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Quasiparticle transport equation with collision delay. I. Phenomenological approach
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For a system of noninteracting electrons scattered by resonant levels of neutral impurities, we show that
virial and quasiparticle corrections have nearly equal magnitudes. We propose a modification of the Boltzmann
equation that includes quasiparticle and virial corrections and discuss their interplay on a dielectric function.
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I. INTRODUCTION

Elastic scattering of electrons by impurities is the simpl
but still very interesting dissipative mechanism in semico
ductors. Its simplicity follows from the absence of the imp
rity dynamics, so that individual collisions are described b
motion of an electron in a fixed potential. On the other ha
due to a large variety of impurities and their accessible c
centrations, impurity-controlled transport regimes span fr
simple response characterized by a mean free path to a w
localization.

Let us recall a quasiclassical picture of impurity co
trolled transport. The basic effect of impurities on transp
in crystals consists in abrupt changes of directions of e
tron trajectories. Within the Boltzmann equation~BE!, this
effect is described by scattering integrals. At higher conc
trations, impurities influence a band structure. This corr
tion can be built into the BE if one accepts that element
excitations are not simple electrons but electronlike quasi
ticles in the spirit of the Landau theory of Fermi liquids1

Finally, impurities attract/expel electrons to/from their vici
ity which reduces/increases a density of freely traveling e
trons. Such changes in the effective density of electrons
covered by virial corrections that are accounted for via n
local ~in time and space! corrections to scattering integral
Although quasiparticle and virial corrections to the BE a
known for decades, transport theory that would include b
in the same time is still missing. Our aim is to fill this gap.
this paper we focus on an intuitive approach. In the sec
paper of this series we confirm equations presented
from the quantum statistics.

To introduce basic concepts, we first discuss class
virial corrections to the BE, Sec. II. In particular, we sho
that nonlocality of scattering events can be described
terms of a collision delay. In Sec. III we review Wigner
concept of collision delay and estimate the magnitude
virial corrections for resonant levels in III-V semiconducto
In Sec. IV we show that virial corrections go hand-in-ha
with quasiparticle corrections having nearly equal mag
tudes. In Sec. V, an intuitive modification of the BE and
the most important observables~density, current, energy! is
proposed. In Sec. VI, we discuss virial corrections to tra
port coefficients. In Sec. VII we summarize. In Appendix
550163-1829/97/55~8!/5084~11!/$10.00
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we show that the non-self-consistent treatment used in
paper and the more advanced self-consistent treatmen
equivalent within the assumed precision. In Appendix B,
derive the derived optical theorem which explains com
rable magnitudes of the virial and the quasiparticle corr
tions. In Appendix C, we verify that the presented modific
tion of the BE is consistent with the equation of continu
and the energy conservation.

II. CLASSICAL COLLISION

Since the quantum-mechanical theory with intuitive
clear virial corrections is still missing, the only experien
for nonequilibrium systems one can gain from is the vir
corrections to the BE in the classical statistical theory
moderately dense gases. Within accuracy to the second o
virial coefficient, these corrections were introduced alrea
on the break of centuries by Clausius.2 Here we modify his
approach in two aspects. First, instead of binary collisions
molecules we assume electron-impurity events. Second
stead of space nonlocality, we reformulate virial correctio
in terms of time nonlocality.

According to Clausius,2 one has to take into account th
two colliding molecules are not at the same space point,
at a distance of sum of their radii. In other words, the sc
tering integral has to be nonlocal in space.

A similar argument about nonlocality of scattering eve
applies to collisions of electrons with impurities. A sketch
a classical trajectory of a colliding electron is in Fig. 1. B
fore the electron reaches the impurity potential of a fin
range, its trajectory is a straight line. Then it makes a cu
in the impurity potential and again follows a straight line
a new direction. Within the BE, this process is approxima
by an effective event that is local in time and space.
course, within the local approximation, one has to sacrifi
dynamics of the electron during the collision. More serio
neglect follows from the fact that within the local approx
mation the asymptotic motion along the outgoing line can
be properly matched with the motion along the incomi
line.

Let us find a correct matching of incoming and outgoi
lines. To this end, we extrapolate the incoming and outgo
lines and find their crossoverX. In general, such a crossove
5084 © 1997 The American Physical Society
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55 5085QUASIPARTICLE TRANSPORT . . . . I. . . .
need not exist; however, it always exists for spherical pote
tials to which we limit our attention. The crossoverX gives
us the coordinate at which we have to place the effectiv
event. As one can see in Fig. 1, the crossoverX does not
coincide with the center of impurity. Using the local scatter
ing integral of the BE, the scattering event is placed in th
center of impurity, thus the shift of the center of scatterin
event is the first neglect that influences the motion of a
electron in the asymptotic region.

The second neglect of the local approximation is not vis
ible from the trajectory in Fig. 1. The electron following the
extrapolated incoming line passes through the crossoverX at
time t in. The electron on the extrapolated outgoing lin
passesX at time tout. In general,t inÞtout; however, the time
locality of scattering integrals in the BE means tha
t in5tout.

One finds two misfits: in the position of the event, and i
the matching of times. Although these two misfits usuall
come together, their consequences can be discussed s
rately by using special models.

A. Point traps

First, we assume impurities of a negligible volume with
capability to trap electrons for a certain time. In this cas
there is no misfit in the position buttout2t in5D t.0.

Using intuitive arguments, the collision delayD t can be
incorporated into the scattering integrals of the BE. A ba
ance equation of the Boltzmann type for scattering by imp
rities reads

] f

]t
1

k

m

] f

]r
2

]f

]r

] f

]k
5E dp

~2p!3
Ppkf ~p,r ,tpk

in !

2E dp

~2p!3
Pkpf ~k,r ,tkp

in !, ~1!

where f (k,r ,t) is a distribution function in the phase space
r is a coordinate,t is a time,k, andp are momenta,Pkp is
the scattering rate fromk to p. Since distributions in the
scattering integrals correspond to initial conditions,tkp

in is a
time at which an electron enters the scattering fromk to p.

In the scattering-out event@the second term on the right-
hand side~r.h.s.! of ~1!#, an electron of momentumk enters a
collision at tkp

in leaving it at tkp
out with momentump. The

scattering-out integral gives a probability that at timet an

FIG. 1. Scheme of classical collision. The circle represents lim
its of an impurity potential, the full line is an electron trajectory, the
dashed lines are extrapolations of incoming and outgoing trajec
ries.
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electron leaves the momentumk. This happens at the begin
ning of the collision, thustkp

in 5t.
In the scattering-in event@the first term on the r.h.s o

~1!#, an electron of momentump enters a collision attpk
in

leaving it attpk
out with momentumk. The scattering-in integra

gives a probability that at timet an electron enters the mo
mentumk. This happens at the end of the collision, th
tpk
out5t. From tpk

out2tpk
in 5D t(p,k), one finds that

tpk
in 5t2D t(p,k). The time argument in the scattering in
thus shifted by the collision delayD t(p,k). A modified BE
then reads

] f

]t
1

k

m

] f

]r
2

]f

]r

] f

]k
5E dp

~2p!3
Ppkf ~p,r ,t2D t!

2E dp

~2p!3
Pkpf ~k,r ,t !. ~2!

Electrons trapped by impurities are excluded from fr
motion. With a finite collision delay, one has to deal wi
two distinguished local densities of electrons. Beside
physical densityn5N/V ~number of electronN per volume
V), there is an effective density

nfree~r ,t !5E dk

~2p!3
f ~k,r ,t ! ~3!

which equals the local density in the free space betw
impurities.

For finite collision delayD t , a share of electrons trappe
by impurities can change in time. Accordingly, the free de
sity nfree does not conserve. From~2! one finds that in a
homogeneous but nonstationary system

]nfree
]t

5E dk

~2p!3
dp

~2p!3
Ppk@ f ~p,t2D t!2 f ~p,t !#

52E dk

~2p!3
dp

~2p!3
PpkD t

] f ~p,t !

]t

52
]

]tE dk

~2p!3
dp

~2p!3
PpkD t f ~p,t !. ~4!

The quantity that conserves is the physical density,

n5nfree1ncorr, ~5!

which differs from the free density by the density

ncorr5E dk

~2p!3
dp

~2p!3
PpkD t f ~p,t ! ~6!

that is correlated with impurity positions.
Note that the scattering mechanism enters the relation

tween densityn and distributionf . Without virial correction
~here represented by correlated density!, the functional
n@ f # is independent of scattering, sincen5nfree. In the pres-
ence of virial corrections one has to keep in mind tha
density of freely traveling electrons does not equal the ph
cal density.

-
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5086 55ŠPIČKA, LIPAVSKÝ , AND MORAWETZ
B. Hard spheres

As the second example, we discuss hard-sphere imp
ties. In this case, the incoming and outgoing lines hav
crossover at the sphere surface. The times match exa
tout5t in. The only misfit results from the fact that the cros
over is not at the center of the impurity but shifted by t
sphere radius. Here we show that the crossover offset ca
reformulated in terms of an effective time mismatch so t
one can use a unified description of collisions with po
traps and with hard spheres.

A collision with a hard sphere is schematically shown
Fig. 2. The real electron trajectory follows the full line. Th
scattering integral of the BE describes this event by an e
tron following the dashed line. This effective trajecto
~from Ā to B̄) is longer than the real one~from A to B) by
Ds52AR22b2.

One can include the finite size of impurities into the tran
port equation in a manner to parallel traps. We approxim
the trajectory of the electron by the effective trajectoryĀB̄.
Since, following the real trajectoryAB, the electron reache
a next collision sooner by a timeDs /u, we introduce into
transport equation~2! a negative time delayD t52Ds /u.
Hereu is an electron velocity.

For the hard-sphere impurities, transport equation~2! with
the negative collision delay is only an approximation. Let
check how this approximation works for the correlated d
sity. The classical scattering rate on hard spheres reads

Ppk5
~2p!3

k2
d~ uku2upu!c8u

R2

4
sinq, ~7!

wherec85Nimp /V is an impurity concentration~number of
impuritiesNimp per volumeV), u5k/m is an electron veloc-
ity, andq is a scattering angle,pk5ukuupucosq. The inverse
lifetime follows from ~7! as

1

t
5E dp

~2p!3
Ppk5c8upR2. ~8!

The collision delayD t52Ds /u in angular coordinates
reads

D t52
2

u
AR22b252

2

u
Rsin

q

2
. ~9!

The correlated density from~6! results

FIG. 2. Collision with a hard sphere. The full line is a re
electron trajectory, the dashed lines are effective trajectories
within the BE.
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ncorr52E dp

~2p!3
f ~p,r ,t !

1

~2p!3
E
0

`

k2dkE
0

2p

dw

3E
0

p

dqPpkD t

52c8
4p

3
R3E dp

~2p!3
f ~p,r ,t !

52c8
4p

3
R3nfree52

V imp

V
nfree. ~10!

Here, we have denoted V imp5Vc8(4p/3)R3

5Nimp(4p/3)R3 the total volume of impurities.
The physical content of the correlated density can

demonstrated on the equation of state. The number of e
trons which hit the surface of the sample is given by t
density of freely traveling electronsnfree, therefore the pres-
sureP is given by the equation of state

P5nfreekBT. ~11!

From ~5! and~10! we find the relation between the free de
sity and the total number of particlesN,

nfree5
N

V2V imp
. ~12!

The equation of state~11! thus takes the form of the van de
Waals equation,

P~V2V imp!5NkBT. ~13!

Briefly, the negative collision delay simulates the exclud
volume in the van der Waals equation of state.

Note that the correlated density~10! is negative. The den-
sity nfree in the free space between impurities is higher th
the physical densityn which reflects that electrons are e
pelled from the volume of impurities. It is important to dis
tinguish which density (nfree or n) is relevant for individual
physical quantities. For instance, the charge density is gi
by n, while pressure relates tonfree.

III. COLLISION DELAY TIME
IN QUANTUM MECHANICS

The classical statistics shows that the nonlocality of sc
tering events is approximatively described by the collisi
delay. This concept is easily transferred to the quantum
chanics, where the collision delay has already been in
duced by Wigner.3 He used the maximum of wave packet
identify the motion of an electron. Now we apply Wigner
approach to a neutral impurity to estimate a magnitude
virial corrections.

The scattering of an electron by a single impurity is d
scribed by the Schro¨dinger equation4

~v2H02V!~c in1cout!50, ~14!

where c in(r )5expikx is an incoming plane wave, with
r[(x,y,z), cout is the outgoing part,H0 is the Hamiltonian
of unperturbed crystal, andV is the impurity potential. The
incoming plane wave has to be an eigenstate of the cry

ed
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55 5087QUASIPARTICLE TRANSPORT . . . . I. . . .
(v2H0)c in50, thus the energy equals the kinetic energy
the incoming plane wave,v5ek . Then~14! simplifies as

~ek2H0!cout5V~c in1cout!. ~15!

A formal solution of equation~15! reads4

cout5G0
R~ek!T

R~ek!c in , ~16!

where

G0
R~v!5

1

v2H01 i0
, ~17!

is the retarded Green’s function of the host crystal, and

TR5V1VG0
RTR, ~18!

is theT matrix.
As a model potential of the neutral impurity we use t

one proposed by Koster and Slater6,7

V5u0&v^0u, ~19!

whereu0& is a single orbital at the impurity site. We will us
the convention that lowercase denotes the local elemen
operators~that are in uppercase! throughout the paper. Fo
the Koster-Slater potential, theT matrix is also restricted to
the selected orbital,TR5u0&tR^0u, and reads

tR5v1v^0uG0
Ru0&tR5

v

12v^0uG0
Ru0&

. ~20!

To obtain the collision delay, we place the impurity in th
initial of coordinates and express the wave function in
time representation

c~r ,t !5eikx2 i ekt2
m

2pur u
tR~ek!e

ikur u2 i ekt. ~21!

We have used an asymptotic Green’s function for larger , see
Ref. 4,

^r uG0
R~ek!u0&52

m

2pur u
eikur u, ~22!

to evaluate the outgoing wave from~16!. This approximation
holds for energiesek in the parabolic region of the ban
structure,ek5k2/2m. The first term in~21! is the incoming
wavec in and the second one is the outgoing partcout.

To see the time delay, we take a linear combination
wave functionsc so that the incoming partc in forms a wave
packet of a narrow momentum widthk→0,

c in~r ,t !5
1

Apk
E dpe2[ ~p2k!2/k2]eipx2 i ept

'eikx2 i ektexpH 2
k2

4
~x2ut!2J , ~23!

where u5k/m is an electron velocity. This wave pack
passes the initial of coordinates att50. A corresponding
outgoing wavecout reads
f

of

e

f

cout~r ,t !52
m

2pur u
1

Apk
E dp e2[ ~p2k!2/k2] tR~ep!e

ipur u2 i ept

'2
m

2pur u
tR~ek!e

ikur u2 i ekt

3expH 2
k2

4 F ur u2uS t1 i

tR
]tR

]vU
v5ek

D G 2J . ~24!

The outgoing wave passes the initial of coordinates with
collision delay

D t5Im
1

tR
]tR

]vU
v5ek

. ~25!

The collision delay~25! depends only on the energy of ele
tron. This is because the Koster-Slater impurity has a sin
scattering channel of thes symmetry. For a general potentia
V, the collision delayD t depends also on the scattering ang
as the classical collision delay~9!.

The collision delay~25! is a quantum counterpart of th
classical collision delay~9!. Following the analogy between
the quantum and classical approaches to the Boltzmann
transport equations, we introduce the collision delay~25!
into the scattering integral in exactly the same way as in
classical case. In other words, we expect the transport e
tion to be of form ~2!; however, scattering ratesPkp and
collision delayD t are extracted from quantum collisions.

The rate of scattering by Koster-Slater impurities of co
centrationc ~probability that impurity occupy a site! follows
from the Fermi golden rule as

Ppk5cutR~ek!u22pd~ek2ep!. ~26!

This scattering rate does not depend on the scattering an
thus it can be also expressed in terms of the lifetimet,

Ppk5
1

t

2p2

k2
d~ upu2uku!, ~27!

wheret is conveniently evaluated from theT matrix

1

t
5c~22!ImtR~ek!. ~28!

A. Estimate of virial corrections

From a scattering by a single impurity one can estim
the magnitude of virial corrections. Using formula~6! with
the quantum scattering rate~27! and collision delay~25!, one
finds the correlated density

ncorr5E dk

~2p!3
f ~k!

D t

t
. ~29!

The magnitude of virial corrections is thus measured b
ratio D t /t.

Note that the collision delay is independent from the i
purity concentration, while the lifetime is inversely propo
tional to the concentration. Accordingly,D t /t;c, i.e., mag-
nitude of virial corrections is controlled by the impurit
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5088 55ŠPIČKA, LIPAVSKÝ , AND MORAWETZ
concentrationc. To be specific, we will assume impurit
concentrations;1026 per site.

Now we estimateD t /t for a model local Green’s
function,5

^0uG0
R~v!u0&5

2

W F2
b1
2

2
b3
8

1z1S b12b3
2 D z21b3z

4G
1u~12z2!

2

W
~11b1z

1b3z
3!A12z2uz5v/W21 . ~30!

Here,W56 eV is a half width of a conductivity band, an
parametersb151.2 andb3520.4 serve to model the loca
density of state to a shape resembling III-V semiconduct
see Fig. 3.

The collision delay is very sensitive to a value of t
impurity potentialv. Using ~20!, one can rearrange the co
lision delay~25! as

D t52ImF tR ]

]v

1

tRG5Im

v
]

]v
^0uG0

Ru0&

12v^0uG0
Ru0&

. ~31!

Apparently, the collision delay will be long for potentials fo
which the denominator 12v^0uG0

Ru0& goes to zero. For
these values of potentialv, the impurity behaves like a reso
nant level close to the conductivity band edge.

For model function~30!, the real part of the local Green’
function at the band edgev50 equals20.185 1/eV. For
potentialsv,25.4 eV, an impurity has a bound state. F
v.25.4 eV, there is a resonant level. In our calculations
use valuev525.35 eV. In Fig. 4, the energy dependence
D t evaluated from~31! is compared with the lifetimet from
~28!. In Fig. 4 one can see thatD t /t;0.1, therefore appre
ciable virial corrections appear already for assumed conc
tration of resonant levelc51026 per site.

The strong dependence of the collisional delay on the
sition of the resonant level leads to a strong dependenc
virial corrections on the impurity potential, see Fig. 5. Su
changes of the impurity potential can be achieved, for

FIG. 3. Local Green’s function. The imaginary part of loc
Green function~dotted line! has a low density of state at the ban
edgev;0 corresponding to low effective massm50.2, and a high
shoulder at higher energies simulating for satellite minima. The
part~full line! has a finite value of;20.185 1/eV and is nearly fla
at the vicinity of the band edge.
s,

e
f

n-

-
of

-

stance, by a hydrostatic pressure.8 The impurity concentra-
tion and the hydrostatic pressure can be thus used to co
magnitude of virial corrections.

IV. QUASIPARTICLE PICTURE

From the analysis of the scattering by the Koster-Sla
impurity, we have found that the largest virial correctio
appear for resonant levels. Resonant levels, however,
result in large values of theT matrix, as one can see in Fig
6. At the band edge RetR;2400 eV and ImtR;230 eV. In
particular, the real part of theT matrix is large compared to
potentialv525.35 eV. For such large values of theT ma-
trix, the impurity scattering affects the electronic band stru
ture. To take this effect into account we have to treat el
trons as quasiparticles.

A. Averaged T-matrix approximation

The multiple scattering by impurities has been describ
in detail already within Green’s functions.9 In the averaged
T-matrix approximation~ATA ! that corresponds to our ap
proximation of scattering rates, the self-energy equals
averaged value of theT matrix,

al

FIG. 4. Collision delay and lifetime as function of energy. E
cept for a shift by an order of magnitude, the collision delay~full
line! has nearly the same energy dependence as the lifetime~dashed
line!.

FIG. 5. Virial and quasiparticle corrections for electron ener
100 meV above the band edge and concentrationc51026. The
virial correction~dashed line! is greater than 1 for resonant level
v.25.4 eV, which corresponds to positive collision delay. Qua
particle renormalizationz ~dotted line! nearly equals the virial cor-
rection. In fact they differ less than by 0.8%.
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SR5cTR. ~32!

SinceTR5( r ur &tR(r )^r u, we can write the self-energy as

SR5(
r

ur &sR~r !^r u. ~33!

B. Energy renormalization

The quasiparticle energy that describes the propaga
given by the effective ‘‘Hamiltonian’’H01cT reads

«k5ek1ResR~ek!. ~34!

The imaginary part of the self-energy provides the lifetim

1

t
522ImsR~ek!, ~35!

which is identical to the Fermi golden rule value~27!.
In Fig. 7 one can see that the effect of impurities with t

resonant level on the band structure is rather profound.
major effect is the overall shift of the band. This shift do
not influence bulk properties of homogeneous crystals
cause it is compensated by a shift of chemical potential.

The energy renormalization leads to quasiparticle corr
tions to velocity

u5
]«k
]k

5”
k

m
. ~36!

FIG. 6. T-matrix near band edge. The real part RetR is in full
line, the imaginary part ImtR is in dashed line.

FIG. 7. Quasiparticle energy~full line! for resonant levels,
v525.35 eV, of concentrationc51026. Bare kinetic energyek
~dotted line! serves as an eye guide.
n

e

e-

c-

Taking the momentum derivative from~34! one finds the
renormalized velocity as

u5z
k

m
, ~37!

wherez is the wave-function renormalization

z~k!511
]ResR~v!

]v U
v5ek

. ~38!

With respect to transport properties, the velocity ren
malization is the most important quasiparticle correction a
determines the drift of quasiparticles between collisions. T
wave-function renormalization as a function of the impur
potential is presented in Fig. 5. There is a striking similar
of the wave-function renormalization and the magnitude
virial corrections.

In the above discussion we have ignored self-consisten
In Appendix A it is shown that for the weak scatterin
1/t→0, the above formulas are identical to those result
from self-consistent treatment. In Appendix B we also der
a formula that connects virial correction 11D t /t with qua-
siparticle renormalizationz. This formula explains similar
magnitudes of these two corrections.

V. QUASIPARTICLE BOLTZMANN EQUATION
WITH COLLISION DELAY

The similarity of magnitudes of quasiparticle and viri
corrections show that both corrections have to be include
the transport equation within the same accuracy. It is qu
easy to guess such a transport equation. The quasipa
renormalization affects the drift between collisions, therefo
it enters the transport equation as a renormalization of ve
ity ~37!. The virial corrections enter the scattering integra
like in ~2!. The transport equation that includes both corre
tions reads

] f

]t
1z

k

m

] f

]r
2

]f

]r

] f

]k

52
f

t
1
1

t

2p2

k2 E dp

~2p!3
d~ upu2uku! f ~p,r ,t2D t!.

~39!

Although this equation has the classical form~2!, its compo-
nentsz, t, andD t are given by quantum-mechanical micr
scopic dynamics. One can also view~39! as a phenomeno
logic equation with momentum-dependent parametersz,
D t , andt.

Beside the transport equation, one also needs a relatio
observables to the distribution functionf . From the equation
of continuity one finds that the physical density includes o
virial corrections,

n5E dk

~2p!3 S 11
D t

t D f , ~40!

while the density of particle current has only quasiparti
corrections
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j5E dk

~2p!3
z
k

m
f5E dk

~2p!3
]«

]k
f . ~41!

From the energy conservation one finds that the energy
sity includes both corrections

E5E dk

~2p!3 S 11
D t

t D ~«1f! f . ~42!

Both conservation laws are in Appendix C.
From the set of equations~39!–~42! one can evaluate

properties of electron gas or liquid in a similar manner as
uses the BE to this end. To demonstrate such an applica
in the next section we evaluate the dielectric function.

VI. DIELECTRIC FUNCTION

The virial corrections influence a response of the sys
to perturbations. The time nonlocality of the scattering in
gral emerges in nonstationary processes. The simplest b
important process is linear screening of external field
scribed by dielectric functionk r .

The virial corrections enter the dielectric function in tw
ways, from the transport equation~39! and from functional
~40!. To demonstrate both mechanisms, we evaluatek r from
its definition.

An electrostatic external potential

f0~r ,t !5f0e
iqx2 ivt ~43!

creates a perturbation in the electron density

ñ~r ,t !5ñeiqr2 ivt. ~44!

The perturbation in density creates the Coulomb potentia

f̃~r ,t !5f̃eiqr2 ivt5
e2

kq2
ñeiqr2 ivt ~45!

that adds to the external one so that the internal field rea

f5f01f̃5f01
e2

kq2
ñ. ~46!

Here,k is the permittivity of the host crystal. From the de
nition

f5
f0

k r
, ~47!

one finds the dielectric function to be

k r512
e2

kq2
ñ

f
. ~48!

A. Perturbation of quasiparticle distribution

To evaluate the perturbationñ of the physical densityn,
we have to find the linear perturbation of the quasiparti
distribution,

f̃ ~k,r ,t !5 f̃ ~k!eiqr2 ivt, ~49!

caused by potentialf. To this end we use linearized tran
port equation~39!,
n-

e
n,

m
-
an
-

s

e

S 2 iv1 iz
kq

m
1
1

t D f̃ ~k!2 iqf
] f 0~k!

]k

5
1

t

2p2

k2 E dp

~2p!3
d~ upu2uku!eivD t f̃ ~p!. ~50!

The momentum derivative of the equilibrium distributio
f 0(k)5 f FD(«k) reads

] f 0~k!

]k
5z

k

m

] f FD~«k!

]«k
. ~51!

The perturbationf̃ depends only on the absolute value
momentumuku and the angle between momentumk and
wave vectorq. We denotes5kq/ukuuqu ands85pq/upuuqu,
and integrate over the energy-conservingd function so that
the transport equation simplifies as

S 2 iv1 isz
ukuuqu
m

1
1

t D f̃ ~ uku,s!2 isz
ukuuqu
m

f
] f FD~« uku!

]« uku

5
1

2t
eivD tE

21

1

ds8 f̃ ~ uku,s8!. ~52!

With abbreviationsz(uku/m)[u, uqu[q, and skipping argu-
ment uku in distributions, equation~50! reads

S 2 iv1 isqu1
1

t D f̃ ~s!2 isquf
] f FD
]«

5
1

2t
eivD tE

21

1

ds8 f̃ ~s8!. ~53!

The angular dependence of the distribution is easily fou
from ~53!

f̃ ~s!5

isquf
] f FD
]«

1
1

t
eivD tF̃

2 iv1 isqu1
1

t

, ~54!

where

F̃5
1

2E21

1

ds f̃~s!, ~55!

is an angle-averaged distribution. Integrating overs, one
finds from ~54! a condition for the angle-averaged distrib
tion

F̃5@11~12 ivt!J#f
] f FD
]«

2eivD tJF̃, ~56!

where

J5
i

2qut
lnS v1

i

t
2qu

v1
i

t
1qu

D . ~57!
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Since the BE holds only for slowly varying fields, we ca
linearize inD t , e

ivD t'11 ivD t . The angle-averaged distr
bution from ~56! then results

F̃5f
] f FD
]«

11~12 ivt!J

11~11 ivD t!J
. ~58!

Now the perturbation of the quasiparticle distribution is fu
determined by~54! and ~58!.

B. Perturbation of density

Perturbation of the electron density is found from~40!

ñ52E dk

~2p!3
f̃ ~k!5

1

p2E
0

`

dk k2F̃~k!S 11
D t

t D . ~59!

The factor of two stands for sum over spins.
For simplicity we assume the limit of low temperature

] f FD
]«
→2d~«2EF!52

m

zk
d~k2kF!, ~60!

where one can easily integrate out the momentum

ñ52f
mk

p2z S 11
D t

t D 11~12 ivt!J

11~11 ivD t!J
U
k5kF

. ~61!

Using ~61! in ~48! one directly obtains the dielectric func
tion.

C. Long wavelength limit

Now we focus on long wavelength limit,q→0. To evalu-
ate this limit from~61! we first rearrange~57! as

J52
1

12 ivt (
x56 i [qut/~12 ivt!]

1

x
ln~11x!

→2
1

12 ivtF12
1

3 S qut

12 ivt D 2G . ~62!

In the long wavelength limit, the dielectric function reads

k r511

e2mkF
kp2z S 11

D t

t D
q2
11 ivD t

12 ivt
23vS v1

i

t D S 11
D t

t D m2

kF
2z2

,

~63!

wherez, t, andD t are values at the Fermi level.
In the static casev50, the dielectric function is of form

k r511(qs
2/q2). From~63! one finds that the Thomas-Ferm

screening length 1/qs is

qs
25

e2mkF
kp2

1

z S 11
D t

t D . ~64!

Part e2mkF /kp2 gives the standard Thomas-Fermi scree
ing, factors 1/z and 11(D t /t) provide quasiparticle and
virial corrections, respectively. As one can see from Fig.
quasiparticle and virial corrections are nearly equal, there
they mutually compensate in the Thomas-Fermi screen
length ~64!
-

,
re
g

qs
2'

e2mkF
kp2 . ~65!

For homogeneous perturbations,q50, the dielectric func-
tion is of form k r512$vp

2/@v(v1 i /t)#%. From ~63!, the
plasma frequencyvp results

vp
25

e2kF
3

3kp2m
z. ~66!

There is only the quasiparticle correctionz.
Note that virial corrections to the Thomas-Fermi scree

ing qs and plasma frequencyvp appear in rather paradoxica
way. While the static screening has virial corrections@due to
n@ f #, Eq. ~59!#, the plasma frequency describing nonstatio
ary behavior has none. This is because in the homogen
case,q50, the virial corrections fromn@ f # and the scatter-
ing integral mutually cancel due to particle conservation la

D. Virial correction to Fermi momentum

The Thomas-Fermi screening length~64! and the plasma
frequency~66! are expressed in terms of the Fermi mome
tum. Additional virial corrections to those quantities appe
if one rewrite them in terms of physical densityn.

In general, the Fermi momentum is a parameter of
quasiparticle distributionf , therefore it is always related to
the free density. For the parabolic band, the Fermi mom
tum results from~3! as

kF5A3 3p2nfree. ~67!

For sufficiently low densityn, the ratioD t /t changes a little
from zero to the Fermi momentum. In our case,D t /t
changes by 7% for densityn51016 cm23. This weak depen-
dence allows us to take the approximation

D t~k!

t~k!
5

D t~kF!

t~kF!
. ~68!

From~40! one finds that the free and physical densities rel
as

n5nfreeS 11
D t

t D , ~69!

and the Fermi momentum reads

kF5 3A3p2n

11
D t

t

. ~70!

In terms of the physical density, the Thomas-Fer
screening length~65! regains corrections

qs
2'

e2m

kp2
3A3p2n

11
D t

t

. ~71!

In contrast, the plasma frequency in terms of physical d
sity regains its free-particle value
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vp
25

e2n

km

z

11
D t

t

'
e2n

km
. ~72!

E. dc conductivity

Compensation of virial and quasiparticle corrections a
appears for dc conductivitysdc. Although this compensation
is a direct consequence of the dielectric function, we disc
it in detail for its experimental importance.

The conductivity relates to dielectric functionk r as

sdc5 lim
q,v→0

2 ivk~k r21!. ~73!

This known relation can be recovered from the equation
continuity ~C19! that yieldsivñ2 iq j50, wherej is a flow
of particles. The electric fieldF results from the electrostati
potential aseF5 iqf. The conductivity then reads

sdc52
e j

F
5 i

e2v

q2
ñ

f
. ~74!

Comparing~74! with ~48! one recovers~73!.
Sendingq→0 andv→0 one finds the standard relaxatio

time formula with the quasiparticle correction

sdc5
e2kF

3t

3p2m
z. ~75!

In terms of the physical density,

sdc5
e2nt

m

z

11
D t

t

'
e2nt

m
, ~76!

virial and quasiparticle corrections mutually compensate.

VII. SUMMARY

We have shown that for scattering by resonant levels
neutral impurities the virial and quasiparticle corrections
of the same magnitude. We have proposed an intuitive m
fication of the BE that includes both corrections. A propos
modification of the BE has quasiparticle corrections in
drift term ~as in the Landau theory! and virial corrections in
the scattering integral~as in the classical theory of dens
gases!. The modified BE can be solved as simply as t
standard BE.

An interplay of virial and quasiparticle corrections ha
been discussed on the dielectric function. Various comp
sations of virial and quasiparticle corrections has been d
onstrated on the static screening, plasma frequency, an
conductivity. Careful measurements of the dielectric funct
in III-V semiconductor with resonant levels can reveal th
interplay. Sensitivity of resonant levels to a hydrostatic pr
sure makes it possible to control the magnitude of virial a
quasiparticle corrections in a single sample.

The way we have introduced the transport equation~39!
does not guarantee its validity. There are two fundame
questions one has to ask:~i! Has the time nonlocality of the
quantum-mechanical scattering integral really the same f
as the classical collision delay?~ii ! Are quasiparticle and
o

ss

f

f
e
i-
d
e

e

n-
-
dc
n

-
d

al

m

virial corrections included in a consistent manner? No int
tive argument can give satisfactory answers to these q
tions. To prove yes answers for both questions one ha
recover the transport equation from quantum statistics. S
a microscopic theory is in the second paper of this seque
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APPENDIX A: SELF-CONSISTENT ATA

Here we show that for weak scattering, (1/t)→0, non-
self-consistent formulas from Sec. V B result also from t
self-consistent generalization of the self-energy. The eff
of impurities on the band structure affects the propagation
the electron in the region between impurities. This chan
should be included in the propagator that enters theT matrix.
Instead of the unperturbed propagatorG0

R , the T matrix in
the self-energy~32! should be constructed from the fu
propagatorGR,

tself
R 5v1v^0uGRu0&tself

R , ~A1!

whereGR is given by the Dyson equation,

GR5G0
R1G0

RSself
R GR, ~A2!

and

sself
R 5ctself

R . ~A3!

This approximation is called the self-consistent ATA.9

For the KS impurity, where the self-energy has no m
mentum dependence, the self-consistency is simply achie
by a complex shift of the energy argument

GR~v!5G0
R~v2sself

R !. ~A4!

From ~A4! one finds thattself
R (v)5tR(v2sself

R ), therefore

sself
R ~v!5sR~v2sself

R !. ~A5!

1. Energy

Within the self-consistent treatment the quasiparticle
ergy is defined as10

«k5ek1Resself
R ~«k!. ~A6!

Using ~A5!, one can rewrite~A6! as

«k5ek1ResR~«k2Resself
R !. ~A7!

In argument of the self-energy we use definition~A6! to
recover Eq.~34!.

2. Wave-function renormalization

Within the self-consistent treatment, the wave-functi
renormalization results as10
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z5
1

12
]Resself

R

]v
U

v5«k

. ~A8!

From ~A5! follows

]Resself
R

]v
U

v5«k

5
]ResR

]v U
v5ek

S 12
]Resself

R

]v
U

v5«k
D ,

~A9!

which can be rewritten as

1

12
]Resself

R

]v
U

v5«k

511
]ResR

]v U
v5ek

. ~A10!

The wave-function renormalization~A8! is thus identical to
~38!.

3. Lifetime

Within the self-consistent treatment, the inverse lifetim
results as10

1

t
5zImsself

R ~«k!. ~A11!

From ~A5! and ~A6! one finds

sself
R ~«k!5sR~«k2Resself

R 2 i Imsself
R !

5sR~ek2 i Imsself
R !5sR~ek!

2 i Imsself
R ~«k!

]sR

]v U
v5ek

. ~A12!

In the last line we have used linear approximation in
imaginary part of the argument which holds for weak sc
tering, (1/t)→0.

The imaginary part of~A12!

Imsself
R ~«k!5ImsR~ek!2Imsself

R ~«k!
]ResR

]v U
v5ek

~A13!

can be rearranged as

zImsself
R ~«k!5ImsR~ek!. ~A14!

Formula~A11! is thus identical to~35!.

APPENDIX B: QUASIPARTICLE VERSUS VIRIAL
CORRECTIONS

Although virial and quasiparticle corrections describe d
ferent features of the quasiparticle transport, both of them
linked to energy derivatives of theT matrix. From this link
follows the similarity of their magnitudes.

One can rearrange formula~25! in the way that reveals
the relation of virial correction 11(D t /t)
to wave-function renormalization z. Writing
~25! as D t5Im(1/tR) (]tR/]v)5(1/2i ) @ (1/tR) (]tR/]v)
2 (1/tA)(]tA/]v)] and the inverse lifetime ~28! as
e
-

-
re

(1/t)52cImtR5 ic(tR2tA), @ tA is complex conjugate to
tR#, one obtains that

D t

t
5 ic~ tR2tA!

1

2i S 1tR ]tR

]v
2
1

tA
]tA

]v D
5

]

]v

c

2
~ tR1tA!2

c

2S t
A

tR
]tR

]v
2
tR

tA
]tA

]v D
5

]ResR

]v
2
c

2S t
A

tR
]tR

]v
2
tR

tA
]tA

]v D , ~B1!

where we have used that ResR5c/2(tR1tA). From~20! one
finds

]tR

]v
5tR

2 ]

]v
^0uG0

Ru0&, ~B2!

which substituted into~B15! provides

D t

t
5

]ResR

]v
2cutRu2Re

]

]v
^0uG0

Ru0&. ~B3!

Formula ~B3! makes the connection between virial an
quasiparticle corrections. One can see that at least two
iting regimes can be distinguished according to relative v
ues of the first and the second terms in~B3!.

For weak potentials when the self-energy can be treate
the Born approximationtR'v, i.e., sR5cv2^0uG0

Ru0&, the
virial corrections vanish because the first and the sec
terms mutually cancel. In contrast, the quasiparticle corr
tions remain. Since most of quasiclassical transport eq
tions have been derived within the Born approximation~or
single-loop approximation for particle-particle interaction!, it
is quite natural that they do not include virial corrections.

The scattering by resonant levels is far from the Bo
approximation, for the model and parameters we cons
hereutRu;1003uvu. In this case, the second term of~B3! is
of the order of 1023 while the first one is of the order o
1021. Accordingly, the second term can be neglected, i
virial and quasiparticle corrections are of the same mag
tude.

APPENDIX C: CONSERVATION LAWS

1. Equation of continuity

In inhomogeneous and nonstationary system, there
currentsj due to which local density of electronsn changes.
Here we prove that density~40! and current~41! are consis-
tent with the BE~39! obeying the equation of continuity.

Under integration over momentum, term] f /]t turns into
]nfree/]t, and the scattering integrals turn into2]ncorr/]t,
see Sec. II. Equation~39! then yields

]n

]t
1E dk

~2p!3S z km ] f

]r
2

]f

]r

] f

]kD50. ~C1!

The second term in the brackets vanishes what follows fr
its integration by parts,

]n

]t
1

]

]r E dk

~2p!3
z
k

m
f50. ~C2!
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The second term is the divergency of the currentj
given by~41!. Equation~C2! is thus the equation of continu
ity.

2. Conservation of energy

Here we prove that for homogeneous system the ene
of electrons~42! changes with the fieldf in a consistent
way, i.e.,]E/]t5n(]f/]t). First we take time derivative o
equation~42!,

]E

]t
5E dk

~2p!3
]f

]t
f S 11

D t

t D
1E dk

~2p!3
~«1f!

] f

]t S 11
D t

t D . ~C3!
f
e,
gy

The second term of~C3! vanishes. To show this, we mu
tiply the BE ~39! with the quasiparticle energy«1f and
integrate over momentum

E dk

~2p!3
~«1f!

] f

]t
52E dk

~2p!3
~«1f!

] f

]t

D t

t
.

~C4!

We have used that contributions of nongradient terms of
scattering integrals mutually cancel because of the ene
conservingd function.

In the first term of~C3! we take out the field, the rest o
the integral is just density~40!. We have thus proved that th
total energy changes in thermodynamically consistent wa

]E

]t
5n

]f

]t
. ~C5!
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