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Quasiparticle transport equation with collision delay. I. Phenomenological approach
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For a system of noninteracting electrons scattered by resonant levels of neutral impurities, we show that
virial and quasiparticle corrections have nearly equal magnitudes. We propose a modification of the Boltzmann
equation that includes quasiparticle and virial corrections and discuss their interplay on a dielectric function.
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[. INTRODUCTION we show that the non-self-consistent treatment used in this
paper and the more advanced self-consistent treatment are

Elastic scattering of electrons by impurities is the simplestequivalent within the assumed precision. In Appendix B, we
but still very interesting dissipative mechanism in semicon-derive the derived optical theorem which explains compa-
ductors. Its simplicity follows from the absence of the impu-rable magnitudes of the virial and the quasiparticle correc-
rity dynamics, so that individual collisions are described by &fions. In Appendix C, we verify that the presented modifica-
motion of an electron in a fixed potential. On the other handtion of the BE is consistent with the equation of continuity
due to a large variety of impurities and their accessible con2nd the energy conservation.
centrations, impurity-controlled transport regimes span from
simp_le response characterized by a mean free path to a weak Il. CLASSICAL COLLISION
localization.

Let us recall a quasiclassical picture of impurity con- Since the quantum-mechanical theory with intuitively
trolled transport. The basic effect of impurities on transportclear virial corrections is still missing, the only experience
in crystals consists in abrupt changes of directions of elecfor nonequilibrium systems one can gain from is the virial
tron trajectories. Within the Boltzmann equati@BE), this  corrections to the BE in the classical statistical theory of
effect is described by scattering integrals. At higher concenmoderately dense gases. Within accuracy to the second order
trations, impurities influence a band structure. This correcvirial coefficient, these corrections were introduced already
tion can be built into the BE if one accepts that elementaryon the break of centuries by Clausfuslere we modify his
excitations are not simple electrons but electronlike quasipam@pproach in two aspects. First, instead of binary collisions of
ticles in the spirit of the Landau theory of Fermi liquitis. molecules we assume electron-impurity events. Second, in-
Finally, impurities attract/expel electrons to/from their vicin- stead of space nonlocality, we reformulate virial corrections
ity which reduces/increases a density of freely traveling elecin terms of time nonlocality.
trons. Such changes in the effective density of electrons are According to Clausiu$,one has to take into account that
covered by virial corrections that are accounted for via nontwo colliding molecules are not at the same space point, but
local (in time and spadecorrections to scattering integrals. at a distance of sum of their radii. In other words, the scat-
Although quasiparticle and virial corrections to the BE aretering integral has to be nonlocal in space.
known for decades, transport theory that would include both A similar argument about nonlocality of scattering event
in the same time is still missing. Our aim is to fill this gap. In applies to collisions of electrons with impurities. A sketch of
this paper we focus on an intuitive approach. In the second classical trajectory of a colliding electron is in Fig. 1. Be-
paper of this series we confirm equations presented heffiere the electron reaches the impurity potential of a finite
from the quantum statistics. range, its trajectory is a straight line. Then it makes a curve

To introduce basic concepts, we first discuss classicah the impurity potential and again follows a straight line in
virial corrections to the BE, Sec. Il. In particular, we show a new direction. Within the BE, this process is approximated
that nonlocality of scattering events can be described iy an effective event that is local in time and space. Of
terms of a collision delay. In Sec. Ill we review Wigner's course, within the local approximation, one has to sacrifice
concept of collision delay and estimate the magnitude oflynamics of the electron during the collision. More serious
virial corrections for resonant levels in I1I-V semiconductors. neglect follows from the fact that within the local approxi-
In Sec. IV we show that virial corrections go hand-in-handmation the asymptotic motion along the outgoing line cannot
with quasiparticle corrections having nearly equal magni-be properly matched with the motion along the incoming
tudes. In Sec. V, an intuitive modification of the BE and of line.
the most important observablédensity, current, energys Let us find a correct matching of incoming and outgoing
proposed. In Sec. VI, we discuss virial corrections to translines. To this end, we extrapolate the incoming and outgoing
port coefficients. In Sec. VII we summarize. In Appendix A, lines and find their crossové{. In general, such a crossover
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electron leaves the momentum This happens at the begin-
. ning of the collision, thug,,=t.
v In the scattering-in everfithe first term on the r.h.s of
(2)], an electron of momentump enters a collision at'g‘k
leaving it attg‘lit with momenturnrk. The scattering-in integral
gives a probability that at time an electron enters the mo-
mentumk. This happens at the end of the collision, thus
ta=t. From toy'~t=A(p,k), one finds that
tg‘k=t—At(p,k). The time argument in the scattering in is

. o . ~ thus shifted by the collision delaj;(p.k). A modified BE
FIG. 1. Scheme of classical collision. The circle represents limtnen reads

its of an impurity potential, the full line is an electron trajectory, the
dashed lines are extrapolations of incoming and outgoing trajecto- af kot g of dp

ries. ot kat oot . .
at + madar JIr ok (277)3 Ppkf(p,r,t Ay)

need not exist; however, it always exists for spherical poten- dp
tials to which we limit our attention. The crossovérgives — J — 3 Prpf(k,r 1), 2
us the coordinate at which we have to place the effective (2m)
event. As one can see in Fig. 1, the crossoXedoes not ) .
coincide with the center of impurity. Using the local scatter-  E/€ctrons trapped by impurities are excluded from free
ing integral of the BE, the scattering event is placed in thdhotion. With a finite collision delay, one has to deal with
center of impurity, thus the shift of the center of scatteringtWO _dlstlngws_hed local densities of electrons. Beside the
event is the first neglect that influences the motion of arPhysical densitn=N/Q (number of electromN per volume
electron in the asymptotic region. 1), there is an effective density

The second neglect of the local approximation is not vis-

ible from the trajectory in Fig. 1. The electron following the Nped T t):J dk F(k,r 1) 3)
extrapolated incoming line passes through the crossSéwar freet ™ (2m)3

time t". The electron on the extrapolated outgoing line
passeX at timet®! In generalt"#t°“: however, the time Wwhich equals the local density in the free space between
locality of scattering integrals in the BE means thatimpurities.
tin=tout For finite collision delayA,, a share of electrons trapped

One finds two misfits: in the position of the event, and inby impurities can change in time. Accordingly, the free den-
the matching of times. Although these two misfits usuallySity Nge does not conserve. Froif2) one finds that in a
come together, their consequences can be discussed sep@mogeneous but nonstationary system
rately by using special models.

IMNiree dk dp

= P f —A)—f
A. Point traps ot (277)3 (277)3 pk[ (prt t) (pvt)]
First, we assume impurities of a negligible volume with a dk dp af(p,t)
capability to trap electrons for a certain time. In this case, == 2m)3 (2m)3 P gt
there is no misfit in the position bwt"'—t"=A,>0.
Using intuitive arguments, the collision delay can be d dk dp
incorporated into the scattering integrals of the BE. A bal- == ﬁf 2m3 (2m)° Pokdf(p,b). 4
ance equation of the Boltzmann type for scattering by impu-
rities reads The quantity that conserves is the physical density,
of k of &d) Jf dp in N=Ngeet Neorr (5)
A mar ar K f @me o (P il

which differs from the free density by the density

d .
- | pesPuf k., @ -
Neon™= 27 (ZT)sppkAtf(pyt) (6)
wheref(k,r,t) is a distribution function in the phase space,
risa Coordinatet is a time,k, andp are momentaPkp is that is correlated with |mpur|ty positionsl

the scattering rate fromk to p. Since distributions in the Note that the scattering mechanism enters the relation be-
scattering integrals correspond to initial conditiot{$, is @  tween densityr and distributionf. Without virial correction
time at which an electron enters the scattering filono p. (here represented by correlated densitthe functional

In the scattering-out evefithe second term on the right- n[f] is independent of scattering, singe: Nyee. In the pres-
hand sidgr.h.s) of (1)], an electron of momentukenters a ence of virial corrections one has to keep in mind that a
collision at t,, leaving it attﬁ‘,jt with momentump. The  density of freely traveling electrons does not equal the physi-

scattering-out integral gives a probability that at timan  cal density.
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dp 1 =, 2%
-------------- ncorr:_JWf(pJat)WJO k dkjo de

xf dIP A,
0

] A RgJ’ dp f )

i =—c'— ——f(p.r,
A+ 37 ) @n?'P

, 41 3 Qimp
FIG. 2. Collision with a hard sphere. The full line is a real =-cC ?R Niree™ ~ —¢y Miree- (10
electron trajectory, the dashed lines are effective trajectories used
within the BE. Here, we have denoted Q,,=Qc’(47/3)R?

= Nimp(477/3)R3 the total volume of impurities.

B. Hard spheres The physical content of the correlated density can be

As the second example, we discuss hard-sphere impurgemonstr.ated.on the equation of state. Thel number of elec-
ties. In this case, the incoming and outgoing lines have &ons which hit the surface of the sample is given by the
crossover at the sphere surface. The times match exactifensity of freely traveling electrong., therefore the pres-
t°U'=t"" The only misfit results from the fact that the cross-SureP is given by the equation of state
over is not at the center of the impurity but shifted by the
sphere radius. Here we show that the crossover offset can be P =NirepT- (1)
reformulated in terms of an effective time mismatch so thafrom (5) and(10) we find the relation between the free den-
one can use a unified description of collisions with pointgjty and the total number of particlés
traps and with hard spheres.

A collision with a hard sphere is schematically shown in N
Fig. 2. The real electron trajectory follows the full line. The Nree™ () - 12

L . ; im
scattering integral of the BE describes this event by an elec- P
tron following the dashed line. This effective trajectory The equation of statél1) thus takes the form of the van der
(from A to B) is longer than the real ondérom A to B) by ~ Waals equation,
A=2R?-bZ%

One can include the finite size of impurities into the trans- P(Q = Qimp) =NkgT. (13

port equation in a manner to parallel traps. We approximatgjefjy the negative collision delay simulates the excluded

the trajectory of the electron by the effective traject&®.  \gjume in the van der Waals equation of state.

Since, following the real trajectorB, the electron reaches Note that the correlated density0) is negative. The den-

a next collision sooner by a timé&,/u, we introduce into sty n,. in the free space between impurities is higher than

transport equationt2) a negative time dela\;=—As/U.  the physical densityr which reflects that electrons are ex-

Hereu is an electron velocity. _ pelled from the volume of impurities. It is important to dis-
For the hard-sphere impurities, transport equat®)with  tinguish which density rf;,e Or n) is relevant for individual

the negative collision delay is only an approximation. Let usphysical quantities. For instance, the charge density is given
check how this approximation works for the correlated den{,y 'y while pressure relates ;..

sity. The classical scattering rate on hard spheres reads

(2m)3 R2 lIl. COLLISION DELAY TIME
Ppk:kTé(|k| —|p|)c’uzsim‘}, 7) IN QUANTUM MECHANICS

The classical statistics shows that the nonlocality of scat-

wherec’ =N,/ is an impurity concentratiofnumber of  tering events is approximatively described by the collision

impuritiesN;,, per volume(2), u=k/m is an electron veloc- delay. This concept is ea;ily transferred to the quanturr_1 me-
ity, and ¢ is a scattering anglgak=|k||p|cosd. The inverse chanics, where the collision delay has already been intro-

lifetime follows from (7) as duced by Wignef.He used the maximum of wave packet to
identify the motion of an electron. Now we apply Wigner's
1 dp , ) approach to a neutral impurity to estimate a magnitude of
o= (ZT)BPpk:C umR®. (8)  virial corrections.

The scattering of an electron by a single impurity is de-

The collision delayA;=—Ag/u in angular coordinates scribed by the Scficinger equatioh

reads

(w=Ho=V)(#in+ thouw) =0, (14
2 2 0 where ;,(r)=expgkx is an incoming plane wave, with
A== VR =b"=——Rsinz. ) r=(x,y,2), ¥y is the outgoing partH, is the Hamiltonian

of unperturbed crystal, and is the impurity potential. The
The correlated density fror{6) results incoming plane wave has to be an eigenstate of the crystal,
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(w—Hy) #i,=0, thus the energy equals the kinetic energy of m 1 » o _ )
the incoming plane wavey = ¢,. Then(14) simplifies as Youl 1 V)=~ 55— —j dp e [PRTItR ¢ )elPlrlTept
2m|r|
(€x—Ho) Your= V(¥in+ tow) - (15
— tR(Ek)eik|r|7iekt
A formal solution of equatior{15) read$ 2m]r|
R R K2 R 2
Vou= GE(€) T i, (16 ><exp{—— rl—uf te e 28 H ] (24
4 t" dw|
where “7 %
The outgoing wave passes the initial of coordinates with the
RN\ collision delay
Gol@)= S=H, %0’ an

is the retarded Green'’s function of the host crystal, and
TR=V+VGETR, (18)

is the T matrix.

(29

The collision delay25) depends only on the energy of elec-
tron. This is because the Koster-Slater impurity has a single

As a model potential of the neutral impurity we use thescattering channel of thesymmetry. For a general potential

one proposed by Koster and Sl&tér

=10)v(0l, (19

where|0) is a single orbital at the impurity site. We will use
the convention that lowercase denotes the local elements
operators(that are in uppercagd¢hroughout the paper. For

the Koster-Slater potential, tHe matrix is also restricted to
the selected orbitalT?=|0)t%(0|, and reads

tR=0v +v(0|G{|0)tR= (20)

v
1-v(0[Gg|0)’

To obtain the collision delay, we place the impurity in the
initial of coordinates and express the wave function in the

time representation

m ) .
tR(Ek)elklr\flekt_

_ aikx—igt_

(21)

We have used an asymptotic Green’s function for largeee
Ref. 4,

(r|G§(€)|0)=— ekl

21| 3

to evaluate the outgoing wave frofh6). This approximation

holds for energies, in the parabolic region of the band

structure,e,=k?/2m. The first term in(21) is the incoming
wave ¢;, and the second one is the outgoing pagi;.

V, the collision delay\,; depends also on the scattering angle
as the classical collision deld®).

The collision delay(25) is a quantum counterpart of the
classical collision delay9). Following the analogy between
%I?e guantum and classical approaches to the Boltzmann-like
ransport equations, we introduce the collision de{ap)
into the scattering integral in exactly the same way as in the
classical case. In other words, we expect the transport equa-
tion to be of form(2); however, scattering rateB,,, and
collision delayA; are extracted from quantum collisions.

The rate of scattering by Koster-Slater impurities of con-
centrationc (probability that impurity occupy a sitdollows
from the Fermi golden rule as

Pok=c|tR(e)|?273(ec— €p). (26)

This scattering rate does not depend on the scattering angle,
thus it can be also expressed in terms of the lifetime

2

127
Ppk=;75(|p|—|k|), (27)
where 7 is conveniently evaluated from thle matrix
1
;zc(—Z)ImtR(ek). (29

A. Estimate of virial corrections

From a scattering by a single impurity one can estimate

To see the time delay, we take a linear combination ofthe magnitude of virial corrections. Using formui@) with

wave functions/ so that the incoming patf;, forms a wave
packet of a narrow momentum widih—0,

in(r 0= f dpe [P~ clgixie

1
NETS

. . K2
me'kx"fktexp{ — Z(X_ Ut)z] ) (23)

the quantum scattering raf®7) and collision delay25), one
finds the correlated density

Neorr™ f (_Sf(k) _ (29)
The magnitude of virial corrections is thus measured by a
ratio A,/ 7.

Note that the collision delay is independent from the im-

where u=k/m is an electron velocity. This wave packet purity concentration, while the lifetime is inversely propor-

passes the initial of coordinates &t 0. A corresponding
outgoing wavey,, ; reads

tional to the concentration. Accordingly,/7~c, i.e., mag-
nitude of virial corrections is controlled by the impurity
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FIG. 3. Local Green's function. The imaginary part of local  F|G. 4. Collision delay and lifetime as function of energy. Ex-
Green fUnCtiOr(dOtted |In9 has a low density of state at the band Cept for a shift by an order of magnitude’ the collision darhm
edgew~0 corresponding to low effective mass=0.2, and a high  |ine) has nearly the same energy dependence as the lifétiashed
shoulder at higher energies simulating for satellite minima. The rea|line)_
part(full line) has a finite value of- —0.185 1/eV and is nearly flat
at the vicinity of the band edge. stance, by a hydrostatic pressfiréhe impurity concentra-

. N ) ) ~tion and the hydrostatic pressure can be thus used to control
concentrationc. To be specific, we will assume impurity magnitude of virial corrections.
concentrations- 108 per site.
Now we estimateA;/r for a model local Green’s IV. QUASIPARTICLE PICTURE

function?
From the analysis of the scattering by the Koster-Slater

impurity, we have found that the largest virial corrections

appear for resonant levels. Resonant levels, however, also

result in large values of th& matrix, as one can see in Fig.

6. At the band edge R®~ —400 eV and Inf~—30 eV. In

particular, the real part of th€ matrix is large compared to

3 potentialv = —5.35 eV. For such large values of tiema-
+037°) V1= 2 w1 (30) trix, the impurity scattering affects the electronic band struc-

Here,W=6 eV is a half width of a conductivity band, and ture. To take this effect into account we have to treat elec-

parameters, = 1.2 andbs=— 0.4 serve to model the local ONS as quasiparticles.

density of state to a shape resembling IlI-V semiconductors,
see Fig. 3. A. Averaged T-matrix approximation

_ The collision delay is very sensitive to a value of the  The myltiple scattering by impurities has been described
impurity potentialv. Using (20), one can rearrange the col- iy getail already within Green’s functiodsin the averaged

2 b, b
R Bl et
<0|G0(w)|0>_w[ 2 8 +z+

b
bl—?s) 72+ b,z

2
+ 0(1—22)V—v(1+ b,z

lision delay(25) as T-matrix approximationATA) that corresponds to our ap-
3 proximation of scattering rates, the self-energy equals the
v— (0|GR|0) averaged value of th€ matrix,
A —im R o (31)
t dw tR 1-v(0|G§|0) 15 : ,

Apparently, the collision delay will be long for potentials for
which the denominator 4v(0|G§|0) goes to zero. For . i
these values of potential, the impurity behaves like a reso- - ,' \
nant level close to the conductivity band edge. > 10— | ]

For model function(30), the real part of the local Green’s T_ ‘-\"
function at the band edge=0 equals—0.185 1/eV. For - | y
potentialsv <—5.4 eV, an impurity has a bound state. For
v>—>5.4 eV, there is a resonant level. In our calculations we . | .
use valuey = —5.35 eV. In Fig. 4, the energy dependence of 0'5_6.0 5.5 5.0
A, evaluated from(31) is compared with the lifetime from v (V)

(28). In Fig. 4 one can see that, /7~0.1, therefore appre-

mable virial corrections appear alreaf:iy for assumed concen- gig. 5. virial and quasiparticle corrections for electron energy

tration of resonant levet=10""° per site. 100 meV above the band edge and concentratier,.0~¢. The
The strong dependence of the collisional delay on the povirial correction(dashed lingis greater than 1 for resonant levels,

sition of the resonant level leads to a strong dependence @f>—5.4 eV, which corresponds to positive collision delay. Quasi-

virial corrections on the impurity potential, see Fig. 5. Suchparticle renormalizatiorz (dotted lin@ nearly equals the virial cor-

changes of the impurity potential can be achieved, for in+ection. In fact they differ less than by 0.8%.
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Taking the momentum derivative froif84) one finds the

0 T T L . X
renormalized velocity as
N e k
2 -200 - T u:ZEu (37)
R
=
‘é - 1 wherez is the wave-function renormalization
B
_400 - — 8R60'R(w)
z(k)=1+ —— . (39
L I L | L | L Jw 0= €
-1.0 -05 0.0 0.5 1.0
w (meV) With respect to transport properties, the velocity renor-
. . malization is the most important quasiparticle correction as it
IineFlﬁé?fn;-Twag:lx rﬁ?:m%""igo:negg;;—dhﬁnfal parttRés in full determines the drift of quasiparticles between collisions. The
’ ginary p ' wave-function renormalization as a function of the impurity
SR_CTR (32) potential is presented in Fig. 5. There is a striking similarity
e of the wave-function renormalization and the magnitude of

SinceTR=3|r)tR(r)(r|, we can write the self-energy as  Virial corrections.
In the above discussion we have ignored self-consistency.

In Appendix A it is shown that for the weak scattering
R_ R )
2 Er Ir)o(rrl. (33 1/7—0, the above formulas are identical to those resulting
from self-consistent treatment. In Appendix B we also derive
B E o a formula that connects virial correctiontiA,/r with qua-
. Energy renormalization . . . . . S
siparticle renormalizatiorz. This formula explains similar
The quasiparticle energy that describes the propagatiomagnitudes of these two corrections.
given by the effective “Hamiltonian'Hy+cT reads
ey= €+ RGO'R( €. (34) V. QUASIPARTICLE BOLTZMANN EQUATION
WITH COLLISION DELAY

The imaginary part of the self-ener rovides the lifetime
maginary p gy provi et The similarity of magnitudes of quasiparticle and virial

corrections show that both corrections have to be included in

1
P —2ImaR(ey), (35  the transport equation within the same accuracy. It is quite
easy to guess such a transport equation. The quasiparticle
which is identical to the Fermi golden rule val(&7). renormalization affects the drift between collisions, therefore

In Fig. 7 one can see that the effect of impurities with theit enters the transport equation as a renormalization of veloc-
resonant level on the band structure is rather profound. Thity (37). The virial corrections enter the scattering integrals
major effect is the overall shift of the band. This shift doeslike in (2). The transport equation that includes both correc-
not influence bulk properties of homogeneous crystals betions reads
cause it is compensated by a shift of chemical potential.

The energy renormalization leads to quasiparticle correcdf k of d¢ of

tions to velocity ot Fmoar or ok

(98k k 2
U= K = 36 f 127w dp
x* m (39 | el D)

T

(39

1.0 T T T
l I I Although this equation has the classical fo{2y, its compo-

nentsz, 7, andA; are given by quantum-mechanical micro-
scopic dynamics. One can also vié®9) as a phenomeno-

logic equation with momentum-dependent parameters

Ay, andr.

Beside the transport equation, one also needs a relation of
observables to the distribution functiénFrom the equation
of continuity one finds that the physical density includes only
X \ 1 virial corrections,

0 20 40 60 80 dk A
k(1/pm) — -t
n_f(zw)3(1+ T)f, (40

FIG. 7. Quasiparticle energyfull line) for resonant levels,
v=-5.35 eV, of concentratiom=10"°. Bare kinetic energy,  While the density of particle current has only quasiparticle

(dotted ling serves as an eye guide. corrections
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_f dk dk as 41 o kq+ 1 T —i afo(k)
1= @3 2 ok “D Tlotizot 2t -iad—g
From the energy conservation one finds that the energy den- 1 22 dp A
sity includes both corrections P (—35(|I0| k)e'“Af(p).  (50)
dk A The momentum derivative of the equilibrium distribution
E=| ——3|1+—|(e+¢)f. 42 q
f(27)3 7 (et ¢ (42) fo(K)=fep(e) reads

Both conservation laws are in Appendix C. ot o(K) K of o(e)
From the set of equationé39)—(42) one can evaluate oY _ - TR
properties of electron gas or liquid in a similar manner as one ok m  Jdey
uses the BE to this end. To demonstrate such an application, ~
in the next section we evaluate the dielectric function. The perturbatiorf depends only on the absolute value of
momentum|k| and the angle between momentumand
V1. DIELECTRIC FUNCTION wave vectorq. We denotes=ka/|k|[q| ands’=pd/|p||d],

N S and integrate over the energy-conserviidunction so that
The virial corrections influence a response of the systenthe transport equation simplifies as

to perturbations. The time nonlocality of the scattering inte-

(51)

gral emerges in nonstationary processes. The simplest butan/ ok ||q| | [lql Ifen(ep)
important process is linear screening of external field de- | ~lw+1SZ m f(|k| s)—is m ¢ 96
scribed by dielectric functiot, . K
The virial corrections enter the dielectric function in two Y ,
ways, from the transport equatidB9) and from functional =5.¢ ‘fﬁlds f(|k[,s"). (52)
(40). To demonstrate both mechanisms, we evaluatieom
its definition. _ With abbreviationsz(|k|/m)=u, |gq|=q, and skipping argu-
An electrostatic external potential ment k| in distributions, equatiori50) reads
o1 1) = e 1! (43 dtep
creates a perturbation in the electron density ( —|w+|squ+ f(s)- |squ¢)¥
T(r,t)y=nea ot 44 1 . S
( ) ( ) — zelwAlj dS’f(S ) (53)
-1

The perturbation in density creates the Coulomb potential

2

~ ~ e’ _ . The angular dependence of the distribution is easily found
H(r,t)= c/be'q"""‘:Ezne'qr_'“’t (49 from (53
that adds to the external one so that the internal field reads e 1~
isqup—— +—e'“MF
_ e _ T(S)= de T (54
$=dot p=dot ——n. (46) o 1
K9 —lotisqut —
Here, k is the permittivity of the host crystal. From the defi-
nition where
bo ~ 1M1 -
=" (47) F= —J ds f(s), (55)
r 2 —1

one finds the dielectric function to be . e .
is an angle-averaged distribution. Integrating ogerone

e2 n finds from (54) a condition for the angle-averaged distribu-
Ke=1- Py (48  tion
. N o T_ ; Ifep iwA 1B
A. Perturbation of quasiparticle distribution F=[1+(1-i wT)J]cﬁg —e'“JF, (56)

To evaluate the perturbatiam of the physical density,
we have to find the linear perturbation of the quasiparticlevhere

distribution, _
i
Tk,r,t)="f(k)edriot, (49) i o+ ——qu
J= In - . (57)
caused by potentiap. To this end we use linearized trans- 2qur ot I—+qu
port equation(39), T
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Since the BE holds only for slowly varying fields, we can e’mke

linearize inA,, e “*t~1+iwA,. The angle-averaged distri- qs~ e (65)
bution from (56) then results
_ Ifep 1+(1—iwr)d For homogeneous perturbationss 0, the dielectric func-

= : . 58) tion is of form k,=1—{w?/[w(w+i/7)]}. From (63), the
de 1+(1+iwdyd 59 plasma frequencw,, results
Now the perturbation of the quasiparticle distribution is fully b 3
determined by(54) and (58). , €%kg
wpzmz. (66)
B. Perturbation of density . . . .

) T There is only the quasiparticle correctian
Perturbation of the electron density is found fr¢a) Note that virial corrections to the Thomas-Fermi screen-

ing g5 and plasma frequenay,, appear in rather paradoxical
. (59  way. While the static screening has virial correctipdse to
n[f], Eq.(59)], the plasma frequency describing nonstation-
ary behavior has none. This is because in the homogeneous
case,q=0, the virial corrections frorm[ f] and the scatter-

ing integral mutually cancel due to particle conservation law.

B dk — 1 (* - A,

The factor of two stands for sum over spins.
For simplicity we assume the limit of low temperature

Ifep m
ge Se—Ep)=~— ﬂﬁ(k_ Ke), (60 D. Virial correction to Fermi momentum
where one can easily integrate out the momentum The Thomas-Fermi screening lengt¥) and the plasma
frequency(66) are expressed in terms of the Fermi momen-
- mk A 1+ (1-iwn)d tum. Additional virial corrections to those quantities appear
R AR EF R P WK (61 if one rewrite them in terms of physical density
k=ke In general, the Fermi momentum is a parameter of the
Using (61) in (48) one directly obtains the dielectric func- 9uasiparticle distributiorf, therefore it is always related to
tion. the free density. For the parabolic band, the Fermi momen-
tum results from(3) as
C. Long wavelength limit
. kF:3\/3772nfree- (67)
Now we focus on long wavelength limig— 0. To evalu-
ate this limit from(61) we first rearrang€57) as For sufficiently low densityn, the ratioA;/r changes a little

from zero to the Fermi momentum. In our cask,/r

1 1 changes by 7% for density=10® cm 3. This weak depen-
1—i0T xoxijqifi-ion] X ence allows us to take the approximation
1 1/ qur \? Ak) Ak
loT loT 7(K) (k)
In the long wavelength limit, the dielectric function reads  From (40) one finds that the free and physical densities relate
e’m A as
ik
_14 KT°Z T B ¢
Kr 1+i(uAt i At m2 "’ N=Nreg 1+ 7 ) (69)
QZT—:B(U wot+—||1+— W
or 4 T/ Kez and the Fermi momentum reads
(63)
wherez, 7, andA, are values at the Fermi level. 3 37°n
In the static casa=0, the dielectric function is of form Ke= A (70)
kr=1+(q2/9?). From(63) one finds that the Thomas-Fermi 1+—
screening length &y is
e?mke 1 A In terms of the physical density, the Thomas-Fermi
2 t . . .
Q2= > = _)_ (64) screening lengtki65) regains corrections
KT A T
Parte’mkg/ k72 gives the standard Thomas-Fermi screen- P~ e’m . [37°n (71)
ing, factors 1¢ and 1+ (A./7) provide quasiparticle and S km? A
virial corrections, respectively. As one can see from Fig. 5, 1+ r

guasiparticle and virial corrections are nearly equal, therefore
they mutually compensate in the Thomas-Fermi screeningn contrast, the plasma frequency in terms of physical den-
length (64) sity regains its free-particle value
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) en z e?n virial corrections included in a consistent manner? No intui-
“p="m At% o’ (72)  tive argument can give satisfactory answers to these ques-
+— tions. To prove yes answers for both questions one has to
T recover the transport equation from quantum statistics. Such

a microscopic theory is in the second paper of this sequence.
E. dc conductivity

Compensation of virial and quasiparticle corrections also ACKNOWLEDGMENTS
appears for dc conductivityy.. Although this compensation This work was supported from the Grant Agency of the
is a direct consequence of the dielectric function, we discusg.,qcn Republic under Contract Nos. 202960098 and
it in detail for its experimental importance. 202960021, the BMBF(Germany under Contract No.
The conductivity relates to dielectric function as 06R07450), and the EC Human Capital and Mobility Pro-
oge= lIm —iwk(x,—1). (73 ~ dramme.
q,a)—>0

. . . APPENDIX A: SELF-CONSISTENT ATA
This known relation can be recovered from the equation of

continuity (C19) that yieldsi on—iqj=0, wherej is a flow Here we show that for weak scattering, t~0, non-
of particles. The electric fiel& results from the electrostatic self-consistent formulas from Sec. V B result also from the
potential aseF=iqg ¢. The conductivity then reads self-consistent generalization of the self-energy. The effect
) by ~ of impurities on the band structure affects the propagation of
R ﬂ:i €wn (74) the electron in the region between impurities. This change

de F qT o should be included in the propagator that entersTtineatrix.

Instead of the unperturbed propaga@)g, the T matrix in

Comparing(74) with (48) one recovers73). the self-energy(32) should be constructed from the full

Sendingg— 0 andw— 0 one finds the standard relaxation

R

time formula with the quasiparticle correction propagatorG,
el T t&=v +v(0|GR|O) S, (A1)

UdC_STerZ' (75) whereGR is given by the Dyson equation,
In terms of the physical density, GR:G(F)2+ GSEsRa R (A2)
2 2
enr V4 enr and
Odc— m Atm m ' (76)

1+ - 0 Sei= Clauy- (A3)

This approximation is called the self-consistent ATA.

For the KS impurity, where the self-energy has no mo-
mentum dependence, the self-consistency is simply achieved
by a complex shift of the energy argument

We have shown that for scattering by resonant levels of

impuriti i iparti i GR(0)=G§(w— oty (A4)
neutral impurities the virial and quasiparticle corrections are 0 self/ -
of the same magnitude. We have proposed an intuitive modiz s R _tR(._ R
fication of the BE that includes both corrections. A propose rom (A4) one finds thatsew) =t"(w = oy, therefore

virial and quasiparticle corrections mutually compensate.

VIl. SUMMARY

modification of the BE has quasiparticle corrections in the R _ R _ R

drift term (as in the Landau theoryand virial corrections in Tsei @) =T 0= Oser). AS)

the scattering integrafas in the classical theory of dense

gases The modified BE can be solved as simply as the 1. Energy

standard BE. Within the self-consistent treatment the quasiparticle en-

An interplay of virial and quasiparticle corrections have ergy is defined d§
been discussed on the dielectric function. Various compen-
sations of virial and quasiparticle corrections has been dem- ex= et Reoe(&y). (A6)
onstrated on the static screening, plasma frequency, and dc . i
conductivity. Careful measurements of the dielectric functionUSingd (AS), one can rewrit¢A6) as
in 1I-V semiconductor with resonant levels can reveal this R R
interplay. Sensitivity of resonant levels to a hydrostatic pres- ek= ekt Reo (e~ Reoggp). (A7)
sure _mak_es it possib_le to_contr_ol the magnitude of virial and, argument of the self-energy we use definitioh) to
guasiparticle corrections in a single sample. recover Eq.(34).

The way we have introduced the transport equatiZ®)
does not guarantee its validity. There are two fundamental
questions one has to adk) Has the time nonlocality of the
guantum-mechanical scattering integral really the same form Within the self-consistent treatment, the wave-function
as the classical collision delay) Are quasiparticle and renormalization results &%

2. Wave-function renormalization
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1 (A8) (1/7) =2cImtR=ic(tR—-t*), [t* is complex conjugate to
VA R .
B IReo s t?], one obtains that
90 s 1(1aR 1ath
‘ e s Sl
From (A5) follows T w ®
c c[thatR R ath
IReo IReoR dReo = L Rt o T
self _ _ self , ™ 2(t ) R0 70
Jw _ dw B Jdw -
w=ey W= € 0=g, R
(A9) _Re” ¢t ot =

(B1)

which can be rewritten as
where we have used that &&= c/2(tR+t"). From(20) one

(A10) finds

0=¢ R

1 JReoR

R
. aRea—seIf

Jw

J
= t-—(0/G/0), ®2)

w=g, o
The wave-function renormalizatiofA8) is thus identical to which substituted intdB15) provides
(398).

Ay JReo®
7_ Jw

R|2 J R
3. Lifetime —cltf| Rea—w<O|GO|0). (B3)

Within the self-consistent treatment, the inverse lifetime ] o
results a¥ Formula (B3) makes the connection between virial and

quasiparticle corrections. One can see that at least two lim-

1 R iting regimes can be distinguished according to relative val-
7= ZMogeew). (A11)  yes of the first and the second terms(B®).
) For weak potentials when the self-energy can be treated in
From (AS) and (A6) one finds the Born approximationR~uv, i.e., o®=cv?(0|Gf|0), the

virial corrections vanish because the first and the second
terms mutually cancel. In contrast, the quasiparticle correc-
=0~ ilmogy)=o"(e) t?ons remain. Since'most pf_quasiclassical transport equa-
tions have been derived within the Born approximation
single-loop approximation for particle-particle interacion

is quite natural that they do not include virial corrections.

The scattering by resonant levels is far from the Born

In the last line we have used linear approximation in theapproximation, for the model and parameters we consider
imaginary part of the argument which holds for weak scat-here|t¥|~100x |v|. In this case, the second term @&3) is

R _ R R H R
T €k) = 0 (8= Reo g~ 1IMagyy)

R

R J
—1 |m0'se|f(8k)% (A12)

w= Ek

tering, (1/)—0. of the order of 102 while the first one is of the order of
The imaginary part ofA12) 10", Accordingly, the second term can be neglected, i.e.,
virial and quasipatrticle corrections are of the same magni-
R R R IRes" tude.
IMog{ex)=IMo"(e,) —IMogd ek) o
wisk(AB) APPENDIX C: CONSERVATION LAWS
can be rearranged as 1. Equation of continuity
In inhomogeneous and nonstationary system, there are
R — R 1
ZIMo e &) =M (). (A14) Currentsj due to which local density of electromschanges.
Formula(All) is thus identical td35). Here we prove that densiiy0) and curren{41l) are consis-
tent with the BE(39) obeying the equation of continuity.
APPENDIX B: QUASIPARTICLE VERSUS VIRIAL Under integration over momentum, tewd/Jt turns into
CORRECTIONS dNgeel dt, and the scattering integrals turn intodngg,,/dt,

see Sec. Il. EquatiofB9) then yields
Although virial and quasiparticle corrections describe dif-

ferent features of the quasiparticle transport, both of them are an dk k of a¢ of
linked to energy derivatives of the matrix. From this link E+j (2m)3 Zmar  or ok
follows the similarity of their magnitudes.

One can rearrange formul@5) in the way that reveals The second term in the brackets vanishes what follows from
the relation of virial correcton %(A./7) its integration by parts,
to wave-function renormalization z. Writing 5 5 dk K
(25 as A=Im(14R) (atRow)=(1/2) [ (14R) (ot ow) _n+_f S
~ (M) (atMdw)] and the inverse lifetime (28 as atar] @aEtm 0 (€2

=0. (C1)
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The second term is the divergency of the currgnt The second term dfC3) vanishes. To show this, we mul-
given by(41). Equation(C2) is thus the equation of continu- tiply the BE (39) with the quasiparticle energy+ ¢ and
ity. integrate over momentum

2. Conservation of ener f dk + of = dk + ot A

' gy (27)3(8 ) == (27)3(8 (ki

Here we prove that for homogeneous system the energy (C4

of electrons(42) changes with the field) in a consistent o )
way, i.e.,dE/at=n(a¢lat). First we take time derivative of We have used that contributions of nongradient terms of the

scattering integrals mutually cancel because of the energy-

equation(42), . :
conservingé function.
In the first term of(C3) we take out the field, the rest of
the integral is just densit40). We have thus proved that the
E:f dk ﬁd)f 1+ ﬁ total energy changes in thermodynamically consistent way
ot (271')3 ot T
+f LA P C3 % _n2¢ Cc5
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