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Superconducting impurity terms in the Ginzburg-Landau equations and supercurrent:
A microscopic theory
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Finding the correct way to include small defects in the Ginzburg-Lari@dy theory of superconductivity
requires a microscopic analysis. In the presence of a single impurity, we compute terms which must be added
to the GL free energy, supercurrent, and the GL differential equation for the order parameter. Our calculation
is very general, covering ank-dependent order parametAr(Iz) which transforms according to a one-
dimensional irreducible representation of the crystalline point grfs@163-18287)07401-9

[. INTRODUCTION pinning mechanisms are probed by transport measurements,
and must therefore be interpreted in terms of a collective

The investigation of defects and their effect on superconpinning theory’
ductors is of both practical and fundamental interest. In high- In this paper, we complete our original work by deriving
T, superconductors, localized defects, such as oxygen vacaand discussing the impurity terms which appear in the super-
cies or impurities, and extended defects, such as twinningurrentJ and in the Ginzburg-Landau differential equation
planes and grain boundaries, both proliferate. Analytic meth(GLE). We again treat a general order parameter of the form
ods for studying these defects often rely on the Ginzburg{l), so that we cover many interesting examples of uncon-
Landau(GL) theory, since it is well suited to describe situ- ventional pairing, such as thé-wave order parameters re-
ations where the order parameter is spatially varying. Theently discussed in the context of the high-
conventional GL theory works well for the case of large superconductor$ The GL formalism presented here allows
defects, which can be treated by forcing the order parameteme to compute the perturbations in the order parameter, and
to satisfy certain boundary conditions. in J caused by an impurity. Particularly interesting situations

A defect whose sizal (characterized by its quantum- arise when the order parameter is spatially varying, even in
mechanical scattering cross sectioog~d?) is much the absence of an impurity; such situations include uniform
smaller than the zero-temperature coherence le&gtipre-  supercurrents and vortex lines.
sents a technical difficulty in this approach, since the GL The plan of this paper is as follows. In Sec. IlI, our nota-
theory involves coarse graining over length scales smalletion is specified, and previous results, including the deriva-
than &,. In this case, microscopic theory must be used tdion of the impurity contribution to the GL free energy, are
derive the extra terms which arise in the GL free energyreviewed. In Secs. Ill and 1V, respectively, the results for the
when a single defect is present. In a previous papee  supercurrent and the GLE are presented. Section V explains
presented such a derivation for the case of a single defediow to derive these results from microscopic theory. Section
using a general spin-singlet order parameter of the following/! discusses an alternative derivation of the results, while
form: Sec. VIl contains a concluding discussion.

One interesting finding arising from this work is that,
among the impurity terms in the supercurrent, there are two
which are nonzero only whewp(k) breaks time-reversal
A , , ) symmetry, as in the case of ars*id” order paramete?.In
Here ¢(k) is a normalized basis function for a one- o icyar, these terms are not proportional to the superfluid
dimensional representation of the crystalline point groupye|acity. Such supercurrents are not encountered in either

and 7(r) is the complex order parameter which appears in, e s:wave ord-wave superconductors. This point is dis-
the GL theory. Our work generalized that of Thunebeagd rEussed in Sec. Il P ' P

is based on the microscopic theory developed by Thuneberg,
Kurkijarvi, and Rainef

A(K,1)=7(r) p(K). (1)

The Thuneberg approach leads to two types of terms in Il. NOTATION
the defect free energy; one type involving the magnitude of _ _
the order parametem‘(rc termS, and the other type involv- To establish our notation, and review previous results, we

ing gradients of the order paramete?ﬂ terms, whereZ is recall that in the presence of a Single |mpUr|ty located at
the mean free pathBoth types ¢T.* and 5/°) have been =R, the GL free energy is given by

investigated as causes of vortex pinning. Another outcome of
the analysis is that the vortex pinning energy of a single
defect should be proportional ti¥&,, rather than ta®. The
predicted d?£, dependence has also been verified
experimentally’. In all these experiments, the elementaryHere()g is the usual bulk GL free energy:

QGL:QB+Q| . (2)
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wheren(l?) is the angle-resolved density of statekatior-
' 3 malized to 1:

where the gauge-invariant derivative is given by

2k n( k) —

D=V +2ieA/fc. The coefficients of)g are given by Fsd kn(k)=1. ®)
a=NO)(T-T/T,, (4)  To discuss impurity effects, it is convenient to write the or-

der parameter and vector potential in the following way:

LY ® _

B 16( mkgT,)2 ’ 7(r)=no(r)+én(r), 9

7¢(3)N(0)42 , A(r)=Aq(r)+ 5A(r); (10
Kij= 8(mkaTo)? (veivei| 4%, (6)  then (19,A,) is the solution to the GLE in the absence of the

impurity, and (7, 5A) is the change caused by the impurity.
whereN(0) is the density of states at the Fermi surface, and=or example(77,(r),Ao(r)) could represent a single vortex
Ve(K) is the Fermi velocity ak. The Fermi-surface average solution in the ordinary GL theory. The impurity free energy
is defined by is given by

0= [ 7o(R)| (L= ()2 + mo s | (R = 3(| b 4) + 2 ) * | b2 + 2( 6% ) ] ]2
' akgT, 0 192kgT)3! 70

ﬁZ
~14+20(1- (D)~ iyl olAve- Doma(nI? -

ﬁZ
+ —3192(U|<BTC) [ 75 (R)((|$|2= ¢($*)) (Ve - Do) ?7o(r))r—r+C.C1. 11

Here D, is the gauge-invariant derivative operator, wih ness, although it is always small in comparison with the pre-
replaced byA,. For simplicity, we have taken the impurity ceding|7o(R)|? term by a factor of 7o(R)|?/(kgT¢)2. In the
potential to be ars wave, of strengthy. For any particular ~analyses which follow, terms of ordény(R)|* will not be
type of defectp is the effective potential seen by a quasi- considered.

particle, and thus is a renormalized quantity which would be

difficult to calculate from first principles. However, it is di- Il. SUPERCURRENT
rectly related to normal-state transport coefficients, and so _ _ _
may be inferred experimentally. The parameateappearing In the presence of an impurity at R, the expression for
in Eq. (11) is then given by the supercurrent becontés

N2(0)7T21)2 ‘]:‘]B+‘]| y (13)

0= T N0 22 (12) .
1+N%(0)7v whereJg is the usual bulk supercurrent,

In this notation, the cross section of the impurity, is pro- i7¢(3)N(0)eh
portional toa/k2 . B~ 8 (mkaTy) ; (vrivEi| 4|2 (7DF 7* — 7* D7)

The theory presented in this paper applies to small de-
fects; our basic assumption is thaf.< 55, where¢; is the
zero-temperature superconducting correlation length. Note, :—ez PsijUsi - (14)
however, that there is no restriction on the sizevofThe !
ratio os./&5 furnishes the crucial small parameter in the The right-hand side of Eq14) defines the superfluid density
theoretical development. To leading order in the small ratiotensorp in terms of the superfluid velocity,,
then, the impurity free energ§ll) is evaluated usingyy(r)
andAy(r), the solutions in the absence of the impurity. Our 2mug;  2eA
previous paper discussd3, in greater detail, using it to A =%+Vi‘9’ (15
compute, as an example, vortex pinning energies for an order
parameter of arbitrary symmetry. Finally, we note that thewhere 6(r) is the spatially varying phase of the complex
| 70(R)|* term has been included in E¢L1) for complete- order parameter(r). The impurity term is given by
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em .
Jji :M(T(ﬁﬂ 7]o|2; Ust[3<UFiUFj|¢|2>_<¢> a77+2,3| 77|277—; %DiDﬂ?
X(vgivEj¢* ) —(d* Wvrive;¢)18%(r—R)

ioeh

~ SakgTy > (il ol )N veivri8*)

:d053(r_R)+2 dliD0i53(r—R)

+ 2, dyjDiDo;j°%(r—R). (17)
. ioeh ) 4
—(¢* WvrivE ) 13(r—R)+ W? | 70| Here the coefficient, 8, and«;; are defined as previously,

while the coefficients of the impurity-induced driving terms

X[( D) (vrive;d* ) —(d* Nvrivejd)1V;8%(r—R). are given by

o= (=1

ah?(DgiDoj70())r-r,

Herevg, refers to the superfluid velocity evaluated using the — E - eive(| 12— d(d*))),
impurity-free quantitiesho; and 6. i 192kgTe)
Several points are worth stressing: (18)
(1) For consistency,J, is evaluated withzg(r) and )
Ao(r), while Jg is evaluated to first order id#(r) and :—E oh°(Dy; 770(r))r=R< e B2 (19)
SA(r). Thus we see that the impurity affects the supercurrent . j 192kgTo)  \UFIVFI ’
in two ways—directly, throughl,, and indirectly, through ,
using a modified order parameter and vector potential in o oh7o(R) a2 %
J d2I] 191'( T )3(UFIUFJ(|¢| ¢ <¢>)> (20)
B- B'lc

(2) The first two terms of], are the contributions which
do not vanish upon spatial averaging. It is these terms whiclEquations(17)—(20) are supplemented by Maxwell’s equa-
were considered in Ref. 10. The third termJinis of equiva-  tion
lent order in gradients, but does not contribute to the volume
integral. Both kinds of terms must be considered in order for T
consistency checks, such as the continuity equation, to be VX(VXA)= ().
satisfied[see point(4), below].

(3) The two final terms ofJ, involve the derivatives
V| 70|2 andV 6°(r — R), butnot the derivative of the phase,
which appears in the superfluid velocity,,. (Note that
gauge invariance is ensured in these terms, without consi
ering theAvector potentialThese two terms are nonzero only

when (k) is acomplexfu_nctlon ofk, thus breaking t|_me- Do 770 iS nonzero at the impurity sitethen the homogeneous
revg_rsal symme_try. Addmonally, at least for teavave im- superconducting stater,=(— «/28)Y2 A,=0] is unper-
purities treated in this paper, the presence of such terms rgs heq by the presence of the impurity. This result is not in
quires that(¢) must not vanish. One order parameter confiict with the early work of Fetter, who did find order-
meeting these requirements is the+id,” which has been  parameter perturbations associated with small impurifies.
considered recently in the context of high-temperatureqowever, these perturbations only occur over very small dis-
superconductors For a further discussion of impurity scat- tances(of order 1kg) from the impurity. The quasiclassical
tering in superconductors which break time-reversal symmemethod used here, while capable of handling length scales
try, see Ref. 11. smaller tharé,, coarse grains over the much smaller scale of
(4) J must satisfy the equilibrium continuity equation 1/kg. This coarse graining is appropriate and consistent with
V-J=0, for acceptable solutions of its fuctional variables BCS theories, since these all leave out information on this
n(r) and A(r). This requirement is met naturally for length scale.
5n(r) and SA(r), which are determined by the equations It is instructive to apply the modified GLE, E(L7), in a
presented in Sec. IV. For an explicit example of how all thespecific example. In particular, consider the case of a homog-

terms in Eq.(13) conspire to enforc& -J=0, see Ref. 12. €nous superconductor, which, when unperturbed by the im-
purity, is described by

21

In Egs.(17) and(21), the left-hand sides should be expanded
to first order iné#(r) and SA(r), to give coupled equations
for 67(r) and 5A(r), in the presence ofj(r), Aq(r), and
éhe impurity.

Note that for an isotropics-wave order parameter
[#(k)=1], the right-hand side of Eql7) is zero unless

IV. EQUATIONS FOR &7 AND SA no=V—al2p, Ag=0. (22)

The differential equation fom(r), in the presence of an If (¢)#1, then, in general§n(r) will be nonzero. For sim-
impurity, is given by’ plicity, we take{¢)=0, which corresponds to an unconven-
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tional (for example,d-wave superconductor. Theéin(r) is B 2eN(0
given by the solution to the following inhomogeneous equa- Ir)=- E (Ve k)93(k’r’8)> (28)
tion:
The self-consistency equation for the order parameter also

9?57 involvesg(k,r,e). We take the pairing interactiovi(k,k")
a'577+6,8770577 22 Kij oy v, X 0X; to be given by

__omlR) oh?po(R) V(k,k')=Vp(k)6* k), (29
=T kT, O TR 2 TeaieTy)?

where ¢(I2) is the same function which appears in Ef),
andV, is the attractive BCS pairing energy. Then the self-

azé\?(r -R) . U
ol ——— 7 consistency equation is
X<U|:|U|:]|¢| > O"Xio"xj' . (23)
Note that we have simplified our problem, usidg =0, A(k ry= N( ) 2l —> (V(k K’ )TrT[g(k’,r,s)(Tl—lrz)])
since other broken symmetry solutions are expected to have B
higher energies. To solve E9J), it is easiest to work in a (30

coordinate system for wh|c:k1,J is diagonal. The anisotropic where Tt is a trace over the Pauli matrices. Solving for
GL coherence lengths are given by (k,r,s) in terms ofA(k r) andA(r), as described below,
) Kok . Ky ) Kz and substituting this into Eq30), leads to the GLE, Eq.
“aal ST Aal ET Al @4 . RV y
To determineg(k,r,e) in the presence of an impurity
which allows dimensionless coordinates to be defined as located atr=R, we must solve the following equation of

3

motion?
X y z
X’=§_, y,=§_’ Z'=§_- (25) e R . R

X y z (is——vF(k)-A(r) m3—A(k,r),q(K,r,g)
Equation(23) is finally solved by Fourier transform. Making ¢
use of Egs(4)—(6), the result can be expressed as +iﬁvF(I2) ) V@(IQ re)
an(r) o ( 2w2(TC—T)> e IM R —[1(e),Gim(K,r,£)]8%(r—R), (31)

7o 8| ar|éxéyérkaTe 2U3)T, J4m(r'= %'6) along with the normalization condition

whereR’ is the location of the impurity in reduced variables. Q(l;,r,s)Q(IQ,r,s)= —h2a?. (32

We point out that the divergence 6f(r'), asr'—R’, is an
ignorable artifact of our solution, since E@3) is valid only
on length scales greater thgp. The divergence will be cut
off when |r—R] is of order&,.

The self—energ)A(lz,r) is given by
AK D) =iA1(K, 1) T +iA5(K,1) 7, (33

WhereAl(IQ,r) andAZ(Iz,r) are, respectively, the imaginary
V. MICROSCOPIC DERIVATION and real parts of the order paramete(k,r). The impurity

A. General formalism t matrix is determined from the following equation:

We now discuss how to derive our two main results, Eq. . N
(16) for J,, and the inhomogeneous GLE, E{.7). Our t(e)=v+
previous papéralready gave the details of the free-energy
calculation, so in this paper we do not review the derivationHere v is the impurity potential, as discussed in Sec. II.
of Eq. (11). Since we have taken a purelfwave impurity potential,

We use the quasiclassical version of Gorkov'si(e) has nok dependence; it does, however, have a fre-
equations;**®in the presence of a single impuriytp per-  quency dependence.
form our calculations. The key quantity is the propagator Finally, the intermediate propagatgrm(k,r,s) is deter-
g(k,r,s) which for spin-singlet pairing can be taken to be amined from the “impurity-free” equations of motion:
2X2 matrix in particle-hole space. Hekes a unit vector on
the Fermi surfacer is a position in real space, andis a
Matsubara frequency. It is convenient to exp@g#,r,e) in
terms of Pauli matrices; :

(O)UJ d2k n(K)§i(k,r=R,e)i(e). (34)

(is—§VF<&>.A<r> 73— AK, 1), Gin(K, T &)

, +itive(K) - Vgi(k,r,e)=0, (35)
k) =2 glkre)n. @0 Gk, )G k.1 )= — i, (36)
Note that no unit matrix %,) term appears in this sum. While these equations fc@rim(lz,r,s) do not explicitly reflect

Then the electric current density is given by the impurity’s presence, its effects are implicitly contained in
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equatlon should be the fully self-consistent solution to theGLE (i.e.,J; and the GLES-function driving termgwe only

gap Eq.(30) in the presence of the impurity. need to solve for the piece étj(k,r,s) which is due to the
[t(s),glm(k,r,s)] term on the right-hand side of E@40).
B. Solving the quasiclassical equations Equations(40) and (41) then comprise a set of linear equa-

tlons for 89(k,r,&). The solution is a strong function of
mictoscopie Galoulations. n general, however, i 1 & form- 123" (e mpurity locatofk

P 9 . LA As they stand, these equations are not amenable to solu-
dable task to solve self-consistently fogin(kr.e),  tion by Fourier transform, since they contain products of

g(k,r.e), t(e), A(k,r), and A(r). [The latter quantity is r_dependent functions. To remedy this, we expand Reas
obtained self-consistently from Maxwell's Eq@21), with  fgllows:

J(r) given by Eq.(28).] Our task can be lightened, however,
by several appropriate simplifications. First, since we are glm(k,r,a) g,m(k R,e)+(r—R)- VRglm(k R,e)+--
working in the Ginzburg-Landau limit, close T, we may

expand various quantities to leading powers\igk,r). Sec- + (kR +- -, (42
ond, we are interested in situatiof@gain neafl ;) for which . . R

70(r), defined in Sec. Il, varies slowly on the length scale of Ao(K,r)=Ap(k,R)+(r—=R)-VRAo(k,R)+ -+, (43
&0, the zero-temperature correlation length. This allows us to . . N

make gradient expansions at several key points. Finally, we t(e)=t>e)+tP(e)+- - -. (44)

are interested in impurities for which the ratinsc/gg is
small. This small ratio plays a key role in allowing analytic
progress in the calculation.

We write the order parameter in the following form:

[In the last equation, we have indicated that we solve for
t(e) in terms of g;u(k,r,€), using the gradient expansion
(38).] After these expansions, it is quite straightforward to
solve for 5g(k,r,e), and then use this solution to compute
37) the impurity terms already presented in Secs. Il and IV.
To compute)J, of Eq. (16), for example, we need to
HereAq(k,r) is the full solution in the absence of the impu- determine 5gs(k,r,e) to second order inAq(r,k), and
rity, and SA(K,r) is the change due to the impuritjNote to_ﬂ_rst order in gradients. To compute the GLE impurity
that Aq(k,r) = 7o(1) ¢(K), where 7o(r) was introduced in  d"Ving - terms (1820, we need gy(kr.e) and
Eq. (9).] To leading order inoe/£2, we may compute 69a(k,r,&) to first order inAq(r k), and to second order in
g,m(k,r,s) with Ao(k r). Since we assume thAtO(k risa gradients.
slowly varying function ofr [although in generaBA(k,r) is
not], we may solve forg(k,r,e) in terms of a gradient

A(K, 1) =Ag(k,r)+ SA(K,T).

VI. ALTERNATIVE DERIVATION

expansion In Sec. V, we explained how to derive the basic equations
~ (16) and(17) by starting with microscopic theory. One may
F(k,r,e)=00(k,r,e)+3M(k,re)+---. (38  ask, however, if it is possible to obtain these results directly,

_ _ _ _ _ starting with Eq.(11). The answer to this question is “yes;”
Heregl(,ﬂ)(k,r,s) is nth order in gauge-invariant gradients of it is possible, ifQ), is properly interpreted. Recall that, to

Ag(k,r). . evaluate the change in the free energy to leading order in
Next we write the fullg(k,r,e) as asclgé, we use the impurity-free order parametgg(r) in
. A . Q,. One can show, by using microscopic theory, that if
g(k,r,e)=0im(k,r,e)+38g(k,r,e). (39)  mo(r) is replaced byno(r) +on(r) in £, then the terms

. which are first order iné#n(r) are correctly reproduced.
This definesé@(lf,r,s). To leading order inasclgg, the  These additional terms are second-ordedrggvgg. This pro-
equations forsg(k,r,e) are then given by cedure leaves out other second order terms which do not
involve 67(r); these omitted terms play no role in generat-
ing the GLE or the supercurrent.

To derive the GLE, Eq(17), we proceed as anticipated
above. InQg, replacen(r) by no(r)+ dn(r), expanding to
second order iS7(r). [The first order terms id»(r) van-
ish, since() is stationary atpe(r).] In Q,, replaceznq(r) by
1o(r) + 75(r), keeping first order terms iAn(r). Then Eq.
(17) is the consequence of the following variational proce-
dure:

(is— SVF(&).Ao(r)>}3—Ao(|2,r),5g(|2,r,g)
+itive(K) - V8g(Kk,r,e)

e " R ~
= EVF(k) 5A(r)!gint(k!r!8)

+[8A(k,1). Gi(k.1)] 5(0pt Q)

- N ~ *

i) Gnlk,r,e)18%(—R), (40 oo (1)

R R R R To perform the differentiation, it is best to rewrit®, in the
0=359(k,r,&)in(K,r,&) + gine(k,1,8)59(k,r,e). (41)  following form:

(45)
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VII. DISCUSSION

Q=fd3rf ), 7*(r),A(r)], 46
! L) 7 (r).A)] (49 Our goal in this paper has been to discuss all aspects of

wheref, explicitly contains a factor oB%(r—R), to repro- NOw a single, localized defect can be correctly treated in a
duce Eq.(11). Ginzburg-Landau theory for an order parameter of the form
To obtain Maxwell's equation(21), we now replace (1). After reviewing our previously derived expression f(_)r
A(r) in Qg, by Ay(r)+ A(r), working to second order in the free energy, Edq11), we presented and derived the main
SA(r). Likewise, we replace Ay(r) in Q,, by results of this paper; the GLE, E(.7), and the supercurrent,

Ao(r)+ SA(r), linearizing to first order inSA(r). Maxwell’s ~ Ed- (16). On length scales greater thdp, these formulas
equation is the result of the variation represent a complete theory which involves only a spatially

varying complex order parametei(r) and vector potential
A(r). The complicated details concerning quasiparticle scat-
8(Qg+Q)) tering from the impurity have been incorporated into the

W: . (47)  various impurity terms. The coarse graining over length
scales shorter thag, causes the impurity terms to show up
as 4 functions or derivatives ob functions.

This leads to the following identification: In our previous paper, we showed hd;, Eq. (11),
could be used to compute vortex pinning energies. In the
present paper, we used the GLE, H47), to compute

J :—cﬁ—f'+cZ V. 4l (48) on(r) near an impurity, for the class of order parameters
li . . . . .

A T a(ViAg) satisfying{¢)=0. Many other applications of these equa-
tions can be envisioned. For example, one could taje)
andAq(r) to be either a single vortex solution, or the Abri-

We conclude this section by diSCUSSing an additionakosov vortex |attice; in either case, the Changﬁs(r),
point of interest. In a previous paper, we pointed out that ONESA(r), and 8J(r), caused by an impurity, could be com-

could derive(); by starting with the impurity-averaged free pyted. We hope to address such problems in the future.
energy, and then taking the one-impurity limit. We showed,

however, that there is not a unique way of taking this limit,
due to ambiguities introduced by possible partial integra-
tions. Only a single-impurity, microscopic calculation, such  This work was supported by the Director for Energy Re-

as the one performed here, can resolve this ambiguity. Amsearch, Office of Basic Energy Sciences through the Midwest
biguities of this type also affect attempts to deri{fg) and  Superconductivity ConsortiufiMISCON) DOE Grant No.
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