andEzz are
determined by expanding the tight-binding Hamiltonia
based on Eq.~22!, to second order ink and requiring equiva-
lence with multiband effective-mass theory.27 In terms of the
Luttinger parameters, the interaction parameters are fo
~in the hole picture29! to be given by the following expres
sions:

Exy526g3

\2

2m0a
2 , Exx52~g114g2!

\2

2m0a
2 ,

Ezz52~g128g2!
\2

2m0a
2 , Ep52Ev112g1

\2

2m0a
2 .

~23!

Hereg1, g2, andg3 are the Luttinger parameters,m0 is the
rest mass of the electron, andEv denotes the band edge o
the heavy-hole and light-hole valence bands. Hole offsets
included in the model by choosing differentEv in the dot and
barrier material. In the calculational scheme we assume
we have the same lattice structure on both sides of the q
tum dot boundary. We also use the same material parame
in the barrier and dot materials. This is obviously not corr
in our case,12 but for states sufficiently localized to the do
the error introduced should not be significant.

In principle, we could have used in a variational calcu
tion a basis set consisting of six SOBOs per site in the cu
lattice. A large reduction of the basis set is, howev
achieved by exploiting the symmetry of the system. We
this by expanding the hole wave function in exponential
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dial functions multiplied with symmetry-adapted angular b
sis functions. These symmetry-adapted basis functions a
turn combinations of products of cubic harmonics,LKi

Gb ,
multiplied with SOBOs.28 The presuperscriptL refers to the
order of the cubic harmonic.43

We are interested in not only theG8 ground state, but also
in excited states, which have other symmetries as wellG6
andG7). However, theG6 states are not optically active, an
we will therefore focus only on theG7 andG8 states. The
G7 states are doubly degenerate (n51/2,21/2), and theG8
states are fourfold degenerate (n53/2,1/2,21/2,23/2).
Hence it is only necessary to consider, say, theG8

3/2 and
G7
1/2 states.
From Ref. 28 we have that theG8

3/2 symmetry-adapted
basis functions are given by ten different combinations
products of cubic harmonics and SOBOs;uLc3/2

G8(R)&a ,
uLc3/2

G8(R)&b , . . . ,uLc3/2
G8(R)& j .The expressions for theseG8

3/2

basis functions and the corresponding five differentG7
1/2 ba-

sis functions can be found in Ref. 28, while the cubic h
monics can be found in Ref. 43.

In our calculations cubic harmonics corresponding
L50, 2, 4, and 6 have been included, and this correspo
to a total of 28 angular basis functions forG8 and 15 for
G7. In Sec. IVA and in the Appendix we will justify the
neglection of cubic harmonics withL>8. Note that with
only evenL ’s we restrict ourselves to states with even-par
envelopes.~To calculate states with odd-parity envelop
one would have to use a separate hole basis set inclu
only cubic harmonics with oddL ’s.!

A spherical cluster with radiusRclu is used in the calcula
tions, and we use the following basis functions for theG8
andG7 states:

ucm
j &n,m,L5(

R
cosS p

2

Ax21y21z2

Rclu
D

3e2anAx21y21z2uLcm
j ~R!&m , ~24!

where j , m5G8, 3/2 orG7, 1/2. The subscriptsn, m, and
L refer to the radial basis function, the symmetry-adap
basis function (a,b, . . . ,j for G8 and a,b, . . . ,e for G7 in
Ref. 28!, and the order of the cubic harmonic, respective
The basis functions are chosen to satisfy the zero-ampli
boundary condition at the cluster surface. The sum oveR
goes over all sites in the cluster, except~0,0,0!. The largest
cluster used in the calculations had a radius of 63 Å. T
appropriate bond orbital at the center site is included se
rately in the basis.29 Up to twelve appropriately chosena ’s
are used in the calculations. With up to 28 angular functio
this gives a maximum of 12328115337 basis functions.

The quantum dot radiusR is defined by29

R5S 3N16p D 1/3a, ~25!

whereN is the number of sites in the quantum dot. In t
infinite hole-offset caseRclu is equal toR.
-
in

f

-

ds

ng

d

.
de

e
a-

s

2. Treatment of hexagonal system

For the hexagonal system we use basis functions w
D2d symmetry, and they are constructed in a similar way
the cubicTd basis functions above. TheD2d EBOM basis
functions have been used previously, and we refer to R
29, 37, and 38 for a more thorough discussion.

In D2d the electron spin (s51/2) transforms asG6, while
thep-like valence orbitals transform according to theG4 and
G5 representations. According to group theo
(G41G5)3G65G61

1G71
2G7 . Thus in EBOM we de-

scribe the hole state by six spin-orbit-coupled bond orbit
~SOBOs!, a G6-like and two different G7-like pairs:
uR,u1/2

G6&52uR,u1/2
G8&, uR,u

21/2
G6 &5uR,u

21/2
G8 &, uR,1u1/2

G7&
5uR,u

23/2
G8 &, uR,1u

21/2
G7 &5uR,u3/2

G8&, uR,2u1/2
G7&5uR,u1/2

G7&, and
uR,2u

21/2
G7 &5 uR,u

21/2
G7 &, where the SOBOs for the hexagon

symmetry have been related to the cubic SOBOs in E
~16!–~21!.

The crystal-field splitting of the valence-band edges
included by adding the following on-site interaction:22

^R,un
GuHDuR8,un8

G8&52dR,R8dnn8dGG8D~G!, ~26!

whereD(G)5D for G5G6, andD(G)50 for G5G7. Here
D is the value of the splitting between theA andB valence-
band edges. We note in passing that holes in ellipso
quantum dots also can be approximately described by ad
a term of the form given in Eq.~26! to the spherical dot
Hamiltonian.36,44 The results presented for hole energies
D in the range 0–100 meV can thus also be applied to el
soidal quantum dots.

As for the cubic case, the hole wave function is expand
in a set of symmetry-adapted angular functions multipl
with exponential radial functions.29,37We need separate bas
function sets for theG6 andG7 hole states. For example, th
G6 basis functions are given by nine different combinatio
of products of angular functions and SOBO
uc1/2

G6(R)&a , uc1/2
G6(R)&b , . . . ,uc1/2

G6(R)& i . They are listed in
Ref. 29. The angular functions for theG7 case are given
accordingly.37 Note that these angular basis functions cor
spond to cubic harmonics withL50 and 2 only.

This gives the following basis functions:

uc1/2
G6,7&n,m5(

R
cosS p

2

Ax21y21z2

Rclu
D

3e2anAx21y21mnz
2
uc1/2

G6,7~R!&m , ~27!

wherem refers to one of the nine angular functions. We ha
introduced anisotropy parametersmn in the exponentials to
allow for more flexibility in the wave function. However, fo
most optically important states the isotropic choicemn51
was found to be favorable. We have used up to twelve
ferenta ’s ~andm ’s! in our computations which together wit
the appropriate SOBO on the central-cell site give a tota
(1239)115109 basis functions.

D. Oscillator strengths

In this subsection we derive expressions for the oscilla
strength for localized excitons in the cubic system. For
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corresponding expressions for the oscillator strength in
hexagonal system whereD2d basis functions are used, w
refer to Ref. 37.

Within the effective-mass formalism the oscillat
strengthf for the bound exciton has the form45,46

f i5
2

m0E0
(
j

z^uc0upi uuv0
j & z2U E d3r ce~r !ch

j ~r !U2,
~28!

when a separable wave function for the exciton, i.e.,

C~re ,rh!5S (
j

ch
j ~rh!uv0

j ~rh! Dce~re!uc0~re!, ~29!

is assumed. The subscripti in Eq. ~28! denotes the polariza
tion direction of the light,E0 is the energy of the transition
uc0 is theG-point conduction-band Bloch function in bulk
uv0
j denotes theG-point valence-band Bloch function wit

the same symmetry as the SOBOuR,umj

G j &, andce andch
j are

envelope functions for the electron and hole, respectiv
Since we use the EBOM to describe the holes, Eq.~28! must
be modified correspondingly. In Ref. 37 the analog expr
sion

f i5
2

m0E0
(
j

z^uc0upi uuv0
j & z2VVU(

R
Gj~R!ce~R!U2

~30!

for the oscillator strength for a bound exciton has been
rived. HereGj (R) is related to the EBOM hole wave func
tion uch& via

uch&5(
R, j

Gj~R!uR,umj

G j &, ~31!

andVV denotes the volume of the primitive cell.
In our calculations the symmetry of the electron wa

function ce is spherical. For cubic symmetry only the ho
basis functions consisting of angular symmetry-adap
functions withG1 symmetry may give nonzero contribution
in Eq. ~30!. This is because only these basis functions belo
to the same irreducible representation as the spherically s
metric electron wave function. Thus only a small subset
the hole basis functions will contribute in Eq.~30!,37 and the
expression for the oscillator strength for aj -like bound ex-
citon simplifies to

f i5
2

m0E0
z^uc0upi uuv0

j & z2VVU(
R

Gj~R!ce~R!U2. ~32!

From Eq.~32! we observe that the oscillator strength is giv
by the overlap factor

K5VVU(
R

Gj~R!ce~R!U2 ~33!

multiplied by a prefactor. The overlap factorK depends only
on the envelopes of the exciton wave function and is
same for all the degenerateG8 states. In contrast, the prefa
tor is different for theG8

63/2 and G8
61/2 states and depend

also on the direction of polarization. In this paper we pres
only overlap factors~for normalized wave functions! which
e

y.

-

e-

d

g
m-
f

e

t

easily can be combined with the appropriate prefactor to
termine desired oscillator strengths.

III. CHOICE OF MATERIAL PARAMETERS

In this section we discuss our choice of material para
eters for CdSe used in the calculations. In Table I these
rameters are summarized. The values for the electron ef
tive massme50.13m0, the cubic lattice constanta56.052
Å, the spin-orbit splittingl5420 meV, and the crystal-field
splitting D525 meV have been taken from
Landolt-Börnstein.40We have used the low temperature~100
K! static dielectric constante(0)59.2e0, where e0 is the
vacuum permittivity. This is an average of the dielect
constants40 e'(0)59.15e0 and e i(0)59.29e0. The sub-
scriptsi and' denote parallel and perpendicular to the he
agonal axis, respectively. Since there is some controve
whether to choose the static dielectric constante(0) or the
optical dielectric constante(`),1,47 we will also discuss the
consequences of alternative choices for the dielectric c
stant.

Ekimov et al.11 used the Luttinger parameter s
g152.1, g25g350.55 for CdSe. This Luttinger paramete
set was adapted to experimental results on CdSe quan
dots. We will, however, adapt our Luttinger parameters
experimental values of bulk CdSe effective masses.

For hexagonal bulk CdSe the effective masses co
sponding to the two upper valence bands, which are spli
the crystal fieldD, are traditionally denoted by subscrip
A andB. Effective hole masses parallel and perpendicula
the hexagonal axis are denoted by the subscriptsi and',
respectively. The Luttinger parameters are connected to
effective hole massesmiA , m'A , miB , andm'B for bulk
CdSe in the hexagonal phase by21,48miA5m0 / (g122g2),
m'A5m0 /(g11g2), miB5m0 /(g112g2), andm'B5m0 /
(g12g2). From Landolt-Bo¨rnstein40 we find the following
experimental values for the hole masses:miA51.17m0 ,
m'A50.375m0, and m'B50.92m0.

49 To our knowledge
there are no experimental values formiB .

Our first set of Luttinger parameters,g151.66, g25
g350.41, is found by minimizing (miA,t2miA,expt.)

2

1(m'A,t2m'A,expt.)
21(m'B,t2m'B,expt.)

2 with respect to
the Luttinger parameters, assumingg25g3 and using the
formulas given above for the connections between the L

TABLE I. Material parameters for CdSe.

Parameter Parameter values~CdSe!

Dielectric constante(0) 9.2e0
Band gapEg 1840 meV
Lattice constanta 6.052 Å
Electron effective massme 0.13m0

Electron offsetVe 600 meV,`
Spin-orbit splittingl 420 meV
Hole offsetVh 600 meV, 1000 meV,̀
First Luttinger set g151.66, g25g350.41
Second Luttinger set g151.66, g250.41, g350.53
Third Luttinger set g151.66, g250.347, g350.452
Crystal-field splittingD 25 meV
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5190 55U. E. H. LAHELD AND G. T. EINEVOLL
tinger parameters and the effective hole masses. Here
subscriptt ~expt.! on the effective masses denotes theoret
~experimental! values. The resulting theoretical effectiv
hole masses (miA,t51.19m0 ,m'A,t50.48m0 , m'B,t
50.80m0, andmiB,t50.40m0) are in good agreement wit
the corresponding experimental values for hexagonal Cd

Note, however, that by choosing these Luttinger para
eters withg25g3, we have neglected the nonspherical ter
in the Luttinger Hamiltonian.32 To our knowledge the ratio
betweeng2 andg3 is not known for CdSe. Using the Lut
tinger parameters listed in Lawaetz,50 we observe that the
ratio between g2 and g3 is quite similar for ZnSe
(g251.24, g351.67) and ZnTe (g251.07, g351.64). As-
suming that the ratio betweeng2 and g3 is the same for
CdSe and CdTe (g251.89, g352.46),50 we obtain the sec-
ond set of Luttinger parametersg151.66, g250.41,
g350.53 for CdSe. With this Luttinger parameter set the
will be cubic terms in the Hamiltonian.17,18 For reasons ex-
plained in the next section we will also use the third Lu
tinger parameter set in Table I.

The band-gap energyEg is not a parameter in our EBOM
calculations, but in order to compare EBOM results w
experiments, we need this parameter. Fr
Landolt-Börnstein40 we haveEg51.84 eV for hexagona
CdSe.

CdSe quantum dots can be embedded in different type
materials and the values of the electron offsetVe and the
hole offsetVh for these structures are generally not know
Several values of the electron and hole offsets are there
used in the calculations.

IV. HOLE ENERGIES

A. Comparison of EBOM and SMEMT

In the following the EBOM hole energy spectra are co
pared with the corresponding hole spectra obtained using
SMEMT. The SMEMT used earlier by Ekimovet al.11 for
CdSe quantum dots includes both the heavy-hole, the li
hole, and the split-off valence bands, and the hole offse
assumed infinite. With SMEMT the hole energies can
found from numerical root-finding of transcendental equ
tions, and this method thus requires less work than
EBOM. Therefore it is important to compare the results o
tained by these methods to investigate when the sim
SMEMT method is sufficient and when the more extens
EBOM calculational scheme must be used. For the low
lying hole energies such a comparison has previously b
done for CdSe~Ref. 31! and GaAs.51

With the spherically symmetric Hamiltonian inherent
the SMEMT the total angular momentumF and the parity
are good quantum numbers. We recall thatF5L1J, where
L is the orbital angular momentum operator for the envelo
wave function, andJ represents the spin operator. We use
common notationnhQF (Q5S,P,D,F,G, . . . ) where the
states are labeled by the smallest angular momentumL in the
envelope, andnh is the number of the level with a certai
symmetry.11 Each hole state has contributions only fromL
and L12 in the spherical approximation. The cubic latti
structure of CdSe will split some of the energy levels that
degenerate in the spherically symmetric system. In Tabl
we have shown the compatibility table between the repres
he
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tations with spherical and cubicTd symmetry.
41 This table

shows how energy levels which are degenerate in a sph
cally symmetric system are split by the cubic lattice stru
ture.

Cubic harmonics corresponding toL50, 2, 4, and 6
have been included in the EBOM hole basis functions. In
SMEMT this suffices to describe theS, D, andG states
since these states have contributions only fromL50 and 2,
L52 and 4, andL54 and 6, respectively.11 The lowest-
lying hole states generally correspond to small angular m
menta, and an accurate description of theS, D, andG states
is sufficient for the present purpose. In the Appendix this
demonstrated more clearly by showing the relative imp
tance of contributions from differentL ’s for the ten lowest
G8 and five lowestG7 states.

In Fig. 1 the energy spectrum for low-lying hole states
CdSe is shown as a function of the dot radius for an infin
hole offset for the cubic EBOM and the SMEMT using ide
tical material parameters. The SMEMT results are fou
from the transcendental equations used in Ref. 11.

From Table II and Fig. 1 we see that the 1S3/2 state cor-
responds to the lowestG8 state (1G8) and that the 1D5/2
state should generate both aG8 and aG6 state in the cubic
case. The SMEMT curves for 2S3/2 and 1D5/2 are seen to
intersect atR'18 Å. In the EBOM model this gives rise to
an avoided crossing between 2G8 and 3G8. Note that we
have not includedG6 states because only states correspo
ing to theS1/2 andS3/2 states (G7 andG8) will be optically
active. This negligible oscillator strength for the cubicG6
states was also verified directly for someG6 exciton states
using our hexagonal EBOM program.

According to Table II the 1D7/2 state should give rise to a
G8, a G7, and aG6 state. For large radii (R;30250 Å! the
1D7/2 state is seen to correspond to 4G8 and 1G7, which are
nearly degenerate. The reason why the 4G8 and 1G7 states
are not completely degenerate even withg25g3 is presum-
ably the cubic lattice inherent in the EBOM method. T
influence of the cubic lattice is, however, less for large d
radii than for small dot radii as expected.

For small dot radii (R,20230 Å! the SMEMT gives
considerably larger hole energies than the EBOM. This is
qualitative agreement with previous comparisons betw
EBOM and effective-mass theories.29 For the largest dot ra-
dii (R.40250 Å! the differences between the two mode
are small, at least for the lowest states.

In Fig. 2 we show the cubic EBOM hole spectra for fini
offsets (1000 meV and 600 meV!, which will be needed
when calculating excitonbinding energies in Sec. V C. As

TABLE II. Compatibility between spherical symmetry@the full
rotational groupO(3)# and cubic symmetry~theTd point group! for
states with even-parity envelopes.

Spherical symmetry@O(3)# Cubic symmetry (Td)

S1/2 G7

S3/2 G8

D5/2 G61G8

D7/2 G61G71G8

G9/2 G712G8
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55 5191EXCITONS IN CdSe QUANTUM DOTS
expected, lower offsets result in lower energies due to
duced confinement of the hole.

We also tested EBOM for the lowest energy states aga
the finite-offset SMEMT scheme used by Sercel a
Vahala,20 who did not include the spin-orbit split-off band
The comparison, not shown here, shows the same g
agreement for large radii as for the infinite-offset case.

In Fig. 3 we show the hole spectra fo
g151.66, g250.41, g350.53, andVh5`. The only dif-
ference between the material parameters used in Fig. 1
Fig. 3 is the value ofg3. By comparing the cubic EBOM
states in Fig. 1 and Fig. 3 carefully, we see that the h
states withg350.53 have somewhat lower energies than
corresponding states forg350.41. For the ground-state en
ergy 1G8 we find the maximal difference between the tw
Luttinger parameter sets for dot radii in the range 12 Å–
Å to be 14 meV. For the five lowestG8 states we find the
largest difference to be 115 meV, and for the two low
G7 states we find 100 meV. Generally, for both theG7 and
G8 states, we find the largest differences in the hole ener
for small dot radii and for the higher-lying states.

We have also done calculations for finite offse
Vh51000 meV, withg151.66, g250.41, g350.53. The
results lead to the same qualitative conclusions as for infi
offset.

FIG. 1. Hole energiesEh for several states as functions of th
dot radiusR for infinite hole offset for the cubic EBOM (D50)
and SMEMT methods. The material parameters for CdSe in Tab
with g151.66, g25g350.41 have been used. The five sol
curves correspond to interpolations of numerical EBOM res
~marked as dots! for the five lowestG8 states, and correspondingl
the two long-dashed curves give the two lowestG7 states. The six
dotted curves show the SMEMT results for th
1S3/2, 2S3/2, 1D5/2, 1D7/2, 1G9/2, and 1S1/2 states which are
the six lowest hole states with even-parity envelopes for large ra
-
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te

By increasingg3 from 0.41 to 0.53, we not only include
cubic terms in the Hamiltonian, we also change the spher
terms.17,18,52In order to do a more transparent investigati
of the influence of cubic terms, we have done calculatio
for the Luttinger parameter setg151.66, g250.347,
g350.452. With this parameter set cubic terms are int
duced in the Hamiltonian without changing the spheri
terms compared to the parameter setg151.66, g2

5g350.41. For infinite hole offset we find that the maxim
change from the cubic terms to the ground-state hole ene
for dot radii in the range 12 Å–51 Å is less than 3 meV. F
the five lowestG8 states we find the largest difference to
17 meV, and for the two lowestG7 states we find, corre-
spondingly, 37 meV. The largest deviation between the h
energies of the two Luttinger parameter sets is found
small dot radii. However, we may conclude that inclusion
cubic terms in the Hamiltonian has little effect on the en
gies of the lowest hole states.

Figure 4 exhibits the hole energy spectra as functions
the spin-orbit energyl for a fixed radius (R520.8 Å! using
the cubic EBOM and the SMEMT with infinite offsets. Th
cubicG6 states are not included. As observed in Fig. 1, s
eral crossings of energy states in the SMEMT@Fig. 4~b!# are
seen to correspond to avoided crossings in the EBOM res
@Fig. 4~a!#. The crossing of, e.g., the 1D5/2 and the 2S3/2 state
for l'300 meV can be seen as an avoided crossing betw
the 2G8 and 3G8 states. Apart from this, the qualitative fea
tures are the same. As in Fig. 1, the EBOM hole states
observed to have smaller energies than the correspon
SMEMT states. The largest difference is observed for
higher hole states. From Fig. 4 we can also see that for
dot radius the decoupling of the spin-orbit split-off band~i.e.,
l5`) is a good approximation for CdSe~with l5420
meV! for the four lowestG8 states. However, for theG7

states~except 1G7) this approximation cannot be used sin
these states have major contributions from the split-off ba

We may conclude that the SMEMT and EBOM giv
qualitatively similar hole energy spectra. For large radii t
two methods also give quantitatively similar results, wh
for small dot radii the SMEMT gives larger hole energi
than the EBOM. This is reasonable since the EBOM disp
sion relation, fitted to agree with the SMEMT dispersio
relation close to the zone center, is predominantly lower~in
the hole picture! than the SMEMT dispersion relation fo
large wave vectors.27

B. Crystal-field term

In this subsection the crystal-field term in the hole Ham
tonian due to the hexagonal structure of CdSe will be
cluded in the calculations. The crystal-field term splits t
fourfold degenerateG8 states in the cubic system into tw
pairs of doubly degenerate states denotedG6

D and G7
D . To

avoid confusion we have added the superscriptD to denote
that theD2d ~and not theTd) notation is used.

Efros21 has derived expressions for the splitting of t
1G8 states as a function of the crystal-field splittingD in the
SMEMT approximation. In Efros’ work,D was treated as a
perturbation. Some manipulations of Efros’ results give

I

s

ii.
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FIG. 2. ~a! Hole energiesEh for several different states as functions of the dot radiusR for a hole offsetVh51000 meV calculated with
the cubic EBOM (D50). Except for the hole offset the same material parameters as in Fig. 1 have been used. The five solid cu
interpolations of numerical results~marked as dots! for the five lowestG8 states, and correspondingly the two dotted curves show the
lowestG7 states.~b! Same as for~a!, butVh5600 meV.
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1

2
D@11v~b!#, d1G

7
D52

1

2
D@12v~b!#.

~34!

Here d1G
6
D and d1G

7
D denote the splitting in energ

@d5Eh(D)2Eh(D50)# between the cubic 1G8 states and
the 1G6

D and 1G7
D states, respectively, andb5miB /miA .

Numerical values of the functionv(b) are found in Efros’
article.21

In EBOM the crystal-field term is included by adding th
on-site interaction term given in Eq.~26! to the Hamiltonian.
We could have studied the effect ofD perturbatively using
the cubic EBOM program. However, by using our hexago
EBOM program withD2d basis functions, we can do a fu
nonperturbative calculation.

In Fig. 5 the splittings of the EBOM hole energies for th
1G8 and 2G8 cubic states into 1G6

D , 1G7
D and 2G6

D , 2G7
D

states, respectively, due to the crystal-field term are show
functions of the crystal-field splittingD for the dot radii
R520.8 Å and R551.3 Å. Figure 5~a! shows that for
R520.8 Å the agreement between the hexagonal EBO
results and the perturbative SMEMT results@Eq. ~34!# is
generally good for both the 1G6

D and 1G7
D states. Figure 5~a!

further shows that the splitting between the 2G6
D and 2G7

D

l

as

states due to the crystal-field term is less than the split
between the 1G6

D and 1G7
D states.

The results forR551.3 Å are shown in Fig. 5~b!. We see
that increasingR has a negligible influence on the effect
the crystal-field term on the energy of the 1G6

D state. How-
ever, the 1G7

D is affected, and the deviation between EBO
and SMEMT results is seen to be substantial
D.30240 meV. The reason for the qualitative differen
between the results forR520.8 Å andR551.3 Å is pre-
sumably that the perturbative Efros formulas are only ap
cable as long asD is much less than typical hole confineme
energies, which are roughly proportional toR22.

Also forR551.3 Å we observe that the splitting betwee
the 2G6

D and 2G7
D states from the crystal-field term is les

than the splitting between the 1G6
D and 1G7

D states.
In conclusion, since the crystal-field splitting is'25 meV

for CdSe, our EBOM results indicate that Efros’ formula
Eq. ~34!, can be applied for the splitting of the ground sta
at least for dots with radii,50 Å.

V. EXCITON ENERGIES

This section is divided into five parts. In the first subse
tion the exciton ground-state energy is calculated and c
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55 5193EXCITONS IN CdSe QUANTUM DOTS
pared with numerous experimental results. The second
section contains results for the exciton energy spectra
oscillator strengths. The results are compared both with
cent experiments12 and with SMEMT results. The binding
energies of different exciton states are presented in the t
subsection. In the fourth subsection the influence of
crystal-field splitting term on exciton energies and oscilla
strengths is studied. Finally, in the last subsection we disc
the effect of other choices of dielectric constants.

A. Exciton ground state

In Fig. 6 we compare results for CdSe exciton groun
state energies based on our combined cubic EBOM-E
scheme@cubic EBOM for the hole, single-band effective
mass theory~EMT! for the electron# with various experimen-
tal results for CdSe quantum dots. In Fig. 6~a! we have com-
pared the EBOM-EMT results with the experimental resu
of Norris et al.12 In Fig. 6~b! the same EBOM-EMT results
are compared with other experiments3–6,8,9,11for the exciton
ground state. We have used the Luttinger parame
g151.66,g25g350.41, while the other material paramete
are listed in Table I.

While the band gapEg of CdSe is known to be close t
1.84 eV,40 the electron and hole offsets are generally u
known. For instance,Eg of optically clear poly~vinyl butyral!
is not known. However, if the material does not absorb v
ible light, we can estimate thatEg.3 eV. For the case with
equal electron and hole offsets, we thus estim
Ve ,Vh>0.6 eV.

In Fig. 6 we show cubic EBOM-EMT exciton energies f
several choices of offsets (Vh5Ve5`, Vh5Ve51000

FIG. 3. Same as in Fig. 2, but with infinite hole offs
(Vh5`) andg151.66, g250.41, andg350.53.
b-
nd
e-

ird
e
r
ss

-
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rs
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-

e

meV, Vh5Ve5600 meV, andVh5`,Ve5600 meV!. We
see from Fig. 6~a! that the infinite-offset EBOM-EMT calcu-
lations overestimate the ground-state energy compared to
experiments of Norriset al.12 We also see from Fig. 6 tha
for the infinite-offset case the EBOM-EMT scheme giv
slightly lower ground-state energies than the combin
SMEMT-EMT scheme with the Coulomb interaction in
cluded perturbatively. The finite-offset results, particula
the case withVh5Ve5600 meV, are seen to fit these expe
ments well, however. For the more scattered experime
results shown in Fig. 6~b! the situation is less clear, but als
here the infinite-offset results seem to overestimate mos
the experimental results. Note, however, that the experim
shown in Fig. 6~b! correspond to CdSe quantum dots in va
ous matrix materials, and the offsets will thus not be t
same for all experimental points shown. Note also that
ground-state energies are much more susceptible to the
tron offset than the hole offset. This is illustrated in Fig. 6
the relatively small difference between the EBOM-EMT r
sults forVh5` andVh5600 meV with finite electron offse
(Ve5600 meV!.

We have also performed EBOM-EMT calculations for t
ground-state exciton energy withg151.66, g250.41, and
g350.53 with the other material parameters the same a
Fig. 6. Both for infinite offsets (Ve5Vh5`) and for finite
offsets (Ve5Vh51000 meV!, we find that increasingg3
from 0.41 to 0.53 lowers the ground-state energy with l
than 15 meV for dot radii in the range 15 Å–51 Å. Th
difference in the ground-state exciton energy between
two choices of Luttinger parameters is largest for small
radii. The main conclusion is, however, that the results
the ground-state exciton energy are quite similar for the t
Luttinger parameter sets.

Calculations based on tight-binding methods23,24 and
pseudopotential methods,25,26 which for numerical capacity
reasons so far have been limited to the infinite-offset ca
predict lower confinement energies than EBOM a
effective-mass theories.29 Since EBOM is fitted to give the
correct bulk band structure for small wave vectors and p
dicts too wide hole bands,27 it is to be expected that EBOM
as well as effective-mass theories, overestimate confinem
energies for small dot radii. However, the error involved
using EMT for the electron and EBOM for the hole is e
pected to be reduced for smaller offsets when penetratio
the wave functions into the barrier matrix becomes sign
cant.

B. Exciton spectra and oscillator strengths

In Figs. 7–10 we present results for CdSe exciton en
gies and overlap factors based on our combined cu
EBOM-EMT scheme for comparison with the experimen
exciton spectra from Norriset al.12 We use the notation
nhG8,72neSe appropriate for cubic hole symmetry. Many o
the lowest exciton states have a negligible oscillator stren
and are not expected to be seen experimentally. In orde
compare with the experiments we have thus marked
states in the figures according to the magnitude of their ov
lap factorK. As seen in the previous subsection the excit
ground-state energy depends sensitively on the electron
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FIG. 4. Cubic EBOM (D50) and SMEMT hole energies for several states as functions of the spin-orbit splittingl for a fixed dot radius
R520.8 Å. The results of the six lowestG8 states~solid curves! and the three lowestG7 states~dotted curves! calculated with the EBOM
are drawn in ~a!. The curves are found by interpolations of the numerical results marked as dots. The parameters u
g151.66, g25g350.41, andVh5`. The corresponding SMEMT states are shown in~b!. Note that to facilitate easy comparison the ener
scales are different in the two figures.
on

r
al
s
el

e
r

e

th
d

n

se

dius

he

ing
e

ty,
in

-

ts
lit-
red
in-
r

o
on
set. Since most of the experimentally observed transiti
involve the same electron level (1Se),

12 we have plotted the
transition energies relative to the exciton ground-state ene
(1G821Se) because this energy is measured experiment
more precisely than the dot size,12 and because this reduce
the sensitivity to the choice of electron offset in our mod

In Table III we list the overlap factorK for the
nhG7,821Se exciton states in the infinite-offset case for a s
of dot radii. For theG821Se states most of the oscillato
strength is seen to be distributed between the 1G821Se and
2G821Se states, with only minor contributions from th
3G821Se and higher-lying states. For thenhG721Se states
the situation is more complicated, and for large dots
states with large oscillator strengths are seen to correspon
large values ofnh (nh523 for R551.3 Å!. This feature is
explained below.

In Fig. 7~a! our cubic EBOM-EMT results for infinite
hole and electron offsets are compared with the experime
As seen in Table III, only the three lowestG821Se states
(1G821Se , 2G821Se , 3G821Se) have values for the
overlap factor larger than 0.01 in the infinite-offset ca
Therefore only results for the 2G821Se and 3G821Se tran-
sitions are shown in Fig. 7~a!. For theG721Se states the
s

gy
ly

.

t

e
to

ts.

.

overlap factor depends sensitively on the quantum dot ra
R. In Fig. 7~a! it is seen that many of theG721Se transitions
with a large overlap factor are lifted by approximately t
spin-orbit energyl5420 meV compared to the 1G821Se
transition.

In Fig. 7~b! we compare theoretical exciton energies us
SMEMT for the hole and EMT for the electron with th
same experiments as in Fig. 7~a!. The Coulomb interaction is
treated as a perturbation.11 For transitions toSe states we use
the Efros estimateVeh51.8e2/(4peR), and for transitions to
the 1Pe level we useVeh51.7e2/(4peR).53,54 A collection
of low-lying exciton states, both even-parity and odd-pari
which were found to have significant oscillator strengths
Ref. 11, are shown.

From Figs. 7~a! and 7~b! we see that both the infinite
offset cubic EBOM-EMT results for the 2G821Se and
3G821Se states and the infinite-offset SMEMT-EMT resul
for the 2S3/221Se state apparently underestimate the sp
ting in energy from the ground-state energy when compa
with the corresponding experimental data. Figure 7 also
dicates that theG721Se states with significant oscillato
strength, which are split by'l from the ground state~1
G821Se) for a wide range of dot radii, correspond t
S1/221Se states in the SMEMT-EMT scheme. This was c
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FIG. 5. The splittingd5Eh(D)2Eh(D50) of the two lowestG8 states (1G8 , 2G8) into (1G6
D , 1G7

D) and (2G6
D , 2G7

D) as a function
of the crystal-field splittingD. The Luttinger parameters used areg151.66, g25g350.41, andVh5`. The solid curves are interpolation
of hexagonal EBOM results shown as dots. The dotted curves are calculated using Efros’ expressions@Eq. ~34!# with identical material
parameters. The dotted curve with the smallest~largest! splitting d corresponds to the 1G7

D (1G6
D) state. In~a! R520.8 Å and in~b!

R551.3 Å.
a
x

e-
that
-
we
e.
firmed by changing the spin-orbit energyl in the EBOM-
EMT scheme and assuring that theG721Se states with
significant oscillator strength still were split by'l from the
ground state. However, the infinite-offset models do not s
isfactorily fit the other experimentally observed excited e
citon states. From Fig. 7~b! we observe that the
t-
-

2S3/222Se , 4S3/222Se , 1P3/221Pe , and 1P1/221Pe

SMEMT-EMT exciton states are also insufficient in this r
spect. Moreover, from the previous subsection we recall
the EBOM-EMT and SMEMT-EMT methods in the infinite
offset case predict too high ground-state energies. Below
therefore consider finite offsets in our EBOM-EMT schem
ous

nd

ed in
FIG. 6. Comparison with experiments for exciton ground-state energies for CdSe quantum dots. In~a! cubic EBOM-EMT and SMEMT-
EMT results are compared with the experiments of Ref. 12 marked as stars. In~b! the same theoretical results are compared with numer
experimental results taken from Refs. 3~open circle!, 4 ~square!, 5 ~star!, 6 ~rectangle!, 8 ~triangle!, 9 ~five-sided polygon!, and 11
~diamond!. The three solid curves in~a! and~b! correspond to EBOM-EMT results forVh5Ve5`, 1000 meV, and 600 meV~marked with
`, 1000, and 600). The dotted curves correspond to EBOM-EMT results forVh5` andVe5600 meV. The long-dashed curves correspo
to infinite-offset results using SMEMT for the hole, EMT for the electron, andVeh51.8e2/(4peR) for the Coulomb interaction~Refs. 53
and 54!. The parameters for CdSe in Table I withg151.66, g25g350.41 have been used. The band-gap energy has not been includ
the exciton energies.



und-state

h
e

tes are

5196 55U. E. H. LAHELD AND G. T. EINEVOLL
FIG. 7. Comparison with experiments for excited exciton states. The excited-state energies are shown as functions of the gro
exciton energy. Experimental results of Norriset al. ~Ref. 12! on CdSe quantum dots are marked as stars.~a! Comparison of even-parity
infinite-offset cubic EBOM-EMT results with experimental results~Ref. 12!. The parameters for CdSe in Table I wit
g151.66, g25g350.41 have been used. Dotted curves correspond to the fifteen lowestG721Se states and solid curves to th
2G821Se and 3G821Se states. Filled dots outside curves correspond to other states with these symmetries and with largeK. The curves are
obtained by interpolating results for a discrete set of quantum dot radii (R514.9, 17.8, 20.8, 27.1, 33.3, 39.3, 45.3, and 51.3 Å!. The
magnitude of the overlap factorK is indicated by the size of the filled dots: The largest filled dots correspond to 0.9<K,1, the second
largest filled dots correspond to 0.8<K,0.9, etc. The radii of the filled dots are nearly two times larger for states with 0.9<K,1 than for
states with 0.01<K,0.1. States withK less than 0.01 have been marked with the smallest filled dots, indicating that these sta
optically weak. TheG821Se states and some of theG721Se states are labeled on the graph.~b! Comparison of SMEMT-EMT results with
experiments usingVeh51.8e2/(4peR) andVeh51.7e2/(4peR) for transitions to theSe andPe levels, respectively~Refs. 53 and 54!, with
the same material parameters as in~a!.
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Figures 8~a! and 8~b! show the cubic EBOM-EMT exci-
ton energy spectra with finite electron and hole offs
(Ve5Vh51000 meV andVe5Vh5600 meV! using the
same material parameters as in Fig. 7~a!. By comparison
with the infinite-offset results we observe that for smal
offsets more states have a significant oscillator stren
Moreover, this effect is most pronounced for the small
dots where the penetration into the barrier is most extens
For both choices of offsets in Fig. 8 we find, as in t
infinite-offset case,G721Se states with large overlap factor
for states which are split by approximately the spin-or
energy from the 1G821Se ground state. This supports th
assignment of the experimentally observed exciton st
with energies'l higher than the ground states for a wid
range of radii asG721Se states. Such spin-orbit split-of
states have also been observed in other experiments.3,11
s

r
h.
t
e.

t

es

In the finite-offset cases we also get good fits between
lowest band of experimentally observed states and
2G821Se and 3G821Se states ~especially for
Ve5Vh51000 meV!.

The 1G721Se and 2G721Se states are found in the ca
culations to have large oscillator strengths, especially
small radii. Even though there are some experimental d
points for the larger dots which are energetically close to
theoretical values for these states, the assignment of the
G721Se states is questionable. For instance, transitions
volving higher-lyingG8 states@e.g., the 10G821Se transi-
tion seen in Fig. 8~a!# are also candidates. Norriset al.12

suggested that the experimentally observed states in
range; 200–300 meV above the ground state could cor
spond to the 1S1/221Se state. This would correspond t
G721Se states in our scheme. We will, however, later in th
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FIG. 8. ~a! Same as Fig. 7~a! but Ve5Vh51000 meV. Additional results forR512.3 Å have been included.~b! Same as Fig. 8~a! but
Ve5Vh5600 meV.
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subsection show results which indicate that these experim
tal points may also correspond to the 1P3/221Pe exciton
state, which is expected to be optically strongly active.11,34

In Fig. 9~a! the cubic EBOM-EMT exciton energy spec
trum for Ve5600 meV andVh5` is shown. Again we can
assign ~i! the G721Se transition with large oscillator
strength~corresponding toS1/221Se states! to the band of
exciton states with energies'l5420 meV above the
ground-state energy, and~ii ! the 2G821Se and 3G821Se
transitions to the lower band of experimentally observ
transitions. As for the previous choices of offsets, the ass
ment of the experimentally observed transitions betw
these two bands is not obvious. Note also that the results
Vh5`,Ve5600 meV in Fig. 9~a! are similar to the results
for Vh5Ve5600 meV illustrating that the results are rath
insensitive to the hole offset.

In Fig. 9~b! we have shown the corresponding results
the SMEMT-EMT scheme forVe5600 meV andVh5`.
We have used the same perturbational results53,54 for the
Coulomb interaction as in Fig. 7~b! ~even though these wer
derived for the infinite-offset case!. In Fig. 9 curves for some
of the states (1P3/221Pe , 1P1/221Pe , 2S3/222Se , and
4S3/222Se) are not drawn for large ground-state energ
(1S3/221Se), or, equivalently, for small dot radii. The rea
son is that the dot must have a minimum size to bind
electron when the electron offset is finite.55
n-

d
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n
or

r
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e

From Fig. 9~b! it appears that with finite electron offse
the 1P3/221Pe state can account for the experimental da
points observed between theS1/221Se spin-orbit split-off
states and the 2S3/221Se state for large radii.~The unbind-
ing of the 1P3/221Pe exciton in the model even occurs clos
to the dot radius for which this exciton state apparently v
ishes in the experiment.! As discussed above, these expe
mental observations did not convincingly fit any of the eve
parity states in our EBOM-EMT scheme.

When comparing Figs. 9~a! and 9~b! we see that the re
sults for the exciton energy spectra using the SMEMT-EM
and the EBOM-EMT schemes give qualitatively similar r
sults for the 2S3/221Se state and 2G821Se/3G821Se
states. However, for small dot radii the EBOM-EMT resu
~which in contrast to the SMEMT-EMT scheme used he
also incorporates the Coulomb interaction nonperturbative!
seem to fit the experimental data better.

In Fig. 10 we present cubic EBOM-EMT exciton energ
spectra for a case whereg2Þg3, i.e., g151.66, g25
0.41, g350.53, andVe5Vh51000 meV. By comparing
with Fig. 8~a!, we see that the results for the exciton energ
for g25g3 andg2Þg3 are qualitatively similar, even thoug
the agreement with the 2G821Se and 3G821Se states ap-
parently are slightly less good for the case withg2Þg3. The
main difference between Figs. 8~a! and 10 for the EBOM-
EMT oscillator strengths is that there are more states w
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FIG. 9. ~a! Same as Fig. 7~a! butVe5600 meV. The calculations have been done for the same set of dot radii as in Fig. 7~a!. In addition,
results forR512.3 Å and 57.5 Å have been included.~b! Same as Fig. 7~b! but Ve5600 meV.
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non-negligible oscillator strengths forg2Þg3 than for
g25g3. This is as expected since when cubic terms are
cluded in the exciton Hamiltonian by settingg2Þg3, more
hole states will have contributions fromL50 than in the
spherical case.17,18

Finally, we illustrate in Fig. 11 how the cubic EBOM
EMT overlap factor varies with the dot radius for the excit
case (e59.2e0) and the independent particle case (e5`)
for both the infinite-offset case and forVe5Vh5600 meV.
In Fig. 11~a! we observe for the infinite-offset exciton ca
that the 1G821Se overlap factor decreases monotonical
while the 2G821Se overlap factor increases monotonical
as the dot radiusR increases and the confinement is reduc
In the infinite-offset case we also observe that
1G821Se overlap is smaller and the 2G821Se overlap is
larger for the exciton than for independent particles. Ho
ever, for small radii the 1G821Se overlap approaches th
same value for the independent-particle case and the ex
case. This is expected since the influence of the Coulo
interaction on the wave function disappears in this limit.

Efros21 has calculated the overlap factor for the two lo
est exciton states (1S3/221Se and 2S3/221Se) in the
infinite-offset independent-particle SMEMT-EMT schem
and his results are found to be in accordance with ours.

For the finite-offset case the 1G821Se overlap is gener-
ally smaller than for infinite offsets. The difference is lar
for small dot radii where the wave-function penetration in
-

,

.
e

-
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,

FIG. 10. Same as Fig. 8~a! (Ve5Vh51000 meV!, but the Lut-
tinger parametersg151.66, g250.41, andg350.53 are used.
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55 5199EXCITONS IN CdSe QUANTUM DOTS
the barrier is large, while it is seen to nearly disappear for
largest dots considered where the barrier penetration is sm

The corresponding results for theG721Se states are less
tidy, however, since the overlap factor changes rapidly w
R varies. In Fig. 11~b! we show the overlap factor for th
three lowest infinite-offsetG721Se states which share mos
of the oscillator strength between themselves for smallR.
For R.20 Å the large oscillator strengths corresponding
the split-off S1/221Se states are distributed tonhG721Se
states withnh.3.

C. Exciton binding energies

The difference between the exciton energy and the sum
the single-particle energies is commonly called the bind
energy. The binding energy in the combined scheme w

TABLE III. The overlap factorK for different cubic EBOM-
EMT states and dot radii. The offsets are assumed infinite
g151.66, g25g350.41. Other material parameters are taken fr
Table I. Overlap factors less than 1023 have been rounded off to th
nearest power of ten.

Exciton Dot radiusR ~Å!

state 14.9 17.8 20.8 27.1 33.3 39.3 45.3 51

1G8 0.95 0.95 0.95 0.94 0.93 0.92 0.91 0.9
2G8 0.013 0.027 0.041 0.058 0.072 0.084 0.093 0.1
3G8 0.016 0.010 0.002 0.001 1024 1025 1025 1025

4G8 1024 1028 1025 1025 1026 1026 1027 1027

5G8 1025 1025 1024 1024 1024 1024 1025 0.001
6G8 1024 1025 1025 1025 1025 1026 0.001 1027

7G8 1025 1026 1028 1027 1025 1025 1026 1026

8G8 1024 1027 1027 1027 1027 1027 1026 1027

9G8 1024 1025 1028 1025 1027 1028 1028 1028

10G8 1025 1025 1028 1026 1024 1024 1028 1024

1G7 0.65 0.27 1024 1024 1026 1028 1028 1027

2G7 0.035 0.14 0.18 0.036 0.001 1026 1027 1027

3G7 0.29 0.58 1024 1024 0.010 0.004 0.002 0.001
4G7 0.001 0.003 0.001 1026 1025 1025 1025 1025

5G7 0.003 0.001 0.81 1025 1026 1028 1028 1029

6G7 0.004 1024 1024 0.11 1025 1028 1028 1028

7G7 0.001 0.001 1024 0.79 1026 1027 1027 1027

8G7 1025 1025 1025 0.009 1025 1026 1028 1028

9G7 0.002 0.003 0.005 0.001 0.002 1025 1026 1029

10G7 0.001 1024 0.001 0.032 0.028 0.003 1024 1025

11G7 0.001 1024 1024 0.001 0.001 1024 0.001 1024

12G7 0.001 1024 0.001 1024 0.96 1025 1026 1027

13G7 1024 1024 1025 1026 1025 1026 1027 1027

14G7 0.004 1025 1026 1027 1026 1026 1027 1027

15G7 0.011 1026 1025 1026 1026 1026 1028 1029

16G7 0.99 1026 10210

17G7 1024 1026 1026

18G7 1025 1026 1026

19G7 1026 0.004 1024

20G7 0.19 0.002
21G7 0.79 1026

22G7 1026 1024

23G7 1026 0.99
e
ll.

n

of
g
h

cubic EBOM and EMT is plotted as a function of the d
radiusR in Fig. 12. The parameters for CdSe in Table I wi
g151.66, g25g350.41 have been used. In Figs. 12~a!–
12~d! the binding energies for the states 1G821Se ,
2G821Se , 1G721Se , and 2G721Se , respectively, are
shown for various values of the electron and hole offse
The binding energies for all the states shown in Fig. 12 a
as expected, found to decrease with decreasing electron
hole offsets due to the increased penetration of the w
function into the barrier when the offsets are lowered.

The curves for Vh5Ve5600 meV and for Vh5`,
Ve5600 meV in Figs. 12~a!–12~d! show that there exists a
radius for which the binding energy is maximal. This h
previously been demonstrated for the exciton ground-s
energy in both type-I quantum dots,29 where both the elec-
tron and hole are confined to the dot, and in type-I1

2 quantum
dots,56 where one of the particles is confined to the dot m
terial, with the other free to move. In the limitsR→0 and
R→`, the binding energy approaches the bulk binding e
ergy of the barrier and dot material~which are identical in
our calculations!, respectively. It follows that the finite-offse
binding energies will necessarily exhibit a maximum for
finite R. The curves forVh5Ve51000 meV in Fig. 12
would show a maximum if calculations for smaller dot rad
had been included.

d

FIG. 11. Overlap factorK as a function of the dot radius for th
exciton case~solid curves! and the independent-particle case~dotted
curves!. The parameters for CdSe in Table I wit
g151.66, g25g350.41 have been used in the cubic EBOM-EM
scheme. In~a! the overlap factors for the optically importan
G821Se states are shown both for infinite offsets and finite offs
with Ve5Vh5600 meV~labeled 600 on the graph!. The calculated
values are shown by dots on the curves. Due to an avoided cros
for Ve5Vh5600 meV, between the 2G821Se and 3G821Se states
in the range 20 Å,R,33 Å, these states have significant oscill
tor strength only for a limited range of dot radii and are thus n
shown for all dot sizes. In~b! the overlap factor for the three lowes
G721Se states is shown for infinite offsets.
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FIG. 12. Exciton binding energies in the cub
EBOM-EMT scheme for CdSe quantum dots
functions of the dot radiusR for ~a! 1G821Se ,
~b! 2G821Se , ~c! 1G721Se , and ~d!
2G721Se . The parameters for CdSe in Table
with g151.66, g25g350.41 have been used
The three solid curves in~a!–~d! correspond to
results forVh5Ve5`, 1000 meV, and 600 meV
~marked with `, 1000, and 600). The dotted
curves correspond to results forVh5` and
Ve5600 meV. The calculated values are show
as dots. The perturbative result~Refs. 53 and 54!
Veh51.8e2/(4peR) for the Coulomb interaction
is shown as long-dashed curves.
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For comparison we have also plotted the perturbative
pression for the Coulomb interaction for the infinite-offs
1S3/221Se ground state@Veh51.8e2/(4peR)#, which was
used in Ref. 11 and in our present SMEMT-EMT calcu
tions. We observe in Fig. 12~a! a good agreement betwee
our infinite-offset results for 1G821Se and the perturbative
expression. However, it should be noted that the perturba
expression is seen to overestimate the infinite-offset bind
energy for the 2G821Se , 1G721Se , and 2G721Se states.

D. Influence of crystal-field term

In Sec. IV B we investigated the influence of the cryst
field term due to the hexagonal structure of CdSe on the h
x-
t

-

e
g

-
le

energy spectra. Here we study the effect of the crystal-fi
term on the exciton energies and the exciton overlap fac
which determine the oscillator strength. The crystal-fie
term causes a splitting of the cubicG821Se exciton states
into G6

D21Se and G7
D21Se exciton states. In Fig. 13 the

overlap factor in the hexagonal EBOM-EMT scheme h
been plotted as a function of the crystal-field splittingD for
the optically most important states for a quantum dot w
radius R520.8 Å in the infinite-offset case.@The corre-
sponding splitting of theG8 hole states is shown in Fig
5~a!.#

In Fig. 13 we observe that the difference in overlap fa
tors between the 1G6

D21Se and 1G7
D21Se states and be-

tween the 2G6
D21Se and 2G7

D21Se states, respectively
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55 5201EXCITONS IN CdSe QUANTUM DOTS
gradually increases whenD is increased. However, no abru
changes in the overlap factors for these two pairs of st
occur in the range ofD considered here. For the cubicG7
states, on the other hand, we observe an interchange o
cillator strength due to avoided-crossing behavior betw
the 4G7

D21Se and 5G7
D21Se states and 9G7

D21Se and
10G7

D21Se states,
57 respectively, forD between 60 and 100

meV. The optically importantS1/221Se spin-orbit split-off
states are seen to correspond to 9G7

D21Se for D less than 60
meV. Figure 14~a! displays the same as Fig. 13 for the larg
dot radius R551.3 Å, and here a complicated patte
of avoided crossings is revealed for more modest value
D. This is not surprising since the crystal-field splitting
expected to have a large impact only whenD is comparable
to the hole confinement energies, which decrease with
creasing dot radii. As seen in Fig. 1, the infinite-offset ho
confinement energy for theG8 ground state is 119 meV fo
R520.8 Å while it is 22 meV forR551.3 Å. The compli-
cated behavior of the overlap factor for the large dot revea
in Fig. 14~a! is easier understood by also considering
exciton energy spectra shown in Fig. 14~b! @see also Fig.
5~b!#. The energies for the two lowestG6

D21Se states de-
crease roughly linearly with increasingD with no abrupt
changes in the overlap factor. However, the energy spe
for theG7

D21Se states exhibit avoided-crossing behavior f
approximately those values ofD for which the overlap factor
is susceptible to changes inD. The overlap factors and thu
the oscillator strengths are seen to redistribute asD is in-
creased to give more optical weight to higherG7

D21Se
states. ForR551.3 Å we have not shown the effect ofD on

FIG. 13. Overlap factorK as a function of the crystal-field split
ting D for the fixed dot radiusR520.8 Å for some of the optically
most important states. The parameters for CdSe in Table I w
g151.66, g25g350.41, andVh5Ve5`, have been used in th
hexagonal EBOM-EMT scheme. The electronic part of the w
function corresponds in all cases to the 1Se state. The calculated
values are shown by dots on the curves. Note that there is no d
correspondence between the numbering of hexagonal and c
EBOM states~Ref. 57!.
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the G721Se states corresponding to the optically importa
S1/221Se split-off states. For this large dot radius these sp
off states correspond to a large number of energetically s
lar G721Se states which interchange optical strength asD is
increased.

For CdSe,D'25 meV.40 From Figs. 5 and 14~b! we see
that for the 1G821Se and 2G821Se states, the splitting of
absorption peaks due to the hole state splitting from
crystal-field term is expected to be less thanD. The main
contribution to the width of the absorption features in Ref.
comes almost certainly from sample inhomogeneities. T
justifies our present approximation of neglecting the crys
field term and using the cubic EBOM description when co
paring our theory with the experimental absorption spec
by Norris et al. Note, however, that recent studies have
dicated that in order to interpretphotoluminescencespectra

th
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FIG. 14. Hexagonal EBOM-EMT results for the overlap fact
K ~a! and the corresponding exciton energies~b! as functions of the
crystal-field splittingD for a fixed dot radiusR551.3 Å. Optically
important cubicG821Se states (D50) are shown. The parameter
for CdSe in Table I with g151.66, g25g350.41, and
Vh5Ve5` have been used. The band-gap energyEg has not been
included in the exciton energies. Note that there is no direct co
spondence between the numbering of hexagonal and cubic EB
states~Ref. 57!.
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both the crystal-field splitting term and the electron-hole
change interaction must be taken into account.36,58

E. Choice of dielectric constants

In this paper we have used the static dielectric constan
CdSe,e(0)59.2e0, even though there is some controver
whether the static dielectric constante(0) or the optical di-
electric constante(`) should be used.1,47 For CdSe, the op-
tical dielectric constante(`)'6.0e0 ~15 K!.40 The use of
e(`) instead ofe(0) would significantly increase the bind
ing energies shown in Fig. 12. The effect on the exci
spectra in Figs. 7–10 would be less since the kinetic ene
terms dominate the Coulomb energies for small quan
dots. The overlap factor is generally found to be not ve
sensitive to changes in the dielectric constant for our rang
dot radii, and a choice ofe(`) instead ofe(0) would have
small effects on the oscillator strengths for the dot radii a
offsets considered here.

In our calculations we have neglected possible surfa
polarization effects59 by using the same value for the diele
tric constant in the dot and barrier materials. Takagaha59

has studied the effect of different dielectric constants in
dot and barrier in an infinite-offset model using single-ba
effective-mass theory for both the electron and the hole
the strong-confinement limit the expression

E/ERy* 5p2S aB*R D 21A1

aB*

R
1A0 ~35!

was found for the ground-state energy. The coefficientsA0
andA1, which are tabulated in Ref. 59, depend on the diel
tric constant ratioedot/ebarrier. For the usual case with
edot/ebarrier51, Eq.~35! reduces to Kayanuma’s well-know
result Eq.~4!. We have used Eq.~35! to study the influence
of the surface polarization on the exciton ground-state
ergy using parameters suitable for CdSe (aB*550 Å and
edot59.2e0). Due to the lack of reliable values for the diele
tric constant for the matrix material used by Norriset al.,12

we have studied the case with CdSe dots embedded in
cate glass whereedot/ebarrier;324. In this case the exciton
ground-state energy will be larger than foredot/ebarrier51.
For dot radii between 10 and 50 Å, we find that the dev
tions between the calculated ground-state energies~not in-
cluding the band-gap energyEg51.84 eV! for
edot/ebarrier54 andedot/ebarrier51 vary from 2% forR510
Å to 13% for R550 Å. However, further theoretical wor
on the full exciton spectra which incorporates finite offs
and degenerate valence bands is needed to clarify the im
tance of surface polarization.

VI. CONCLUDING REMARKS

Our theoretical results from using the effective bon
orbital model ~EBOM! for the hole and single-ban
effective-mass theory~EMT! for the electron in an iterative
Hartree scheme, including the Coulomb interaction and fin
offsets, have been found to account for most of the impor
features of the experimental absorption spectra for C
quantum dots obtained by Norris and co-workers. In addit
-
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to the exciton ground state (1G821Se), experimental states
corresponding to 2G821Se and 3G821Se have been iden-
tified. Moreover, the band of experimental exciton states
served lifted with an energy close to the spin-orbit splitti
l5420 meV above the exciton ground state has been id
tified asG721Se spin-orbit split-off states with large oscil
lator strengths. The assignment of a collection of experim
tally observed exciton states lifted; 200–300 meV above
the ground state is less clear, but several candidate s
have been suggested~e.g., 1P3/221Pe).

The assumption of finite offsets has been found to
crucial in order to obtain quantitative agreement between
model and the experimental exciton spectra of Norriset al.
Independent experimental assessment of the electron
hole offset is thus of significant interest.

The nonperturbative study of the effects of the cryst
field splitting D revealed patterns of avoided crossings a
companied with redistribution of oscillator strengths betwe
different states. In CdSe,D'25 meV and the main contri
bution to the width of the absorption peaks in Ref. 12
expected to come from sample inhomogeneities and not f
the crystal-field splitting term.

For the largest dot radii considered, the EBOM hole co
finement energies are in excellent agreement with res
from the spherical multiband effective-mass theo
~SMEMT!. However, for small dot radii the EBOM predict
lower confinement energies, apparently in better agreem
with experiments. The EBOM confinement energies are a
closer to results from the empirical tight-binding method a
the empirical pseudopotential method.23–26,29

In other calculational schemes that incorporate the co
plicated valence-band structure, the Coulomb interaction
only included perturbatively. Often the strong-confineme
result for the Coulomb energy for the infinite-offset excito
ground state is used, even for excited exciton states. As

TABLE IV. Cubic EBOM hole energies~in meV! of the ten
lowest G8 states and the five lowestG7 states forR520.8 Å,
g151.66,g25g350.41, andVh5`. The rest of the material pa
rameters are taken from Table I.L50,2,. . . ,Lmax cubic harmonics
LKi

Gb are included.

Hole state Lmax52 Lmax54 Lmax56

1G8 120 119 119
2G8 242 242 241
3G8 254 246 246
4G8 440 363 361
5G8 452 439 438
6G8 528 467 455
7G8 569 483 463
8G8 764 498 494
9G8 843 512 508
10G8 864 526 521

1G7 418 369 368
2G7 469 418 416
3G7 553 486 472
4G7 763 523 520
5G7 1057 553 552
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vealed by the binding energies shown in Fig. 12, this m
give inaccurate results for all exciton states for systems w
finite offsets and for excited exciton states in the infini
offset case.
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APPENDIX

In the cubic EBOM calculations reported here cubic h
monics corresponding toL50, 2, 4, and 6 have been in
cluded in the hole basis functions to describe the lowest h
states. This is expected to be a good approximation
S, D, andG states. The relative importance of the contrib
tions from differentL ’s is illustrated in Table IV by means o
a special example: the first tenG8 hole states and the firs
five G7 states have been calculated for the dot rad
R520.8 Å.

In Sec. IVA the 1G8 state was identified as the 1S3/2 state
and should have its main contributions fromL50 and
L52. From Table IV we see that, as expected, the h
energy for the 1G8 state changes by only 1 meV whe
Lmax is increased from 2 to 6. We observe that most sta
have small changes in energies whenLmax is increased from
4 to 6, and this contributes to justifying that cubic harmon
with L>8 can be neglected in our calculations.
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