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Superconducting impurity terms in the Ginzburg-Landau equations and supercurrent:
A microscopic theory

Mark Friesen and Paul Muzikar
Physics Department, Purdue University, West Lafayette, Indiana 47907-1396

~Received 3 July 1996!

Finding the correct way to include small defects in the Ginzburg-Landau~GL! theory of superconductivity
requires a microscopic analysis. In the presence of a single impurity, we compute terms which must be added
to the GL free energy, supercurrent, and the GL differential equation for the order parameter. Our calculation
is very general, covering anyk̂-dependent order parameterD( k̂) which transforms according to a one-
dimensional irreducible representation of the crystalline point group.@S0163-1829~97!07401-8#
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I. INTRODUCTION

The investigation of defects and their effect on superc
ductors is of both practical and fundamental interest. In hi
Tc superconductors, localized defects, such as oxygen va
cies or impurities, and extended defects, such as twinn
planes and grain boundaries, both proliferate. Analytic me
ods for studying these defects often rely on the Ginzbu
Landau~GL! theory, since it is well suited to describe sit
ations where the order parameter is spatially varying. T
conventional GL theory works well for the case of lar
defects, which can be treated by forcing the order param
to satisfy certain boundary conditions.

A defect whose sized ~characterized by its quantum
mechanical scattering cross section,ssc;d2) is much
smaller than the zero-temperature coherence lengthj0, pre-
sents a technical difficulty in this approach, since the
theory involves coarse graining over length scales sma
than j0. In this case, microscopic theory must be used
derive the extra terms which arise in the GL free ene
when a single defect is present. In a previous paper,1 we
presented such a derivation for the case of a single de
using a general spin-singlet order parameter of the follow
form:

D~ k̂,r !5h~r !f~ k̂!. ~1!

Here f( k̂) is a normalized basis function for a on
dimensional representation of the crystalline point gro
andh(r ) is the complex order parameter which appears
the GL theory. Our work generalized that of Thuneberg,2 and
is based on the microscopic theory developed by Thuneb
Kurkijärvi, and Rainer.3

The Thuneberg approach leads to two types of term
the defect free energy; one type involving the magnitude
the order parameter (dTc terms!, and the other type involv-
ing gradients of the order parameter (dl terms, wherel is
the mean free path!. Both types (dTc

4 anddl 5! have been
investigated as causes of vortex pinning. Another outcom
the analysis is that the vortex pinning energy of a sin
defect should be proportional tod2j0, rather than tod

3. The
predicted d2j0 dependence has also been verifi
experimentally.6 In all these experiments, the elementa
550163-1829/97/55~1!/509~6!/$10.00
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pinning mechanisms are probed by transport measurem
and must therefore be interpreted in terms of a collect
pinning theory.7

In this paper, we complete our original work by derivin
and discussing the impurity terms which appear in the sup
currentJ and in the Ginzburg-Landau differential equatio
~GLE!. We again treat a general order parameter of the fo
~1!, so that we cover many interesting examples of unc
ventional pairing, such as thed-wave order parameters re
cently discussed in the context of the high-Tc
superconductors.8 The GL formalism presented here allow
one to compute the perturbations in the order parameter,
in J caused by an impurity. Particularly interesting situatio
arise when the order parameter is spatially varying, even
the absence of an impurity; such situations include unifo
supercurrents and vortex lines.

The plan of this paper is as follows. In Sec. II, our not
tion is specified, and previous results, including the deri
tion of the impurity contribution to the GL free energy, a
reviewed. In Secs. III and IV, respectively, the results for t
supercurrent and the GLE are presented. Section V expl
how to derive these results from microscopic theory. Sect
VI discusses an alternative derivation of the results, wh
Sec. VII contains a concluding discussion.

One interesting finding arising from this work is tha
among the impurity terms in the supercurrent, there are
which are nonzero only whenf( k̂) breaks time-reversa
symmetry, as in the case of an ‘‘s1 id ’’ order parameter.9 In
particular, these terms are not proportional to the superfl
velocity. Such supercurrents are not encountered in ei
pure s-wave ord-wave superconductors. This point is di
cussed in Sec. III.

II. NOTATION

To establish our notation, and review previous results,
recall that in the presence of a single impurity located
r5R, the GL free energy is given by

VGL5VB1V I . ~2!

HereVB is the usual bulk GL free energy:
509 © 1997 The American Physical Society
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510 55MARK FRIESEN AND PAUL MUZIKAR
VB5E d3r Fauhu21buhu41
1

2
k i j ~Dih!~Dj*h* !

1
1

8p
~“3A!2G , ~3!

where the gauge-invariant derivative is given
D[¹12ieA/\c. The coefficients ofVB are given by

a5N~0!~T2Tc!/Tc , ~4!

b5
7z~3!N~0!

16~pkBTc!
2 ^ufu4&, ~5!

k i j5
7z~3!N~0!\2

8~pkBTc!
2 ^vFivF j ufu2&, ~6!

whereN(0) is the density of states at the Fermi surface, a
vF( k̂) is the Fermi velocity atk̂. The Fermi-surface averag
is defined by
y
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^F&5E
FS
d2k̂ n~ k̂!F~ k̂!, ~7!

wheren( k̂) is the angle-resolved density of states atk̂, nor-
malized to 1:

E
FS
d2k̂ n~ k̂!51. ~8!

To discuss impurity effects, it is convenient to write the o
der parameter and vector potential in the following way:

h~r !5h0~r !1dh~r !, ~9!

A~r !5A0~r !1dA~r !; ~10!

then (h0 ,A0) is the solution to the GLE in the absence of t
impurity, and (dh,dA) is the change caused by the impurit
For example,„h0(r ),A0(r )… could represent a single vorte
solution in the ordinary GL theory. The impurity free energ
is given by1
V I5
s

4kBTc
uh0~R!u2~12u^f&u2!1

s

192~kBTc!
3 uh0~R!u4@23^ufu4&12^f&^f* ufu2&12^f* &^fufu2&

2112s~12u^f&u2!2#2
s\2

192~kBTc!
3 ^ufu2uvF•D0h0~r !u2& r5R

1
s\2

192~kBTc!
3 @h0* ~R!^~ ufu22f^f* &!~vF•D0!

2h0~r !& r5R1c.c.#. ~11!
re-

y

x

HereD0 is the gauge-invariant derivative operator, withA
replaced byA0. For simplicity, we have taken the impurit
potential to be ans wave, of strengthv. For any particular
type of defect,v is the effective potential seen by a qua
particle, and thus is a renormalized quantity which would
difficult to calculate from first principles. However, it is d
rectly related to normal-state transport coefficients, and
may be inferred experimentally. The parameters appearing
in Eq. ~11! is then given by

s5
N2~0!p2v2

11N2~0!p2v2
. ~12!

In this notation, the cross section of the impurityssc is pro-
portional tos/kF

2 .
The theory presented in this paper applies to small

fects; our basic assumption is thatssc!j0
2, wherej0 is the

zero-temperature superconducting correlation length. N
however, that there is no restriction on the size ofv. The
ratio ssc/j0

2 furnishes the crucial small parameter in t
theoretical development. To leading order in the small ra
then, the impurity free energy~11! is evaluated usingh0(r …
andA0(r ), the solutions in the absence of the impurity. O
previous paper discussesV I in greater detail, using it to
compute, as an example, vortex pinning energies for an o
parameter of arbitrary symmetry. Finally, we note that
uh0(R)u4 term has been included in Eq.~11! for complete-
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ness, although it is always small in comparison with the p
cedinguh0(R)u2 term by a factor ofuh0(R)u2/(kBTc)2. In the
analyses which follow, terms of orderuh0(R)u4 will not be
considered.

III. SUPERCURRENT

In the presence of an impurity atr5R, the expression for
the supercurrent becomes10

J5JB1JI , ~13!

whereJB is the usual bulk supercurrent,

JBi52
i7z~3!N~0!e\

8~pkBTc!
2 (

j
^vFivF j ufu2&~hDj*h*2h*Djh!

52e(
i

rsi jvsi . ~14!

The right-hand side of Eq.~14! defines the superfluid densit
tensorrJs in terms of the superfluid velocityvs ,

2mvsi
\

5
2eAi
\c

1¹ iu, ~15!

where u(r ) is the spatially varying phase of the comple
order parameterh(r ). The impurity term is given by
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JIi5
sem

24~kBTc!
3 uh0u2(

j
vs0 j@3^vFivF j ufu2&2^f&

3^vFivF jf* &2^f* &^vFivF jf&#d3~r2R!

2
ise\

96~kBTc!
3(

j
~¹ j uh0u2!@^f&^vFivF jf* &

2^f* &^vFivF jf&#d3~r2R!1
ise\

96~kBTc!
3(

j
uh0u2

3@^f&^vFivF jf* &2^f* &^vFivF jf&#¹ jd
3~r2R!.

~16!

Herevs0 refers to the superfluid velocity evaluated using t
impurity-free quantitiesA0 j andu0.

Several points are worth stressing:
~1! For consistency,JI is evaluated withh0(r ) and

A0(r ), while JB is evaluated to first order indh(r ) and
dA(r ). Thus we see that the impurity affects the supercurr
in two ways—directly, throughJI , and indirectly, through
using a modified order parameter and vector potentia
JB .

~2! The first two terms ofJI are the contributions which
do not vanish upon spatial averaging. It is these terms wh
were considered in Ref. 10. The third term inJI is of equiva-
lent order in gradients, but does not contribute to the volu
integral. Both kinds of terms must be considered in order
consistency checks, such as the continuity equation, to
satisfied@see point~4!, below#.

~3! The two final terms ofJI involve the derivatives
“uh0u2 and“d3(r2R), but not the derivative of the phase
which appears in the superfluid velocity,vs0. ~Note that
gauge invariance is ensured in these terms, without con
ering the vector potential.! These two terms are nonzero on
whenf( k̂) is a complexfunction of k̂, thus breaking time-
reversal symmetry. Additionally, at least for thes-wave im-
purities treated in this paper, the presence of such terms
quires that ^f& must not vanish. One order paramet
meeting these requirements is the ‘‘s1 id,’’ which has been
considered recently in the context of high-temperat
superconductors.9 For a further discussion of impurity sca
tering in superconductors which break time-reversal sym
try, see Ref. 11.

~4! J must satisfy the equilibrium continuity equatio
“•J50, for acceptable solutions of its fuctional variabl
h(r ) and A(r ). This requirement is met naturally fo
dh(r ) and dA(r ), which are determined by the equatio
presented in Sec. IV. For an explicit example of how all t
terms in Eq.~13! conspire to enforce“•J50, see Ref. 12.

IV. EQUATIONS FOR dh AND dA

The differential equation forh(r ), in the presence of an
impurity, is given by10
nt

n

h
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r
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ah12buhu2h2(
i j

k i j

2
DiD jh

5d0d
3~r2R!1(

i
d1iD0id

3~r2R!

1(
i j

d2i j D0iD0 jd
3~r2R!. ~17!

Here the coefficientsa, b, andk i j are defined as previously
while the coefficients of the impurity-induced driving term
are given by

d05
sh0~R!

4kBTc
~ u^f&u221!

2(
i j

s\2
„D0iD0 jh0~r !…r5R

192~kBTc!
3 ŠvFivF j~ ufu22f^f* &!‹,

~18!

d1i52(
j

s\2
„D0 jh0~r !…r5R

192~kBTc!
3 ^vFivF j ufu2&, ~19!

d2i j52
s\2h0~R!

192~kBTc!
3ŠvFivF j~ ufu22f* ^f&!‹. ~20!

Equations~17!–~20! are supplemented by Maxwell’s equa
tion

“3~“3A!5
4p

c
~JB1JI !. ~21!

In Eqs.~17! and~21!, the left-hand sides should be expand
to first order indh(r ) anddA(r ), to give coupled equations
for dh(r ) anddA(r ), in the presence ofh0(r ), A0(r ), and
the impurity.

Note that for an isotropics-wave order paramete
@f( k̂)51#, the right-hand side of Eq.~17! is zero unless
D0ih0 is nonzero at the impurity site;

2 then the homogeneou
superconducting state@h05(2a/2b)1/2, A050# is unper-
turbed by the presence of the impurity. This result is not
conflict with the early work of Fetter, who did find orde
parameter perturbations associated with small impuritie13

However, these perturbations only occur over very small d
tances~of order 1/kF) from the impurity. The quasiclassica
method used here, while capable of handling length sc
smaller thanj0, coarse grains over the much smaller scale
1/kF . This coarse graining is appropriate and consistent w
BCS theories, since these all leave out information on t
length scale.

It is instructive to apply the modified GLE, Eq.~17!, in a
specific example. In particular, consider the case of a hom
enous superconductor, which, when unperturbed by the
purity, is described by

h05A2a/2b, A050. ~22!

If ^f&Þ1, then, in general,dh(r ) will be nonzero. For sim-
plicity, we take^f&50, which corresponds to an unconve
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512 55MARK FRIESEN AND PAUL MUZIKAR
tional ~for example,d-wave! superconductor. Thendh(r ) is
given by the solution to the following inhomogeneous eq
tion:

adh16bh0
2dh2

1

2(i j k i j

]2dh

]xi]xj

52
sh0~R!

4kBTc
d3~r2R!2(

i j

s\2h0~R!

192~kBTc!
3

3^vFivF j ufu2&
]2d3~r2R!

]xi]xj
. ~23!

Note that we have simplified our problem, usingdA50,
since other broken symmetry solutions are expected to h
higher energies. To solve Eq.~23!, it is easiest to work in a
coordinate system for whichk i j is diagonal. The anisotropic
GL coherence lengths are given by

jx
25

kxx

4uau
, jy

25
kyy

4uau
, jz

25
kzz

4uau
, ~24!

which allows dimensionless coordinates to be defined as

x85
x

jx
, y85

y

jy
, z85

z

jz
. ~25!

Equation~23! is finally solved by Fourier transform. Makin
use of Eqs.~4!–~6!, the result can be expressed as

dh~r !

h0
52

s

8uaujxjyjzkBTc
S 11

2p2~Tc2T!

21z~3!Tc
D e2ur82R8u

4pur 82R8u
,

~26!

whereR8 is the location of the impurity in reduced variable
We point out that the divergence ofdh(r 8), asr 8→R8, is an
ignorable artifact of our solution, since Eq.~23! is valid only
on length scales greater thanj0. The divergence will be cu
off when ur2Ru is of orderj0.

V. MICROSCOPIC DERIVATION

A. General formalism

We now discuss how to derive our two main results, E
~16! for JI , and the inhomogeneous GLE, Eq.~17!. Our
previous paper1 already gave the details of the free-ener
calculation, so in this paper we do not review the derivat
of Eq. ~11!.

We use the quasiclassical version of Gor’kov
equations,14,15 in the presence of a single impurity,3 to per-
form our calculations. The key quantity is the propaga
ĝ( k̂,r ,«), which for spin-singlet pairing can be taken to be
232 matrix in particle-hole space. Herek̂ is a unit vector on
the Fermi surface,r is a position in real space, and« is a
Matsubara frequency. It is convenient to expandĝ( k̂,r ,«) in
terms of Pauli matricest̂ i :

ĝ~ k̂,r ,«!5(
i51

3

gi~ k̂,r ,«!t̂ i . ~27!

Note that no unit matrix (t̂0) term appears in this sum.
Then the electric current density is given by
-

ve

.

n

r

J~r !52
2eN~0!kBT

\ (
«

^vF~ k̂!g3~ k̂,r ,«!&. ~28!

The self-consistency equation for the order parameter
involves ĝ( k̂,r ,«). We take the pairing interactionV( k̂,k̂8)
to be given by

V~ k̂,k̂8!5Vpf~ k̂!f* ~ k̂8!, ~29!

wheref( k̂) is the same function which appears in Eq.~1!,
andVp is the attractive BCS pairing energy. Then the se
consistency equation is

D~ k̂,r !5
N~0!kBT

2\ (
«

^V~ k̂,k̂8!Trt@ ĝ~ k̂8,r ,«!~ t̂12 i t̂2!#&,

~30!

where Trt is a trace over the Pauli matrices. Solving f
ĝ( k̂,r ,«) in terms ofD( k̂,r ) andA(r ), as described below
and substituting this into Eq.~30!, leads to the GLE, Eq.
~17!.

To determineĝ( k̂,r ,«) in the presence of an impurity
located atr5R, we must solve the following equation o
motion:3

F S i«2
e

c
vF~ k̂!•A~r ! D t̂32D̂~ k̂,r !,ĝ~ k̂,r ,«!G

1 i\vF~ k̂!•“ĝ~ k̂,r ,«!

5@ t̂~«!,ĝint~ k̂,r ,«!#d3~r2R!, ~31!

along with the normalization condition

ĝ~ k̂,r ,«!ĝ~ k̂,r ,«!52\2p2. ~32!

The self-energyD( k̂,r ) is given by

D̂~ k̂,r !5 iD1~ k̂,r !t̂11 iD2~ k̂,r !t̂2, ~33!

whereD1( k̂,r ) andD2( k̂,r ) are, respectively, the imaginar
and real parts of the order parameterD( k̂,r ). The impurity
t̂ matrix is determined from the following equation:

t̂~«!5v1
N~0!v

\ E d2k̂ n~ k̂!ĝint~ k̂,r5R,«! t̂~«!. ~34!

Here v is the impurity potential, as discussed in Sec.
Since we have taken a purelys-wave impurity potential,
t̂(«) has no k̂ dependence; it does, however, have a f
quency dependence.

Finally, the intermediate propagatorĝint( k̂,r ,«) is deter-
mined from the ‘‘impurity-free’’ equations of motion:

F S i«2
e

c
vF~ k̂!•A~r ! D t̂32D̂~ k̂,r !,ĝint~ k̂,r ,«!G

1 i\vF~ k̂!•“ĝint~ k̂,r ,«!50, ~35!

ĝint~ k̂,r ,«!ĝint~ k̂,r ,«!52\2p2. ~36!

While these equations forĝint( k̂,r ,«) do not explicitly reflect
the impurity’s presence, its effects are implicitly contained
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the self-energyD( k̂,r ). In general, theD( k̂,r ) used in this
equation should be the fully self-consistent solution to
gap Eq.~30! in the presence of the impurity.

B. Solving the quasiclassical equations

We have presented the quasiclassical framework for
microscopic calculations. In general, however, it is a form
dable task to solve self-consistently forĝint( k̂,r ,«),
ĝ( k̂,r ,«), t̂(«), D( k̂,r ), and A(r ). @The latter quantity is
obtained self-consistently from Maxwell’s Eq.~21!, with
J(r ) given by Eq.~28!.# Our task can be lightened, howeve
by several appropriate simplifications. First, since we
working in the Ginzburg-Landau limit, close toTc , we may
expand various quantities to leading powers inD( k̂,r ). Sec-
ond, we are interested in situations~again nearTc) for which
h0(r ), defined in Sec. II, varies slowly on the length scale
j0, the zero-temperature correlation length. This allows u
make gradient expansions at several key points. Finally,
are interested in impurities for which the ratiossc/j0

2 is
small. This small ratio plays a key role in allowing analyt
progress in the calculation.

We write the order parameter in the following form:

D~ k̂,r !5D0~ k̂,r !1dD~ k̂,r !. ~37!

HereD0( k̂,r ) is the full solution in the absence of the imp
rity, and dD( k̂,r ) is the change due to the impurity.@Note
that D0( k̂,r )5h0(r )f( k̂), whereh0(r ) was introduced in
Eq. ~9!.# To leading order inssc/j0

2, we may compute
ĝint( k̂,r ,«) with D0( k̂,r ). Since we assume thatD0( k̂,r ) is a
slowly varying function ofr @although in general,dD( k̂,r ) is
not#, we may solve forĝint( k̂,r ,«) in terms of a gradient
expansion

ĝint~ k̂,r ,«!5ĝint
~0!~ k̂,r ,«!1ĝint

~1!~ k̂,r ,«!1•••. ~38!

Hereĝint
(n)( k̂,r ,«) is nth order in gauge-invariant gradients

D0( k̂,r ).
Next we write the fullĝ( k̂,r ,«) as

ĝ~ k̂,r ,«!5ĝint~ k̂,r ,«!1dĝ~ k̂,r ,«!. ~39!

This definesdĝ( k̂,r ,«). To leading order inssc/j0
2, the

equations fordĝ( k̂,r ,«) are then given by

F S i«2
e

c
vF~ k̂!•A0~r ! D t̂32D̂0~ k̂,r !,dĝ~ k̂,r ,«!G

1 i\vF~ k̂!•“dĝ~ k̂,r ,«!

5Fec vF~ k̂!•dA~r !,ĝint~ k̂,r ,«!G
1@dD̂~ k̂,r !,ĝint~ k̂,r ,«!#

1@ t̂~«!,ĝint~ k̂,r ,«!#d3~r2R!, ~40!

05dĝ~ k̂,r ,«!ĝint~ k̂,r ,«!1ĝint~ k̂,r ,«!dĝ~ k̂,r ,«!. ~41!
e

ur
-

e

f
o
e

To compute theexplicit impurity terms in bothJ and the
GLE ~i.e.,JI and the GLEd-function driving terms! we only
need to solve for the piece ofdĝ( k̂,r ,«) which is due to the
@ t̂(«),ĝint( k̂,r ,«)# term on the right-hand side of Eq.~40!.
Equations~40! and ~41! then comprise a set of linear equ
tions for dĝ( k̂,r ,«). The solution is a strong function ofr
near the impurity locationR.

As they stand, these equations are not amenable to s
tion by Fourier transform, since they contain products
r -dependent functions. To remedy this, we expand nearR as
follows:

ĝint~ k̂,r ,«!5ĝint
~0!~ k̂,R,«!1~r2R!•“Rĝint

~0!~ k̂,R,«!1•••

1ĝint
~1!~ k̂,R,«!1•••, ~42!

D0~ k̂,r !5D0~ k̂,R!1~r2R!•“RD0~ k̂,R!1•••, ~43!

t̂~«!5 t̂ ~0!~«!1 t̂ ~1!~«!1•••. ~44!

@In the last equation, we have indicated that we solve
t̂(«) in terms of ĝint( k̂,r ,«), using the gradient expansio
~38!.# After these expansions, it is quite straightforward
solve for dĝ( k̂,r ,«), and then use this solution to compu
the impurity terms already presented in Secs. III and IV.

To computeJI of Eq. ~16!, for example, we need to
determine dg3( k̂,r ,«) to second order inD0(r ,k̂), and
to first order in gradients. To compute the GLE impuri
driving terms ~18!–~20!, we need dg1( k̂,r ,«) and
dg2( k̂,r ,«) to first order inD0(r ,k̂), and to second order in
gradients.

VI. ALTERNATIVE DERIVATION

In Sec. V, we explained how to derive the basic equatio
~16! and ~17! by starting with microscopic theory. One ma
ask, however, if it is possible to obtain these results direc
starting with Eq.~11!. The answer to this question is ‘‘yes;’
it is possible, ifV I is properly interpreted. Recall that, t
evaluate the change in the free energy to leading orde
ssc/j0

2, we use the impurity-free order parameterh0(r ) in
V I . One can show, by using microscopic theory, that
h0(r ) is replaced byh0(r )1dh(r ) in V I , then the terms
which are first order indh(r ) are correctly reproduced
These additional terms are second-order inssc/j0

2. This pro-
cedure leaves out other second order terms which do
involve dh(r ); these omitted terms play no role in genera
ing the GLE or the supercurrent.

To derive the GLE, Eq.~17!, we proceed as anticipate
above. InVB , replaceh(r ) by h0(r )1dh(r ), expanding to
second order indh(r ). @The first order terms indh(r ) van-
ish, sinceVB is stationary ath0(r ).# In V I , replaceh0(r ) by
h0(r )1dh(r ), keeping first order terms indh(r ). Then Eq.
~17! is the consequence of the following variational proc
dure:

d~VB1V I !

ddh* ~r !
50. ~45!

To perform the differentiation, it is best to rewriteV I in the
following form:
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V I5E d3r f I@h~r !,h* ~r !,A~r !#, ~46!

where f I explicitly contains a factor ofd3(r2R), to repro-
duce Eq.~11!.

To obtain Maxwell’s equation~21!, we now replace
A(r ) in VB , by A0(r )1dA(r ), working to second order in
dA(r ). Likewise, we replace A0(r ) in V I , by
A0(r )1dA(r ), linearizing to first order indA(r ). Maxwell’s
equation is the result of the variation

d~VB1V I !

ddAi~r !
50. ~47!

This leads to the following identification:

JIi52c
] f I

]A0i
1c(

j
¹ j

] f I
]~¹ jA0i !

. ~48!

We conclude this section by discussing an additio
point of interest. In a previous paper, we pointed out that
could deriveV I by starting with the impurity-averaged fre
energy, and then taking the one-impurity limit. We showe
however, that there is not a unique way of taking this lim
due to ambiguities introduced by possible partial integ
tions. Only a single-impurity, microscopic calculation, su
as the one performed here, can resolve this ambiguity. A
biguities of this type also affect attempts to deriveJ(r ) and
the GLE from impurity-averaged results.
t.
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VII. DISCUSSION

Our goal in this paper has been to discuss all aspect
how a single, localized defect can be correctly treated i
Ginzburg-Landau theory for an order parameter of the fo
~1!. After reviewing our previously derived expression f
the free energy, Eq.~11!, we presented and derived the ma
results of this paper; the GLE, Eq.~17!, and the supercurrent
Eq. ~16!. On length scales greater thanj0, these formulas
represent a complete theory which involves only a spatia
varying complex order parameterh(r ) and vector potential
A(r ). The complicated details concerning quasiparticle sc
tering from the impurity have been incorporated into t
various impurity terms. The coarse graining over leng
scales shorter thanj0 causes the impurity terms to show u
asd functions or derivatives ofd functions.

In our previous paper, we showed howV I , Eq. ~11!,
could be used to compute vortex pinning energies. In
present paper, we used the GLE, Eq.~17!, to compute
dh(r ) near an impurity, for the class of order paramete
satisfying ^f&50. Many other applications of these equ
tions can be envisioned. For example, one could takeh0(r )
andA0(r ) to be either a single vortex solution, or the Abr
kosov vortex lattice; in either case, the changesdh(r ),
dA(r ), and dJ(r ), caused by an impurity, could be com
puted. We hope to address such problems in the future.
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