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Theory of exciton pair states and their nonlinear optical properties
in semiconductor quantum dots
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The exciton and two-exciton states in semiconductor quantum dots much larger in size than the exciton Bohr
radius are investigated, and the energies and oscillator strengths of several exciton and biexciton states are
calculated. The presence of weakly correlated exciton-pair states are identified and these have a large oscillator
strength increasing proportional to the volume of the quantum dot. These states are shown to play a crucial role
in determining the nonlinear optical response of large quantum dots. The weakly correlated exciton-pair states
are found to cause a cancellation effect in the third-order nonlinear optical susceptibility at the exciton reso-
nance, providing a consistent understanding of the experimentally observed saturation of the mesoscopic
enhancement of the excitonic optical nonlinearity. The excited-state absorption in quantum dots is also studied
and the excitation of the weakly correlated exciton-pair states is found to dominate the spectrum. The spectral
features in the pump-probe spectroscopy are predicted in detail. The biexciton binding energy and oscillator
strength are obtained in good agreement with experimental results on CuCl quantum dots. Also, the good
correspondence of the excited-state absorption spectra between the theory and experiments provides convinc-
ing evidence for the presence of the weakly correlated exciton-pair t8&E53-18297)04008-3

[. INTRODUCTION distinctly non-bulk-like features including enhanced nonlin-
ear optical susceptibility with an intriguing size

Optical properties of three-dimensionally confined elec-dependencd’ very large gain for biexcitonic lasingand a
trons and holes in semiconductor microcrystédsiantum  blueshift of the excitonic absorption under a strong pump
dots have been extensively studied in recent yéarhis beam!’ These observations indicate the significance of the
work has been fueled in part by interest in the fundamentainterplay of excitonic and biexcitonic states.
physics of finite systems as well as by their potential as ef- Theoretically, considerable progress has been achieved in
ficient nonlinear optical and laser materiaf$? The spatial  the description of the single-particle electronic structure pro-
confinement of electrons and holes leads to a discrete energyding a satisfactory framework for describing the optical
level structure with possibly sharp absorption lines as in atresponse of QD’s of a radius comparable to or smaller than
oms. The concentration of the oscillator strength into well-a,,.'®=?% In larger crystallites, reliable theoretical calcula-
defined energies makes quantum d@®’s) very attractive  tions of the excitonic states ex&t.2’ However, biexciton
for electro-optic and nonlinear optical applications. calculationd?® have been restricted to QD’s whose radius is

In addition to the spatial confinement, the Coulomb inter-smaller than a few timea,,, due to the numerical complex-
action between the excited electrons and holes also plays dty of the problem wheiR>a.,. There has also been a study
important role in determining the excitation spectra of QD’s.of the biexciton states in the asymptotic limitRf-c using
This is especially true in most of the currently studied crys-a simplified exciton-exciton interactidii.
tallites of II-VI and I-VII semiconductors like CdS, CdSe,  Motivated by these considerations, we study the size de-
CuCl, etc., owing to the large exciton binding energy in thesependence of the biexcitonic states and of the nonlinear opti-
materials. The formation of excitons and biexcitons in dotscal response of semiconductor QD’s of radii up tcalQ
of radius R) larger than several times the exciton Bohr ra-using an approach based on an exciton-exciton product state
dius (aey leads to a strong optical response at the excitorbasis. We obtain the biexciton binding energy and oscillator
resonance. In fact, in this weak confinement regimestrengths in reasonable agreement with experimental results.
(R>a,,),* the exciton oscillator strength is proportional to Most importantly, we identify the presence of a weakly cor-
the volume of the quantum dot. Consequent superradiant deelated exciton pair state with a large oscillator strength,
cay of the exciton has been experimentally obseft&with  which provides important insights into various features of
the lifetime decreasing inversely as the volume of the QDthe experimental observations mentioned aboVe’ We
The mesoscopic enhancement of the exciton oscillatocalculate the third-order nonlinear optical susceptibility at
strength would lead to, for example, a nonlinear optical susthe exciton resonance and clarify the physics of the observed
ceptibility increasing with the size of the Q.The nonlin-  saturation of the mesoscopic enhancement which has so far
ear response is, however, determined not only by the excitoaluded a satisfactory explanation. We also study the excited-
states but also by multiple-exciton states and especially bgtate absorption from the exciton ground state. From the
the biexcitonic excitations. Many recent experiments oncomparison between the theory and experiments, we obtain a
CuCl QD's in the weak confinement regime have revealedconvincing evidence for the presence of the weakly corre-
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lated exciton pair states. Some of these results have be&ince most experimental samples consist of a dilute collec-
briefly reported in a previous publicatidh. tion of nearly spherical crystallites, we study a single crys-
The paper is organized as follows. In Sec. Il, we presentallite of spherical shape. The spherical symmetry greatly
the theoretical details of the calculation of the exciton andreduces the numerical complexity of the problem.
biexciton energy levels and dipole moments within the effec- The success of our calculation is based on avoiding the
tive mass approximatiofEMA) including the electron-hole yse of a single-particle product basis for the calculation of
exchange interaction.. In Sec. Ill we discuss the calculqte%e exciton and biexciton states, as this is numerically pro-
energy levels and oscillator strengths of the exciton and biexsjpitive, especially for the four-particle biexcitonic states.
citon states. In Sec. IV we present the nonlinear optical réjhgaad, we use an exciton-exciton product basis for the biex-
sponse at the exciton resonance and clarify the physics of theo caiculation. Working within the EMA, we first calcu-
intriguing size dependence of the optical nonlinearity. Fur-ate a4 number of the low energy exciton states using a cor-

thermore, we discuss the excited-state absorption from threelated basis set used earlier by Kayantffar the L=0

exciton ground state. Finally, in Sec. V we summarize OUfeycitons, which we extend th>0 states, wheré. is the

results. angular momentum of the exciton envelope function.

Il. THEORETICAL FORMULATION

We investigate semiconductor quantum dots of a radius A. Exciton states

(R) larger than the Bohr radius of the excitoa.f) in the Within the EMA, the wave functior)(r.,ry), for a single
bulk material. In this size range, the electronic excitationselectron-hole pair is determined by the effective Sdimger
close to the band gap may be described using the EMAequation,

hZ ﬁZ e2
_ 2_ 2_ — _
zmeve thvh ereh+v ¢(re-rh) (E Eg)¢(rearh) ) (1)

wherem, (my) andr. (ry), respectively, denote the effec- gular momentunli. We expand thé.=0 exciton envelope
tive mass and the position vector of the electrdmle),  function into a set of nonorthogonal basis functiéhs,
ren=|re—rnl, €is the bulk dielectric constant, arg}, is the
bulk band gap. The confining potentidlis zero inside the
QD of radiusR, and infinite outside, with the corresponding
boundary condition

ax Mmax Mmax

Im
¢O(reirh):|20 2 2 CImnWm(re)Wn(rh)rleh

m=0 n=0
¢(re,rn)=0 forroorrp=R. (2 X exp( —ren/ ey (33

Here we have neglected the image charge effects arising
from the dielectric mismatch between the QD and the hosWith
material. This is expected to be small in the large size range
of interest to us.

For R smaller than a few timea,,, the exciton states can "
be calculated by expanding into single-particle product states _ , | K 2
as has been successfully demonstrated e&ftfétowever, Wm(r)—kll - ER : (3b)
whenR is larger than several timeg,, the case that we are
interested in, the electron-hole Coulomb interaction is large
compared to the confinement kinetic energy and consewhich explicitly satisfies the boundary condition given by
guently a single-particle product state approach is numeriEq. (2). The coefficients,,,, are then determined by a gen-
cally prohibitive. The exciton ground state in this so-callederalized eigenvalue equation which may be solved by stan-
weak confinement regime has been calculated by several adard numerical techniques. Truncating the expansion Eq.
thors using the variational approath?® Several excited (38, with My u=Nma=3 andl =2, several exciton en-
states also have been calculated using a basis set of electrargy levels are obtained with a high accuraty.
hole correlated functions involving polynomials and  Although only theL =0 excitons are optically excited in a
exponential$® We use this formulation to calculate the ex- direct gap semiconductor, tHe>0 states also need to be
citonic states. calculated to construct a reasonably complete exciton-

Owing to the spherical symmetry of the problem, the ex-exciton product state basis. A straightforward generalization
citon envelope function can be labeled by the envelope amsf the above approach leads to the expansion,



55 THEORY OF EXCITON PAIR STATES AND THEIR ... 5155

I max Ii+L I1
bLm(Te.rn)= > 2 Fi(fen) 2 Clh Y QoY wem(Qn) @
17=0 1,=T7-L| m==, mM-—m
|
where C'r;’,'\,f;Lm‘M’s denote the Clebsch-Gordan coefficients 72 7?2 e?

2 2 2 2
andY,,’s are the spherical harmonics. However, the use of Hxx=~ 2_me(Vel+Vez)_ z_mh(vhﬁvhz)_
such an expansion is computationally intensive because of
the need to keep a large number of terms in the sum over the e? e? e?
angular functions. , elre,—tn|  elre,—rn| elre,—rp]

Instead, we extend Kayanuma'’s approach.tel states
by noting that, for two particles, any odd-parity=1 state e? e?
can be expressed in the forfeee Appendix A

Bum(Ter ) =FolleuThTen) Yim(Qe) , , ,
, Again we neglect the image charge effects as in the case for
T (re,rn ren) Yim(Qh) | (5)  the exciton states. As all the optically excited states have a

vanishing angular momentunt. & 0) for the envelope func-

wherel Qenotes_the radlal'quantum number. T'h|s allows u%ion, we consider only such biexciton states. Biexciton states
to describe thé. =1 states in terms of two function, and (Dd(r fr ro.fr) With L=0 may be expanded into the
ey hprleythy -

fy,, of the Hylleraas coordinates, and the same basis set used" ' :

for theL=0 case can be used to expahdandf,,. exciton-exciton product states:
For L>1 states, no such simple form appears to exist. In

the present calculation we consider only the 2 states, and

6|rel_rhl

)

+ + :
6|rel_re2| E|rh1_ rh2|

2r;yL=2, even parity state can be written @ee Appendix ¢’(relvrhl’fe2,rh2):ijEL Cij Gix+Cij Gk (8a
Bom(Fe.Tr) = 05T e T h T o) Yom(Qe) with G andG given by
+h(Fern Fen Yau(Qn) + D Gl(re ) o S "
=4 Gl= 2 PlulTepmn)dtu(re,rn,) (8D
X2 ClifimmYim(2e)Yim-m(Qr) - (6 ]
We note that the sum in the third term in E®) starts at 6%(:M;L ¢iLM(re1’rh2)¢jLT\"(rez’rh1) ' (80

I =4 and so the relatively slowly varying envelope of the low
energy states would be well described by the first two termsHerei,j denote the radial quantum numbers of the exciton

This expectation is borne out by our numerical results anQjyenstates. Since the Hamiltonian is invariant under ex-
thus, to a good approximation, the=2 exciton states also  change of the electron or hole coordinates, the biexciton
may be written in a form identical to the=1 states. wave function can be labeled by symmetry under permuta-

Although a general two-particle state of angular momensigns of the coordinates. We denote states that are symmetric

tum L can have Leither parity, we consider only those _State§antisymmetri¢ under electron exchange by a superscript
with parity (—1)- as all the low energy states in relatively (—). A second superscript of is used to denote the

large QD's will have this parity. This becomes apparent bysymmetry under hole exchange. Thds:* denotes states

noting that in the size range being considered, the excitop .., Ci =Ci =+Cyy, , while ®=* denotes states with

envelope function is approximately given by the product of J I

the bulk exciton wave function for the relative coordinate Ciit =~ Cjit ==Cij . For the largest QD, we use four

and a particle-in-a-sphere wave function for the confinement =0 threeL=1 and twoL =2, states giving a total of 58

of the center of mass motidA.As the first excited state of a Product states forming a nonorthogonal basis.

hydrogenic system has a binding energy of only 1/4 times

that of the ground state, it follows that all the low energy

states will involve thes-like relative coordinate wave func- C. Electron-hole exchange interaction

tion so that the angular momentum is determined by that of . .

the center of mass motion alone. Such states will have a Althpugh the electro_n-hole exchange interaction has been

parity (—1)-. extensively discussed in the pﬁ_%’we reformulate the prob-

lem in a form suitable for applying to QD’s within the effec-

tive mass approximation. The exciton and the biexciton

Hamiltonian including the electron-hole exchange interaction
The EMA Hamiltonian for two electrons and two holes is within the EMA are derived in Appendix B. For the exciton

given by we have

B. Biexciton states
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h? h? e?
“ome Ve oy Vhgro F OB Lemand(Te=rh) | ¢(fe.ln) = (E~Eq)(re.rn) | ©
e e

where AEQ, ., is the bulk exciton exchange splitting energy wave function as described in Sec. Il A. The exchange en-
and| is the sum of the electron and hole Bloch function ergy can, however, be obtained to a very good approximation
angular momenta. For the case of thg conduction band within the first-order perturbation theory as

and thel'; valence band of cubic materials that we consider

_(see Appendix Ei_the_l =1 state is_thre_efold degenerate and AEexch:Angchﬂ'agxf l(r,r)|? dr (11)

is a mixture of spin-singlet and spin-triplet electron-hole pair

states. Thé =0 state which has no exchange contribution tofor the | =1 states and zero otherwise. Hedy ., r},) is the

the energy is purely spin triplét. _ exciton envelope function calculated without including the
At this point, it is useful to review some details of the gychange interaction. The wave function of the exciton is

symmetry of the electron and hole Bloch functions and thaghen given by the envelope functiahtimes the Bloch func-
of the exciton. As we consider spherical QD’s and usg;jgp producty,,  given by Eq.(10).

spherical band dispersion for the EMA, the band edge Bloch
function of I'g symmetry transforms like ah=0, s=1/2

orbital, while theI'; Bloch function transforms like an
=1, s=1/2, |+s=1/2 orbital®? The four states of exciton

Now we consider the biexciton states. Frdns0 and
I=1 exciton states, we may generate biexciton states with
the Bloch function angular momentuds=0, 1, or 2:

that may be formed from these twofold degenerate electron 0®0=0 orl,®I,=T;,

and hole states split into a nondegenerate statgé,ofym-

metry and a threefold degenerate statd’gfsymmetry. In 100=1 orl's®@T,=T,,

the present case, these states may also be labeled by their

t_otal Bloch function angular momenturi=0 and 1, respec- 191=001®2 orI's@'s=T 0T & ((T36T:).
tively. The corresponding products of the electron and hole ) o ) ) )
Bloch functions are Thus anl =0 exciton pair will get mixed with ah=1 pair to

give J=0 biexciton states, whilé=1 pairs will formJ=2
1 biexcitons and a pair made uplof 0 andl =1 excitons will
iﬂoo:E(Uc,l/zU:,l/ﬁ' Uc,— 1245 —19) (108 mix with anl=1 pair to giveJ=1 biexcitons.
For those biexciton states with the envelope function an-
gular momenturm. =0, the case that we consider, the Bloch
(10b) function angular momenturd completely determines the
symmetry of the biexciton wave functions. However, the re-
quirement of the antisymmetry of the wave function under

P10= E (Uc,1/2U3 12~ U, — 15— 172)

Y11= —Ug 1l 115, (109 the electron-electron or the hole-hole interchange puts some
restrictions on the form of the envelope functions. As dis-
and cussed in Sec. Il B, we can have four kinds of exciton-
Ui 1=Ug U (100) exciton product statesb™ ", ®~~, ®*~, and®"". The
1717 Yo~ U2% 120 J=0 biexciton state may be written as
whereu,'s are the conductiofvalencg band Bloch func- et 00 e 11
tions defined in Appendix B. It is the=1 exciton state that Yoo=Po  XxootPo X0 (12

is optically excited as it contains the spin-singlet component. g -
As all the optically excited states have a zero angular mo?eréxyy, is the product of two-electron and two-hole Bloch
mentum () for the envelope function, for such statealso  function products with the total electron spin equaktand
equals the total angular momentum. the total hole angular momentum equal &, and

Equation(9) for the exciton including the electron-hole J=s+s’,s+s’—1,...|s—s'|. Then, the EMA equation sat-
exchange interaction can be solved by expanding the excitoisfied by ®; * and®, ~ is (see Appendix B

3 V3 _
(HXX—E)(I)3++wangngch(Z(élJr52+53+54)<I>g+—7(51+52—53—54)CI>0 ):o, (133

_ -3 1 -
(Hyx—E)®, +wa§XAEgXC,(T(51+52—53—54)q>g++Z(al+52+53+54)c1>0 =0, (13b

whereHyy is the Hamiltonian given by E(7), 6= 5(rel—rh1), 5= 6(rez—rh2), 63= 5(rel—rh2), and 6,= 5(rez—rh1).
The J=1 biexciton state withl,=M, may be written as
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Win=®; xin+ T xdm+ L1 Txim (14)

and the corresponding EMA equation is found to be

1 1 1
_ —— 340 |2 -— = s Iy _ - |
(Hxx—E)®, +7raexAEexc,,(2(61+62+53+64)CI>1 2\/5(61+52 03— 64) P 2\/5(51 Oyt 63— 64) D4 ) 0,
(15a
+- 3 A0 1 .3 1 -+
(Hxx_ E)q)l +7TaexAEexc —m(ﬁlﬁ- 52—53—54)(131 +Z(51+ 52+ 63+ 54)(191 + 5(51_52_53+ 54)(131 :0 y
(15b
and
—+ 3 0 1 1 -, 3 -+
(Hxx—E)®; "+ magAEe,. _m(51_52+53_54)q)1 +§(¢31_¢(52_53+54)<I)1 "‘1(51"‘52"‘534'54)‘1)1 =0.
(150
The J=2, J,=M biexciton state has the form
Vom=P;  Xaw (16)
and®, ~ satisfy
(Hyx—E)P, ~+ 7l AES 61+ 6o+ 83+ 6P, =0 . (17)

Equations(13), (15), and(17) may be solved by expanding the functiohss into exciton-exciton product states as in the
case without the exchange interaction described earlier.

D. Transition dipole moments

Now we calculate the transition dipole moments for excitation of the exciton states and the biexciton states. We consider
only the interband transitions between fhgvalence band and thHé; conduction band. Then the polarization operator, in the
second quantized site representation, is given by

Pr=neS [ BLA0D, 0 ar 19

where ., is the interband transition dipole moment and the light polarization is assumed to be alangxise In terms of
the conduction and valence band edge Bloch functions given byB=e), ue,= —ie/(\V3Qee) [ £,(r)2Lo(r)d3r, where the
integral is over a unit cell of volumé& .. In this case, only thé=1 exciton withl,=0 is excited from the ground state.
Using the exciton state fdr=1, 1,=0 given by

1 N N
X)20=53 | e b om0 ¥ util0) (19

we obtain the corresponding dipole moment to be

#10=1o{X|P; [0)= ﬁucvf B(r,r) dr . (20)

Now we consider the exciton to biexciton transitions. Again taking the light polarization to be alormgakis, only
transitions which conserve tliecomponent of the angular momentum are allowed. In addition, transitions that would cause
the total spin to change are forbidden. These selection rules lead to the following restrictiahs Othéexciton can be excited
only from thel=1, I,=0 exciton states, while thd=1 biexciton states are excited from the=0 (if J,=0) and
=1, I,=J, (if J,#0) exciton states and thke=2 biexciton states are excited only from the 1, 1,=J, exciton states.

Using the second quantized form of the O biexciton statéX X)q, corresponding to the wave function given by Etp),
we obtain the dipole moment for its excitation frdix),, to be

1
100 = o XX P [X)10= ﬁﬂf G5t (reurp.rr) = \[;bo(re,rh,r,r)) (re.r) dre dry dr. (21)

In general, we may write the biexciton state of Bloch function angular momedtamd itsz componentM in a concise
notation[cf. Egs.(12), (14), and(16)]:
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IXX)u=a) @] )Mt ar P x)imtar " eiy h)Iwtay TR X, (22)

wherea'jp'= 1ifJ=0, p=p’ orJd=1, p#p’' orJ=1 or 2,p=p’'=— and vanishes otherwise. Then the transition dipole
moment from the exciton sta{X),, to the biexciton statgXX),,, may be expressed as

(XX P, [X) = V2pe aﬁ’p'lﬁ’p'Mpp'(lM M) (23
pp’
where
l5””=f DB (1o, Th. T 1) blre,ry) dre diry, dr . (24)

The values ot/\/lpp'(IM ;JM) are tabulated in Table I. The corresponding results for other polarizations can be obtained by
invoking symmetry. We find that, fax andy polarizations,

. 7 XX|P Xy MIM;IMY) if J=1=1
am AXXIPL X im = + TN - (295
J{XX|P; |X),oMIM;IM’)  otherwise ,
and
anrOXXIPY [ X = i (XXIP [Xyexdi(M—M") /2] . (26)
|
The values ofAM{IM;IJM’) are tabulated in Table II. the same total angular momentulmas well as lifts the de-

generacy of the 2 — states withJ=0, 1, and 2.

We note that in the bulk semiconductors there is a large
discrepancy between the best variational estimates of the
A. Exciton and biexciton energy levels biexciton binding energy and the experimental results. For
example, in CuCl, the variational calculation of Akimoto and
Hanamur® and Brinkman, Rice and Béllgives a very low
e{alue of 11 meV compared to the experimental value of 32
neV (Ref. 35. This large discrepancy was not noticed at the
ime these calculations were reported as the electron-hole

ss ratio known at that time was substantially smaller than

e presently accepted values which led to a fortuitous agree-
Went with experiments.

We find that a small part of this discrepancy may be at-
tributed to the neglect of the electron-hole exchange interac-
tion. To see this, we note that the lowest biexciton state is of

Ill. RESULTS AND DISCUSSION

The calculated excitonic energy levels are plotted in Fig
1. To our knowledge, this is the first time tHat-0 excitonic
states in the weak confinement regime are being obtaine
ThelL =1 excitons are especially interesting as these may b
excited in infrared spectroscopy as well as in two-photon
spectroscopy. Both these phenomena have recently receiv
some experimental attentidf>* Further discussion of this
will be taken up separately. The results presented, thoug
given scaled by the exciton Rydbergg), correspond to an
electron-hole mass ratim,/m,=0.28 appropriate for CuCl
(Ref. 35 with m,=0.5 andm,=1.8.

The L=0 biexciton energy levels, with and without the

exchange interaction included, are plotted in Fig. 2. In the 00 -
absence of the exchange interaction, the states are labeled by ‘?:\ —L=0
the symmetry under exchange of the electrons and holes as ool N e |
described in the previous section. These states have more u\'f ’ N thick line: I=1 (singlet + triplet)
degeneracy than expected from the conservation of the total N thin line : 1=0 (triplet)
angular momentumJ). For example, the 2 — states with W
J=0, 1, and 2 all have the same energy giving a ninefold =
degenerate state. The exchange interaction mixes states of g

TABLE I. MPP" (IM;JM), appearing in Eq(23) for the tran- 2
sition dipole moment from the exciton stdt¢),,, to the biexciton %
state|X X, for the z polarization. ]

Jpp'— O0++ 0-— 1l-e 14— 1-—+ 2——

(1.M)
0.0 0 0 -2 -1 1 0 M 6Radius?R/aex)8
1,1 0 0 0 1 1 2
1,0 1 -14y3 © 0 0 2213 FIG. 1. Calculated energy levels of the=0, 1, and 2 exciton
1-1 0 0 0 -1 -1 J2 states in semiconductor QD’ER is the exciton Rydberga,, the

exciton Bohr radius, aniy is the bulk band gap energy.
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TABLE Il. NV (IM;JM"), appearing in Eq(25) for the transition dipole moment from the exciton state
|X)w to the biexciton stat€XX),y for the x polarization.

M= 0,0 1,0 1,1 11 2,0 2+1 2,2 2-2
(1,M)
0,0 0 0 -1N2 N2 0 0 0 0
1,1 —-1N2 N2 0 0 1//8 0 —\3/2 0
1,0 0 0 12 182 0 0 -\J318 /38
1,-1 12 182 0 0 —-1/\/8 0 0 V312

I'y symmetry because this state has its envelope function 6AES, . obtained as a first-order perturbative estimate us-

symmetric under exciton exchange and hence has a bondingg an explicit variational wave function, by Bassatial *®
character, like the bonding orbital of the hydrogen moleculeyye sea E° .= 4.4 meV for CuCf®
exc " "

f?rmtmg arl]blound r?tate. A? d|sigsseq in the I?St segt;ﬂn, the Nonetheless, the variationally calculated bulk biexciton
electron-hole exchange interaction mixes te-I'; and the binding energy is still substantially smaller than the experi-

F.5_F5 exciton product stateg tha_t contribute to ihehiex- mental result. On the other hand, our calculation gives a
citon states and hence the biexciton ground state has an ?‘E_

change contribution less than twice the exciton exchange e lexciton binding energy of ‘30'3 meV for a CuCl QD of
ergy. The experimentally quoted biexciton binding energy is =70 A. Although this is slightly Sma”ef than the .bUI.k
the difference between twice the energy of the exciton ~ Value of 32 meV, we can say that there is substantial im-
and the biexciton ground state energy, while the theoretica‘i’rovement over the older _calculatlons in the bulk material.
value is calculated as the difference between twice the en- !N Fig. 3 we plot the size dependence of the calculated
ergy of the ', exciton and the biexciton ground state biexciton binding energy. The biexciton binding ener‘%y in
energy*®3" Thus, inclusion of the electron-hole exchange in-CUCI QD’s was recently measured by Masumetbal:
teraction increases the biexciton binding energy. In the fol-This experimental result is also shown in Fig. 3. As the ra-
lowing we employ the former definition of the biexciton dius of the QD increases from 28 A to 70 A, we find that the
binding energy. biexciton binding energy decreases from 025150 me\)

For the largest size considered 6109, we find that the to 0.15@R (30.3 meV, while the experimental result in the
biexciton energy is increased by about AEf, , while in  same size range varies from OE33(64 me\) to 0.216Eg
bulk CuCl, the exchange correction is gquoted to be(42 me\), which is somewhat larger than the calculated re-

_1 2 1 1
(a) without exchange — — *++ -1.04

(c) with exchange: J=1

(b) with exchange: J=0

(d) with exchange: J=2

(E-2E,)/E,

4 5 6 7 8 9
Radius (R/a,,)

4 5 6 7 8 9
Radius (R/a,,)

FIG. 2. Calculated energies of the biexciton statas without and (b—d) with the electron-hole exchange interaction included.

BX, XX0 (XX0'), XX1, andXX2, respectively, denote the biexciton ground state and the weakly correlated exciton-pair states with

J=0, 1, and 2. Notations are the same as in Fig. 1.
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FIG. 3. The calculated size dependence of the biexciton binding £ 4. Transition dipole moments for excitation of the lowest
energy in CuCl quantum dots. Two sets of results corresponding t_ 1 exciton state X;¢) and for the dominant transitions from the
the exciton Rydbergr=194.4 meV and 213 meV are shown. The |6t exciton to the biexciton states. The biexciton states involved
experimental results of Ref. 40 are also shown. in the transitions are indicated by the energy level labels used in

sult. These numbers correspondig= 194.4 meV(Ref. 41) Fig. 2. 0 denotgs the ground state aXg denotes the lowest
(ae=7.07 A). A proper comparison with the experiment is, | =0 orI=1 exciton state.

however, made difficult by the lack of precise knowledge of

the exciton Rydberg to be used and the size of the crystallitesscillator strengths for their excitation from the excitonic
in the experimental sample. We show the calculated resultstates. In what follows we actually discuss only the transition
corresponding tdEg=194.4 meV as well aEg=213 meV, dipole moments. The oscillator strengthof a transition is
where the latter value is widely used in the literature on CuClelated to the transition dipole moment through
QD’s (see, e.g., Ref. 40As the experimentally estimated f=2myE|u|?/e?%, whereE is the energy of the transition.
sizé®® corresponds to matching the exciton energy to that Only theT's (1=1) excitons are optically excited from
predicted by the center of mass confinement picture, it ishe ground state. As thE exciton state is threefold degen-
very sensitive to the values of the exciton mass, exciton Ryerate, subsequent excitation of the biexciton states will be
dberg, and bulk exciton energy used. Keeping these reservaependent on the polarization of the exciton state. In Fig. 4,
tions in mind, we find reasonable agreement between thge plot the dipole moments for transitions from the ex-
experiment and the theory. The theory somewhat underestgiton ground state witH,=0,+1, to the biexciton states.
mates the biexciton binding energy possibly due to insuffi-Only a few dominant transitions are shown, and the dipole
cient exciton-exciton correlation built into the wave function moment for excitation of the exciton ground state is also
by the truncated basis set. However, the reasonable agreghown for comparison. The light polarization is taken to be
ment with experiments indicates that the limited number Ofa|0ng thez axis. In F|g 5 we p|ot the Squared d|p0|e mo-
basis states used to make the problem numerically tractabl@ents for the exciton to biexciton transitions as a function of
do provide reliable results. The discrepancy between theéne transition frequency for a few different values of the
theory and the experiment may also be partly attributed tQadius. While the limited data shown in Fig. 4 illustrate the
the fact that the experimental sample contains somewhat flagize dependence of the dipole moments as discussed in detail
tened(platelet-shapedcrystallite$” compared to the spheri- pelow, Fig. 5 provides a complementary picture suitable for
cal shape that we consider. describing excited state absorption, discussed later.

Among the excited states of the biexciton, the most inter- - As shown in the previous section, for taepolarization,
esting ones are the nearly degenerate states occurring slighyly thel =1, 1,=0 exciton states can be excited by one-
above twice the ground state exciton energy. These stateghoton absorption from the ground state, while only the
markedXX in Fig. 2&) and XX0, XX1, andXX2 in Figs. ~ j=0, J,=0, andJ=2, J,=0 biexciton states are excited
2(b)-2(d), have an envelope function well approximated bypy a subsequent one-photon absorption. We note that this
the product of two ground state excitons. Consideration Oprocess is sufficient to discuss excitation of biexciton states
the oscillator strengths for the exciton to biexciton transitionsoy a two-step absorption of linearly polarized photons by the
offers further important insights into the nature of theseground state. While experiments measuring the coherent
weakly correlated exciton-pair states. We therefore defer aonlinear optical susceptibility, for example, are described
detailed discussion of these excited biexciton states to bgy such processes, a pump-probe experiment could probe
taken up later. exciton and biexciton excitations by different polarizations.
The latter case is discussed later.

The dipole moment for the transition from the biexciton

The physical nature of the biexcitonic states and their relground state to the exciton, commonly referred to as the
evance to optical response become clearer on considering tih-line emission, increases with the radius of the QD at small

B. Oscillator strengths
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oscillator strength tends towards a constant value in the bulk
o004 @ R=5.3 2y limit. This behavior may be understood by the following
o~ 12=0 simple physical argument. The creation of a biexciton from
3 1004 an exciton state mvo'lves the creation of a second exciton
) spatially close to the first one, within the volume of the biex-
TE' T . T T citon. Thus in the bulk limit, théM-line oscillator strength is
2 0 . L ' . . T of the order of the exciton oscillator strength corresponding
£
2 R=6.62 ag, to a coherence volume equal to the volume of the biexciton.
o 4007 I= This is a constant, dictated by the size of the biexciton.
8 The calculatedM -line oscillator strength corresponds to a
2 200 radiative decay time of 660 psec f&®=28 A, gradually
2 decreasing to 175 psec as the radius of the QD increases to
2 .T . PO I AR 70 A. This may be compared with the measured biexciton
£ s00 decay time of 50 psec in bulk Cu@Ref. 44 and 70 psec in
T R=7.95 agy CuCl nanocrystals of 42 A radifs.The above decay times
g 6007 1z=0 for the QD are calculated assuming a host dielectric constant
& 400+ of 2.25, appropriate for glass. Even for the largest size con-
2004 sidered by us, the radiative decay time is significantly larger
1. _ than the bulk valqe because of the smaller dielectric constant
0 T ' . *T ' ' of the host material compared to that of bulk CuCl and also
02 -01 00 01 02 03 04 because our calculated biexciton oscillator strength in the
Transition energy (E-E,)/Eq large R limit is somewhat smaller than the bulk value. The
above discrepancy between the theory and experiments may
R53a also be attributed to the participation of nonradiative pro-
150 (0) =1 & cesses in actual samples. On the other hand, the mesoscopic
1004 enhancement of the exciton oscillator strength implies that
o the radiative decay time of the exciton is inversely propor-
;f» 501 tional to the volume of the QD. For the exciton ground state,
ER B I T| T we find a decay time of 740 psec fB=28 A decreasing to
= 45 psec folR=70 A with good correspondence with experi-
2 300- R=6.62 ag, mental data®
g =1 The most interesting result of the present calculation is
o 2007 the existence of the two nearly degenerate excited biexciton
8 1004 states(labeledX X0 andX X2 in Fig. 2 with a large oscilla-
2 ] P tor strength as is evident from Fig. 4. These states have os-
g o ® % . - cillator strengths increasing proportional to the QD volume,
2 600 and the sum of their oscillator strengths approximately
£ R=7.95 8oy equals twice that of the exciton, especially at large sizes. For
' 4007 lz=1 linearly polarized excitation, the states that share such a large
g oscillator strength havé=0 andJ=2, J,=0. Interestingly,
g 2007 we find that the wave functions of these states are well ap-
0' T, ¥ % proximated by a product of two independent ground state
0.0 011 012 Ofs 014 exciton states, especially at larger sizes. Because of their

large oscillator strength, these states will dominate the
excited-state absorption as well as crucially influence the ex-
citonic optical nonlinearity as discussed in the subsequent

FIG. 5. Squared transition dipole moments for transitions fromsections. Therefore a detailed consideration of these weakly
the lowestl =1 exciton to theJ=0, 1, and 2 biexciton states, re- correlated exciton-pair states is in order.

spectively, marked by®, O, and *. Transitions from botha)
1,=0 and(b) 1,=1 sublevels of the exciton are shown. The polar-

ization of light is taken to be along tteaxis. C. Weakly correlated exciton-pair states

Let us consider the creation of a second exciton in a QD
sizes, but saturates towards the bulk value at larger sizes. Foruch larger in size than the exciton. Such a process will be
R=10a.,, the M-line dipole moment of 10,2, corre- most efficient when the second exciton is created uncorre-
sponds to an oscillator strength ef1900f,,, for CuCl, lated with the first one, as it then would have an oscillator
which may be compared with the measured bulk value oftrength of the same order as that of creating a single exciton.
2500F . *> Here fp,, is the oscillator strength per unit cell Such an uncorrelated exciton pair can be an approximate
of the bulkI'5 exciton. eigenstate of a large QD because the exciton-exciton inter-

While the exciton oscillator strength is proportional to theaction is short ranged(dipole-dipole likg, unlike the
volume of the crystallite, provided the exciton envelopeelectron-hole interaction in an exciton. We may, in fact, con-
function is coherent over the whole crystallite, the biexcitonstruct two such excited states with almost the same energy,
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Dixc =(LN2)[ pX(Feq,Th1) PU (T2, Tha)

* P%(e1,Th2) dX(Te2,Th1)]

(27)

where ¢ is the envelope function of the exciton ground

state.
In the limit of large R these two state$++ and ——)
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It is interesting to note that the factor of two in the oscil-
lator strength may also be understood as the bosonic en-
hancement factor corresponding to the creation of a second
identical exciton. It would be interesting to extend this pic-
ture to the creation of multiple-exciton states in large QD'’s.
We note that the independent boson picture implicit in this
argument is reasonable as long as the QD is large enough to
accommodate the excitons without a considerable overlap.

have a combined oscillator strength and energy twice thOSg, ey investigation of this aspect is left for future study.

of the exciton ground state. The exchange interaction Sp"tExperimentally

these into four states, two with=0, and one each with

J=1 andJ=2. The corresponding wave functions are given

by
V3 -
\I’xxo:7q)>&r)(88_§q)xx Xé(l)v (284
1 V3
Wxxor = E@;&’ng—?d)xx X(l)(l)a (28b)
N |
Wyxx1=Pxx Xim » (29
N b |
Wixxo=Pyx X2om s (30)

where Eq.(28) is obtained by diagonalizing E413) in the
subspace of the two functions given by Eg7). The diago-
nalization is achieved by noting that integrals involving cros
terms like ¢%(r,r) d(Fes.Tno) ST Th2) dUrep.1) tend to
zero asR—o. Only two of these XX0 and XX2 (respec-
tively, with J=0 andJ=2) are excited by multistep excita-

S

QD'’s provide a unique opportunity of creat-
ing a definite number of excitons in a small and well-defined
volume allowing the observation of the bosonic enhancement
in the exciton creation.

As the size of the QD is reduced, the two excitons overlap
with each other, the state correspondingbtg, acquiring a
repulsive energy as is well known with the case of the anti-
bonding state of the hydrogen molecule. On the other hand,
the ®x, state gets more and more mixed with and repelled
by the biexciton ground state. The net effect of this size
dependent evolution of the weakly correlated exciton-pair
states is a weakening of their oscillator strength as well as a
blueshift of the corresponding exciton-biexciton transition,
as the QD size is reduced.

In addition to those discussed above, we also find a
J=1 weakly correlated product stafmbeledXX1 in Fig.
2(c)], which corresponds to the product of the0 (I',) and
I=1 (I's) exciton ground states. AE, excitons are not
optically excited, this state cannot be excited by absorption
of two identically polarized photons. However, it can be ex-
cited by the absorption of, for examplezgpolarized photon
fromthel=1, 1,=*1, orthel =0 states. The latter process
has a dipole moment comparable to that of the exciton, and
is also shown in Fig. 4.

tion via thel =1 exciton ground state. Both these states have
an exchange energy of twice that of the exciton ground state.
The dipole moments for excitation of these states may be

calculated using Eq$23), (24), and Table I. Noting that the
second term in Eq(27) makes a negligible contribution to
the integral in Eq(24), it follows that the transition dipole
moments for excitation of the stat¥sX0 andXX2, respec-
tively, equal\/2/3 and/4/3 times that of the exciton ground
state. Thus, in the limit of largR the states< X0 andXX2

IV. NONLINEAR OPTICAL PROPERTIES

A. Size dependence of the third-order nonlinear susceptibility

As discussed above, the weakly correlated exciton-pair
states have a large oscillator strength. As the excitonic and

will have a combined oscillator strength of twice that of the two-excitonic contributions to the third-order nonlinear sus-

exciton ground state. For finite, the exciton-exciton inter-

ceptibility have opposite signs, the weakly correlated state

action would modify this picture, but our numerical resultswould play a crucial role in determining the resonant exci-
agree with the above description, to a good approximationtonic nonlinearity in large QD’s. We shall now investigate
especially at larger sizes. The four weakly correlatecthis in detail.

exciton-pair stateX X0, XX0’, XX1, andXX2, described The third-order nonlinear susceptibility y®)(— w;
above are shown in Figs(l®-2(d). w,w,— ») may be obtained from perturbation theory®s

|/’Leg|2 2|/U«eg|2 |Mbe|2

Zﬁg')’ﬁ (weg_w)2+7’§g i(weg_ w)"")’eg i(wpe™ ®) + Ype

X~ 0;0,0,~ @)= ~IND, 7eg

e,b
—iNz i|:’~Let‘:;|2|/~Lbe|2 1 1 1 _ 1
eb 413 i(weg_w)+'Yegi(wbg_zw)+'ybg i(weg_w)'l")’eg i(@wpe— ®)+ Ype| '

(31
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where we have retained only the near-resonant terms. Herey, that appears in Eq333 is reported to be 0.9 metf, we

fiwij, wij, andy;;, respectively, denote the energy, dipole treat it as a free parameter and discuss the dependence of
moment, and dephasing rate corresponding to a transitiop® on v,,. In the absence of experimental information on
between the statésandj. The subscriptg, e, andb, de- the homogeneous linewidth of the biexciton states, we take it
note the ground state, the exciton states, and the biexcitaim be the same as that of the exciton.

states, respectivelyyﬁe denotes the exciton population decay  In Fig. 6@ we plot the maximum value of tHa®)|/« as

rate andN is the number density of the quantum dots. a function of the radius of the QD. In the calculation of

The first two terms in Eq(31) arise from the saturation of x(®), we include the lowest four=0 exciton levels and five
the exciton population while that last two terms arise fromlowest energy biexciton states each witk-0, 1, and 2.
the two-photon coherence of the biexciton state. Thus therklere we use material parameters appropriate for GREf.
will be resonant enhancement gf®) at the exciton to biex- 41) and taken=2.25, appropriate for glass matrix. In the
citon transition energy as well as at the exciton energy. Thaize range considered, the peak valugd6? occurs almost
former case is especially interesting as the increagé®is  exactly at the exciton resonance frequency. Several values of
not accompanied by an increase in absorption, unlike at the,, are considered. For a small valuegf (less than a me)/
exciton resonance. Consequently, the dynamics at this twop increases at small sizes sublinearly wi the rate of
photon resonance would be governed by the dephasing timacrease slightly decreasing Bsincreases to 1d.,. This is
of the biexciton and thus promise a fast response time. Howeasily understood as the size dependence of the dominating
ever, as the QD size increases, the oscillator strength of thesonant excitonic contribution tg(®), determined by the
bound biexciton saturates towards a constant value angxciton oscillator strength increasing RS and the popula-
shows no mesoscopic enhancement. On the other hand, ilon decay timer decreasing ak 22?5 But, as vy, is in-
the weak confinement regime that we consider, the mesogreased, this behavior dramatically changes. We find that at
copically enhanced exciton oscillator strength would lead tahe radius for whichy,, becomes comparable to the energy
mesoscopic enhancement g, difference SE=Eyyo— 2Ex or Exx,— 2Ey, the size depen-

In fact, the resonant excitonj¢® of CuCl QD’s has been dence ofx® tends to saturate and, interestingpy>) de-
observed’ to increase with the radius of the QD, exhibiting creases with a further increase R This correspondence
such a mesoscopic enhancement. BuRas increased to  betweeny, and the size dependence of the energy difference
about 50 A (at 77 K), x®® was seen to saturate and then to (SE) is illustrated in Fig. 6b). For the case of,=3 meV,
rather abruptly decrease with a further increasdirThis  the size at whichSE~ v, is estimated to b&=68 A and
size dependence has never been explained satisfactorily. Wiis value is in good agreement with the radius at which
shall see below that this saturation of the excitonic contribu-(3)/ o shows a maximum in Fig.(&).
tion to ® and the reversal of its size dependence arise from This behavior may be easily understood as arising from
competing contributions from the weakly correlated exciton-the weakly correlated exciton-pair state which makes a com-
pair states and from the exciton ground state. The weaklpeting contribution toy(® and tends to cancel the strong
correlated exciton-pair states also have mesoscopically en-
hanced oscillator strengths and a proper consideration of the
size dependence gf® should include a contribution from
such states, as described by E2fl).

Now we consider the size dependence of the mesoscopi-

Radius (R/a,,)
7 8

18]

cally enhanceg® at the lowest exciton resonance. As there 2
will be considerable linear absorption at the exciton reso- 5167
nance it would be appropriate to consider the figure of merit g 141
7=1x®)|/a, where a is the linear absorption coefficient %12_

i <
given by S 101
w 47 2 = 8-

nc i % (0—weg’+ 75y

wheren is the refractive index of the sample which, for a

dilute collection of QD’s, may be approximated by that of

the host material. Following the experimental results of Refs.
10 and 14 on CuCl QD'’s, the size dependenceyﬁ)fand

Eyxo—2Ey (MmeV)
0
1
T

01— T T T T

Yeg are fitted as 20 0 50 _ oo o
0.0445—-R)+y, if R<45A Radius (A)
Yeg™ : (339 )
Yn  IfR>45 A, FIG. 6. (a) Calculated size dependence of the peak value of
|x®/a| near the exciton resonance in CuCl QD’s. All the curves
i—r—l 07% 10PR- 226 (33b) are scaled to the same value R&=28 A. The hump seen at
e . !

Y| R~40 A arises from the assumed size dependence,aind has
no special physical significancéb) The size dependence of the
whereR is in angstromsy, is in meV, and 14 is in psec,  energy difference between the weakly correlated exciton-pair state
and this form is assumed for all the exciton levels. Although(E,) and twice the exciton ground state energ).
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excitonic contribution. In very small QD’s where the

electron-hole correlation is negligiblg,® arises from the 4 5 gad'us;n/aex)s 9
atomiclike level filling mechanism, while in the bulk semi- ! ! ! ! ! !
conductor one would have excitons behaving like indepen- __18f T Yn(meV)
dent bosons strongly suppressing the excitonic contribution ) — 09 0
to x®. The presence of the weakly correlated exciton-pair g o - 22 g
states with nearly twice the exciton energy and with nearly g MU -- 35 T -
twice the exciton oscillator strength that we have identified 8 2k T T~ TN
in large QD’s implies an approach to such a bulklike behav- Z ok i RN
ior. R 5 '
An explicit demonstration of this cancellation between 8I
excitonic and two-excitonic contributions may be presented ' ‘ ' ' '
30 40 50 60 70

using a three-level model. In the present case of a three-level Radius ()
model consisting of the ground state, the lowest exciton

state, and the weakly correlated two-exciton state, there are FIG. 7. Same as Fig.(8, but with inhomogeneous broadening

two competing contributions tg®/« proportional t8’ (7) included.
2| px|? | uxxl? . .
(op—@) 1T (ogx—w)—iT’ (349 QD's of 1I-VI semiconductors like CdS and CdSe have been

widely studied since the early days of quantum dot research.
where the three levels are labeled byX),and XX, andwy It is, therefore, interesting to apply our results to materials
and wxx denote the transition frequencies and and uxx  like CdS and CdSe. Although the present calculation uses an
the dipole moments for the transitions-X and X—XX,  electron-hole mass ratio of 0.28, appropriate for CuCl, the
respectively.I’ denotes the homogeneous widths of these&esults would be expected to be applicable to many other
transitions. The two terms in E¢34) exactly cancel when materials because of the weak dependence of exciton and
|uxxl?=2|ux|* and wx= wxy, a situation to which the QD  pjexciton states on the electron-hole mass ratiofact, the
level structure is found to approach Rsincreases. electron-hole mass ratios of 0.23 for C@%ef. 41 and 0.28

In actual samples, there is also inhomogeneous broadefor CdSe(Ref. 41) are very close to that of CuCl.
ing, probably due to size and shape inhomogeneities of the For CdS, takinga.,=30 A andEr=29 meV* we note
microcrystals. In Fig. 7, we show the size dependence ofhat a homogeneous width,=2 meV (=0.067g) would
| x'®)|/« for different values of homogeneous and inhomoge-ead to the saturation gft® to occur at a size corresponding
neous broadening of the exciton and biexciton states. In thgy SE~0.067E. Referring to Fig. 6) and scaling the en-
absence of detailed information on the inhomogeneougrgies byEr=194.4 meV, we find that this corresponds to
broadening we assume a phenomenological Gaussian i”hR“%6.5an or about 200 A. For CdSe, takin§g=15.7
mogeneous broadening with a common wigth for all the  mev*! we get the same value of saturation radiusag,5
one-photon transition frequenciesey and w,e. Then the  with a homogeneous broadening of only 1 meV. Thus, in
average over the inhomogeneous broadening is equivalent {faterials with smaller exciton binding energy, the effect of
that over the excitation photon energy and we have the awhe weakly correlated exciton-pair states becomes important

eragex® given by at smaller values oR/ag,, unless the exciton linewidth is
also correspondingly smaller.
B0 o —o)exd —(o—w)22] do’ . Different experimental measurements of the size depen-
f XA Jexi —( )77 dence ofy® in CdSe and CdSSe_, QD’s have reported

(39 conflicting result$® A recent careful analysis of these results

A similar averaging is done fox. Increasing the inhomoge- Y Schanne-Kleiret al*® has related this behavior to the
neous width causes the saturation radius to shift to lowefifférence between fresh and photodarkened samples and has

values. We note that, the experimentally measured value ¢i?oWn that the excitonic contribution J0 is an increasing
v, =0.9 meVF for R>50 A is somewhat too small to cause fUI’;CtIOI’]. of R. They gbserved that the figure of merit
the strong saturation observed aroud 50 Al° unless con- X )_/a7_|n CdSe QD's is enhanced by a factor of 4.4 as the
siderable inhomogeneous broadening is also present. radius increases from 27 A to 44 A. The experimentally
While the data shown in Figs. 6 and 7 are given in arbi-Studied size range is much smalle_r than _the size at which we
trary units, it is interesting to compare the absolute value ofXPect the weakly correlated exciton-pair states to suppress
@& with experiments. Using the bulk exciton oscillator the mesoscopic enhancementyé?. Therefore, we may ex-
strength for CuCl to be 5.8610 2 per unit cell** we find  Pect & fprther enhancgment of the figure of merit in Iarger
that [x®|/@=2.7x10"% esucm, in a crystallite of 37.4 QD’s. Itis, hoyvever', difficult to make'a quantitative predlq-
A radius. We have used,=0.9 meV. This is in close tion of the optimal size at which the figure of merit is maxi-

agreement with the measured value of’810~° esu cm® mized, because of insufficient knowledge on the homoge-
' neous linewidths of the exciton and biexciton in these

materials. In light of the present result, experimental inves-
tigation of CdS and CdSe crystallites of larger sizes would

Although most experiments in the weak confinement re-be interesting. It is important to note the physics of the
gime are done on CuCl quantum dots, optical properties oiveakly correlated exciton-pair states elucidated above is

B. 1I-VI semiconductor QD’s
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quite general and details of the valence band symmetries and
exchange interaction play only a minor role.

C. Excited-state absorption from the exciton ground state

There is a growing interest in size selective spectroscopy
of semiconductor crystallites. Recent progress in experi-
ments has revealed the discrete energy level structures not
only in the excitation spectruti®® but also in the excited
state absorption spectra by a resonant pump-probe
technique’? Using the exciton and biexcitonic states calcu-

Excited state absorption energy (E-Eg)/ER

lated above, we can now theoretically predict the absorption -1.0- L
spectra of excited crystallites in which one exciton has al- _,_/——%
ready been created.
We consider a pump-probe experiment in which a linearly 1o
1. :

T
-0.95 -0.90 -0.85 -0.80 -0.75
Exciton energy (E-Eg)/ER

polarized pump pulse excites a crystallite into the exciton
ground state and a collinear probe pulse that follows probes
the absorption spectra of this excited crystallite. We take the

pump-probe propagation direction to be theaxis and the

pump polarization to be along treaxis, without a loss of FIG.. 9. _Ene_rgies of the dqminant excite_d-state absorption peaks
appearing in Fig. 8 as a function of the exciton ground state energy.

generality. The created excitonis inthe 1 (I's) state with BX, XX0, and XX2 denote transitions to the biexciton ground

I,=0. Subsequent absorption of a probe photon can then ) : o
excite theJ=0, andJ=2, J,=0 two-exciton states if the state and to the weakly correlated exciton-pair states 3wt and

. . 2, respectively. The dotted line is a line of slope 1 and is onl
probe isz polarized, and thel=1, J,=+*1, J=2, and P Y P y

. . . . shown for reference.
,=*1 two-exciton states if the probe s polarized. The
oscillator strengths for all these processes can be calculat
using the expressions given in Sec. Il D.

In Fig. 8, we plot the oscillator strengths for transitions
from the exciton ground state assuming the probe to be u
polarized. As expected from the large oscillator strength o
the weakly correlated exciton-pair states, we find them t robe absorption in the presence of a strong pump beam
dominate the excited state absorption. The lowest energy a ivolves excitation of such exciton-pair states. Ror47 A
sorption_pea_k redshifted from the exciton energy correspond_t%e blueshift is found to be 11.5 meV and th.ese transitions
to the biexciton ground state. There are a few weak tranSIFlave a combined oscillator strength of about 1.3 times that of

the exciton ground state. This result agrees very well with

q%ns to the excited, but bound, biexciton states occurring
below the exciton energy. The strong absorption peaks due
to excitation of theJ=0 andJ=2 weakly correlated pair
States KX0 and XX2) occur blueshifted from the exciton.

e argue that the experimentally observed blueshift of the

200 . the measured blueshift of about 10 meV =45 A.
-— R=37.5A In Fig. 9 we plot the energies of a few dominant excited-
150+ state absorption peaks as a function of the exciton ground

state energy, i.e., the pump photon energy. It is interesting to

3 100 note that the strongest excited-state absorption toJth@
< 50l two-exciton state shown in Fig. 9, has a linear dependence
L . .
5 T on the exciton ground state energy with a slope of about 2.4.
§ 0 T. —a 1 l , g - Although the origin for this rather simple relationship is not
D 400 clear, it is amusing to speculate, by invoking the center of
o - R=46.8 A mass confinement picture, that the weakly correlated exciton
S 300+ pair has an energy equal to that of two excitons indepen-
? dently confined in a region of half the volume of the QD.
O 200+ Such a picture gives the confinement kinetic energy of the
1004 weakly correlated pair to be32=3.174 times that of a
single exciton. Consequently, the corresponding excited-state
0 IT , el o 3 .T « T absorption energy will be linearly dependent on the exciton
-0.2 0.0 0.2 0.4 energy with a slope of about 2.2, in close agreement with the
Transition energy (E-E,)/E, actual value.

Recently, Masumoto and co-workéfsobserved fine

FIG. 8. Oscillator strengthsf] for the induced absorption from Structures in the excited-state absorption spectrum and the
thel =1, 1,=0 exciton ground state by an unpolarized probe beamfeatures in the observed spectrum agree well with that ex-
®, O, and *, respectively, denote transitions to the0, J=1,  Pected from the present calculation. In their pump-probe ex-
and J=2 biexciton statesfo=2mg|u.,|?E/€%%, whereE is the ~ Periments with the pump tuned to the exciton absorption
energy of the transition anBly is the exciton ground state energy. energy, they observed a strong excited-state absorption of the
The arrows indicate the oscillator strength of the exciton grounddrobe, blueshifted from the pump energy, in addition to the
state. biexciton absorption. The strength of the induced absorption
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to this excited two-exciton state is found to be several timedion peak in the pump-probe experiment of Ref. 17 corre-
larger than that to the biexciton ground state as expectesponds to excitation of the weakly correlated exciton-pair
from the above discussion. states. Our results are in good agreement also with the recent
measurement of excited-state absorption spéétgiying
convincing evidence for the presence of the weakly corre-
V. SUMMARY AND CONCLUSIONS lated two-pair states.
_ o The cancellation effect iny®® that sets in as the size of
We have presented a calculation of the excitonic andne QD increases indicates the approach towards a bosonic

biexcitonic states in semiconductor QD’s of radii up t0 10 (harmonig behavior of excitons in the low density regime.
times the exciton Bohr radius. The most important finding ofj, the bulk limit, one would expect an exact cancellation of

the present calculation is the presence of excited biexcitobhe resonant one-exciton and two-exciton contributions so
states with large oscillator strengths, which play a cruciak, . ¥® is determined by nonresonant contributions from

role in determining the nonlinear optical properties of QD'Sihe hound biexciton and other excited two-exciton states.
in the weak confinement regime. These states are ide”tiﬁeﬂowever, the cancellation referred to above may not be com-
to consist of two weakly correlated ground state excitons a”%lete even in a harmonic approximation, because of possible

consequently have oscillator strengths, for excitation fronyitterences in the dephasing rates of the one- and two-

the exciton ground state, increasing proportional to the volg, citon states. Consequently, a calculation of the bulk limit
ume of the QD. In fact, the combined oscillator strength of

o v dre o lated of x(® at the exciton resonance requires careful consider-
the nearly degenerate=0 andJ=2 weakly correlated two-  a4iqn of the size dependence of the relaxation rates as well as

exciton states is found to be nearly twice that of the excitonys he off resonant contribution. This is left for future study.

ground state. These states also have their energies close\§@. note that similar conclusions have been reached by Bel-

twice that of the exciton ground state. Consequently, thgaqie and Bayaf® by using an asymptotic model for the
two-pair states give rise to a competing contribution to the

. 3) ; exciton-exciton interaction.
mesoscopically enhancgd® at the exciton resonance, lead- " Finally, we note that the weakly correlated exciton-pair

in(%)to a saturation and reversal of the size dependence Qfsies identified here are of a quite general nature and would
x*>. This provides the first consistent understanding of thesyist in other semiconductor structures like quantum wells

experimentally obsgrvé?i size dependence of® in cucCl and wires also. It would be interesting to investigate their
QD’s. This mechanism of the saturation of the mesoscopisffects on the optical response.

cally enhancecy® is of quite fundamental character and is
applicable to other materials.

The excited-state absorption from the exciton ground state
has also been inves.tigatedl. Again_, the excitatiorj of the AppENDIX A: TWO-PARTICLE STATES WITH L=12
weakly correlated exciton-pair state is found to dominate the
spectrum. As the size of the QD is reduced, these two- Here we derive Eqg5) and(6). We may write a general
exciton states acquire a repulsive energy and we argue thtwo-particle wave function of angular momentumand its
the experimentally observed blueshift of the exciton absorpz componentM as

o

¢LM(rlvr2):F(rlarzyrlz)YLM(Ql)+G(r11r21r12)YLM(QZ)+E gll’(r11r2)%: CH,;\)II:m,MYIm(Ql)YI’,Mfm(QZ) ,
1K

(A1)
wherer 1,=|r;—r,|. ExpandingF andG as
F(rlvr27r12):§|: Fl(rlvrz)% (=D"™Yim(QY[ —m(Qy) (A2)
and similarly forG, and using
L . @I+
(D)™ Q) Yem(Q2)= 2 CrZy wCo08 N ™70 gy Yo (22) (A3)

we rewrite Eq.(Al) as

Bim(r1,r) =2 {[F1(re,r)+Gi(ry,r )AL+ 00 (1.} D ChvmmYim( Q)Y m-m(Q2) (A4)
n' m
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where A, =Clls " (21 + 1) (217 + 1)/4w(2L+ 1) is non-

zero for all I,I’” such that |[I-1'|<sL<(I+1") with

[+1"+L even. Noting that only suchl’ values appear in

the general form given by Eq4) for states with parity

(—1)%, in what follows we consider only such states.
Comparing Eq(A4) with Eq. (4), we have

[Fir(ro,r) +Gi(ro,ra) JA L+ g (ro,ro)=f:(re,rp) .
(A5)

ForL=1, Eq.(A5) may be satisfied witlg;;»=0, by choos-
ing
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Equation (A7a) and Eq. (A7b) can be satisfied with
011+2=0,-2=0 by choosing

firagee flis2
G .=G+ : - A8a)
AT Aiaio2 Alran (g3
and
SRELITE RS (A8h)
|-2 A|’|,22 ]

which leavesG,, G;, G,, Gj arbitrary. Using Eq(A8),
Eqg. (A7c) may be written as

f f
G|+2=G|+ 1+2]+1 _ I,I+1 , (A6a)
Alv2)+11 A+ fiiz
G+ A -Gz Ajtg=fy. (A9)
1+2),2
fli-1 Now we may choos&,, G;, G,, Gjsuch thag,=0 for
F|—1=AI . (A6b)  |1=0,1,2,3, butg, for I=4 cannot be made to vanish, in
o general. Thus we get E@6) for the L=2 state with even
Then Eq.(Al) reduces to Eq(5). parity.
ForL=2, Eq.(A5) gives
APPENDIX B: ELECTRON-HOLE EXCHANGE
(Gi+Fi2A 11221 142= 1142, (A7a) INTERACTION
We derive the exciton and biexciton EMA equations in-
(G+F A 22T 01 1-2=T 122, (A7b)  cluding the electron-hole exchange interaction. We follow
the treatment of Ref. 54 and start from an effective two-band
Hamiltonian describing electrons and holes in a
(GI+FDA L+ =1 . (A7c)  semiconductor®
|
1
— T _ T - ccee T T
H_kz(r Ec(k)ak(rak(r kzu Ev(k)bkubko+ 2k1k22k3k4 0'12“'2 V(J'lu'za'z(rl(k1k2k3k4)aklu'lakztrzak3a'2ak40'l
+E > v (K kokskg)b! b’ b b
2klk2k3k4 A 01050501 1"2”3”4 —kl,—al —k2,—0'2 —k3,—0'2 —k4,—01
_ cvveC T )
kyKoRsks (g"z V(rl(rz(rz(rl(klk2k3k4)ak1(rlbfk3,7(72b*k2*0'2ak401
_ \/CvCv T T
kyKoRska 010_220_30_4 0'10'20'30'4(klk2k3k4)aklo'lb*k4,70'4b*k2,7a'2ak303 ’ (Bl)
wherea/, (b},) is the creation operator for an electréimle) with a wave functionS”) of the Bloch form
" (r):iui (ryexp(ik-r) (B2)
ko \/ﬁ ko '

where() is the normalization volumeE (k) andE, (k) denote the band dispersions of the conduction and valence bands and

the Coulomb matrix elementg’s are given by

V55220304(k1k2k3k4)= J d3x diy ‘”Livl

0 s, (VU IX=YD Y (V) Py, (X)

(B3)



5168 SELVAKUMAR V. NAIR AND TOSHIHIDE TAKAGAHARA 55

with v =e?/(e|x—y|). V is given by the same expression aswhere ¢, is an s-like cell-periodic function and,,¢,.¢,

for V but with v replaced bye?/|x—y|. The Hamiltonian transform likex, y, andz. 7 and| denote the spin states.

(B1) is obtained from the many electron Hamiltonian by A general electron-hole pair state may be constructed as

making a two-band approximation and keeping only those

terms that conserve the number of the electron-hole phirs. 0

The effect of other excitations is phenomenologically in- |p)=2 Ckkz,lpkkz,> , (B5)

cluded by screening the electron-hole Coulomb interaction. Kk’

The electron-hole exchange interaction is, however, not

screened® Where|pkk,) is the electron-hole pair state with total “spin”
We consider cubic materials with a conduction band of| and itsz component, :

I's symmetry and a valence bandIof symmetry, each two-

fold degenerate. We note that the index = 1/2 in the ex-

pressions above refers to the spin in the case of the electron

and to thgj,= = 1/2 component of th&'; band in the case of

the hole. For brevity, in what follows, we refer to this Bloch

function angular momentum as “spin” in either case. The

|Per) = \/—(ak 1/2bk’ Lt —l/2bk’ 1210) , (B6a)

corresponding Bloch functions are of the fofat k=0) |pkk’> ak l/2bk’ 130) (B6b)
Ugdr=4o(n7, (B4a) -
o240 [P ) =2k, by —140) (B6O)
ug— 1A =24o(r) ! , (B4b)
and

i
Ugllz(") [gx(r)'ﬂgy r)]l gz I')T (B4C)
' V3 V3
|pkk,> \/—(ak 1/2bk/ —12 ak —1/2b 1/2)|0> . (B6d)

%ﬁwh%mmaumwﬁum,

Minimization of the expectation value dfl given by Eq.
(B4d) (B1) leads to

[Ec(k)—E,(k)— E]Ckk, 2 (Vi1 - 1204k — 1", =K' D=8 1V1/2 12,172 12K, — |,|,_k)]C"/—0- (B7)

Now we make the effective mass approximation for the band dispersions and evaluate the Coulomb matrix elements in the
Wannier approximation?

1 . .
V§72”,51/z,71/z,1/2(k,—|’,—k’,|)=@f d®x d®y exi(1—k)-x+i(l"=k’)-yJo(|x=y]) , (B8a)
’ ’ 3 0 1 3 H ’ '

Vl,2 12.12-yd K, =1L —K") = mag AE g, az d>x exgi(I=k+1"=k")-x] (B8b)

with
2 . €
ma XAEEXCh_ 0O f d xd Yoo §o X)gx )§O(Y)§x( ) ’ (BBC)
3 cell | |
|
where . is the volume of a unit cefl’ Angch equals the Now we derive the biexciton EMA equatidiEq. (13)].

bulk exciton exchange splitting, within the present approxi-For the total “spin” J=0, a general two-pair state may be
mation. Invoking the above approximations on Eg7), and  Written as

Fourier transforming to the real space, we get @jof Sec.

[l. We note thatl is not the real spin but stands for the sum

of the Bloch function angular momenta of the electron and |m)= E E
the hole. Using the hydrogenic wave function of the bulk k'l S=0
exciton, it is easy to verify thaAES, ., equals the bulk exci-

ton exchange splitting energy. with

kk’ll’ kk’II'> (B9a)
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The antisymmetry of the wave function under the electron-
|mkk,", E (-1l o2da alr,fg by azb;rr,,,,2|0>. electron(hole-hole exchange requires th&® be even and
A1 (B9b) K“_ be odd under the interchangelok’ or I,I". Proceeding
as in the case of the exciton, we get EiQ).
and To derive the EMA equations faf=1 andJ=2 biexci-
L ton states, we note that a general two-pair state with total
|mkk’|l’>_ﬁ ; al,(ral/,ablfrbrfﬁo spin” J and itsz component], may be written as

! Im)ys,= 2 E K Im3S,.(33,))  (B10)
T T 3, " "

S E ak 018~ o, b/ (,Zbl,’ﬂr2 |0) . o A kk I Mygery (9 Jz

(Tl (7'2

(B9c) with
|
SSJ ~1/21/5 1/21/5' +

ImSS, (33,))= > > > 3 canemEe el A, blgzbl, J0), (B11)

ss'=%112 gy ,01=*112 0,05=*1/2

where theC’s denote the Clebsch-Gordan coefficients. The EMA equatiidBsand(17) for J=1 andJ=2 states may now
be derived as for the case fde=0.
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