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Nonlocal pseudopotentials in complex band-structure and photoemission calculations
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~Received 13 August 1996; revised manuscript received 30 September 1996!

Based on a recently proposed localization procedure, a nonlocal pseudopotential scheme is derived to

calculate potential coefficientsVGW GW 8(k
W ) which can be decomposed into terms, each being quadratic inkW and

multiplied by a function of (GW 2GW 8), thus making them applicable to some important cases where local
potential coefficients are required. Electronic structure calculations for semiconductors are in agreement with
well-known semiempirical local pseudopotential band structures, as shown for GaAs. Nevertheless, the poten-
tial may significantly deviate from the semiempirical results. In order to test wave functions and transition
probabilities, we prove the success of the procedure in a more troublesome case, i.e., applying it to a transition-
metal compound as the experimentally well-investigated layered crystal TiSe2, which up to now was not
treated with a pseudopotential. Photoemission spectra within the one-step model are presented using Pendry’s
method of complex band-structure calculation. The latter formalism had to be slightly generalized for the
quasilocal properties of the potential. The agreement of the spectra with experimental data shows this method
to be a reliable and practical tool to use nonlocal pseudopotentials for conduction-band wave functions of
electron spectroscopies.@S0163-1829~97!04408-1#
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I. INTRODUCTION

The widely used empirical local pseudopotentials1–11, as,
e.g., introduced by Cohen and Bergstresser,12 are attractive
because of their simplicity, relying only on a few elemen
derived from fitting to optical data. The property of bein
local allows for a reduction of computational efforts. This
not relevant in standard band-structure determinations, b
is helpful in tasks which need a band structure computa
as a single and often repeated step,13 and crucially arises in
the computation of complex band structures as needed,
in the calculation of the photoemission spectra9 or of the
spectra of elastically diffracted electrons at very low energ
~VLEED!.6,8,11 Especially in the latter case the scatteri
states are conveniently obtained via Pendry’s techniqu
solve the inverse problem for the complex band structu
which in its simplest form requires a local potential.14

In view of these advantages, two drawbacks prove to
cumbersome in actual applications: first, the lack of anab
initio base, and, second, the problem of generating the
tential coefficients. Apart from the tabulated zinc-blende p
tentials, suitable coefficients have to be found by an unsa
fying trial and error procedure. Depending on the syst
under consideration, it may not converge at all.

In contrast to this situation, a well-tested technique for
construction ofab initio atomic pseudopotentials exists.15–17

They depend principally on angular momentum in a nonlo
way, which would prohibit an application to the above cla
of problems. However, recently a method was presente
convert these potentials to a local Hamiltonian atom
potential.18 It was intended to serve Monte Carlo simul
tions. We could benefit from that development in constru
ing crystal potentials which, after a simple generalization
Pendry’s method, are conveniently applied to electron sp
troscopy. With a straightforward determination of the pote
tial coefficients in a plane-wave basis,19 we are able to gen
erate a potential for layered dichalcogenides, hitherto
550163-1829/97/55~8!/5045~6!/$10.00
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successfully treated in the pseudopotential scheme.
In this paper we report our applications of the pseudo

tential of Bachelet, Ceperly, and Chiocchetti to GaAs for t
reason of comparing it with the standard local potential, a
to the layered crystal TiSe2 for showing its success in trea
ing complex systems. We briefly outline the conversion fro
a nonlocal to a quasilocal potential of the solid.

II. METHOD OF CALCULATION

The matrix elements of the separable generalized no
conserving pseudopotentials by Hamann17 are calculated as

^F1uVuF2&5(
l50

`

(
m52 l

l E drWE drW8F1* ~rW !Ylm~ r̂ !Vl~r !

3
d~r2r 8!

r 2
Ylm* ~ r̂ 8!F2~rW8!. ~1!

This potential is local inr and nonlocal inu andf. Replac-
ing Eq.~1!, Bachelet, Ceperley, and Chiocchetti introduced
local pseudopotential matrix18

^F1uVuF2&5E drWE drW8^F1urW8&d~rW2rW8!

3Fv~r !2
1

2
“a~r !“1b~r !

L2

2r 2G^rWuF2&, ~2!

which reproduces the action of the nonlocal pseudopoten
with respect to the angular-momentum dependence. Out
the core, the radial functionsa(r ) andb(r ) must vanish, and
v(r ) should asymptotically vanish as2Zv /r (Zv is the va-
lence charge!. The three unknown functions can be dete
mined by requiring that the three lowestl radial eigenfunc-
tions ul(r ) and eigenvaluesEl of the radial Schro¨dinger
5045 © 1997 The American Physical Society
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5046 55A. BÖDICKER AND W. SCHATTKE
equation are identical for both pseudopotentials. This res
tion leads to the following system of three differential equ
tions:

Fa d2

dr2
2~a1b!

l ~ l11!

r 2
1
da

dr S ddr 2
1

r D22~v2Vl !Gul50,

~3!

with Vl being the norm-conserving pseudopotential
Hamann.17 Choosing the simple analytic forma(r )
5a0exp„2(r /r c)

k
…, a050.9, r c51.0, andk52, proposed in

Ref. 18, Eq.~3! for l50 and 1 is used to determineb and
v:

v5a
u09

2u0
1a8F u082u0

2
1

2r G1V0,

b52a1a
r 2ul9

l ~ l11!ul
1a8

r 2ul82rul
l ~ l11!ul

22
@v2Vl #r

2

l ~ l11!
.

We adapted the atomic pseudopotential to the solid by
culating the atomic matrix elementŝkW1GW uVukW1GW 8&
5VGW GW 8(k

W ) in a basis of plane waves with Bloch vectorkW and
reciprocal-lattice vectorGW . ForGW ÞGW 8, one obtains

VGW GW 8~k
W !5vDGW 1KW •KW 8aDGW 1KW 82~uDGW

~1!
2uDGW

~2!
!

1@KW 8•DGW #2~2uDGW
~1!

13uDGW
~2!

!/DGW 2

1KW 8•DGW ~22uDGW
~2!

!, ~4!

where (aG ,uG
(1) ,uG

(2) ,vG) are the threedimensional Fourie
transforms of 1/2„a(r ), b(r ), b(r )rcosu/(Gr2), 2v(r )… with
a polar angleu measured in a coordinate system withGW

being parallel to the z axis, KW (8)5kW1GW (8), and
DGW 5GW 82GW . Because of rotational invariance the vario
coefficients depend only on the absolute value ofGW . For
GW 5GW 8, the formula simplifies to

VGW GW 5~kW1GW !2S a01 2

3
u0

~1!D1Eshift . ~5!

Eshift pins the valence band maximum to the energy ze
These plane-wave matrix elements previously have b
used to accelerate the Car-Parinello iteration scheme.19

III. APPLICATION TO GAAS

Once the atomic potentials have been determined,
straightforward to solve for the energy-band spectrum, us
the following elements of the Hamiltonian matrix:

HGW GW 8~k
W !5 1

2 ~kW1GW !2dGW GW 81SVGW GW 8~k
W !, ~6!

whereVGW GW 8(k
W ) now comprises the sum over the constituti

atomic potentials, Eqs.~4! and ~6!. The strengthS of the
potential is introduced as a parameter, the only one of
theory. It affects the overlap between the atomic electro
densities. Having calculated pseudopotential coefficients
the atoms, the overlap usually arises as being too small
creasing the overlap is achieved by reducing the strengt
c-
-

l-

.
n

is
g

is
ic
or
n-
of

the potential. The rearrangement of the electronic dens
of free atoms to the electronic density in a crystal could
principally obtained by self-consistency loops. In a short c
we estimated the parameterS a posteriori. For galliumars-
enide,S50.719 gives the best agreement with former ba
structure calculations.12,20,21Note that this is opposite to th
behavior of atomic orbitals of an atomic all-electron calcu
tion, which usually contract upon being transfered to t
solid. In a tight-binding calculation the overlap integrals d
termined, e.g., with the widely used Clementi-Roetti data22

overestimate the interaction range, because the electroni
vironment of the crystal compresses the orbitals.9 Here, in
the pseudopotential approach, the orbitals expand. T
seems to be a consequence of the calculational met
Using only one parameter represents remarkable prog
compared with the empirical pseudopotential metho
where all local coefficients had to be fitted to optical data12

and where nonlocal correction terms were added to the lo
potentials.20,21

Tables I and II list the pseudopotential coefficients f
arsenic and for gallium. The energy shiftv05Eshift is not
displayed, because it depends on the number of plane w
used and on the cutoff radius for the potential paramet
The minimum cutoff radius ofA24 to obtain an adequat
~valence! band structure becomes larger thanA11 of the em-
pirical pseudopotential calculations12 because the number o
coefficients of a Fourier expansion usually exceeds the n

TABLE I. Pseudopotential coefficients for arsenic. Units a
(2p/a)2 (a is the lattice constant! for the first column, Hartree for
the next column, and Hartree~Bohr!2 for the last three columns.

G2 vG aG uG
(1) uG

(2)

0 20.016 44 0.007 72 0.000 00
3 20.116 79 20.012 69 0.007 62 0.003 03
4 20.069 21 20.011 64 0.006 58 0.002 79
8 20.003 46 20.008 23 0.003 48 0.002 03
11 0.010 10 20.006 35 0.002 01 0.001 59
12 0.012 32 20.005 82 0.001 64 0.001 47
16 0.016 09 20.004 12 0.000 60 0.001 08
19 0.015 89 20.003 18 0.000 18 0.000 86
20 0.015 55 20.002 92 0.000 08 0.000 80
24 0.013 36 20.002 06 20.000 13 0.000 61

TABLE II. Pseudopotential coefficients for gallium, for units
see Table I.

G2 vG aG uG
(1) uG

(2)

0 20.016 44 0.006 99 0.000 00
3 20.053 05 20.012 69 0.007 30 0.002 84
4 20.024 37 20.011 64 0.006 39 0.002 64
8 0.013 75 20.008 23 0.003 37 0.001 95
11 0.020 08 20.006 35 0.001 73 0.001 52
12 0.020 80 20.005 82 0.001 28 0.001 40
16 0.020 45 20.004 12 20.000 05 0.000 97
19 0.018 51 20.003 18 20.000 66 0.000 72
20 0.017 73 20.002 92 20.000 80 0.000 65
24 0.014 33 20.002 06 20.001 11 0.000 42
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55 5047NONLOCAL PSEUDOPOTENTIALS IN COMPLEX BAND- . . .
ber obtained by minimizing a set of fit parameters. Extend
the cutoff radius does not change the band structure up t
eV appreciably.

An interesting simplification arises from the restriction
the bare local part of our potential, i.e., to the first term
Eq. ~4!, leading to minor deviations in the conduction ba
structure only. Table III shows the converted local part of
pseudopotential coefficients of this paper to be directly co
pared with those of Ref. 12.

Figure 1 shows the quasilocal pseudopotential band st
ture ~solid lines! in comparison with the semiempirical ban
structure by Cohen and Bergstresser12 ~dashed lines!. We
have used 137 plane waves in both calculations. Increa
the number of plane waves does not change the bands i
displayed energy region. The comparison of the two ba
structures obtained from differently determined pseudo
tentials shows good agreement below the Fermi level.
optical gap of 1.5 eV is achieved in both calculations. Co
paring the conduction band structures, the differences ar
longer negligible. This and differing wave functions will in
fluence matrix elements and should lead to differences
theoretical electron spectroscopy.

IV. APPLICATION TO TISE 2

As a prototype of a system withstanding a semiempiri
pseudopotential approach, we have chosen a compound
the class of layered transition-metal dichalcogenid
TiSe2.

23 The crystal structure may be described as a stac
identical layers, loosely bound to each other across a van
Waals gap. Each layer consists of a sheet of titanium ato

TABLE III. Local pseudopotential coefficients in eV.

V3
S V8

S V11
S V3

A V4
A V11

A

This paper 23.32 0.20 0.59 1.25 0.88 0.19
Ref. 12 23.13 0.14 0.82 0.95 0.68 0.14

FIG. 1. Band structure of GaAs calculated with the pseudo
tential coefficients of this paper~solid lines! and from Ref. 12
~dashed lines!.
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sandwiched between two sheets of selenium atoms.
atomic pseudopotential coefficients of titanium and seleni
have been determined using the calculation scheme outl
above, restricting the angular momentum tol52 for the cat-
ion and tol51 for the anion.

In order to test the potential by its wave functions a
matrix elements, photoemission spectra in theGA direction
have been computed and compared with experime
data24,25 and with former calculations.25 The photoemission
theory is based on the single-particle one-step model
lined in Ref. 26. Only the final states are determined from
quasilocal potential. The basis of the initial states is cal
lated within an empirical linear combination of atomic orb
als ~LCAO! representation to account for the tight bindin
The surface of the half-space is properly taken into acco
by determining the layer and wave-vector-resolved Gree
function applying a highly convergent renormalizatio
scheme.27 The final state, a time inverse low-energy electro
diffraction ~LEED! state, is taken as a superposition of bu
wave functions,

FLEED* 5(
n

tn(
GW

aGW
~n!

~kWn!exp@2 i ~kWn1GW !•rW# ~7!

with coefficients tn, being further decomposed into plan
waves with coefficientsaGW

(n). Outside the crystal, the fina
state is written as a direct superposition of plane waves.
eigenfunctions of the Hamiltonian result from a calculati
of the complex band structure, considering an ener
dependent imaginary part of the optical potential. In fact,
use two different descriptions of the Hamiltonian account
for the special properties of initial and final states. T
LCAO representation is a suitable tool to describe the rat
localized valence electrons of the initial states. The cond
tion electrons representing the final states are free elec
like, because they are forbidden by the Pauli principle fro
entering the immediate neighborhood of the ions already
cupied by the valence electrons. The behavior of these ne
free electrons cannot be described by a localized~tight bind-
ing! basis but by a superposition of very few plane waves
principle, the plane-wave basis could also be used for
initial states. But localized states require a very large num
of plane waves increasing the valence states’ computati
efforts, which, however, should be kept low to leave spa
for the other parts of the photoemission code. Generally,
one-step model uses muffin-tin potentials, being adequate
metallic systems but failing in the case of covalently bou
solids. One common procedure to meet these difficulties i
employ eigenstates of different Hamiltonians for the init
localized and final extended states, and to work on thepW •AW
scheme of the matrix elements.5,9,25,28

To apply our quasilocal pseudopotential coefficients,
method proposed by Pendry14 has to be generalized. For th
purpose, the matrix equation

(
GW 8

F S 12 ~kW1GW !22ED dGW GW 81SVGW GW 8~k
W !GaGW 50 ~8!

is rewritten by introducing an intermediate variablebW , with
bGW 5(k'1G')aGW ,

-



er
e
t

.

c-
a.

e
ta

e
gy

e
ct

t
he
a
ee

n

t
tu
lu

be
the

the
gies.
e
st
by

e
me,
The
than

this
hift
This

to-
or
nta-
ect
.
in
no

t the
m
from
ing
to
be

the

cales

5048 55A. BÖDICKER AND W. SCHATTKE
2ÂbW 2~B̂2E1̂!aW 5k'M̂bW , 1̂bW 2ĈaW 5k'1̂aW ,

where the matricesÂ, B̂, Ĉ, andM̂ do not depend onk' , the
surface perpendicular component of the wave vectorkW . The
matrix elements forDGW Þ0 are given by the following for-
mulas:

AGW GW 85G'~aDGW 1 1
2 dGW 8GW !1G'8 ~uDGW

~1!
2uDGW

~2!
!

2G'8 ~G'8 2G'!2~uDGW
~1!

23uDGW
~2!

!/DGW 2

22~G'8 2G'!uDGW
~2!

22~G'8 2G'!~kW i1GW i!

•~GW i82GW i!~uDGW
~1!

23uDGW
~2!

!/DGW 2,

BGW GW 85~kW i1GW i8!•~kW i1GW i!~aDGW 1 1
2 dGW 8GW !

1~kW i1GW i8!2~uDGW
~1!

2uDGW
~2!

!22~kW i1GW i8!

•~GW i82GW i!uDGW
~2!

2@~kW i1GW i8!•~GW i82GW i!#
2

3~uDGW
~1!

23uDGW
~2!

!/DGW 2,

MGW GW 85aDGW 1 1
2dGW 8GW 1uDGW

~1!
2uDGW

~2!

2~G'8 2G'!2~uDGW
~1!

23uDGW
~2!

!/DGW 2,

CGW GW 85G'8 dGW GW 8.

In the case ofDGW 50 these formulas are shorter and simpl
This transformation of Eq.~8! is possible because of th

special form of the quasilocal pseudopotential coefficien
being at most, quadratic ink' . A generalized eigenvalue
problem for the momentum eigenvaluesk' has to be solved
In order to fix the parametersS andEshift for the conduction-
band structure of TiSe2, we calculated a target current spe
trum ~TCS! for TiTe2 and compared it to experimental dat
For the isoelectronic systems TiTe2 and TiSe2, the same
potential strengthS may be used. Values ofS50.2 and
Eshift522.8 eV lead to satisfactory agreement between th
retical and experimental first derivatives of the TCS da
Comparing the conduction-band structures of TiSe2 and
TiTe2 obtained with these parameters, the main differenc
a simple shift of about 2.5 eV within the interesting ener
region. Computing photoemission spectra of TiSe2, it turns
out thatEshift521.8 eV leads to even better agreement b
tween calculated and experimental photoemission spe
The strong reduction of the potential by the low value ofS is
associated with the higher-energy regime used here for
conduction states, as opposed to the GaAs example, w
we focused on the valence states. It is to be expected th
local-density-approximation treatment would screen the d
atomic Ti potentials by the mainly occupied Sep states in
the solid, thus further reducing the potential felt by the u
occupied, especially the Ti 3d, states.

For the subsequent discussion of the photoemission,
valence part of the quasilocal pseudopotential band struc
is of no importance. For completeness, we note some va
of SandEshift for that energy range. Taking the sameSas for
the excited states, the resulting valence bands have
.
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Eshift5213.5 eV, i.e., the conduction bands have to
shifted by about 11.7 eV to higher energies to agree with
usual findings. However, in theGA direction the valence-
band width of the more dispersive bands is too large, and
nondispersive bands are seen at somewhat higher ener
ForS50.345 andEshift5213.1 eV, the shape of the valenc
bands look more reasonable, but from an initially almo
satisfying position the conduction bands now shift down
2Eshift . For higherS all bands flatten in theGA direction,
losing their similarity with the known band structure. Th
Se-dominated bands mostly cover the valence regi
whereas the Ti states dominate in the conduction bands.
atomic pseudopotential seems to be more reliable for Se
for Ti. Like the potential strengthS being reduced to much
lower values because of the deep potential, here again
potential is responsible for the necessary high relative s
of the conduction bands to reach a reasonable position.
strong energy dependence of the parametersS and Eshift
would require a kind of scissor operator if applied to pho
emission. However, in view of our numerical program f
the one-step model, here we rely on the LCAO represe
tion of the valence bands which hitherto proved to refl
very accurately the actual positions of the valence bands

Figure 2 shows the computed photoemission spectra
the GA direction. Because there appears to be almost
valence band crossing along theGA direction, the photo-
emission maxima can easily be assigned. Both peaks a
binding energy of23 eV and near the Fermi level arise fro
the nearly nondispersive valence bands, and are derived
in-plane bonding orbitals, whereas the maximum dispers
from 20.8 to23 eV is derived from bonds perpendicular
the surface. In Ref. 29 a discussion of matrix elements can

FIG. 2. Calculated~right side! and experimental~left side, taken
from Ref. 24! surface normal photoemission spectra for TiSe2. The
plots of the photocurrent vs binding energy are characterized by
value of the photon frequency. The upper panel shows theGA
valence band structure here repeated for the binding energy s
of both sets of spectra.
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55 5049NONLOCAL PSEUDOPOTENTIALS IN COMPLEX BAND- . . .
found in terms of final states which are obtained fro
muffin-tin potentials. As the initial states used in those c
culations are identical with ours, the difference has to
attributed solely to the complex band structure of the fi
states. Figure 3 shows the complex band structure for
quasilocal pseudopotential in comparison with that
damped plane waves. In view of the muffin-tin compl
band structure plotted in Ref. 29, our pseudopotential re
is more related to the plane-wave case than the muffin
result, though there are qualitative differences in the b
splitting and bending. In particular, an enhanced fine str
ture appears in the imaginary part ofk' , which is important
for the coupling of the bulk states to the vacuum. This sim
larity to the plane-wave case is expected to become appa

FIG. 3. The complex band structure of TiSe2 for kW i50. In the
left-hand panels the real part Re(k') is shown from bottom to top
of the Brilloun zone. In the right-hand panels the imaginary part
(k') is plotted. For the upper figure, damped plane waves w
used, whereas the lower part was calculated with the quasil
pseudopotentials. The length of the horizontal bars represents
transition probability, i.e., the squared modulus of the expans
coefficientstn , see Eq.~7! in the photoemission computation.
l-
e
l
e
f

lt
in
d
-

-
ent

in the photocurrent too. The photocurrent with damped pla
waves as final states displays only dispersive bands, the
maining two nondispersive ones being connected with a h
density of states are completely suppressed. Therefore pl
wave features arising in the pseudopotential decrease the
portance of the density of states in the photocurrent differ
from the muffin-tin case. A convincing agreement with t
experimental data of Anderson, Manzke, and Skibowsk24

plotted in Fig. 2 can be stated. The variation of the relat
intensities of photoemission peaks with photon energy
the relative intensities themselves are correctly reprodu
by our numerical results. It should be added that the ag
ment with experiment seems to be better than that obta
with muffin-tin layer Korringa-Kohn-Rostoker final states
a former calculation of Pehlkeet al.25. In particular, the dis-
persive structure is much more pronounced here. In our o
ion the latter is a typical property of spectra calculated w
pseudopotential, as opposed to muffin-tin potential, fi
states. The conduction-band wave functions in the rather
vacuum-ultraviolet photon regime seem to forbid the negl
of the interstitial potential in comparison with the stron
spherical part.

As already stated in Ref. 30, the normal emission curr
from the surface parallel components of the light polarizat
vanishes for the free-electron-like damped plane waves
final states, i. e. only the identical representation of the ini
states given mostly by thepz orbitals survives. As a result
dispersive structures will be enhanced. Hence the slight s
larity of the pseudopotential band structure with the pla
wave result explains our findings. From the convincing co
parison with experiment, one would clearly favor th
pseudopotential. Additionally, this is supported by the f
lowing arguments. First, it includes the interstitial potenti
Second, a screening of the stronger muffin-tin poten
seems to be physically necessary for the energetically h
lying final states. Third, because of its simplicity it is easy
calculate even off-normal photoemission spectra. The la
proved to be difficult to obtain in the past in the case whe
muffin-tin potential for the final states is connected with
anisotropic potential for the initial states as forced by t
anisotropic bindings of the layered crystals.

V. CONCLUSIONS

In concluding, the quasilocal pseudopotential deriv
from anab initio nonlocal potential has proven its applic
bility to complex systems. It is constructed in a straightfo
ward manner employing one adjustable parameter, the ona
posteriori element of the scheme. Thus this method sho
be suitable for the wide class of materials for which t
actual sophisticated pseudopotentials are made. Becau
its simplicity it could be successfully used in a VLEED ca
culation for the determination of target current spectra. A
ditionally, in representing a nonspherical potential for t
final states of photoemission, it is superior to the alternat
use of standard muffin-tin potentials in covalent solids.
would be interesting to see whether this potential also wo
in the case of the bounded states of a surface system.
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