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Quasiparticle transport equation with collision delay. 1. Microscopic theory
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For a system of noninteracting electrons scattered by neutral impurities, we derive a modified Boltzmann
equation that includes quasiparticle and virial corrections. We start from a quasiclassical transport equation for
nonequilibrium Green’s functions and apply a limit of small scattering rates. The resulting transport equation
for quasiparticles has gradient corrections to scattering integrals. These gradient corrections are rearranged into
a form characteristic for virial correctiongS0163-182807)08304-3

I. INTRODUCTION So far, quasiparticle and virial corrections have been stud-
ied only separately using different theoretical tools. Now we
In the first paper of this seritéreferred to as papej,lwe  briefly review previous studies to identify which tool is bet-
have discussed interplay of quasiparticle and virial correcter suited for unified theory.
tions for scattering by neutral impurities with resonant levels.
We have found that both corrections are of the same order A. Virial corrections
and tend to mutually compensate. Accordingly, one should

either include both kinds of corrections or neglect both of tion has b ‘ol f hile. Th hieved |
them. Separate quasiparticle or separate virial correction quation has been feit for a while. The progress achieved in

: . . . : is direction can be represented by Snider’s equétidds-
lead to overestimates of the impurity effect on basic physwa} IS X ;
quantities like dc conductivity or screening length. 'r?.g thehBo%OI_lgbO\;]-Bo:jn-Gregn-KlrkW(t)od-\t(vofBBGtKY) .
In paper | we have used an intuitive modification of thef mr;:rc ya nldedr a_st erl\:e_Wg qua}n g.mt _[)ar:_spors e_((]jua lon
Boltzmann equatiodBE), Eq. (I-39) [Eq. (39) of paper I. or the reduced density matriVigner's distribution. Snid-

Long-time experience with quasiparticle corrections shows' s;.equaglon 'Sdstl;ﬁ'cé?tlz general to deicrltéebva.rl__lgiusécor—
that intuitive approaches however convincing are far from! SCUONS beyon € BE, nowever, as noticed by L&

. 4 . . . .
reliable as the wave-function renormalization factor oftenMu"m' ?Illcorrectlczps enLer }ge scattenntgh integral, Wht'.le
emerges in an unexpected way. To become trustworthy, Eg]uasmar icle corrections should appear rather as corrections

(I-39) has to be recovered from quantum statistics in a ver 0 the_ dnff of smgle-pe_lrtlcle ex0|tat|0ns._ .
systematic manner. This is the aim of this paper. Snider’s equations includes another item alien to the qua-

The intuitive modification of the BE that we would like to s!part@cle picture:_ the reduped density matrix. When the qua-
arrive to reads siparticle corrections are in the'game, the transport equation
should deal with the quasiparticle distribution not with the
reduced density matrix. In the reduced density matrix, con-
of k of  a¢ of tributions from free excitation&uasiparticlesand from cor-
—_—t 2= = relations (off-shell motion during dressing processesme
ot “mor Jr JK mixed together. The drift of free excitations can be described

by simple quasiclassical trajectories while correlations re-
5 quire quantum-mechanical treatment. To be able to make
= _i E Zlf dp 8(|pl=|KDF(p,r.t—=A). (1) efficient approximations, these two types of motion have to
T k* ) (2m)® A be separated. So far, the theory of transport based on the
reduced density matrix is missing a tool that would furnish
us with such a separation.

A need to derive virial corrections to a quantum transport

This is equatior(I-39). It applies to a system of noninteract-
ing electrons scattered by point impurities with resonant lev-
els. Here, the quasiparticle distributidnis a function of
momentumk, coordinater, and timet. Lifetime r, collision The second group of papers is a large variety of studies
delayA,, and wave-function renormalizatianare functions recovering the Boltzmann equation with quasiparticle correc-
of momentum, potentia$p depends on coordinate and time. tions in the form visualized by Landau, e.g., Refs. 5—14. On
The collision delay\, (given by the energy derivative of the the other hand, none of these studies touches virial correc-
phase shiftmakes the scattering-in integral nonlocal in time. tions. One expects that the virial corrections should emerge
This nonlocality represents virial corrections. The quasiparfrom systematic quantum-statistical approaches to the Lan-
ticle corrections are covered by the wave-function renormaldau theory provided one does not lose them making unjusti-
ization z. fied approximations.

B. Quasiparticle corrections
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From the intuitive modification of the BE1l), we can discussed for a number of scattering mechanisms within
identify three groups of approximations that we have tovarious approaches which include the superoperator projec-
avoid: tion technique, Refs. 16,17, the Levinson equafiaterived

(i) Most authors limit their attention to the scattering de-from the BBGKY hierarchy, Ref. 19, and nonequilibrium
scribed within the Born approximatidas we have also done Green’s functions, Refs. 20—25.
in Ref. 14. The corresponding” matrix is just an impurity It is important to note that these different approaches re-
potential that _does not cause any collision Qelay. Similarly gyited in contradictory predictions. Let us focus on the-
the self-consistent Puff-Whitefield approximation of the gay gradient correction to the scattering integral which we
electron-phonon scatteringhe Migdal approximation with  ¢jaim to be equal to the virial correctidthe last term in the
non-self-consistent  phononsstudied by Prange and yjont hand side(r.h.g of (2)]. We will assume only self-

Ka(:anohff, gives tno V|Ir|all c?rrecgons s_lnc?.kthefr:nterta'ctlon energies in the Born or Puff-Whitefield approximation so
vertex has nho internal electron dyhamics fike thenalfix — nat the virial corrections are absent, i.e., we expect the gra-

within the Born approximation. . . . L
. . dient corrections to be absent, too. Surprisingly, this is not
(i) Prange and Sactshave studied the electron-electron . . . ’ .
true about gradient corrections that one finds in print. One

and electron-phonon scattering within the fully self- ) . )
consistent single-loop approximation. The screened Coutd" split all papers into threg groups. .

lomb interaction is, in general, a complex function of energy. (1) In Refs. 16,17,19,24, linear gradient corrections were
so that it yields some kind of virial corrections. Prange and©Und- _ _ _

Sachs have used, however, the static approximation within (2) In Ref. 25 linear gradient corrections were found but
which the screened Coulomb potential looses energy depeM!ith opposite sign than in the first group.

dence and becomes real. In this way, the virial corrections (3) In Refs. 20—23no linear gradient corrections were
are lost. found.

(i) DanielewicZ! and Botermans and Malfligt have Unless we can understand why the gradient corrections
used the two-particld matrix for nucleon-nucleon interac- appear for the Born or Puff-Whitefield approximation and
tion that definitely includes virial corrections, however, theywhy there are contradictory predictions from alternative ap-
have neglected gradient contributions to the scattering inteproaches, we can hardly use the gradient corrections as a
gral. From the nonlocal character of the scattering integral irstart line of our approach to the virial corrections.
the intuitive BE(1), one can see that the virial corrections are  To identify the origin of the three contradictory predic-
proportional to gradients of the quasiparticle distribution, seeions, let us inspect what kind of the transport equation is
(2). Neglecting gradient contributions one looses the Viria|specific for each group. Although various approaches have
corrections. been used by authors, we will describe all the three groups

In all the three cases, one can go beyond these approxjithin a common dialect of Green’s functions.
mations. To recover Eq1), we have to use th& matrix for

the impurity scattering and keep the gradient corrections to

scattering integrals. Similar treatment has lead to virial cor- 1. Integrodifferential transport equation
rections for two-particle scatteririg. for the reduced density matrix
The integrodifferential transport equation for the reduced
C. Gradient corrections to scattering integrals density matrix is obtained by the generalized Kadanoff and

. ) ) ) 4 . . . .
The gradient corrections to the scattering integral are ofaym (GKB) ansat? implemented in the time diagonal of
central importance in our treatment. In the intuitive BB,  the integrodifferential Kadanoff and Bay(KB) equatior?
the only gradient contributions to the scattering integralAs results from the GKB ansatz, time argumenbf the

come from the virial corrections, reduced density matrix is retarded compared to the time
argumentT of the scattering integral, i.et<T. In the
of kot d¢ of integrodifferential equation, it is natural to identify the in-
T Zmar ar ok stant of the collision withT. Using the linear expansion
p(t)=p(T)+(dp/at)(t—T) one then obtains a Boltzmann-
f 1272 dp like scattering integral fronp(T) and gradient corrections
=-_to (ZT)gﬁ(lpl—lkl)f(p,r,t) from (9plat)(t—T).
1272 d d . . .
= %m p| _|k|)AtEf(p,f,t)- 2) 2. Integral transport equation for the reduced density matrix

The integral transport equation for the reduced density
Accordingly, we expect that gradient corrections resultingmatrix is obtained by the GKB ansatz implemented in the
within the standard approaches to the BE are just the virialime diagonal of the integral GKB equatidhIn the integral
corrections. Our plan is to derive gradient corrections fromequation one has a freedom to identify the instant of the
the quasiclassical limit of the quantum-statistical transportollision with t and gradient corrections emerge from the
equation and rearrange them into the last term of (. matching of the scattering integral with the subsequent

Gradient corrections to scattering integrals have been apropagation. The opposite signs found in groups 1 and 2 thus
ready studied by many authors, the most extensive studidsllow from the fact that in group 1 authors extrapolate along
were devoted to the effect of electric field on collisions.the initial state of the collision while in group 2 authors
Starting from Barkerf® the field effect on scattering has been extrapolate along the final one.
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3. Integrodifferential transport equation transport equation for quasiparticles, Eg0) of Ref. 14,
for the quasiparticle distribution reduces to the modified B&). From this point of view, this

The transport equation for the quasiparticle distribution isP2P€" Is just an appljcation of the memo?‘ derived in Ref. 14.
obtained by the original KB ans&timplemented to the KB On the other hand, in Ref. 14 authors dlscusged on!y simple
equation at the quasiparticle pole. As results from the kBS€lf-energies on the level of Born approximation which pro-
ansatz, the time argument of the quasiparticle distribution i¥/d€ gquasiparticle corrections but no virial corrections ap-
identical to the time argument of the scattering integral. Thif?€ar- Accordingly, there is no collision delay. Here we use a
time is naturally identified as an instant of the collision event™ore complex self-energy, averag&dmatrix approxima-
and no gradient corrections appear. tion, that results in nontrivial virial corrections similarly as it

The contradictory predictions of the gradient correctionsVas done in Ref. 15 for two-particle scattering.
were found to follow from different treatments of quasipar- !N SPite or because of many similar and closely related
ticle correctiong’ As shown in Ref. 27, the linear gradient studies of gradient contributions to transport equations, we
correction to the rate of scattering out is nothing but the timd€€! that we have to start our treatment directly from non-
dependence of the wave-function renormalization. In othefauilibrium Green’s functions instead of recalling already
words, gradient and quasiparticle corrections are linked to@chieved results. This is because these treatments differ in
gether. The approach that takes care of quasiparticle featurd§Mingly tiny details that become important as soon as one
and naturally leads to the Landau-Boltzmann type of transWa”tS to keep trace of gradients and quasiparticle corrections
port equation for quasiparticles is the one of the group 3, i.eln the same time. , _
based on the KB ansatz. The absence of the gradient correc- NOW We can specify our aim. The precursor of equation

tions for the Born approximation is also in agreement with(1) iS the quasiparticle Boltzmann equation in semiconduc-
our expectation. tors, Eq.(70) of Ref. 14, which reads

—_— e — ———— —— _— — —_— <
D. Nonvirial gradient corrections ot +(7k ar  or oK 2(y.f-0o,). ()]

Among studies of the gradient corrections that are noExcept for transport vertex-~, all components are deter-
devoted to the field effect we want to point out the paper bymined by retarded self-energy®. First, y=—2ImgR pro-
Kolomiets and Plyuikd® In the quasiclassical limit, they vides inverse lifetime, (i) =zy, . Second, the quasiparticle
have evaluated the scattering integral from the self-energy ignergy is given by = (k%/m) + ¢+ ReoR . Note that unlike
the second-order approximation of the electron-electron inj, paper l,¢ includes the potentiad. Wse made this change
teraction keeping all gradient terms. Similarly to the spirit of 5t onvention to comply with the convention of Ref. 14.

clas_sical_virial corrections_, they _hav_e expressed gradient cor- ¢ \will be easy to show that for homogeneously distributed
rections in terms of effective shifts in space and momentumpoim impurities the velocity simplifies to the form i),

The scattering integral they have derived thus reminds us C{fas/ak):z(k/m) and similaly do the force

the one we are looking for. _ _ (delar)=(a¢lar). Apparently, quasiparticle corrections are
In spite of formal similarity, the corrections derived by gypicitly present in equatioiid). The virial corrections, if
Kolomiets and Plyuiko are not the virial corrections. Kolo- present, are hidden in the transport vertex. The focus of

miets and Plyuiko have used a mixed approach implements,, inerest thus will be to show that the transport vertex can
ing the KB ansatz in the time diagonal of the integrodiffer- g yearranged to the form of the scattering-in integral from
ential form of the GKB equation. These two steps are no 2)

compatible as the KB ansatz includes the quasiparticle dis-

tribution while the time diagondor integral over energy in _ 1 272 dp
Wigner's representatigrprovides drift terms for the reduced 20, =— T (2—77)55(| pl—[kDf(p,r,1)
density matrix. The gradient contributions that they have
found are thus a strange form of the quasiparticle corrections. 1272 dp d
Again we came to the same moral. If we want to put an e (27)5(|p|—|k|)Aﬁf(p,r,t). 4)

equality between the virial and the gradient corrections to the
scattering integral, we have to work fully in the quasiparticle

: F. Content
picture.

The paper is organized as follows. In Sec. Il, we briefly
review the method of Ref. 14. We introduce the nonequilib-
rium Green'’s functions, the quasiclassical limit, and the limit

Our approach is based on two limits applied to nonequi-of small scattering rates. With the help of these tools the
librium Green'’s functions. The first one is the quasiclassicaBoltzmann-like transport equation is derived. In Sec. Ill, the
limit that is inevitable for the BE. The second one is the self-energy and the transport vertex are specified within the
limit of small scattering rate¥. This limit restricts the valid- averagedr-matrix approximation. The most essential part of
ity of quasiparticle corrections to weakly renormalized sys-our paper is in Sec. IV, where we evaluate the scattering
tems. The validity of virial corrections is restricted to the integral including its gradient corrections. In Sec. V, these
second virial coefficient. gradient corrections are rearranged into a form that is iden-

The limit of small scattering rates from the gquasiclassicaltical to the one intuitively expected and equatidn is re-
transport equation for the nonequilibrium Green’s functioncovered. In Sec. VI, single-electron observables are valuated.
has been already presented in detail in Ref. 14. In fact, th&lectron density and current are discussed in detail. We also

E. Presented approach
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discuss the density of energy. Section VIl includes the sumWe use the convention that lowercase denotes Wigner's
mary. In the Appendix we discuss the relation between viriatransform of operators denoted by uppercase. This conven-

and quasiparticle corrections. tion is in agreement with the convention used in paper I.
Indeed, site-diagonal operators used in papiké 3R <
Il. TRANSPORT EQUATION V, andT®*) in Wigner's representation are momentum in-

dependent and equal to their local elememfs™® <, v, and
Our focus of interest is the transport veriex. The treat-  tRA introduced in paper I.
ment of the transport vertex, however, is intimately con- The transformatiori9) mixes together left and right argu-
nected to the transport equation itself. Therefore we find iments of the functionA, therefore it complicates matrix
profitable to briefly review the derivation of equatiéd).  products. Keeping only the first gradients in time and coor-

This also gives us room to introduce a necessary set of equdinates, the matrix produ&=AB in the mixed representa-
tions for nonequilibrium Green’s functions and their rela- tion reads

tions to components of equatid8). _
i
. . c=ab+ [a,b], (10
A. Generalized Kadanoff and Baym equation 2
Our starting point is the generalized Kadanoff and Baymwhere the rectangular brackets denote Poisson’s brackets

equatio®
dadb dadb odadb dadb

G<:GRE<GA, (5) [a!b](wiklr;t):(g_w E_E(?_U)_WE—F(?T%
11
that is accompanied by the Dyson equation for retarded a1
vanced propagato%ﬁ C. Propagation of single quasiparticle
(G 1-3RAGRA=1, (6) In the quasiclassical limit, one restricts the assumed fields
_ _ ¢ to those that vary slowly in time and space. In this case,
where the inverse free-particle propagator reads the field is expected to have a pronounced effect only on

long trajectories of electrons. Such long trajectories neces-
sarily include the number of collisions with impurities. A
propagation between subsequent collisions and individual
collisions themselves happen on a very small time and space
Here, numbers are cumulative variables(;,x;), time,  scale, thus they should be nearly the same as in a homoge-
and space. Matrix products include integrations over timeheous and stationary potential, i.e., in the absence of the
and spaceC=AB meansC(1,2)=[ dtsdx3A(1,3)B(3,2). field. There might be also a small effect of the field on these
Thee is the free-electron kinetic energy agidis a potential.  microscopic scales, however, this field effect can be handled

d
—te€

Gol(1,2= 7

i 9xq

—¢(Xq,t1) |6(1—2). (7)

Our sign convention for the correlation functi@i~ is as a correction linear in gradients of the field.
_ <t PropagatorsGR* describe a motion between collisions
G=(1,2=Tr(py'(2) (1)), (8 and also internal dynamics of collisions. Thus we have to

find them up to a linear order of gradients. From the Dyson
equation(6) and its alternative fornGRA(G,t—3RA) =1
one finds that propagators are free of gradiénts,

wherep is the grand-canonical averaging operator, arid

and ¢ are creation and anihilation operators, respectively.
Equations(5)—(8) are general identities and definitions.

The particular physical content of these equations is speci- 1

fied by self-energy,®* and transport verteX =. The trans- gRA=———— . (12

port equation(3) follows from set(5)—(7) with no regard to w-e—¢—o™

a particular form of self-energy, except that the scattering

rate connected t& ™" andX < is supposed to be small in a

sense specified below. Moreover, perturbations in the system i

of electrons are supposed to be smooth in time and space so oRA= 015% (13

that corresponding gradients are also small. Thus we leave

specification of the self-energy for the next section, and fothe self-energy describes two kinds of phenomena. Its imagi-

cus on the quasiclassical limigmall gradientsand limit of ~ nary part; y describes scattering out of the state of momen-

Being a complex function,

small scattering rates of equatio(®—(7). tum K. Its real parto renormalizes energy of the single-
particle-like state. The renormalizéguasiparticle¢ energy is
B. Wigner's representation given by a position of the pole @&R* at the real axis,
In the quasiclassical limit, all operators are conveniently e=e+p+o(e). (14)

described in Wigner’'s mixed representation . o ) . ) o
This quasiparticle energy is an ingredient of the quasiparticle

. BE (3).
a(w,k,r,t):f dr dye'’er—iky In the limit of small scattering ratesmall y expansion,

—2ImoR=y—0), the pole of the propagator sits close to

XA+ 12,r+yl2t—7/2,r—y/2). (9)  the real axis. Then one approximates the spectral function,
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a=—2Img~R, (15) a nonequilibrium modification of the expansion in small
scattering rate$'4 Alternatively, the separation of pole and

by its limiting value off-pole parts ofG= can be based on the idea of completed
collisions. In this paper we focus on the microscopic mecha-
nism of collisions, thus we follow the completed collision
approach.
o ) ) ) ) ) For the purpose of motivation, we assume for a while a
Within the quasiparticle picture, in the spectral function homogeneous system that is diagonal in momentum repre-
a(w,k,r,t), the 6 function represents a singular contribution sentation. Let us take a look on a time-diagonal element of
from the quasiparticle state of momentumat pointr and G<, sayG=(t,t:k). In the transport equatiofl7), the trans-
time t). The second term describes various projections Oport vertexs < represents the last collision due to which a
other quasiparticle states with an energp,r,t)=w into  \yave function of electron gained a component of the mo-
momenturrk, in other words, the second term is an off-pole mentumk. This component can belong either to an asymp-
contribution. Within the quasiparticle picture, these two partsotic state that will form a new effective quasiparticle state or
of the spectral funct!on _have to be treatgd separately. Thg the off-pole contribution due to some other stateThe
normz of the & function is the wave-function renormaliza- asymptotic state is on the energy shell, thus it will live on the

1
a=27wz6(w—¢)+ yRe(w—e— $=10)2"

(16)

tion time scale of the quasiparticle lifetime. The off-pole contri-
bution will vanish on the scale of a quasiparticle formation
7= 1 - 17) time. The latter is much shorter than the former. To distin-

do(w) ' guish whether the contribution t6<(t,t;k) is of pole or

T off-pole nature, one can monitor a vicinity of the time

including a close future, to figure out which part will survive
. and which part soon disappears. This procedure corresponds
D. Completed collisions to the approach of the Fermi golden rule, where one also

The generalized Kadanoff and Baym equatit® in- integra_ltes through a (_:ollision into_the _future and uses the
cludes all phenomena that we are interested in, but in a highatching of asymptotic states to identify a product of the
den form. The simple link between the Green’s function for-completed collision. _ o o
mulas and the intuitive approach to the BE with virial N accordance with the causality principle, all time inte-
corrections is obscured by the fact that these two approach&als in(17) run only over the left part of the time axis, i.e.,
deal with different objects. While the correlation function for times smaller thaf. To monitor a close time vicinity, we
G= includes both, the pole and off-pole, contributions, the€arrange the transport equaticv) as
quasiparticle distribution is related only to the pole part. To 1 1
recover the BE equation, one has to separate these two parjs<_~ /~R_ rA\S<rA_~ ~Ry </~R_ ~A L — ~Ry <~R

Within Green’s function the pole and off-pole propaga—Eg Z(G GHE6 2G 2H(CT-6O+ ZG *°6
tion are described by a single transport equat®nIn con-
trast, a diffusion of particles described by the left-hand side + E
(.Lh.s) of the BE applies only to the pole part, while the 2
off-pole part seems to be missing. In fact, it is not missing.

The off-pole propagation is hidden in scattering integrals anén the added term
the relation between observables and the quasiparticle distri- 1 1
bution. E<:_GRE<GR+ _GA2<GA, (19)

The possibility of moving the off-pole propagation into 2 2
the scattering integral follows from a hierarchy of time and
space scales in the system that are inevitable for the theory
Boltzmann type. Diffusion of quasiparticles is well defined ty o
on a hydrodynamical scale that includes a large number OIZE<(t1,t2)=f dt’ | dt GR(ty,t")S=(t",)GR(t,ty)
impurities and a large number of collisions per particle. On - t2
the hydrodynamical scale, there is an appreciable effect of ¢

gl

GAS <G (18)

(t)l?e time integration runs into the future,

“dt| dtGAt St HGAR ).

—» tq

the field ¢ which may cause a transfer of quasiparticles over
long distances. Such a massive change of the system state is
effectively described with the help of a differential transport (20)
equation that balances drift with dissipation. In contrast, in- . o .

dividual collisions happen on a microscoglocal) scale on ~ The same integration into the future also appears in the other
which the effect of the fieldb is small so that it can either be contribution toG=,

neglected or included by corrections linear in its gradients.

Thus, a subdynamics on the microscopic scale can be inte- <:E R_ ~AVY < A_l Ry </~R_ A
grated through and approximated by effective scattering A Z(G GHZ6G ZG 276G (@Y
rates.

Clearly, to recover the BE we have to separate hydrody- On the time diagonal; ,=t, the time integrations over

namical and microscopic scales. This separation is equivd? andt in 2= do not overlap, se€0). The time scale of the
lent to the separation of the pole and off-pole parts based oimtegration is determined by the time scaleXof that can be
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identified with the quasiparticle formation timeThus == tion S=A+ 1 GRI'GR+ L GAI'GA is also free of gradients
is dominated by the short-tim@ff-pole) contributions. since the gradient expansion of symmetric terms like

The time integration i\~ extends into the future in @8 GRPGR has no gradients. Therefore, similarly to the spectral
way that reminds us of Fourier transformation to the energynction a, the functions just follows the energy bottom

of the asymptotic state, defined by the fieldp,
GR(L,t/;Kk) — GA(L U k)~ —ieTet=e(It=tlim, 1,
(22 57
ThusA = is dominated by the long-tim@ole) contributions. S= 1 2 (27)

(0= e=dp=0)*+ 77
E. Pole and off-pole contributions o ] ]
In the limit of small scattering ratey— 0, the functions

o . o SN . .
Splitting the correlation functio®™ into A™ and =" is  o4ces to the first term of the spectral function,

an ideal starting point to a nonequilibrium modification of

the expansion in small scattering rates. This can be seen in s=2mz8(w—¢). (28)
the equilibrium, where one can use the energy representa-
tion, In equilibrium, the pole parh= is proportional to the

1 functions. Out of equilibrium, we can expect similar behav-
)\<(w,k)=f,:D(w)Ea(w,k)zy(w)—>f(k)2(k)2775(w—s). ior and introduce the local distribution as
(23 A= (w,k, 1,1 =f%(w,k,r,t)s(w,k,r,t). (29)

We have usedr=(w)=frp(w)y(w), and (15). The arrow In the limit of small scattering rates, the functisrturns to
shows a value in the limit of small scattering rates. the 6 function and one can eliminate the energy argument of
Note that\ == fp 2 a®y, while g~=fgpa. In the limit of  the local distribution. In this way we can define the quasi-
small scattering ratey—O0, the spectral functiora ap-  Particle distribution as the pole of the local distribution.
proaches thes function as Lorentzian, whils= % a2y ap- Briefly, in the limit of small scattering rates the pole part of

proaches the function faster, the correlation function reads
AN (w,k,r,t)=f(kr,t)2mzé(w—¢). (30
a(w,k)= ’ , (24) - o
, 1, The nonequilibrium generalization of the off-pole part
(0—€—0a)"+ 27 &< follows directly from its definition(19). Since symmetric
terms have no gradient contributions,

1
~.3 1
Y 2 2
2 <=0¢~=(g5+0%). 31
S(w,K)= —. 25 =0 2(gR ga) (3D
(w—€e—0)?+ 1 ¥ In the limit of small scattering rates,
In the off-pole regiorjw— e|> v, the spectral functioa has 1

a tail linear in y. In the limit of small scattering rates, §<:‘T<Re( (32)
vy—0, this tail results in the off-pole correction, the second
term in(16). The functions in the off-pole region is propor-
tional to y>, thus its limit is a pures function without the
off-pole term. The BE is recovered fronR1). First, we turn(21) into a
The functioné= contains the off-pole part. In equilibrium, differential form multiplying it byGFjl from the l.h.s. and by

G, from the r.h.s. and subtracting the two forms,
£ (0,k) =fep(@) Y(w)Rgw— €= 0F)?

. 1
—frp(@) Y(w)Rew— e+i0)2. (26) —i(G§1A<—A<G,§1)=§(2<A+AE<—FGAE<GA
Due to the off-pole nature of this contribution, the Fermi-
Dirac distribution in(26) cannot be associated with occupa-

tion of the statek. o By the gradient expansion, this equation simplifies as
The comparison with equilibrium shows that the quasipar-

w—e—¢—o+i0)?

F. Boltzmann equation

—GRY=GR). (33

ticle distribution relates ta < while £< has to be constructed 1

indirectly. In the spirit of the BE, we will treat = within a [w—€— ¢—U,?\<]—§[%390<]=0<S— Y=, (39
differential transport equation whil&~ will be turned into a

local functional. where g=RegR. In the limit of small scattering rates, the

Equilibrium relations(23)—(26) can be easily generalized second term on the lL.h.s. vanishes. After a substitution of
to a quasiclassical limit. As we have shown, the spectra(30), equation(34) turns into equatior(3). For details see
function a is free of gradients, se@d3) and(15). The func- Refs. 14,29.
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To deal with the transport equatid8), we need lifetime v
7, quasiparticle energy, wave-function renormalization, tR(w,r,t)= 105 Ror0) (41)
and transport vertexr=. Since all of these functions are v
related to the self-energy, further progress requires us tdhere are no gradient contributions. This can be checked
specify the self-energy. For elastic scattering on impuritiesgirectly by explicit gradient expansion ¢88).
the retardedadvancel self-energy depends only on the re-  The retarded self-energy is defined as a mean value of the
tarded (advancel propagatorGR. The transport vertex de- T matrix,
pends on both propagatoi8R andG*, and on the correla-
tion function G=. Propagators are given by13). The ER:fdr o(nTR 42
correlation function has to be decomposed into two parts r

according to(18) which in Wigner's representation reads  \yherec(r) is a concentration of impurity per site on site

gS =N+ S (35) This.approxim_ation is called thg self—consistent averaped
matrix approximation(ATA). Unlike in paper |, we do not
The pole part\= is linked to the quasiparticle distribution use the subscript self here since the self-consistent form is a
via (30), the off-pole parté=< is self-consistently evaluated natural starting point in transport theory. Non-self-consistent
from the transport vertex = via (32). values are introduced and denoted below.
In Wigner's representatio¥2) reads

Ill. AVERAGED T-MATRIX APPROXIMATION aR(w,r,t)zc(r)tR(w,r,t). (43)

Here we specify the self-energy. As in paper I, we assume
noninteracting electrons scattered by neutral impurities. The B. Transport vertex
impurity acts on electrons by a single-site potential intro-
duced by Koster and Slat&r3? Individual scattering events
are treated within th& matrix. Formulas for th& matrix in
homogeneous systems are quite comriiaryr focus will be

The transport vertexr= in the self-consistent ATA de-
pends on the correlation functidd~ as

on gradient contributions in inhomogeneous systems. 2<=J dr c(r)T,RG<Tf, (44
A. Retarded self-energy which in Wigner's representation reads
In the Koster-Slater model, an impurity at positionis i
characterized by a potential restricted to a single orfital o==cttg “th+ c59 S[tR A
at siter,
i - —~
Ve=[ru(rl. (36) +o5 (%G “1-t7thg =), (45)

The corresponding retardddmatrix reads
Here,

TR=V,+V,GRTR. (37)

dk
N < _ <
Iterating (37) one can see that tHE matrix is also a single- 9 (w,r,t)—f (277)§G (010 (46)

site function, is the local element of the correlation function. The Poisson

v bracket used ii45) as a short-hand for gradient corrections,
TrR=|r>W(r|. (38)  in general, includes space derivatives combined with deriva-
(r|GTr) tives with respect to momentum, s€l). In (45), however,
none of these functions depends on momentum so that the
nly gradient contributions come from time derivatives.
The transport vertex= has three basic components that
have distinguishable physical content. First, there is a non-
) gradient term
(rl.

The T matrix does not depend on difference coordinate,
therefore its mixed representation relates only to double-tim&
structure

= o
2o

|r)tR(w,t,r)(r|=J dre'*7|r)tR
@9 opg=CtRg “tA (47
- Second, there is the term
Similarly, the local element of the propagator also depends
only on energy, not on momentum. In Wigner's representa-

[
tion, the local element of the retarded propagator 0§=C§9 (R4 (48
(r|GR(t1,t.)[r)=GR(r,ty,r,t,)=GR(r,t;,t,)  transforms
into which formally brings gradient corrections to the scattering

rates. Below we show that this term vanishes. Third, there

~R dk are two complex conjugate terms,
g Nw,r,t)= Wg (w,k,r,t). (40

i
o : y=c(t[tR g <]1-tR[tAg =), 49
The T matrix in mixed representation reads Ta 2( [ ] [ ) (49)
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which contribute if the quasiparticle distributidnhas non-
zero gradients. This last term results in nonlocal corrections

of the BE(1). Now the set of equations is complete.

IV. SCATTERING INTEGRALS

The scattering-out integraly,.f and the nongradient part
of the scattering-in integrao are dominant. They are the
only nonzero terms of the BE in the absence of the perturb- v(e)|1
ing field ¢ and their balance determines how the BE is ca-

pable of describing equilibrium.

A. Nongradient part of the scattering integral

In the quasiclassical limit, the frequency of the perturbing
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Jdo
—°°) = yow—¢—0). (55

Jw oo

V(w)(1+

At the pole valuew=e=¢€e+ ¢+ o(e), the argument of
Yoo Simplifies

a‘fj‘)) =l (56

The factor ¥ dogy/ dw|,, - is just the wave-function renor-
malizationz, see Appendix A of paper I. Indeed, from real
part of (54) one finds

field is much smaller than the relaxation time of the system, Jo 90 1— Jo (57)
i.e., all perturbations are on the long-time scale. Therefore, Jof,_, 00| _ 4, do| |
the consistency ofy,f andzo; is crucial and every detail
has to be checked. which is equivalent to
On the level of nonequilibrium Green’s functions, the
scattering in and out are consistent if the self-energy is given dagg
by the T matrix that obeys the optical theorem. The ATA z= T:1+ s (58)
obeys it. The consistency on the level of Green’s functions e w=e
does not imply a consistency within the BE. The w=¢

scattering-in integral in t_he BE mclude addltlc_mal apprOXI'Accordingly, we have found that the self-consistent and non-
mations(30) and(32), while the scattering out is evaluated > S i ;
self-consistent approximations are linked via the wave-

without them. Sincg30) and (32) follow from the limit of function renormalization.
small scattering rates, we have to make a corresponding ap-
proximation for the scattering out.

1
—=zy,= =c(—2)Imt3ye). 59
1. Scattering out 7 e Yoo €)= €(=2)IMtggl €) (59
The limit of small scattering rateg,— 0, is conveniently
discussed in terms of the non-self-consistent ATA. Indee
sendingoR—0 in propagatorg R of the self-consistenT
matrix tR turns into the non-self-consistent otfg.

From (12) one can see that

gR(w)=gfw—p—0"), (50)

where subscript 00 denotes no field and no self-energy in
propagatofin paper I, these non-self-consistent functions are
without a subscrigdt

d The non-self-consisterit matrix satisfies the optical theo-
m ImtG=t&(Img §)th, which easily follows from(41)
and the complex conjugacy of retarded and advanced func-
tions, tg,=(t§)*. The scattering-out rate thus can be ex-
pressed in the form of a sum over individual scattering rates
into all accessible finite states

d
27, = Cltoe €l J ﬁ 2md(e— ). (60)

The &6 function in the rh.s. results from
(51 —2ImgR(w)=278(w—€). From (60) one identifies the
scattering rates

R —
Jod )= = Fi0"
The self-energys® is then expressed in terms of the non-
self-consistent self-energy, P o= C|tho( € |*2TS8(ex— €p). (61)
Since there are no gradient contributions to the scattering
out, the quantum-mechanical scattering-out (& is of the
same form as the intuitively expected classical scattering-out
as integral in the modified BE1).

v
U-(F;O: Ct§0= c 1— v~_§0, (52

(53 2. Scattering in

UR(Q)):O'(F;()(G)—QS—(T-I— Iiy .
Now we evaluate the nongradient pa.ﬁt,fg of the
scattering-in integral47). We show that it results exactly in
the scattering-in integral from the B&) with the scattering
rates given by61). In this way, the consistency of scattering
(54) in and out will be checked.
Substitutingg = from (46) with g==\<+¢&< from (30)
and(32), one gets

In the limit of small scattering rates we linearize jn

i 190'50
oR(w)=0ofyw—¢p—0)+ Y 50

w—¢—0a

The imaginary part 0f54), y=—2ImcR, reads
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Un<gzc|tR|2§< There are three contributions to the correction
2oy~ oo (i) the second term i62), (ii) the A,/ correc-
=c|tR|2J dp 21(p)278(w0—5y) tion to the square of th& matrix, and(iii) the wave-function
(2m)3 P renormalization in front obj . It remains to be shown that
the sum of these three corrections vanishes. We will neglect
+C|,[R|2f dp oo Re 1 — higher order terms resulting from products of individual cor-
(2m)*" " (w—€,—p—0o+i0) rections.
(62) First, we rearrange the second term(&®2). To this end
we use the fact thatr= does not depend on the momentum
The first term follows from\ = and is the dominant one. The p and move it out of the integral. The integrand that can be
second one is the off-pole correction duegfo. rearranged is the spirit of Ward's identities with the help of
The T matrix in (62) includes propagators with poles out the energy derivative as
of the real energy axis, shifted by'2. In the limit of small

scattering rates, it is advantageous to use the non-self- Re 1 __ 9900 1
consistent ATA as the reference point, {w—e—¢p—o0+i0)? dw do
[ - (9_(.0 w—¢—0
tR(w)Ztgo(a)—d)—U-l- E'y) (68)

. By the integration ovep, relation (68) turns into the local
i dt ropagator needed in the second ter ,
=~ b= 0)+oy (63 P e
27 dw ~
w=¢-0o dp R 1 9900
From this approximation one finds that the square of the (2m)* Tex—e€p— p—o(e ) +i0]* * 0

absolute value at the pole reads k(69)

)= liE e 1+%5(———T—

1 The second term of62) thus can be rearranged as

dp 1

€ R|2 <pPA

(64) oft f (277)3"”9R‘[sk— €p— d—a(ey) +i0]°
The second term in the bracket (64) can be expressed in A 1\ 3900
terms of the collision deld (1-25) = — 20| toy ek)|2( 1-— —)

Jw (70)

T Z

1 oty
tgo Jw

: R A

i[1 dtgg 1 dtyg . .

R T R e (65) Now we can collect all terms which contribute to the non-
w=¢ w=¢ gradient part of the scattering in

At=|m

as (96
27900 <
(9(1) Zo'ng( € k)

€k

Ay
ZU:g(Sk):(Z_ 7) ool &) —Clthy
[tR(e)|2=|t8 )2 1— —=].

T Z (66)

Ay 1)

=(1+@—ﬁ—c|tR|2@)) oS(ey)
This relation between the self-consistent and non-self- Jw T 00 9w 00\ =k
consistenfl matrices has a form of virial corrections. These %

are not, however, the virial corrections that we are looking =g &k)- (71)

for. The termA;/7 will be canceled by the wave-function
renormalization and the off-pole contribution. In the last but one step, we have neglected the cross correc-

Let us denote byrg, the non-self-consistent-like scatter- 10N (Ad/7) X c|tgy*(9Goo/ dw) and terms quadratic in

ing vertex ¢t 2(9900/ dw) which are higher order in the limit of small
scattering rates. In the last step, we have used the derived

_ & X dp optical theorem(I-B3) [proved also in the Appendix of this
ooo(€K) =Cltooex— p— o) f (_27)321‘({3)2775(%— &p) paper, se¢A17)],

dp Ac_ (9900 _ o900
—olt el | posf(p2mote- e | G el 72

€k

Briefly, we have shown that in the nongradient scattering
in and out, the wave-function renormalizatipcompensates
in a consistent manner. This compensation shows that the
Apparently, o, is compatible with the scattering out. To off-pole part =< of the correlation function is capable of
prove the compatibility otr, with fy, we have to show that rebounding consistently the off-pole portion of the particle
all corrections(linear in y) following from the non-self- propagation.

consistency mutually cancel, i.ar_qr,fg=a§0. The nongradient parts of scattering integrals

—J dpr 6
= ka(p)- (67)
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dk Now, we substitute the dominant part of the local correlation
zy(eg,r,t)= f kapf(k.f.t). (73 function (the off-pole part leads to higher order contribution

in small y) into (49

dk
< = —_— —~ d
Zo-ng(sk!rat) I(ZW)S Ppkf(parat)i (74) g<(w,r’t)~J'—(2:)3f(p,r,t)2’ﬂ25(w_8) (79)
have scattering rates identical to their non-self-consistent . h L ith th . |
counterparts, and interchange derivatives with the momentum integra
R R

1272 < _oyr2[ 9P L(AT 9 T I

Poi=cltoo €0 |22 8( = ep) = ~ 57 a(Ip| = [K). 3= ol | e ™R e ot ot e
(79) X H(p)2mz8(w—ep). (80)

These nongradient parts are identical to those used in t

intuitive BE (2). h1ehe function z6(w—¢) depends on time only viaw

—¢ [28(w—e)=5(w—e— ¢p—0)], therefore according to

(76), [(otR1aw)(alat)—(otRIat) (9l dw)]2mz8(w—&p)=0.

The gradient correctionry thus depends exclusively on gra-
The gradient term of the self-energys given by (48) dients of the distribution function,

does not include gradients of the quasiparticle distribution.

B. Gradient corrections to the scattering rate

. . . . R
Accordingly, o5 can bring corrections to scattering rates RI2 f dp 10t% 9
Pok only. In reality o5 =0, i.e., no correction to scattering oy =—clt (277)327725(“) 8p)ImtR dw dt f(p).
rates appears. (81)

For impurity potentials independent from time
v =const, the Poisson bracket(#8) equals zero. Indeed, the
both T matrices depend on the tinteonly via the internal
potential which always enters th& matrix in the form of A
w—¢, i.e., tRw,t)=tR*w—¢). Any two functions of  zo;= —(z— =
this property have a zero Poisson bracket, T

’ Finally, we simplify this gradient correction with the help of
(66), scattering raté61), and the collision delay65) as

dp d
c|t§0|zj 2y 2m28@ =) A f(p)

da db 9a db _dp P of A (82)
_ _ _ 2= _ =7 =7 3 Ppk 57 At
[a(w—¢),b(w—¢)] e 3l 3t 30 (27) ot
b b In the second line, we have neglected higher order terms
=_ Ja 9 @ +¢9_a % ‘9_: 0. (76) using the approximatioa— A;/7~1.
Jw Jw . Jw Jt Jw This gradient correction to the scattering integrals has the
form of virial corrections, the last term @). In particular,
no other gradient other than the time derivative of the qua-
zo5 =0. (77)  Siparticle distribution appears, and this time derivative is

weighted with the collision delay and the scattering rate.
Briefly, amplitudes of scattering rates are not modified by
gradient corrections for time-independent impurity poten- V. RECOVERING THE INTUITIVE TRANSPORT
tials. This is in agreement with the intuitive expectation used EQUATION
in paper |.

Accordingly,

Now we can put together elements of the transport equa-

C. Gradient corrections to scattering in tion (3) and reconstructl).

The gradient correctionry brings true nonlocal contribu- A. Drift part of the transport equation
tions to the scattering-in integral. Via gradients of the local
correlation functiong <, the correctionsy depends on gra-
dients of the quasiparticle distribution. Here we show that

The velocity results from momentum derivative(@#) as

= g : . . de de do(w) de 1 Jde
from o, one recovers virial corrections in the form dis- — = —_—— — (83
cussed in paper |. dk ok dw | ak 1- do(w) ok
First, we write(49) in the explicit form Jo | _.
- aad (oo 1 For parabolic kinetic energy,=k?/2m, the quasiparticle ve-
oy =ctt 5| w97 ]-;&[1Ng 7] locity gains the form used in the B&),
1 de k
— _ RI2ijm _1tRF < - =7
=—c|t}| ImtR[t 071 oK =2 (84
_ —c|tR|2Im£ iR i_ﬁi - (78 The force acting on quasiparticle is also found from the
tRl dw ot dt dw g quasiparticle energy,



55 QUASIPARTICLE TRANSPORT ... . 1l. ... 5105

de d¢ do  do de of the reduced density matrifWigner's distribution func-
ar dr  ar  Jdw or

(85 tion),

For homogeneous distribution of impurities, the self-energy dw

depends on coordinateonly via potentialg. Since the po- p(k,r,t)= f Egﬂw,k,r,t). (91)
tential ¢ can be viewed as a local shift of initial of energies,

one finds that the self-energy relates to the self-energy From the decompositiog™=\~+ &=, wherex= andé~ are

o 4= in the absence of the field as given by (30) and (32), respectively, one finds the reduced
density matrix as
(@)= soo(0— B). (86)
From (86) one finds that the second term of the fo&&) s do ¢ do~
p=zf — —_—. (92

reads 27T w—¢e dw

do do I Note that the transport vertex™ in (92) does not enter the

o dw or” (87) reduced density only by its pole vale€ but the full energy

] ) . dependence has to be maintained. Since the second term is
Using (87) in (85), one finds that the force has no renormal- giready an off-pole correction, the correlation function of the

ization self-energy is used only in its lowest approximation
<_ <
ds I 7 9o - )
—=_= (88) The formula(92) has no explicit gradient terms; however,
ar or there are gradient contributions hidden in the transport vertex
which is the form of the force in the BR). Thus drift terms o There Is a .quesFion of whether one should keep these
of (3) reduce to drift terms ofd). gradient corrections in the off-pole part of formul@2) or

not. A general answer is not clear to us. On the other hand,
with respect to conservation laws that test a consistency of
observables with the transport equatidn the gradient con-

To obtain the expected forii), we use that within linear tributions can be neglected. The transport equation does not
approximation provide observables but only their time or space derivatives,
see, e.g., the equation of continu{tyC2), therefore any gra-
dient contribution to observables enter the conservation law
via second derivatives that are neglected within the quasi-

. . o . classical limit. Accordingly, we neglect gradient corrections
Thus the nongradient and the gradient scattering-in contribug, < in (92).

tions can be collected into a compact expression

B. Scattering integral with virial corrections
Jda
a(x)+ 5A=a(x+A). (89

205 = ZU:g(Sk) + 205 (e A. Local density of electrons

dp pr dp In paper | we have derived the local density of electrons
= f prk(f__At) = f ——Puif(p,r,t—Ay) n from the transport equation, sée5). For scattering on the

dat (2m)° Koster-Slater impurities it was found that the correlated den-
1 272 dp sity ner IS determined by the ratio of the collision delay to
== —| —=—=d&(p|—|kDf(p,r,t—A)). (90)  the lifetime, sedl-29). Here we recove(l-29) directly from
T kK (2m) Y (92).

One can see that the scattering in has the form expected from The local density of quasiparticles reads
classical assumptions.

Substituting(59) for the scattering out(90) for the scat- _ f dk ¢k ©3
tering in, (84) for the quasiparticle velocity, an@8) for the Niree (2m)3 (k).
accelerating force into the asymptotic equati8) the intui-
tive modification of the BE1) is recovered from quantum The local density of electrons is given by the integral from
statistics. p over momentum

dk
VI. OBSERVABLES (94)

n=| —=xp.
. . . 2m)°
Recovering the transport equatith) was our major task. (2m)

With respect to applications, one has also to find the relatiofrrom (94) and (92) one finds
between quasiparticle distributidnand observables. As al-
ready shown in paper I, these relations include quasiparticle dk dk dago
and virial corrections. In paper | we have discussed only an'—gf(k)Jrf—3
those observables that can be identified from the transport (2m) (2m)* do
equation via conservation laws. Here we extend our treat-
ment to a general single-particle observable.

All single-electron observables can be expressed in terms

f(k)

(l)=k

do ¢ &Ugo(w)

dk
+ j —5(277) (95)

27 w—gy do
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where we have use®8) for the wave-function renormaliza- The total densityn= N+ Neor resulting from the reduced

tion z. The first term is the quasiparticle density.., the
second and the third terms are the correlated density

dk 1'70'00
ncorr:fwm

f(k)
€k

f(dk fdw % &oéo(w)_ 9

2m)3) 2w w—gy Jw
In the second term we perform the integration by parts

A 97)

o o—e Tw—e+i0)%’

and substitute for the self-energs, from (67),

dk 80’00
Neorr= f (27)3](“()%
dk do

t ) o 2 R o arioltod 0o~ A’

dp
XJ'WZf(p)ZW(S(w—Ep). (98

Due to the energy-conserving function, the energys can

be easily integrated out. The wave-function renormalization
z under thep integral can be omitted as a higher order in the

limit of small scattering rates,

dk 50’00

2m? W% e,

Neorr=

dk dp 1 .
+Cf (27T)3 (277)3f(p)RU(Sp—Ek+i0)2It00(€p)|2'

(99

We have used14) to simplify energy arguments. Now we
can integrate over momentukiusing a non-self-consistent

version of(69),

_J dk f k (90'00
Neorr™ W ( )% -
(A)—Ek

dp 900
_Cf 23 PG,

|th(€p)|2. (100

density matrix(92) is thus identical to the one obtained from
the transport equation via the equation of continuity,

dp A
[ ptol )

which is Eq(I-48). Briefly, with respect to the electron den-
sity, the approximative functional for the reduced density
matrix (92) is consistent with approximations in the transport
equation(l).

(103

B. Local density of current

The particle current is one of the quantities most often
evaluated from the BE. Here we show that for the Koster-
Slater impurities there are no explicit virial corrections in the
functional for current.

A general formula for the current is

o dk de dk k 104
Now we substitute fop from (92
dk k dk do k o (w)

i=| Gt

f dk k ;
] 2 m?"
The second term in the first line is zero because its integrand

is an odd function of momentut The current is thus iden-
tical to (I-41) found from the equation of continuity.

S — e—.
27327 m (w—g+i0)?

(105

C. Local density of energy

The energy of the system is not a single-electron observ-
able. Although electrons do not mutually interact, the energy
of the system cannot be evaluated from the reduced density
matrix p. This is because electrons are correlated with impu-
rities of unknown positions. Similarly to interacting systems,
the energy has to be evaluated directly from the correlation
functiong=,

do dk -
EZJ%(ZT):J'wg (w,k). (106)

To express the energy in terms of quasiparticle distribution,

The two terms can be joined. In the first term we renameye useg==\~+ £~ with A~ from (30) and ¢~ from (32),

the integration variablé& to p, so that both terms will have
the same name of the momentum argument of the distribu-

tion functionf,

5Uoo_cltR |25§oo
Jw 00 G

dp
Neorr™ J Wf(p) . . (101

Finally, we apply the derived optical theordi®#R) to recover

the relation(l-29),

dp A,
Neorr™= f (ZT)ZSf(p) 7 (102

_ (do dk ( 070')1
E—fﬂww 1—£ f(k)2mdé(w—€y)
d
+C|tR(w)|2f(ZTp)3f(p)2775(w_8p)

X

R o102 (107)

Now we integrate out the energyand interchange the order
of integrations over momentum in the off-shell term,
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rithmic derivatives have natural interpretations like the col-
lision delay discussed here.
w=€g On the other hand, the discussed scattering on neutral
impurities allows for a number of simplifications that are not
+CJ ﬂgltR(E )|%e f(p)f dk Re ! _____available for more general scattering mechanisms. First, the
(277)° 00 "P7L TP (2m)° e~ e+i0)®"  self-energy and the transport vertex are independent of mo-
(108) mentum which allows us to employ shifts in the complex
o . ] o plane with the help of which one can conveniently express
Similarly as in the case of the electron density, we join these|f-consistent quantities by their non-self-consistent coun-
second and the third terms, evaluate the integration over MQgarparts. Second, the lack of momentum dependence leads to
mentumk, and apply the derived optical theorefi2) to  the |ack of space nonlocalities of the scattering integral,
express the local energy in terms of the collision delay,  tnerefore all virial corrections are described by the collision
delay. Third, the momentum independence reflects that there
_ (109 is only a single scattering channel®ymmetry. In general,
different scattering channels have different collision delays,
in the case of neutral impurities there is only a single colli-

. : . . sion delay which simplifies appreciably all related formulas.
ergy does not include the potentilthat is in(l-42) explic- Fourth dﬁe to the tirr?e indeppepndenceyof the impurity poten-
ity added] Thermodynamical consistency of the energy '

. L . . fial, there are no gradient corrections to the scattering rate.
conservation and correlated density is shown in Appendix ifth. this ti ind d | implif h
of paper I. ifth, this time independence also simplifies the energy con-

. . . servation in collisions. Sixth, due to the absence of the dy-
The BE (1) with subsidiary relation£103), (105, and - . oy . .
(109 form Ei(l l))asic set of equgtions tha?cov)er(mosét of tragi-n@mics of impurities, the virial corrections appear only in the

; S . .. scattering in. Here we have selected this simple scattering on
tional applications of the BE. In all these equations, the virial . o, )

) . : S neutral impurities to have free hands to focus on details of
corrections can be included with the help of collision delay

We remind you that this simplicity follows in part from the the method. . .
S . . - We have not discussed here consequences and interpreta-
simplicity of the scattering by Koster-Slater impurities.

tion of the virial corrections as it has already been done
within the intuitive approach in paper I. Our aim here is to

= W‘gk( )+ (277_)38k( )

A
1+—
.

dk
E= j (ZT)S skf(k)

[In the notation of paper |, Eql-42), the quasiparticle en-

VIl. SUMMARY confirm the validity of this intuitive approach.
The intuitive modification of the BE, Eq.l), has been
recovered from nonequilibrium statistics. To this end we ACKNOWLEDGMENTS

have employed nonequilibrium Green’s functions within

which we made the quasiclassical limit and the limit of small  This work was supported from the Grant Agency of the
scattering rates. These two limits are fully sufficient, i.e., noCzech Republic under Contract No. 202960098, the BMBF
unjustified approximations need to be made. The nonlocalGermany under Contract No. 06R0748, and the EC Hu-
form of the scattering integral in the intuitive BE has beenman Capital and Mobility Programme.

obtained by unification of nongradient and gradient contribu-
tions.

Single-electron observables as functionals of the quasipar-
ticle distribution are provided by the reduced density matrix
which in the limit of small scattering rates has fof8®). It The quasiparticle and the virial corrections enter the BE
was shown that92) is consistent with the transport equation in different ways. From this point of view, they represent
(1) leading to the correct equation of continuity discussedndependent corrections that can be treated separately. On
already in paper |. The density of energy, which does nothe other hand, for scattering by resonant levels, both correc-
belong to single-electron observables, has been treated sepns are of the same magnitude as it is demonstrated in Fig.
rately. 5 of paper I. A striking similarity of their magnitudes raises

The presented theory has four general features that can lige question of up to what extent these two corrections are
transferred to more general models. First, one needs suffindependent. To answer this question we briefly discuss
ciently complex self-energy, the recommended one is basegquilibrium where one can benefit from the well developed
on the T matrix which guarantees a number of identitiestheory of quasiparticle and virial corrections based on
related to the optical theorem. Second, for small scatteringreen’s functiong>—37:15
rate, one can use the procedure of Refs. 14,29 to derive a In equilibrium, the local density of electrons is given by
quasiclassical transport equation for quasiparticles. A resulthe spectral function as
ing transport equation includes the quasiparticle and the
virial corrections. The virial corrections are, however, in a do dk
form of gradient contributions to the scattering integral. n:f_ fFD(w)f ——a(w,k). (A1)
Third, the virial corrections are rearranged to the semiclassi- 2m (2m)
cal form when one recollects the nongradient and gradient
terms on the scattering integral using logarithmic derivativesin the limit of small scattering rates, the spectral function
Fourth, all logarithmic derivatives should be defined fromwill be substituted from(16) with ¢=0 and lowest order
theT matrix, i.e., from the scattering phase shift. These logaapproximation of the scattering ratgs= yqq.

APPENDIX: VIRIAL VERSUS QUASIPARTICLE
CORRECTIONS IN EQUILIBRIUM
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In the limit of small scattering rates we can easily separatend the optical theorenithat follows from non-self-

the quasiparticle contribution to the local density,

dow dk
npole:fZfFD(U’)JWzZW&w—sk)

dk
:f(ZT)ﬂf(k)’ (A2)
wheref(k)=fgp(e\), and the background contribution
_ do Yool @)
nOff_f FD(w f (2 )SR (w Ek+|0)2 (AS)

Using (58), npge can be split into the free pa®3) and
wave-function renormalization reduction

Npole= Nireet Nwr » (A4)
where
d k &0’00
Nwir = Pk (A5)

From decompositions of the densitp=n,qe+ Ny and

N=Ngeet Neorrs @Nd (A4) the correlated density results as a
sum of the off-pole and wave-function renormalization parts

Neorr= Noff T Ny - (AB)

Using the Kramers-Knaig relation for the real part of the

self-energy,

dE oo
Too @)= RejZﬂ'E w+i0’

in (A5), one finds that the correlated density reads

(A7)

_ w Yool @
ncorr_fEW[fFD(Q’)_f(k)]Reﬁa
(A8)

where the terms weighted bip(w) and f(k) result from
n.s and n,s, respectively. Apparently, there is a partial

compensation of these contributionsrig,,,.

The quantum-mechanical expressiGh8) can also be

given the form of the semiclassical formul202). To this
end we reorganizay; starting from(A3),

dw dk 1
Nog= J E fFD(w)’)/OO(w)Re (27T)3 (w—ek+i0)2

dk 1

(27T)§w—ek+i0

dw J
=- f > fFD(w)'YOO(w)(?_wRe

f_fFD(w)'YOO(w) goo (A9)

consistent form of41)]

Imtgo=t5ol *Img go- (A1D)
If we express the local density of states in terms of the mo-
mentum integration

dp
~R —
_2|mgoo(w)—jw2w5(w—ep), (A12)
the off-pole contribution can be expressed in terms of the
quasiparticle distribution,

. dp dw 9900
Noft= — (2 )3

5= feo(@)[to @) |27 8(w— ep)_

B dp R 9900
——CJ Wf(p)hoo(ep” o - (AL13)
p
Finally, we substitut€A13) into (A6),
Joo
Neorr™ J’(27T)3 (p)( - | 00|2 15'(0) e
" (A14)

Formula (A14) is identical to the semiclassical expression
(102. To prove this claim we employ the derived optical
theorem.

It is advantageous to start fro(h02). First, we reorganize
the ratio of the collision delay given bi5) to the lifetime
given by(59) as 1k=2cImtf=ic(t&—t5,) as

tOO Jw

A)_E tﬂ)@
2\ tgy dw

150 ity
téo Jw

A R R A
_9%0_ € tﬂ) 00 , too oo (A15)
do  2\t5 do  thy dw
From a non-self-consistent form ¢41) one finds
AR dg
—O_tR2T g" (A16)

07(1) 00 (90)

which substituted inta/A15) provides the derived optical
theorem,

(AL7)

The I.h.s. is exactly the bracket {A14). Thus the semiclas-
sical formula(102) is equivalent to the quantum-mechanical
formula (A14).

To summarize this Appendix we would like to remind

In the last line we have used that the integral over momenyou of the most important point. Within Green’s function,

tum above defines a local element of Green'’s function.
To evaluateyyy, we use

Yool @) =C(—2)Imtiy( o), (A10)

virial and quasiparticle corrections enter the density together

in an unresolved form, but the optical theorem and the de-

rived optical theorem can be used to separate them and ex-
press virial corrections in terms of the collision delay.
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