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Quasiparticle transport equation with collision delay. II. Microscopic theory
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For a system of noninteracting electrons scattered by neutral impurities, we derive a modified Boltzmann
equation that includes quasiparticle and virial corrections. We start from a quasiclassical transport equation for
nonequilibrium Green’s functions and apply a limit of small scattering rates. The resulting transport equation
for quasiparticles has gradient corrections to scattering integrals. These gradient corrections are rearranged into
a form characteristic for virial corrections.@S0163-1829~97!08304-5#
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I. INTRODUCTION

In the first paper of this series1 ~referred to as paper I!, we
have discussed interplay of quasiparticle and virial corr
tions for scattering by neutral impurities with resonant leve
We have found that both corrections are of the same o
and tend to mutually compensate. Accordingly, one sho
either include both kinds of corrections or neglect both
them. Separate quasiparticle or separate virial correct
lead to overestimates of the impurity effect on basic phys
quantities like dc conductivity or screening length.

In paper I we have used an intuitive modification of t
Boltzmann equation~BE!, Eq. ~I-39! @Eq. ~39! of paper I#.
Long-time experience with quasiparticle corrections sho
that intuitive approaches however convincing are far fr
reliable as the wave-function renormalization factor oft
emerges in an unexpected way. To become trustworthy,
~I-39! has to be recovered from quantum statistics in a v
systematic manner. This is the aim of this paper.

The intuitive modification of the BE that we would like t
arrive to reads
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This is equation~I-39!. It applies to a system of noninterac
ing electrons scattered by point impurities with resonant l
els. Here, the quasiparticle distributionf is a function of
momentumk, coordinater , and timet. Lifetime t, collision
delayD t , and wave-function renormalizationz are functions
of momentum, potentialf depends on coordinate and tim
The collision delayD t ~given by the energy derivative of th
phase shift! makes the scattering-in integral nonlocal in tim
This nonlocality represents virial corrections. The quasip
ticle corrections are covered by the wave-function renorm
ization z.
550163-1829/97/55~8!/5095~15!/$10.00
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So far, quasiparticle and virial corrections have been st
ied only separately using different theoretical tools. Now
briefly review previous studies to identify which tool is be
ter suited for unified theory.

A. Virial corrections

A need to derive virial corrections to a quantum transp
equation has been felt for a while. The progress achieve
this direction can be represented by Snider’s equation.2,3 Us-
ing the Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY!
hierarchy, Snider has derived a quantum transport equa
for the reduced density matrix~Wigner’s distribution!. Snid-
er’s equation is sufficiently general to describe various c
rections beyond the BE, however, as noticed by Laloe¨ and
Mullin,4 all corrections enter the scattering integral, wh
quasiparticle corrections should appear rather as correct
to the drift of single-particle excitations.

Snider’s equations includes another item alien to the q
siparticle picture: the reduced density matrix. When the q
siparticle corrections are in the game, the transport equa
should deal with the quasiparticle distribution not with t
reduced density matrix. In the reduced density matrix, c
tributions from free excitations~quasiparticles! and from cor-
relations ~off-shell motion during dressing processes! are
mixed together. The drift of free excitations can be describ
by simple quasiclassical trajectories while correlations
quire quantum-mechanical treatment. To be able to m
efficient approximations, these two types of motion have
be separated. So far, the theory of transport based on
reduced density matrix is missing a tool that would furni
us with such a separation.

B. Quasiparticle corrections

The second group of papers is a large variety of stud
recovering the Boltzmann equation with quasiparticle corr
tions in the form visualized by Landau, e.g., Refs. 5–14.
the other hand, none of these studies touches virial cor
tions. One expects that the virial corrections should eme
from systematic quantum-statistical approaches to the L
dau theory provided one does not lose them making unju
fied approximations.
5095 © 1997 The American Physical Society
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From the intuitive modification of the BE~1!, we can
identify three groups of approximations that we have
avoid:

~i! Most authors limit their attention to the scattering d
scribed within the Born approximation~as we have also don
in Ref. 14!. The correspondingT matrix is just an impurity
potential that does not cause any collision delay. Simila
the self-consistent Puff-Whitefield approximation of t
electron-phonon scattering~the Migdal approximation with
non-self-consistent phonons! studied by Prange an
Kadanoff,9 gives no virial corrections since the interactio
vertex has no internal electron dynamics like theT matrix
within the Born approximation.

~ii ! Prange and Sachs10 have studied the electron-electro
and electron-phonon scattering within the fully se
consistent single-loop approximation. The screened C
lomb interaction is, in general, a complex function of ener
so that it yields some kind of virial corrections. Prange a
Sachs have used, however, the static approximation wi
which the screened Coulomb potential looses energy de
dence and becomes real. In this way, the virial correcti
are lost.

~iii ! Danielewicz11 and Botermans and Malfliet12 have
used the two-particleT matrix for nucleon-nucleon interac
tion that definitely includes virial corrections, however, th
have neglected gradient contributions to the scattering i
gral. From the nonlocal character of the scattering integra
the intuitive BE~1!, one can see that the virial corrections a
proportional to gradients of the quasiparticle distribution, s
~2!. Neglecting gradient contributions one looses the vir
corrections.

In all the three cases, one can go beyond these app
mations. To recover Eq.~1!, we have to use theT matrix for
the impurity scattering and keep the gradient corrections
scattering integrals. Similar treatment has lead to virial c
rections for two-particle scattering.15

C. Gradient corrections to scattering integrals

The gradient corrections to the scattering integral are
central importance in our treatment. In the intuitive BE~1!,
the only gradient contributions to the scattering integ
come from the virial corrections,
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Accordingly, we expect that gradient corrections result
within the standard approaches to the BE are just the v
corrections. Our plan is to derive gradient corrections fr
the quasiclassical limit of the quantum-statistical transp
equation and rearrange them into the last term of Eq.~2!.

Gradient corrections to scattering integrals have been
ready studied by many authors, the most extensive stu
were devoted to the effect of electric field on collision
Starting from Barker,16 the field effect on scattering has bee
-
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discussed for a number of scattering mechanisms wi
various approaches which include the superoperator pro
tion technique, Refs. 16,17, the Levinson equation18 derived
from the BBGKY hierarchy, Ref. 19, and nonequilibrium
Green’s functions, Refs. 20–25.

It is important to note that these different approaches
sulted in contradictory predictions. Let us focus on the~lin-
ear! gradient correction to the scattering integral which w
claim to be equal to the virial correction@the last term in the
right-hand side~r.h.s! of ~2!#. We will assume only self-
energies in the Born or Puff-Whitefield approximation
that the virial corrections are absent, i.e., we expect the
dient corrections to be absent, too. Surprisingly, this is
true about gradient corrections that one finds in print. O
can split all papers into three groups:

~1! In Refs. 16,17,19,24, linear gradient corrections we
found.

~2! In Ref. 25 linear gradient corrections were found b
with opposite sign than in the first group.

~3! In Refs. 20–23no linear gradient corrections wer
found.

Unless we can understand why the gradient correcti
appear for the Born or Puff-Whitefield approximation a
why there are contradictory predictions from alternative a
proaches, we can hardly use the gradient corrections
start line of our approach to the virial corrections.

To identify the origin of the three contradictory predi
tions, let us inspect what kind of the transport equation
specific for each group. Although various approaches h
been used by authors, we will describe all the three gro
within a common dialect of Green’s functions.

1. Integrodifferential transport equation
for the reduced density matrix

The integrodifferential transport equation for the reduc
density matrix is obtained by the generalized Kadanoff a
Baym ~GKB! ansatz24 implemented in the time diagonal o
the integrodifferential Kadanoff and Baym~KB! equation.5

As results from the GKB ansatz, time argumentt of the
reduced density matrix is retarded compared to the t
argumentT of the scattering integral, i.e.,t,T. In the
integrodifferential equation, it is natural to identify the in
stant of the collision withT. Using the linear expansion
r(t)5r(T)1(]r/]t)(t2T) one then obtains a Boltzmann
like scattering integral fromr(T) and gradient corrections
from (]r/]t)(t2T).

2. Integral transport equation for the reduced density matrix

The integral transport equation for the reduced den
matrix is obtained by the GKB ansatz implemented in t
time diagonal of the integral GKB equation.26 In the integral
equation one has a freedom to identify the instant of
collision with t and gradient corrections emerge from t
matching of the scattering integral with the subsequ
propagation. The opposite signs found in groups 1 and 2 t
follow from the fact that in group 1 authors extrapolate alo
the initial state of the collision while in group 2 autho
extrapolate along the final one.
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3. Integrodifferential transport equation
for the quasiparticle distribution

The transport equation for the quasiparticle distribution
obtained by the original KB ansatz5 implemented to the KB
equation at the quasiparticle pole. As results from the
ansatz, the time argument of the quasiparticle distributio
identical to the time argument of the scattering integral. T
time is naturally identified as an instant of the collision eve
and no gradient corrections appear.

The contradictory predictions of the gradient correctio
were found to follow from different treatments of quasipa
ticle corrections.27 As shown in Ref. 27, the linear gradien
correction to the rate of scattering out is nothing but the ti
dependence of the wave-function renormalization. In ot
words, gradient and quasiparticle corrections are linked
gether. The approach that takes care of quasiparticle fea
and naturally leads to the Landau-Boltzmann type of tra
port equation for quasiparticles is the one of the group 3,
based on the KB ansatz. The absence of the gradient co
tions for the Born approximation is also in agreement w
our expectation.

D. Nonvirial gradient corrections

Among studies of the gradient corrections that are
devoted to the field effect we want to point out the paper
Kolomiets and Plyuiko.28 In the quasiclassical limit, they
have evaluated the scattering integral from the self-energ
the second-order approximation of the electron-electron
teraction keeping all gradient terms. Similarly to the spirit
classical virial corrections, they have expressed gradient
rections in terms of effective shifts in space and momentu
The scattering integral they have derived thus reminds u
the one we are looking for.

In spite of formal similarity, the corrections derived b
Kolomiets and Plyuiko are not the virial corrections. Kol
miets and Plyuiko have used a mixed approach implem
ing the KB ansatz in the time diagonal of the integrodiffe
ential form of the GKB equation. These two steps are
compatible as the KB ansatz includes the quasiparticle
tribution while the time diagonal~or integral over energy in
Wigner’s representation! provides drift terms for the reduce
density matrix. The gradient contributions that they ha
found are thus a strange form of the quasiparticle correctio

Again we came to the same moral. If we want to put
equality between the virial and the gradient corrections to
scattering integral, we have to work fully in the quasipartic
picture.

E. Presented approach

Our approach is based on two limits applied to noneq
librium Green’s functions. The first one is the quasiclassi
limit that is inevitable for the BE.5 The second one is th
limit of small scattering rates.14 This limit restricts the valid-
ity of quasiparticle corrections to weakly renormalized s
tems. The validity of virial corrections is restricted to th
second virial coefficient.

The limit of small scattering rates from the quasiclassi
transport equation for the nonequilibrium Green’s functi
has been already presented in detail in Ref. 14. In fact,
s
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transport equation for quasiparticles, Eq.~70! of Ref. 14,
reduces to the modified BE~1!. From this point of view, this
paper is just an application of the method derived in Ref.
On the other hand, in Ref. 14 authors discussed only sim
self-energies on the level of Born approximation which p
vide quasiparticle corrections but no virial corrections a
pear. Accordingly, there is no collision delay. Here we us
more complex self-energy, averagedT matrix approxima-
tion, that results in nontrivial virial corrections similarly as
was done in Ref. 15 for two-particle scattering.

In spite or because of many similar and closely rela
studies of gradient contributions to transport equations,
feel that we have to start our treatment directly from no
equilibrium Green’s functions instead of recalling alrea
achieved results. This is because these treatments diffe
seemingly tiny details that become important as soon as
wants to keep trace of gradients and quasiparticle correct
in the same time.

Now we can specify our aim. The precursor of equati
~1! is the quasiparticle Boltzmann equation in semicond
tors, Eq.~70! of Ref. 14, which reads

] f
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] f

]k
52z~g« f2s«

,!. ~3!

Except for transport vertexs,, all components are deter
mined by retarded self-energysR. First, g522ImsR pro-
vides inverse lifetime, (1/t)5zg« . Second, the quasiparticl
energy is given by«5(k2/m)1f1Res«

R . Note that unlike
in paper I,« includes the potentialf. We made this change
of convention to comply with the convention of Ref. 14.

It will be easy to show that for homogeneously distribut
point impurities the velocity simplifies to the form in~1!,
(]«/]k)5z(k/m), and similarly do the force,
(]«/]r )5(]f/]r ). Apparently, quasiparticle corrections a
explicitly present in equation~3!. The virial corrections, if
present, are hidden in the transport vertexs,. The focus of
our interest thus will be to show that the transport vertex c
be rearranged to the form of the scattering-in integral fr
~2!,

zs«
,5

1

t

2p2

k2 E dp

~2p!3
d~ upu2uku! f ~p,r ,t !

2
1

t

2p2

k2 E dp

~2p!3
d~ upu2uku!D t

]

]t
f ~p,r ,t !. ~4!

F. Content

The paper is organized as follows. In Sec. II, we brie
review the method of Ref. 14. We introduce the nonequil
rium Green’s functions, the quasiclassical limit, and the lim
of small scattering rates. With the help of these tools
Boltzmann-like transport equation is derived. In Sec. III, t
self-energy and the transport vertex are specified within
averagedT-matrix approximation. The most essential part
our paper is in Sec. IV, where we evaluate the scatter
integral including its gradient corrections. In Sec. V, the
gradient corrections are rearranged into a form that is id
tical to the one intuitively expected and equation~1! is re-
covered. In Sec. VI, single-electron observables are valua
Electron density and current are discussed in detail. We
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discuss the density of energy. Section VII includes the su
mary. In the Appendix we discuss the relation between vi
and quasiparticle corrections.

II. TRANSPORT EQUATION

Our focus of interest is the transport vertexs,. The treat-
ment of the transport vertex, however, is intimately co
nected to the transport equation itself. Therefore we fin
profitable to briefly review the derivation of equation~3!.
This also gives us room to introduce a necessary set of e
tions for nonequilibrium Green’s functions and their re
tions to components of equation~3!.

A. Generalized Kadanoff and Baym equation

Our starting point is the generalized Kadanoff and Ba
equation26

G,5GRS,GA, ~5!

that is accompanied by the Dyson equation for retarded~ad-
vanced! propagator26

~G0
212SR,A!GR,A51, ~6!

where the inverse free-particle propagator reads

G0
21~1,2!5F ]

]t1
1eS 1i ]

]x1
D2f~x1 ,t1!Gd~122!. ~7!

Here, numbers are cumulative variables 1[(t1 ,x1), time,
and space. Matrix products include integrations over ti
and space,C5AB meansC(1,2)5* dt3dx3A(1,3)B(3,2).
Thee is the free-electron kinetic energy andf is a potential.
Our sign convention for the correlation functionG, is

G,~1,2!5Tr„r̂c†~2!c~1!…, ~8!

where r̂ is the grand-canonical averaging operator, andc†

andc are creation and anihilation operators, respectively
Equations~5!–~8! are general identities and definition

The particular physical content of these equations is sp
fied by self-energySR,A and transport vertexS,. The trans-
port equation~3! follows from set~5!–~7! with no regard to
a particular form of self-energy, except that the scatter
rate connected toSR,A andS, is supposed to be small in
sense specified below. Moreover, perturbations in the sys
of electrons are supposed to be smooth in time and spac
that corresponding gradients are also small. Thus we le
specification of the self-energy for the next section, and
cus on the quasiclassical limit~small gradients! and limit of
small scattering rates of equations~5!–~7!.

B. Wigner’s representation

In the quasiclassical limit, all operators are convenien
described in Wigner’s mixed representation

a~v,k,r ,t !5E dt dye ivt2 iky

3A~ t1t/2,r1y/2,t2t/2,r2y/2!. ~9!
-
l

-
it
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e

i-

g

m
so
ve
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y

We use the convention that lowercase denotes Wign
transform of operators denoted by uppercase. This conv
tion is in agreement with the convention used in pape
Indeed, site-diagonal operators used in paper I~like SR,A,,,
V, andTR,A) in Wigner’s representation are momentum i
dependent and equal to their local elementssR,A,,, v, and
tR,A introduced in paper I.

The transformation~9! mixes together left and right argu
ments of the functionA, therefore it complicates matrix
products. Keeping only the first gradients in time and co
dinates, the matrix productC5AB in the mixed representa
tion reads

c5ab1
i

2
@a,b#, ~10!

where the rectangular brackets denote Poisson’s bracke

@a,b#~v,k,r ,t !5
]a

]v

]b

]t
2

]a

]t

]b

]v
2

]a

]k

]b

]r
1

]a

]r

]b

]k
.

~11!

C. Propagation of single quasiparticle

In the quasiclassical limit, one restricts the assumed fie
f to those that vary slowly in time and space. In this ca
the field is expected to have a pronounced effect only
long trajectories of electrons. Such long trajectories nec
sarily include the number of collisions with impurities.
propagation between subsequent collisions and individ
collisions themselves happen on a very small time and sp
scale, thus they should be nearly the same as in a hom
neous and stationary potential, i.e., in the absence of
field. There might be also a small effect of the field on the
microscopic scales, however, this field effect can be hand
as a correction linear in gradients of the field.

PropagatorsGR,A describe a motion between collision
and also internal dynamics of collisions. Thus we have
find them up to a linear order of gradients. From the Dys
equation~6! and its alternative formGR,A(G0

212SR,A)51
one finds that propagators are free of gradients,5

gR,A5
1

v2e2f2sR,A . ~12!

Being a complex function,

sR,A5s7
i

2
g, ~13!

the self-energy describes two kinds of phenomena. Its im
nary part12 g describes scattering out of the state of mome
tum k. Its real parts renormalizes energy of the single
particle-like state. The renormalized~quasiparticle! energy is
given by a position of the pole ofGR,A at the real axis,

«5e1f1s~«!. ~14!

This quasiparticle energy is an ingredient of the quasipart
BE ~3!.

In the limit of small scattering rates~small g expansion,
22ImsR[g→0), the pole of the propagator sits close
the real axis. Then one approximates the spectral functio
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a522ImgR, ~15!

by its limiting value

a52pzd~v2«!1gRe
1

~v2e2f2 i0!2
. ~16!

Within the quasiparticle picture, in the spectral functi
a(v,k,r ,t), thed function represents a singular contributio
from the quasiparticle state of momentumk ~at point r and
time t). The second term describes various projections
other quasiparticle states with an energy«(p,r ,t)5v into
momentumk, in other words, the second term is an off-po
contribution. Within the quasiparticle picture, these two pa
of the spectral function have to be treated separately.
norm z of the d function is the wave-function renormaliza
tion

z5
1

12
]s~v!

]v U
v5«

. ~17!

D. Completed collisions

The generalized Kadanoff and Baym equation~5! in-
cludes all phenomena that we are interested in, but in a
den form. The simple link between the Green’s function f
mulas and the intuitive approach to the BE with viri
corrections is obscured by the fact that these two approa
deal with different objects. While the correlation functio
G, includes both, the pole and off-pole, contributions, t
quasiparticle distribution is related only to the pole part.
recover the BE equation, one has to separate these two p

Within Green’s function the pole and off-pole propag
tion are described by a single transport equation~5!. In con-
trast, a diffusion of particles described by the left-hand s
~l.h.s.! of the BE applies only to the pole part, while th
off-pole part seems to be missing. In fact, it is not missin
The off-pole propagation is hidden in scattering integrals a
the relation between observables and the quasiparticle d
bution.

The possibility of moving the off-pole propagation in
the scattering integral follows from a hierarchy of time a
space scales in the system that are inevitable for the theo
Boltzmann type. Diffusion of quasiparticles is well define
on a hydrodynamical scale that includes a large numbe
impurities and a large number of collisions per particle.
the hydrodynamical scale, there is an appreciable effec
the fieldf which may cause a transfer of quasiparticles o
long distances. Such a massive change of the system st
effectively described with the help of a differential transp
equation that balances drift with dissipation. In contrast,
dividual collisions happen on a microscopic~local! scale on
which the effect of the fieldf is small so that it can either b
neglected or included by corrections linear in its gradien
Thus, a subdynamics on the microscopic scale can be
grated through and approximated by effective scatter
rates.

Clearly, to recover the BE we have to separate hydro
namical and microscopic scales. This separation is equ
lent to the separation of the pole and off-pole parts based
f
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a nonequilibrium modification of the expansion in sm
scattering rates.29,14Alternatively, the separation of pole an
off-pole parts ofG, can be based on the idea of complet
collisions. In this paper we focus on the microscopic mec
nism of collisions, thus we follow the completed collisio
approach.

For the purpose of motivation, we assume for a while
homogeneous system that is diagonal in momentum re
sentation. Let us take a look on a time-diagonal elemen
G,, sayG,(t,t;k). In the transport equation~17!, the trans-
port vertexS, represents the last collision due to which
wave function of electron gained a component of the m
mentumk. This component can belong either to an asym
totic state that will form a new effective quasiparticle state
to the off-pole contribution due to some other statep. The
asymptotic state is on the energy shell, thus it will live on t
time scale of the quasiparticle lifetime. The off-pole cont
bution will vanish on the scale of a quasiparticle formati
time. The latter is much shorter than the former. To dist
guish whether the contribution toG,(t,t;k) is of pole or
off-pole nature, one can monitor a vicinity of the timet,
including a close future, to figure out which part will surviv
and which part soon disappears. This procedure corresp
to the approach of the Fermi golden rule, where one a
integrates through a collision into the future and uses
matching of asymptotic states to identify a product of t
completed collision.

In accordance with the causality principle, all time int
grals in~17! run only over the left part of the time axis, i.e
for times smaller thant. To monitor a close time vicinity, we
rearrange the transport equation~17! as

G,5
1

2
~GR2GA!S,GA2

1

2
GRS,~GR2GA!1

1

2
GRS,GR

1
1

2
GAS,GA. ~18!

In the added term

J,5
1

2
GRS,GR1

1

2
GAS,GA, ~19!

the time integration runs into the future,

2J,~ t1 ,t2!5E
2`

t1
dt8E

t2

`

dt̂ GR~ t1 ,t8!S,~ t8, t̂ !GR~ t̂,t2!

1E
2`

t2
dt̂E

t1

`

dt8GA~ t1 ,t8!S,~ t8, t̂ !GA~ t̂,t2!.

~20!

The same integration into the future also appears in the o
contribution toG,,

L,5
1

2
~GR2GA!S,GA2

1

2
GRS,~GR2GA!. ~21!

On the time diagonal,t1,25t, the time integrations ove
t8 andt̂ in J, do not overlap, see~20!. The time scale of the
integration is determined by the time scale ofS, that can be
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identified with the quasiparticle formation time.30 ThusJ,

is dominated by the short-time~off-pole! contributions.
The time integration inL, extends into the future in a

way that reminds us of Fourier transformation to the ene
of the asymptotic state,

GR~ t,t8;k!2GA~ t,t8;k!'2 ie2 i«k~ t2t8!e2~ ut2t8u/t!.
~22!

ThusL, is dominated by the long-time~pole! contributions.

E. Pole and off-pole contributions

Splitting the correlation functionG, into L, andJ, is
an ideal starting point to a nonequilibrium modification
the expansion in small scattering rates. This can be see
the equilibrium, where one can use the energy represe
tion,

l,~v,k!5 f FD~v!
1

2
a~v,k!2g~v!→ f ~k!z~k!2pd~v2«!.

~23!

We have useds,(v)5 f FD(v)g(v), and ~15!. The arrow
shows a value in the limit of small scattering rates.

Note thatl,5 f FD
1
2 a

2g, while g,5 f FDa. In the limit of
small scattering rate,g→0, the spectral functiona ap-

proaches thed function as Lorentzian, whiles5 1
2 a

2g ap-
proaches thed function faster,

a~v,k!5
g

~v2e2s!21
1

4
g2

, ~24!

s~v,k!5

1

2
g3

F ~v2e2s!21
1

4
g2G2 . ~25!

In the off-pole regionuv2«u@g, the spectral functiona has
a tail linear in g. In the limit of small scattering rates
g→0, this tail results in the off-pole correction, the seco
term in ~16!. The functions in the off-pole region is propor-
tional to g3, thus its limit is a pured function without the
off-pole term.

The functionj, contains the off-pole part. In equilibrium

j,~v,k!5 f FD~v!g~v!Re~v2e2sR!2

→ f FD~v!g~v!Re~v2e1 i0!2. ~26!

Due to the off-pole nature of this contribution, the Ferm
Dirac distribution in~26! cannot be associated with occup
tion of the statek.

The comparison with equilibrium shows that the quasip
ticle distribution relates tol, while j, has to be constructe
indirectly. In the spirit of the BE, we will treatl, within a
differential transport equation whilej, will be turned into a
local functional.

Equilibrium relations~23!–~26! can be easily generalize
to a quasiclassical limit. As we have shown, the spec
function a is free of gradients, see~13! and ~15!. The func-
y

in
ta-

-

l

tion S5A1 1
2 G

RGGR1 1
2 G

AGGA is also free of gradients
since the gradient expansion of symmetric terms l
GRGGR has no gradients. Therefore, similarly to the spec
function a, the functions just follows the energy bottom
defined by the fieldf,

s5

1

2
g3

F ~v2e2f2s!21
1

4
g2G2 . ~27!

In the limit of small scattering rate,g→0, the functions
reduces to the first term of the spectral function,

s52pzd~v2«!. ~28!

In equilibrium, the pole partl, is proportional to the
functions. Out of equilibrium, we can expect similar beha
ior and introduce the local distribution as

l,~v,k,r ,t !5 f FD
loc~v,k,r ,t !s~v,k,r ,t !. ~29!

In the limit of small scattering rates, the functions turns to
thed function and one can eliminate the energy argumen
the local distribution. In this way we can define the qua
particle distribution as the pole of the local distributio
Briefly, in the limit of small scattering rates the pole part
the correlation function reads

l,~v,k,r ,t !5 f ~k,r ,t !2pzd~v2«!. ~30!

The nonequilibrium generalization of the off-pole pa
j, follows directly from its definition~19!. Since symmetric
terms have no gradient contributions,

j,5s,
1

2
~gR

21gA
2 !. ~31!

In the limit of small scattering rates,

j,5s,Re
1

~v2e2f2s1 i0!2
. ~32!

F. Boltzmann equation

The BE is recovered from~21!. First, we turn~21! into a
differential form multiplying it byGR

21 from the l.h.s. and by
GA

21 from the r.h.s. and subtracting the two forms,

2 i ~GR
21L,2L,GA

21!5
1

2
~S,A1AS,2GGAS,GA

2GRS,GRG!. ~33!

By the gradient expansion, this equation simplifies as

@v2e2f2s,l,#2
1

2
@g,ags,#5s,s2gl,, ~34!

where g5RegR. In the limit of small scattering rates, th
second term on the l.h.s. vanishes. After a substitution
~30!, equation~34! turns into equation~3!. For details see
Refs. 14,29.
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55 5101QUASIPARTICLE TRANSPORT . . . . II. . . .
To deal with the transport equation~3!, we need lifetime
t, quasiparticle energy«, wave-function renormalizationz,
and transport vertexs,. Since all of these functions ar
related to the self-energy, further progress requires us
specify the self-energy. For elastic scattering on impurit
the retarded~advanced! self-energy depends only on the r
tarded~advanced! propagatorGR. The transport vertex de
pends on both propagators,GR andGA, and on the correla-
tion function G,. Propagators are given by~13!. The
correlation function has to be decomposed into two pa
according to~18! which in Wigner’s representation reads

g,5l,1j,. ~35!

The pole partl, is linked to the quasiparticle distributio
via ~30!, the off-pole partj, is self-consistently evaluate
from the transport vertexs, via ~32!.

III. AVERAGED T-MATRIX APPROXIMATION

Here we specify the self-energy. As in paper I, we assu
noninteracting electrons scattered by neutral impurities.
impurity acts on electrons by a single-site potential int
duced by Koster and Slater.31,32 Individual scattering events
are treated within theT matrix. Formulas for theT matrix in
homogeneous systems are quite common,33 our focus will be
on gradient contributions in inhomogeneous systems.

A. Retarded self-energy

In the Koster-Slater model, an impurity at positionr is
characterized by a potential restricted to a single orbitalur &
at siter ,

Vr5ur &v^r u. ~36!

The corresponding retardedT matrix reads

Tr
R5Vr1VrG

RTr
R . ~37!

Iterating ~37! one can see that theT matrix is also a single-
site function,

Tr
R5ur &

v
12^r uGRur &

^r u. ~38!

The T matrix does not depend on difference coordina
therefore its mixed representation relates only to double-t
structure

ur &tR~v,t,r !^r u5E dteivtur &tRS t1 t

2
,t2

t

2
,r D ^r u.

~39!

Similarly, the local element of the propagator also depe
only on energy, not on momentum. In Wigner’s represen
tion, the local element of the retarded propaga
^r uGR(t1 ,t2)ur &[GR(r ,t1 ,r ,t2)[G̃R(r ,t1 ,t2) transforms
into

g̃ R~v,r ,t !5E dk

~2p!3
gR~v,k,r ,t !. ~40!

TheT matrix in mixed representation reads
to
,

ts

e
e
-

,
e

s
-
r

tR~v,r ,t !5
v

12vg̃ R~v,r ,t !
. ~41!

There are no gradient contributions. This can be chec
directly by explicit gradient expansion of~38!.

The retarded self-energy is defined as a mean value o
T matrix,

SR5E dr c~r !Tr
R , ~42!

wherec(r ) is a concentration of impurity per site on siter .
This approximation is called the self-consistent averagedT-
matrix approximation~ATA !. Unlike in paper I, we do not
use the subscript self here since the self-consistent form
natural starting point in transport theory. Non-self-consist
values are introduced and denoted below.

In Wigner’s representation~42! reads

sR~v,r ,t !5c~r !tR~v,r ,t !. ~43!

B. Transport vertex

The transport vertexs, in the self-consistent ATA de-
pends on the correlation functionG, as

S,5E dr c~r !Tr
RG,Tr

A , ~44!

which in Wigner’s representation reads

s,5ctRg̃ ,tA1c
i

2
g̃ ,@ tR,tA#

1c
i

2
~ tA@ tR,g̃ ,#2tR@ tA,g̃ ,# !. ~45!

Here,

g̃ ,~v,r ,t !5E dk

~2p!3
G,~v,k,r ,t ! ~46!

is the local element of the correlation function. The Poiss
bracket used in~45! as a short-hand for gradient correction
in general, includes space derivatives combined with der
tives with respect to momentum, see~11!. In ~45!, however,
none of these functions depends on momentum so that
only gradient contributions come from time derivatives.

The transport vertexs, has three basic components th
have distinguishable physical content. First, there is a n
gradient term

sng
, 5ctRg̃ ,tA. ~47!

Second, there is the term

sP
,5c

i

2
g̃ ,@ tR,tA# ~48!

which formally brings gradient corrections to the scatteri
rates. Below we show that this term vanishes. Third, th
are two complex conjugate terms,

sD
,5c

i

2
~ tA@ tR,g̃ ,#2tR@ tA,g̃ ,# !, ~49!
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5102 55ŠPIČKA, LIPAVSKÝ , AND MORAWETZ
which contribute if the quasiparticle distributionf has non-
zero gradients. This last term results in nonlocal correcti
of the BE ~1!. Now the set of equations is complete.

IV. SCATTERING INTEGRALS

The scattering-out integralzg« f and the nongradient par
of the scattering-in integralzs«

, are dominant. They are th
only nonzero terms of the BE in the absence of the pertu
ing field f and their balance determines how the BE is
pable of describing equilibrium.

A. Nongradient part of the scattering integral

In the quasiclassical limit, the frequency of the perturbi
field is much smaller than the relaxation time of the syste
i.e., all perturbations are on the long-time scale. Therefo
the consistency ofzg« f andzs«

, is crucial and every detai
has to be checked.

On the level of nonequilibrium Green’s functions, th
scattering in and out are consistent if the self-energy is gi
by the T matrix that obeys the optical theorem. The AT
obeys it. The consistency on the level of Green’s functio
does not imply a consistency within the BE. Th
scattering-in integral in the BE include additional appro
mations~30! and ~32!, while the scattering out is evaluate
without them. Since~30! and ~32! follow from the limit of
small scattering rates, we have to make a corresponding
proximation for the scattering out.

1. Scattering out

The limit of small scattering rates,g→0, is conveniently
discussed in terms of the non-self-consistent ATA. Inde
sendingsR→0 in propagatorsg̃ R of the self-consistentT
matrix tR turns into the non-self-consistent onet00

R .
From ~12! one can see that

gR~v!5g00
R ~v2f2sR!, ~50!

where subscript 00 denotes no field and no self-energ
propagator@in paper I, these non-self-consistent functions
without a subscript#,

g00
R ~v!5

1

v2e1 i0
. ~51!

The self-energysR is then expressed in terms of the no
self-consistent self-energy,

s00
R 5ct00

R 5c
v

12vg̃ 00
R , ~52!

as

sR~v!5s00
R S v2f2s1

i

2
g D . ~53!

In the limit of small scattering rates we linearize ing,

sR~v!5s00
R ~v2f2s!1

i

2
g

]s00
R

]v
U

v2f2s

. ~54!

The imaginary part of~54!, g[22ImsR, reads
s

-
-

,
e,

n

s

p-

,

in
e

g~v!S 11
]s00

]v D
v2f2s

5g00~v2f2s!. ~55!

At the pole valuev5«5e1f1s(«), the argument of
g00 simplifies

g~«!S 11
]s00

]v D
v5e

5g00~e!. ~56!

The factor 11]s00/]vuv5e is just the wave-function renor
malizationz, see Appendix A of paper I. Indeed, from re
part of ~54! one finds

]s

]v U
v5«

5
]s00

]v U
v5«2f2s

S 12
]s

]vU
v5«

D , ~57!

which is equivalent to

z5
1

12
]s

]v U
v5«

511
]s00

]v U
v5e

. ~58!

Accordingly, we have found that the self-consistent and n
self-consistent approximations are linked via the wa
function renormalization,

1

t
5zg«5g00~e!5c~22!Imt00

R ~e!. ~59!

The non-self-consistentT matrix satisfies the optical theo
rem Imt00

R 5t00
R (Img̃ 00

R )t00
A which easily follows from~41!

and the complex conjugacy of retarded and advanced fu
tions, t00

A 5(t00
R )* . The scattering-out rate thus can be e

pressed in the form of a sum over individual scattering ra
into all accessible finite states

zg«k
5cut00

R ~ek!u2E dp

~2p!3
2pd~ek2ep!. ~60!

The d function in the r.h.s. results from
22Img00

R (v)52pd(v2e). From ~60! one identifies the
scattering rates

Ppk5cut00
R ~ek!u22pd~ek2ep!. ~61!

Since there are no gradient contributions to the scatte
out, the quantum-mechanical scattering-out rate~61! is of the
same form as the intuitively expected classical scattering
integral in the modified BE~1!.

2. Scattering in

Now we evaluate the nongradient partsng
, of the

scattering-in integral~47!. We show that it results exactly in
the scattering-in integral from the BE~1! with the scattering
rates given by~61!. In this way, the consistency of scatterin
in and out will be checked.

Substitutingg̃ , from ~46! with g,5l,1j, from ~30!
and ~32!, one gets
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sng
, 5cutRu2g̃ ,

5cutRu2E dp

~2p!3
z f~p!2pd~v2«p!

1cutRu2E dp

~2p!3
sng

, Re
1

~v2ep2f2s1 i0!2
.

~62!

The first term follows froml, and is the dominant one. Th
second one is the off-pole correction due toj,.

TheT matrix in ~62! includes propagators with poles o
of the real energy axis, shifted byg/2. In the limit of small
scattering rates, it is advantageous to use the non-
consistent ATA as the reference point,

tR~v!5t00
R S v2f2s1

i

2
g D

5t00
R ~v2f2s!1

i

2
g

]t00
R

]v
U

v2f2s

. ~63!

From this approximation one finds that the square of
absolute value at the pole reads

utR~«!u25ut00
R ~e!u2F11g«

i

2 S 1

t00
R

]t00
R

]v
2
1

t00
A

]t00
A

]v D
v5e

G .
~64!

The second term in the bracket in~64! can be expressed i
terms of the collision delay34 ~I-25!

D t5Im
1

t00
R

]t00
R

]v
U

v5e

5
i

2 S 1t00R ]t00
R

]v
2

1

t00
A

]t00
A

]v D
v5e

~65!

as

utR~«!u25ut00
R ~e!u2S 12

D t

t

1

zD . ~66!

This relation between the self-consistent and non-s
consistentT matrices has a form of virial corrections. The
are not, however, the virial corrections that we are look
for. The termD t /t will be canceled by the wave-functio
renormalization and the off-pole contribution.

Let us denote bys00
, the non-self-consistent-like scatte

ing vertex

s00
, ~«k!5cut00

R ~«k2f2s!u2E dp

~2p!3
z f~p!2pd~«k2«p!

5cut00
R ~ek!u2E dp

~2p!3
f ~p!2pd~ek2ep!

5E dp

~2p!3
Ppkf ~p!. ~67!

Apparently,s00
, is compatible with the scattering out. T

prove the compatibility ofsng
, with fg, we have to show tha

all corrections~linear in g) following from the non-self-
consistency mutually cancel, i.e.,zsng

, 5s00
, .
lf-

e

f-

g

There are three contributions to the correcti
zsng

, 2s00
, ~i! the second term in~62!, ~ii ! theD t /t correc-

tion to the square of theT matrix, and~iii ! the wave-function
renormalization in front ofs«

, . It remains to be shown tha
the sum of these three corrections vanishes. We will neg
higher order terms resulting from products of individual co
rections.

First, we rearrange the second term in~62!. To this end
we use the fact thats, does not depend on the momentu
p and move it out of the integral. The integrand that can
rearranged is the spirit of Ward’s identities with the help
the energy derivative as

Re
1

~v2e2f2s1 i0!2
52

]g00
]v

1

12
]s

]v
U

v2f2s

.

~68!

By the integration overp, relation ~68! turns into the local
propagator needed in the second term of~62!,

E dp

~2p!3
Re

1

@«k2ep2f2s~«k!1 i0#2
52z

]g̃00
]v U

ek

.

~69!

The second term of~62! thus can be rearranged as

cutRu2E dp

~2p!3
sng

, Re
1

@«k2ep2f2s~«k!1 i0#2

52zsng
, cut00

R ~ek!u2S 12
D t

t

1

zD ]g̃00
]v U

ek

. ~70!

Now we can collect all terms which contribute to the no
gradient part of the scattering in

zsng
, ~«k!5S z2

D t

t Ds00
, ~«k!2cut00

R u2
]g̃00
]v U

ek

zsng
, ~«k!

5S 11
]s00

]v
2

D t

t
2cut00

R u2
]g̃00
]v D

ek

s00
, ~«k!

5s00
, ~«k!. ~71!

In the last but one step, we have neglected the cross co
tion (D t /t)3cut00

R u2(]g̃00/]v) and terms quadratic in
cut00

R u2(]g̃00/]v) which are higher order in the limit of sma
scattering rates. In the last step, we have used the der
optical theorem~I-B3! @proved also in the Appendix of this
paper, see~A17!#,

D t

t
5S ]s00

]v
2cut00

R u2
]g̃00
]v D

ek

. ~72!

Briefly, we have shown that in the nongradient scatter
in and out, the wave-function renormalizationz compensates
in a consistent manner. This compensation shows that
off-pole partJ, of the correlation function is capable o
rebounding consistently the off-pole portion of the partic
propagation.

The nongradient parts of scattering integrals
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zg~«k ,r ,t !5E dk

~2p!3
Pkpf ~k,r ,t !, ~73!

zsng
, ~«k ,r ,t !5E dk

~2p!3
Ppkf ~p,r ,t !, ~74!

have scattering rates identical to their non-self-consis
counterparts,

Ppk5cut00
R ~ek!u22pd~ek2ep!5

1

t

2p2

k2
d~ upu2uku!.

~75!

These nongradient parts are identical to those used in
intuitive BE ~2!.

B. Gradient corrections to the scattering rate

The gradient term of the self-energysP
, given by ~48!

does not include gradients of the quasiparticle distributi
Accordingly, sP

, can bring corrections to scattering rat
Ppk only. In realitysP

,50, i.e., no correction to scatterin
rates appears.

For impurity potentials independent from tim
v5const, the Poisson bracket in~48! equals zero. Indeed, th
both T matrices depend on the timet only via the internal
potentialf which always enters theT matrix in the form of
v2f, i.e., tR,A(v,t)5tR,A(v2f). Any two functions of
this property have a zero Poisson bracket,

@a~v2f!,b~v2f!#5
]a

]v

]b

]t
2

]a

]t

]b

]v

52
]a

]v

]b

]v

]f

]t
1

]a

]v

]f

]t

]b

]v
50. ~76!

Accordingly,

zsP
,50. ~77!

Briefly, amplitudes of scattering rates are not modified
gradient corrections for time-independent impurity pote
tials. This is in agreement with the intuitive expectation us
in paper I.

C. Gradient corrections to scattering in

The gradient correctionsD
, brings true nonlocal contribu

tions to the scattering-in integral. Via gradients of the lo
correlation functiong̃,, the correctionsD

, depends on gra
dients of the quasiparticle distribution. Here we show t
from sD

, one recovers virial corrections in the form di
cussed in paper I.

First, we write~49! in the explicit form

sD
,5ctRtA

i

2 S 1tR @ tR,g̃ ,#2
1

tA
@ tA,g̃ ,# D

52cutRu2Im
1

tR
@ tR,g̃ ,#

52cutRu2Im
1

tRS ]tR

]v

]

]t
2

]tR

]t

]

]v D g̃ ,. ~78!
nt

he

.

y
-
d

l

t

Now, we substitute the dominant part of the local correlat
function ~the off-pole part leads to higher order contributio
in smallg) into ~49!

g̃ ,~v,r ,t !'E dp

~2p!3
f ~p,r ,t !2pzd~v2«! ~79!

and interchange derivatives with the momentum integral

sD
,52cutRu2E dp

~2p!3
Im

1

tRS ]tR

]v

]

]t
2

]tR

]t

]

]v D
3 f ~p!2pzd~v2«p!. ~80!

The function zd(v2«) depends on time only viav
2f @zd(v2«)5d(v2e2f2s)#, therefore according to
~76!, @(]tR/]v)(]/]t)2(]tR/]t)(]/]v)#2pzd(v2«p)50.
The gradient correctionsD

, thus depends exclusively on gra
dients of the distribution function,

sD
,52cutRu2E dp

~2p!3
2pzd~v2«p!Im

1

tR
]tR

]v

]

]t
f ~p!.

~81!

Finally, we simplify this gradient correction with the help o
~66!, scattering rate~61!, and the collision delay~65! as

zsD
,52S z2

D t

t D cut00
R u2E dp

~2p!3
2pzd~v2«!D t

]

]t
f ~p!

52E dp

~2p!3
Ppk

] f

]t
D t . ~82!

In the second line, we have neglected higher order te
using the approximationz2D t /t'1.

This gradient correction to the scattering integrals has
form of virial corrections, the last term of~2!. In particular,
no other gradient other than the time derivative of the q
siparticle distribution appears, and this time derivative
weighted with the collision delay and the scattering rate.

V. RECOVERING THE INTUITIVE TRANSPORT
EQUATION

Now we can put together elements of the transport eq
tion ~3! and reconstruct~1!.

A. Drift part of the transport equation

The velocity results from momentum derivative of~14! as

]«

]k
5

]e

]k
1

]s~v!

]v U
v5«

]«

]k
5

1

12
]s~v!

]v U
v5«

]e

]k
. ~83!

For parabolic kinetic energy,e5k2/2m, the quasiparticle ve-
locity gains the form used in the BE~1!,

]«

]k
5z

k

m
. ~84!

The force acting on quasiparticle is also found from t
quasiparticle energy,
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]«

]r
5

]f

]r
1

]s

]r
1

]s

]v

]«

]r
. ~85!

For homogeneous distribution of impurities, the self-ene
depends on coordinater only via potentialf. Since the po-
tentialf can be viewed as a local shift of initial of energie
one finds that the self-energys relates to the self-energ
sf50 in the absence of the fieldf as

s~v!5sf50~v2f!. ~86!

From ~86! one finds that the second term of the force~85!
reads

]s

]r
52

]s

]v

]f

]r
. ~87!

Using ~87! in ~85!, one finds that the force has no renorm
ization

]«

]r
5

]f

]r
, ~88!

which is the form of the force in the BE~1!. Thus drift terms
of ~3! reduce to drift terms of~1!.

B. Scattering integral with virial corrections

To obtain the expected form~1!, we use that within linear
approximation

a~x!1
]a

]x
D5a~x1D!. ~89!

Thus the nongradient and the gradient scattering-in contr
tions can be collected into a compact expression

zs«
,5zsng

, ~«k!1zsD
,~«k!

5E dp

~2p!3
PpkS f2] f

]t
D tD5E dp

~2p!3
Ppkf ~p,r ,t2D t!

5
1

t

2p2

k2 E dp

~2p!3
d~ upu2uku! f ~p,r ,t2D t!. ~90!

One can see that the scattering in has the form expected
classical assumptions.

Substituting~59! for the scattering out,~90! for the scat-
tering in, ~84! for the quasiparticle velocity, and~88! for the
accelerating force into the asymptotic equation~3!, the intui-
tive modification of the BE~1! is recovered from quantum
statistics.

VI. OBSERVABLES

Recovering the transport equation~1! was our major task.
With respect to applications, one has also to find the rela
between quasiparticle distributionf and observables. As al
ready shown in paper I, these relations include quasipar
and virial corrections. In paper I we have discussed o
those observables that can be identified from the trans
equation via conservation laws. Here we extend our tre
ment to a general single-particle observable.

All single-electron observables can be expressed in te
y

,

-

u-

m

n

le
y
rt
t-

s

of the reduced density matrix~Wigner’s distribution func-
tion!,

r~k,r ,t !5E dv

2p
g,~v,k,r ,t !. ~91!

From the decompositiong,5l,1j,, wherel, andj, are
given by ~30! and ~32!, respectively, one finds the reduce
density matrix as

r5z f2E dv

2p

`

v2«

]s,

]v
. ~92!

Note that the transport vertexs, in ~92! does not enter the
reduced density only by its pole values«

, but the full energy
dependence has to be maintained. Since the second te
already an off-pole correction, the correlation function of t
self-energy is used only in its lowest approximatio
s,5s00

, .
The formula~92! has no explicit gradient terms; howeve

there are gradient contributions hidden in the transport ve
s,. There is a question of whether one should keep th
gradient corrections in the off-pole part of formula~92! or
not. A general answer is not clear to us. On the other ha
with respect to conservation laws that test a consistenc
observables with the transport equation~1!, the gradient con-
tributions can be neglected. The transport equation does
provide observables but only their time or space derivativ
see, e.g., the equation of continuity~I-C2!, therefore any gra-
dient contribution to observables enter the conservation
via second derivatives that are neglected within the qu
classical limit. Accordingly, we neglect gradient correctio
to s, in ~92!.

A. Local density of electrons

In paper I we have derived the local density of electro
n from the transport equation, see~I-5!. For scattering on the
Koster-Slater impurities it was found that the correlated d
sity ncorr is determined by the ratio of the collision delay
the lifetime, see~I-29!. Here we recover~I-29! directly from
~92!.

The local density of quasiparticles reads

nfree5E dk

~2p!3
f ~k!. ~93!

The local density of electrons is given by the integral fro
r over momentum

n5E dk

~2p!3
r. ~94!

From ~94! and ~92! one finds

n5E dk

~2p!3
f ~k!1E dk

~2p!3
]s00

]v U
v5ek

f ~k!

1E dk

~2p!3
E dv

2p

`

v2«k

]s00
, ~v!

]v
, ~95!
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where we have used~58! for the wave-function renormaliza
tion z. The first term is the quasiparticle densitynfree, the
second and the third terms are the correlated density

ncorr5E dk

~2p!3
]s00

]v U
v5ek

f ~k!

1E dk

~2p!3
E dv

2p

`

v2«k

]s00
, ~v!

]v
. ~96!

In the second term we perform the integration by parts

]

]v

`

v2«
52Re

1

~v2«1 i0!2
, ~97!

and substitute for the self-energys00
, from ~67!,

ncorr5E dk

~2p!3
f ~k!

]s00

]v U
v5«k

1E dk

~2p!3
dv

2p
Re

1

~v2«k1 i0!2
cut00

R ~v2s2f!u2

3E dp

~2p!3
z f~p!2pd~v2«p!. ~98!

Due to the energy-conservingd function, the energyv can
be easily integrated out. The wave-function renormalizat
z under thep integral can be omitted as a higher order in t
limit of small scattering rates,

ncorr5E dk

~2p!3
f ~k!

]s00

]v U
v5ek

1cE dk

~2p!3
dp

~2p!3
f ~p!Re

1

~ep2ek1 i0!2
ut00
R ~ep!u2.

~99!

We have used~14! to simplify energy arguments. Now w
can integrate over momentumk using a non-self-consisten
version of~69!,

ncorr5E dk

~2p!3
f ~k!

]s00

]v U
v5ek

2cE dp

~2p!3
f ~p!

]g̃00
]v U

v5ep

ut00
R ~ep!u2. ~100!

The two terms can be joined. In the first term we rena
the integration variablek to p, so that both terms will have
the same name of the momentum argument of the distr
tion function f ,

ncorr5E dp

~2p!3
f ~p!S ]s00

]v
2cut00

R u2
]g̃00
]v D

v5ep

. ~101!

Finally, we apply the derived optical theorem~72! to recover
the relation~I-29!,

ncorr5E dp

~2p!3
f ~p!

D t

t
. ~102!
n

e

u-

The total densityn5nfree1ncorr resulting from the reduced
density matrix~92! is thus identical to the one obtained fro
the transport equation via the equation of continuity,

n5E dp

~2p!3
f ~p!S 11

D t

t D , ~103!

which is Eq~I-48!. Briefly, with respect to the electron den
sity, the approximative functional for the reduced dens
matrix ~92! is consistent with approximations in the transpo
equation~1!.

B. Local density of current

The particle current is one of the quantities most oft
evaluated from the BE. Here we show that for the Kost
Slater impurities there are no explicit virial corrections in t
functional for current.

A general formula for the current is

j5E dk

~2p!3
]e

]k
r5E dk

~2p!3
k

m
r. ~104!

Now we substitute forr from ~92!

j5E dk

~2p!3
k

m
z f1E dk

~2p!3
dv

2p

k

m
Re

s,~v!

~v2«k1 i0!2

5E dk

~2p!3
k

m
z f. ~105!

The second term in the first line is zero because its integr
is an odd function of momentumk. The current is thus iden
tical to ~I-41! found from the equation of continuity.

C. Local density of energy

The energy of the system is not a single-electron obse
able. Although electrons do not mutually interact, the ene
of the system cannot be evaluated from the reduced den
matrix r. This is because electrons are correlated with im
rities of unknown positions. Similarly to interacting system
the energy has to be evaluated directly from the correla
functiong,,

E5E dv

2p

dk

~2p!3
vg,~v,k!. ~106!

To express the energy in terms of quasiparticle distributi
we useg,5l,1j, with l, from ~30! andj, from ~32!,

E5E dv

2p

dk

~2p!3
vF S 12

]s

]v D 21

f ~k!2pd~v2«k!

1cutR~v!u2E dp

~2p!3
f ~p!2pd~v2«p!

3Re
1

~v2«k1 i0!2G . ~107!

Now we integrate out the energyv and interchange the orde
of integrations over momentum in the off-shell term,
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E5E dk

~2p!3
«kf ~k!1E dk

~2p!3
«kf ~k!

]s00

]v U
v5ek

1cE dp

~2p!3
ut00
R ~ep!u2«pf ~p!E dk

~2p!3
Re

1

~ep2ek1 i0!2
.

~108!

Similarly as in the case of the electron density, we join
second and the third terms, evaluate the integration over
mentumk, and apply the derived optical theorem~72! to
express the local energy in terms of the collision delay,

E5E dk

~2p!3
«kf ~k!S 11

D t

t D . ~109!

@In the notation of paper I, Eq.~I-42!, the quasiparticle en
ergy does not include the potentialf that is in~I-42! explic-
itly added.# Thermodynamical consistency of the ener
conservation and correlated density is shown in Appendi
of paper I.

The BE ~1! with subsidiary relations~103!, ~105!, and
~109! form a basic set of equations that cover most of tra
tional applications of the BE. In all these equations, the vi
corrections can be included with the help of collision dela
We remind you that this simplicity follows in part from th
simplicity of the scattering by Koster-Slater impurities.

VII. SUMMARY

The intuitive modification of the BE, Eq.~1!, has been
recovered from nonequilibrium statistics. To this end
have employed nonequilibrium Green’s functions with
which we made the quasiclassical limit and the limit of sm
scattering rates. These two limits are fully sufficient, i.e.,
unjustified approximations need to be made. The nonlo
form of the scattering integral in the intuitive BE has be
obtained by unification of nongradient and gradient contri
tions.

Single-electron observables as functionals of the quasi
ticle distribution are provided by the reduced density ma
which in the limit of small scattering rates has form~92!. It
was shown that~92! is consistent with the transport equatio
~1! leading to the correct equation of continuity discuss
already in paper I. The density of energy, which does
belong to single-electron observables, has been treated s
rately.

The presented theory has four general features that ca
transferred to more general models. First, one needs s
ciently complex self-energy, the recommended one is ba
on the T matrix which guarantees a number of identiti
related to the optical theorem. Second, for small scatte
rate, one can use the procedure of Refs. 14,29 to deri
quasiclassical transport equation for quasiparticles. A res
ing transport equation includes the quasiparticle and
virial corrections. The virial corrections are, however, in
form of gradient contributions to the scattering integr
Third, the virial corrections are rearranged to the semicla
cal form when one recollects the nongradient and grad
terms on the scattering integral using logarithmic derivativ
Fourth, all logarithmic derivatives should be defined fro
theT matrix, i.e., from the scattering phase shift. These lo
e
o-

C

i-
l
.

l
o
al

-

r-
x

d
t
pa-

be
fi-
ed
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.
i-
nt
s.
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rithmic derivatives have natural interpretations like the c
lision delay discussed here.

On the other hand, the discussed scattering on neu
impurities allows for a number of simplifications that are n
available for more general scattering mechanisms. First,
self-energy and the transport vertex are independent of
mentum which allows us to employ shifts in the compl
plane with the help of which one can conveniently expre
self-consistent quantities by their non-self-consistent co
terparts. Second, the lack of momentum dependence lea
the lack of space nonlocalities of the scattering integ
therefore all virial corrections are described by the collisi
delay. Third, the momentum independence reflects that th
is only a single scattering channel ofs symmetry. In general,
different scattering channels have different collision dela
in the case of neutral impurities there is only a single co
sion delay which simplifies appreciably all related formula
Fourth, due to the time independence of the impurity pot
tial, there are no gradient corrections to the scattering r
Fifth, this time independence also simplifies the energy c
servation in collisions. Sixth, due to the absence of the
namics of impurities, the virial corrections appear only in t
scattering in. Here we have selected this simple scattering
neutral impurities to have free hands to focus on details
the method.

We have not discussed here consequences and interp
tion of the virial corrections as it has already been do
within the intuitive approach in paper I. Our aim here is
confirm the validity of this intuitive approach.
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APPENDIX: VIRIAL VERSUS QUASIPARTICLE
CORRECTIONS IN EQUILIBRIUM

The quasiparticle and the virial corrections enter the
in different ways. From this point of view, they represe
independent corrections that can be treated separately
the other hand, for scattering by resonant levels, both cor
tions are of the same magnitude as it is demonstrated in
5 of paper I. A striking similarity of their magnitudes raise
the question of up to what extent these two corrections
independent. To answer this question we briefly disc
equilibrium where one can benefit from the well develop
theory of quasiparticle and virial corrections based
Green’s functions.35–37,15

In equilibrium, the local density of electrons is given b
the spectral function as

n5E dv

2p
f FD~v!E dk

~2p!3
a~v,k!. ~A1!

In the limit of small scattering rates, the spectral functi
will be substituted from~16! with f50 and lowest order
approximation of the scattering rate,g5g00.
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In the limit of small scattering rates we can easily separ
the quasiparticle contribution to the local density,

npole5E dv

2p
f FD~v!E dk

~2p!3
z2pd~v2«k!

5E dk

~2p!3
z f~k!, ~A2!

where f (k)[ f FD(«k), and the background contribution

noff5E dv

2p
f FD~v!E dk

~2p!3
Re

g00~v!

~v2ek1 i0!2
. ~A3!

Using ~58!, npole can be split into the free part~93! and
wave-function renormalization reduction

npole5nfree1nwfr , ~A4!

where

nwfr5E dk

~2p!3
f ~k!

]s00

]v U
v5ek

. ~A5!

From decompositions of the density,n5npole1noff and
n5nfree1ncorr, and ~A4! the correlated density results as
sum of the off-pole and wave-function renormalization pa

ncorr5noff1nwfr . ~A6!

Using the Kramers-Kro¨nig relation for the real part of the
self-energy,

s00~v!5ReE dE

2p

g00

E2v1 i0
, ~A7!

in ~A5!, one finds that the correlated density reads

ncorr5E dv

2p

dk

~2p!3
@ f FD~v!2 f ~k!#Re

g00~v!

~v2ek1 i0!2
,

~A8!

where the terms weighted byf FD(v) and f (k) result from
noff and nwfr , respectively. Apparently, there is a parti
compensation of these contributions toncorr.

The quantum-mechanical expression~A8! can also be
given the form of the semiclassical formula~102!. To this
end we reorganizenoff starting from~A3!,

noff5E dv

2p
f FD~v!g00~v!ReE dk

~2p!3
1

~v2ek1 i0!2

52E dv

2p
f FD~v!g00~v!

]

]v
ReE dk

~2p!3
1

v2ek1 i0

52E dv

2p
f FD~v!g00~v!

]g̃00
]v

. ~A9!

In the last line we have used that the integral over mom
tum above defines a local element of Green’s function.

To evaluateg00, we use

g00~v!5c~22!Imt00
R ~v!, ~A10!
te

s

-

and the optical theorem@that follows from non-self-
consistent form of~41!#

Imt00
R 5ut00

R u2Img̃ 00
R . ~A11!

If we express the local density of states in terms of the m
mentum integration

22Img̃ 00
R ~v!5E dp

~2p!3
2pd~v2ep!, ~A12!

the off-pole contribution can be expressed in terms of
quasiparticle distribution,

noff52cE dp

~2p!3
dv

2p
f FD~v!ut00

R ~v!u22pd~v2ep!
]g̃00
]v

52cE dp

~2p!3
f ~p!ut00

R ~ep!u2
]g̃00
]v U

v5ep

. ~A13!

Finally, we substitute~A13! into ~A6!,

ncorr5E dp

~2p!3
f ~p!S ]s00

]v
2cut00

R u2
]g̃00
]v D

v5ep

.

~A14!

Formula ~A14! is identical to the semiclassical expressi
~102!. To prove this claim we employ the derived optic
theorem.

It is advantageous to start from~102!. First, we reorganize
the ratio of the collision delay given by~65! to the lifetime
given by ~59! as 1/t52cImt00

R 5 ic(t00
R 2t00

A ) as

D t

t
5 ic~ tR2tA!

1

2i S 1t00R ]t00
R

]v
2
1

t00
A

]t00
A

]v D
5
c

2

]

]v
~ t00
R 1t00

A !2
c

2 S t00At00R ]t00
R

]v
1
t00
R

t00
A

]t00
A

]v D
5

]s00

]v
2
c

2 S t00At00R ]t00
R

]v
1
t00
R

t00
A

]t00
A

]v D . ~A15!

From a non-self-consistent form of~41! one finds

]t00
R

]v
5t00

R 2
]g̃ R

]v
, ~A16!

which substituted into~A15! provides the derived optica
theorem,

D t

t
5

]s00

]v
2cut00

R u2
]g̃00
]v

. ~A17!

The l.h.s. is exactly the bracket in~A14!. Thus the semiclas-
sical formula~102! is equivalent to the quantum-mechanic
formula ~A14!.

To summarize this Appendix we would like to remin
you of the most important point. Within Green’s functio
virial and quasiparticle corrections enter the density toget
in an unresolved form, but the optical theorem and the
rived optical theorem can be used to separate them and
press virial corrections in terms of the collision dela
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