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Nonlocal pseudopotentials in complex band-structure and photoemission calculations
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Based on a recently proposed localization procedure, a nonlocal pseudopotential scheme is derived to
calculate potential coefficient\sééé,(IZ) which can be decomposed into terms, each being quadraﬁca'nrd
multiplied by a function of G—G’), thus making them applicable to some important cases where local
potential coefficients are required. Electronic structure calculations for semiconductors are in agreement with
well-known semiempirical local pseudopotential band structures, as shown for GaAs. Nevertheless, the poten-
tial may significantly deviate from the semiempirical results. In order to test wave functions and transition
probabilities, we prove the success of the procedure in a more troublesome case, i.e., applying it to a transition-
metal compound as the experimentally well-investigated layered crystab, Tidgch up to now was not
treated with a pseudopotential. Photoemission spectra within the one-step model are presented using Pendry’s
method of complex band-structure calculation. The latter formalism had to be slightly generalized for the
quasilocal properties of the potential. The agreement of the spectra with experimental data shows this method
to be a reliable and practical tool to use nonlocal pseudopotentials for conduction-band wave functions of
electron spectroscopielsS0163-18207)04408-1

[. INTRODUCTION successfully treated in the pseudopotential scheme.
In this paper we report our applications of the pseudopo-

The widely used empirical local pseudopotential§ as, tential of Bachelet, Ceperly, and Chiocchetti to GaAs for the
e.g., introduced by Cohen and Bergstredéame attractive reason of comparing it with the standard local potential, and
because of their simplicity, relying only on a few elementsto the layered crystal TiSdor showing its success in treat-
derived from fitting to optical data. The property of being ing complex systems. We briefly outline the conversion from
local allows for a reduction of computational efforts. This is a nonlocal to a quasilocal potential of the solid.
not relevant in standard band-structure determinations, but it
is helpful in tasks which need a band structure computation
as a single and often repeated sttpnd crucially arises in
the computation of complex band structures as needed, e.g., The matrix elements of the separable generalized norm-
in the calculation of the photoemission spetta of the  conserving pseudopotentials by HamYnare calculated as
spectra of elastically diffracted electrons at very low energies
(VLEED).%81! Especially in the latter case the scattering ©
states are conveniently obtained via Pendry’s technique to (d,|V|d,)=>, > de dr' @ (N)Ym(H)V(r)
solve the inverse problem for the complex band structure, =0 m=-I
which in its simplest form requires a local potential. S(r—r")

In view of these advantages, two drawbacks prove to be x—zyl*m(F' )cpz(F M. )
cumbersome in actual applications: first, the lack ofadn r
initio base, and, second, the problem of generating the po-

tential coefficients. Apart from the tabulated zinc-blende po-1NiS potential is local im and nonlocal ing and ¢. Replac-

tentials, suitable coefficients have to be found by an unsatid"9 Ed-(1), Bachelet, Ceperley, and Chiocchetti introduced a
fying trial and error procedure. Depending on the syster{oCal Pseudopotential matri
under consideration, it may not converge at all.

In contrast to this situation, a well-tested technique for the
construction ofab initio atomic pseudopotentials exisfs’
They depend principally on angular momentum in a nonlocal
way, which would prohibit an application to the above class %
of problems. However, recently a method was presented to
convert these potentials to a local Hamiltonian atomic
potential’® It was intended to serve Monte Carlo simula- which reproduces the action of the nonlocal pseudopotentials
tions. We could benefit from that development in construct-with respect to the angular-momentum dependence. Outside
ing crystal potentials which, after a simple generalization ofthe core, the radial functiore(r) andb(r) must vanish, and
Pendry’s method, are conveniently applied to electron spea:(r) should asymptotically vanish asz,/r (Z, is the va-
troscopy. With a straightforward determination of the poten-lence charge The three unknown functions can be deter-
tial coefficients in a plane-wave basfswe are able to gen- mined by requiring that the three lowdstadial eigenfunc-
erate a potential for layered dichalcogenides, hitherto notions u;(r) and eigenvalue€, of the radial Schrdinger

Il. METHOD OF CALCULATION

<<D1|V|<I)2>=deJ dr'(®q|r'ys(r—r")

1 L2] .
v(r)—EVa(r)Ver(r)?<r|<1>2>, (2
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equation are identical for both pseudopotentials. This restric- TABLE I. Pseudopotential coefficients for arsenic. Units are
tion leads to the following system of three differential equa-(27/a) (a is the lattice constapfor the first column, Hartree for

tions: the next column, and HartréBohr)? for the last three columns.
d? I1+1) da/d 1 2 v a uld ul@
agz—(ath) (r2 )+E m—r)—z(u—v.) u=0, ° ° ° °

0 —0.016 44 0.007 72 0.000 00

3 3 —-0.116 79 —0.012 69 0.007 62 0.003 03

with V, being the norm-conserving pseudopotential by 4 -0.06921 —-0.01164 0.006 58 0.002 79

Hamannt’ Choosing the simple analytic forma(r) 8  —0.00346 —0.00823 0.00348  0.00203

=agexp(—(r/ry)*), ap=0.9,r,=1.0, andk= 2, proposed in 11 0.01010 —0.006 35 0.002 01 0.001 59

Ref. 18, Eq.(3) for I=0 and 1 is used to determirieand 12 0.01232  —0.005 82 0.001 64 0.001 47

v 16 0.016 09 —0.004 12 0.000 60 0.001 08

" , 19 0.01589 —0.00318 0.000 18 0.000 86

pmad | o 2 v, 20 0.01555 —0.002 92 0.00008  0.000 80

2uq 2uy 2r ' 24 0.01336 —0.002 06 —0.000 13 0.000 61

reu” reuf—rup o=V r? _ _ N
b——a+a|(|+1)u| +a [+ 1y, BT the potential. The rearrangement of the electronic densities

of free atoms to the electronic density in a crystal could be
We adapted the atomic pseudopotential to the solid by calprincipally obtained by self-consistency loops. In a short cut,
culating the atomic matrix eIement$I2+é|V|IZ+é'> we estimated the_ paramet8ra posteriori For_ galliumars-
=Vse (K) in a basis of plane waves with Bloch vectoand enide,5=0.719 gives the best agreement with former band
. . = 2, =, . structure calculations*2>?'Note that this is opposite to the
reciprocal-lattice vectofs. For G#G', one obtains behavior of atomic orbitals of an atomic all-electron calcula-
(2) tion, which usually contract upon being transfered to the
ac) solid. In a tight-binding calculation the overlap integrals de-
termined, e.g., with the widely used Clementi-Roetti data,
overestimate the interaction range, because the electronic en-
+K’-Aé(—2u(21) 4) vironment of the qrystal compresses the.orbi?alfkere, in _
AG”? the pseudopotential approach, the orbitals expand. This
where @g,ud u@ ve) are the threedimensional Fourier S€€MS to be a consequence of the calculational method.

transforms of 1/ga(r), b(r), b(r)rcos#l(Gr?), 2u(r)) with Using only one parameter represents remarkable progress

a polar analed measured in a coordinate svstem widh compared with the empirical pseudopotential methods,
P 9 y where all local coefficients had to be fitted to optical d&ta,

being parallel to the z axis, KW=k+G™, and  and where nonlocal correction terms were added to the local

AG=G'-G. Because of rotational invariance the variouspotentials?®?*

coefficients depend only on the absolute valueGof Eor Tables | and Il list the pseudopotential coefficients for

G=3G’, the formula simplifies to arsenic and for gall_|um. The energy shify=Egy iS not

displayed, because it depends on the number of plane waves

used and on the cutoff radius for the potential parameters.

+ Eshift- (5 The minimum cutoff radius of/24 to obtain an adequate
(valence band structure becomes larger thdhl of the em-

Esnir PiNs the valence band maximum to the energy zeropjrical pseudopotential calculatiolsecause the number of

These plane-wave matrix elements previously have beegoefficients of a Fourier expansion usually exceeds the num-
used to accelerate the Car-Parinello iteration sch€me.

Vi (K)=vag+K-K'ayg+ IZ’Z(u(Alé—u

<! 2 (1) (2) 2
+[K'-AGP2(—u'2+3ul2)/AG?

I 2
Veg=(k+G)? ao+ zug”

TABLE II. Pseudopotential coefficients for gallium, for units,
Ill. APPLICATION TO GAAS see Table I.

Once the atomic potentials have been determined, it is G2 ve ag u® u@
straightforward to solve for the energy-band spectrum, using

the following elements of the Hamiltonian matrix: 0 —0.016 44 0.00699  0.00000
3 —0.05305 —0.01269 0.007 30 0.002 84

Hea (K) = 3 (k+G)288 +SVag: (K), ©6) 4  —002437 -001164 000639  0.002 64

8 0.01375 —0.008 23 0.003 37 0.001 95

WhereVéé,(IZ) now comprises the sum over the constituting 11 0.02008 —0.006 35 0.001 73 0.001 52
atomic potentials, Eqs4) and (6). The strengthS of the 12 0.02080 —0.005 82 0.001 28 0.001 40
potential is introduced as a parameter, the only one of this 16 0.02045 —0.00412 —0.00005 0.000 97
theory. It affects the overlap between the atomic electronic 19 0.01851 —0.00318 —0.000 66 0.000 72
densities. Having calculated pseudopotential coefficients for 20 0.01773 —0.00292 —0.000 80 0.000 65
the atoms, the overlap usually arises as being too small. In- 24 0.01433 -0.00206 —0.00111 0.000 42

creasing the overlap is achieved by reducing the strength of
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TABLE lll. Local pseudopotential coefficients in eV. sandwiched between two sheets of selenium atoms. The
S s S N N N atomic pseudopotential coefficients of titanium and selenium
\& Vg Vii V3 Va Vi have been determined using the calculation scheme outlined

above, restricting the angular momentuni t02 for the cat-
ion and tol =1 for the anion.

In order to test the potential by its wave functions and
matrix elements, photoemission spectra in Ih& direction

ber obtained by minimizing a set of fit parameters. Extendin%‘:we been computed and compared with experimental

the cutoff radius does not change the band structure up to & .and with former c'alculatlon.%? The photoemission
eV appreciably theory is based on the single-particle one-step model out-

An interesting simplification arises from the restriction to Imed_m Ref. 26. iny the final states are (jetermmed _from the
the bare local part of our potential, i.e., to the first term ir]quasllocal potential. The basis of the initial states is calcu-
Eq. (4), leading to minor deviations, iﬁ t.r,Ie conduction bang'ated within an empirical linear combination of atomic orbit-

o als (LCAO) representation to account for the tight binding.

structure only. Table 11l shows the converted local part of the

pseudopotential coefficients of this paper to be directly comt he surface of the half-space is properly taken into account

pared with those of Ref. 12 by determining the layer and wave-vector-resolved Green’s
Figure 1 shows the quasilocal pseudopotential band struéyr;]Ct'og7 _?Epl%(lngl a h|gh!y c_onverg?nt renormalllzatlon

ture (solid lineg in comparison with the semiempirical band SCN€ME. The fina state, a time inverse low-energy electron-

structure by Cohen and Bergstredéeidashed lings We diffraction (LEED) state, is taken as a superposition of bulk

have used 137 plane waves in both calculations. Increasin\fj{"’“’e functions,

the number of plane waves does not change the bands in the

displayed energy region. The comparison of the two band *x e iR LA
structures obtained from differently determined pseudopo- LEED ; tnzé ag (knexd —i(ky+G)-r] - (7)
tentials shows good agreement below the Fermi level. The

optical gap of 1.5 eV is achieved in both calculations. Com-with coefficientst,, being further decomposed into plane
paring the conduction band structures, the differences are ngaves with coefficients:zg‘) . Outside the crystal, the final
longer negligible. This and differing wave functions will in- state is written as a direct superposition of plane waves. The
fluence matrix elements and should lead to differences iigenfunctions of the Hamiltonian result from a calculation

This paper  —3.32 0.20 0.59 1.25 0.88 0.19
Ref. 12 -3.13 0.14 0.82 0.95 0.68 0.14

theoretical electron spectroscopy. of the complex band structure, considering an energy-
dependent imaginary part of the optical potential. In fact, we
IV. APPLICATION TO TISE , use two different descriptions of the Hamiltonian accounting

for the special properties of initial and final states. The

As a prototype of a system withstanding a semiempirical CAO representation is a suitable tool to describe the rather
pseudopotential approach, we have chosen a compound frolcalized valence electrons of the initial states. The conduc-
the class of layered transition-metal dichalcogenidestion electrons representing the final states are free electron

TiSe,.?® The crystal structure may be described as a stack dfke, because they are forbidden by the Pauli principle from
identical layers, loosely bound to each other across a van dehtering the immediate neighborhood of the ions already oc-
Waals gap. Each layer consists of a sheet of titanium atomsgupied by the valence electrons. The behavior of these nearly
free electrons cannot be described by a localitigit bind-

30 e - ing) basis but by a superposition of very few plane waves. In
bﬂ\“;{%}( principle, the plane-wave basis could also be used for the

25 v‘ initial states. But localized states require a very large number
) / \g/ of plane waves increasing the valence states’ computational

20 NUA efforts, which, however, should be kept low to leave space
\ XU\ M for the other parts of the photoemission code. Generally, the
one-step model uses muffin-tin potentials, being adequate for

metallic systems but failing in the case of covalently bound
solids. One common procedure to meet these difficulties is to

employ eigenstates of different Hamiltonians for the initial

localized and final extended states, and to work on&hé
scheme of the matrix elemems?>28

To apply our quasilocal pseudopotential coefficients, the
method proposed by Pendfyhas to be generalized. For this
purpose, the matrix equation

15

energy (eV)

Lkicr-E
5( ) —

-15 ~
L I XUK T > 866 +SVaer (k)

é/

ag=0 (8

FIG. 1. Band structure of GaAs calculated with the pseudopo- . . . . . L
tential coefficients of this papesolid lines and from Ref. 12 is rewritten by introducing an intermediate varialfie with
(dashed lines Be=(k +G))ag,
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~AB-(B-El)a=k M3, 1f-Ca=k ia,
where the matriced, B, C, andM do not depend ok, , the

surface perpendicular component of the wave vektofhe

matrix elements foAG#0 are given by the following for-
mulas:

— >
\

hv/
eV

22

2
Ass =G, (axg+ 3 8a:)+G| (ui2—uZl .
~G[(G] —G,)2(u2—3uZ)/AG?
20
—Z(G, GL)U Z(G' Gl)(k”'f'GH) "
(G —G))(ue—3uL)/AG?, s

photocurrent (arb. units)

LD

Bss =(Kj+Gj)- (Kj+G))(ang+ 3 85/6) .

tigee

+(kH+GH)2(U *_U *) 2(k”+G“) 6 -4 2 0 6 -4 2 0

2R ) (G R 21 AN\72 energy (eV)
(G = Gpug—[(K+G))-(G[ G
X (u(l) 3u(2) )/AG2 FIG. 2. Calculatedright side and experimentaleft side, taken
from Ref. 29 surface normal photoemission spectra for TiSEhe
(2 plots of the photocurrent vs binding energy are characterized by the
MGG’_aAG+ 5G’G+u ~Usxe value of the photon frequency. The upper panel showslItAe
, 5 (1) (2) 5 valence band structure here repeated for the binding energy scales
—(G =G ) (U3 )/AG of both sets of spectra.
Cag =G| 8gé-

Esnir=—13.5 eV, i.e., the conduction bands have to be

In the case oA G =0 these formulas are shorter and simpler.shifted by about 11.7 eV to higher energies to agree with the
This transformation of Eq(8) is possible because of the usual findings. However, in thEA direction the valence-
special form of the quasilocal pseudopotential coefficientshand width of the more dispersive bands is too large, and the
being at most, quadratic ik, . A generalized eigenvalue nondispersive bands are seen at somewhat higher energies.

problem for the momentum eigenvalues has to be solved. For S=0.345 andEg,= —13.1 eV, the shape of the valence
In order to fix the parameteSandEg,; for the conduction- bands look more reasonable, but from an initially almost
band structure of TiSg we calculated a target current spec- satisfying position the conduction bands now shift down by
trum (TCS) for TiTe, and compared it to experimental data. — E,;. For higherS all bands flatten in thd A direction,
For the isoelectronic systems TiJeand TiSe, the same losing their similarity with the known band structure. The
potential strengthS may be used. Values d6=0.2 and Se-dominated bands mostly cover the valence regime,
Esnir= — 2.8 eV lead to satisfactory agreement between theowhereas the Ti states dominate in the conduction bands. The
retical and experimental first derivatives of the TCS dataatomic pseudopotential seems to be more reliable for Se than
Comparing the conduction-band structures of hiSend  for Ti. Like the potential strengtl® being reduced to much
TiTe, obtained with these parameters, the main difference ifower values because of the deep potential, here again this
a simple shift of about 2.5 eV within the interesting energypotential is responsible for the necessary high relative shift
region. Computing photoemission spectra of TiSk turns  of the conduction bands to reach a reasonable position. This
out thatEg,;z= — 1.8 eV leads to even better agreement bestrong energy dependence of the parameferand Egpx
tween calculated and experimental photoemission spectravould require a kind of scissor operator if applied to photo-
The strong reduction of the potential by the low valuesa§  emission. However, in view of our numerical program for
associated with the higher-energy regime used here for thine one-step model, here we rely on the LCAO representa-
conduction states, as opposed to the GaAs example, whetien of the valence bands which hitherto proved to reflect
we focused on the valence states. It is to be expected thatvery accurately the actual positions of the valence bands.
local-density-approximation treatment would screen the deep Figure 2 shows the computed photoemission spectra in
atomic Ti potentials by the mainly occupied Pestates in  the T'A direction. Because there appears to be almost no
the solid, thus further reducing the potential felt by the un-valence band crossing along th&\ direction, the photo-
occupied, especially the TidB states. emission maxima can easily be assigned. Both peaks at the
For the subsequent discussion of the photoemission, theinding energy of-3 eV and near the Fermi level arise from
valence part of the quasilocal pseudopotential band structurhe nearly nondispersive valence bands, and are derived from
is of no importance. For completeness, we note some valuds-plane bonding orbitals, whereas the maximum dispersing
of S andEg,;; for that energy range. Taking the safias for  from —0.8 to —3 eV is derived from bonds perpendicular to
the excited states, the resulting valence bands have ahe surface. In Ref. 29 a discussion of matrix elements can be
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30 — 30 in the photocurrent too. The photocurrent with damped plane
I ] waves as final states displays only dispersive bands, the re-

maining two nondispersive ones being connected with a high

density of states are completely suppressed. Therefore plane-

] wave features arising in the pseudopotential decrease the im-

12 portance of the density of states in the photocurrent different

from the muffin-tin case. A convincing agreement with the

experimental data of Anderson, Manzke, and Skiboffiski
plotted in Fig. 2 can be stated. The variation of the relative

116 intensities of photoemission peaks with photon energy and

the relative intensities themselves are correctly reproduced

by our numerical results. It should be added that the agree-
ment with experiment seems to be better than that obtained
with muffin-tin layer Korringa-Kohn-Rostoker final states in

0 oi5 1 9 a former calculation of Pehlket al?®. In particular, the dis-

persive structure is much more pronounced here. In our opin-

Re(k, ) Im(k, ) (A1) ion the latter is a typical property of spectra calculated with
pseudopotential, as opposed to muffin-tin potential, final

30 states. The conduction-band wave functions in the rather low
vacuum-ultraviolet photon regime seem to forbid the neglect
of the interstitial potential in comparison with the strong
spherical part.

As already stated in Ref. 30, the normal emission current

23 from the surface parallel components of the light polarization
vanishes for the free-electron-like damped plane waves as
final states, i. e. only the identical representation of the initial
states given mostly by thp, orbitals survives. As a result,

16 dispersive structures will be enhanced. Hence the slight simi-
larity of the pseudopotential band structure with the plane-
wave result explains our findings. From the convincing com-
parison with experiment, one would clearly favor the
pseudopotential. Additionally, this is supported by the fol-
lowing arguments. First, it includes the interstitial potential.
Second, a screening of the stronger muffin-tin potential

Re(k, ) Im(k, ) (A1) seems to be physically necessary for the energetically high-
lying final states. Third, because of its simplicity it is easy to
FIG. 3. The complex band structure of TiSfor IZ”=0. Inthe calculate even off-normal photoemission spectra. The latter

left-hand panels the real part Re{ is shown from bottom to top  proved to be difficult to obtain in the past in the case when a

of the Brilloun zone. In the right-hand panels the imaginary part Inmuffin-tin potential for the final states is connected with an

(k,) is plotted. For the upper figure, damped plane waves wergynjsotropic potential for the initial states as forced by the
used, whereas the lower part was calculated with the q“aSilocaAnisotropic bindings of the layered crystals.
pseudopotentials. The length of the horizontal bars represents the

transition probability, i.e., the squared modulus of the expansion

coefficientst,,, see Eq(7) in the photoemission computation.

N
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energy (eV)
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»
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energy (eV)
8

—_
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—

A r A 0 05 1

V. CONCLUSIONS

found in terms of final states which are obtained from In concluding, the quasilocal pseudopotential derived
muffin-tin potentials. As the initial states used in those calfrom anab initio nonlocal potential has proven its applica-
culations are identical with ours, the difference has to belility to complex systems. It is constructed in a straightfor-
attributed solely to the complex band structure of the finaward manner employing one adjustable parameter, theaonly
states. Figure 3 shows the complex band structure for thposteriori element of the scheme. Thus this method should
guasilocal pseudopotential in comparison with that ofbe suitable for the wide class of materials for which the
damped plane waves. In view of the muffin-tin complexactual sophisticated pseudopotentials are made. Because of
band structure plotted in Ref. 29, our pseudopotential resuits simplicity it could be successfully used in a VLEED cal-
is more related to the plane-wave case than the muffin-ticulation for the determination of target current spectra. Ad-
result, though there are qualitative differences in the banditionally, in representing a nonspherical potential for the
splitting and bending. In particular, an enhanced fine strucfinal states of photoemission, it is superior to the alternative
ture appears in the imaginary partlaf, which is important  use of standard muffin-tin potentials in covalent solids. It
for the coupling of the bulk states to the vacuum. This simi-would be interesting to see whether this potential also works
larity to the plane-wave case is expected to become appareint the case of the bounded states of a surface system.
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