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Integrable supersymmetric t-J model with magnetic impurity
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We consider the one-dimensionalt-J model, which consists of spin-1/2 electrons on a lattice with nearest
neighbor hoppingt constrained by the excluded multiple occupancy of the lattice sites and spin-exchangeJ
between neighboring sites. The model is integrable at the supersymmetric point,J52t. We extend the model
by introducing an impurity of arbitrary spinS that interacts with the electrons on the neighboring sites without
destroying the integrability. The lattice model is defined by the scattering matrices via the quantum inverse
scattering method. The interaction Hamiltonian between the impurity and the itinerant electrons is only ex-
plicitly constructed in the continuum limit. The discrete Bethe ansatz equations diagonalizing the model are
derived and the solutions are classified according to the string hypothesis. The thermodynamic Bethe ansatz
equations are derived and the impurity free energy is obtained for arbitrary bandfilling as a function of
temperature and external magnetic field. The properties of the impurity depend on one coupling parameter. The
impurity can localize up to one itinerant electron and has in general mixed valent properties. The integer valent
low T smallH fixed point of the impurity corresponds to an asymptotically free spinS, while if eitherT or
H ~or both! become large the impurity behaves like an asymptotically free spin (S1

1
2).
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I. INTRODUCTION

The Hubbard andt-J models are frequently invoked a
models for highly correlated electrons, in particular for t
high-Tc cuprate superconductors,1–3 but as well for heavy
fermion systems.4,5 On one hand, the Hubbard model in th
limit of a strong Coulomb repulsion reduces to thet-J
model. The strong on-site correlations limit the site occu
tions to at most one electron. States with double occupa
are energetically unfavorable and can be projected out
that there are then three states per site, in contrast to
states for the Hubbard model. Virtual transitions to sta
with doubly occupied sites give rise to an exchange inter
tion between electrons on nearest neighbor sites via a can
cal transformation.6–8 The validity of this transformation is
restricted to small exchange constants or largeU and three
site interactions~correlated hopping! are usually neglected
On the other hand, the low-energy excitations of the thr
band Hubbard model~two oxygenp states and one coppe
3d orbital per unit cell of the CuO2 plane! can also be re-
duced to an effective one-bandt-J model.9–12 In this context,
which does not involve the canonical transformation, o
arrives at thet-J model without actually going through th
traditional Hubbard model andJ/t is not restricted to be
small. In factt andJ are comparable energies and we m
consider them as independent parameters not relate
t2/U.

The phase diagram of the one-dimensionalt-J model has
been investigated by numerous methods, e.g., with a va
tional ansatz for the Luttinger liquid,13,14by cluster diagonal-
ization using Lanczos method,15,16 and Monte Carlo
simulations.17,18 Variational studies strongly depend on th
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trial wave function and exact diagonalizations are limited
the relatively small cluster sizes. The most reliable results
probably those obtained by variational Monte Ca
simulations,17 which are less limited by the size of the sy
tem. The zero-temperature phase diagram as a functio
J/t and band fillingn shows three qualitatively differen
phases:~i! a Luttinger liquid ground state, which may hav
an effective repulsive or attractive long-range interaction,~ii !
a spin gap phase, and~iii ! a phase separated ground state
which all electrons~and all holes! are clustered together.15

Unfortunately, the one-dimensionalt-J model is not inte-
grable for all ratios oft/J. The necessary condition for th
integrability is the factorization of the many-electron scatt
ing matrix into two-particle scattering matrices~Yang-Baxter
triangular relation!. The Yang-Baxter relation imposes con
ditions on the scattering matrix that are only satisfied
J562t.4,19 At this special point in a scattering process t
sets of wave numbers of the incoming and outgoing partic
are identical, leading to permutation symmetry. The spin
the electrons and the charge ‘‘holes’’ play a very similar ro
forming a graded superalgebra.19–22 The integrability of the
supersymmetric model was first stated by Lai23 and
Sutherland19 and has subsequently been rediscovered
other authors.4,24,25Asymptotically exact results can also b
extracted from the Bethe ansatz for small deviations fr
supersymmetry and low electron concentrations.26

Impurities play a very important role in correlated ele
tron compounds, since even a small amount of defects m
change the properties of the system. Unfortunately, an im
rity introduced into an integrable system usually destroys
integrability. Besides magnetic impurities in noninteracti
metals~e.g., the Kondo effect, the Anderson impurity mod
5027 © 1997 The American Physical Society
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and the multichannel Kondo problem, see Refs. 27–3!,
there are only a few exceptions for integrable models w
interactions containing impurities. Andrei and Johannesso31

incorporated a magnetic impurity of arbitrary spin into t
isotropic spin-12 Heisenberg chain. The interaction betwe
the impurity and the neighboring lattice sites has to be o
special form to preserve the integrability. These results w
then extended to the Babujian-Takhtajan spin chain of s
S8 and an arbitrary impurity of spinS.32,33The properties of
isolated impurities are analogous to those of the multich
nel Kondo problem, i.e., the underscreened, sp
compensated and overscreened situations have to
distinguished.30,33 It has been argued34 that these low-
temperature properties of the impurity correspond to non
neric fixed points. The peculiarities, however, do not ar
from integrability.35 Other authors36 proposed a different
nonmagnetic impurity, model based on the Heisenberg ch
which lacks of backward scattering. Within the context
the t-J model Bares37 extended the ideas of Andrei an
Johannesson31 to introduce an integrable nonmagnetic imp
rity which does not change the marginal Fermi liquid pro
erties. Another avenue is pursued by Pfannmu¨ller and
Frahm,38 who consider a fusion procedure for different re
resentations of thegl(2,1) superalgebra.

In this paper we consider amagneticimpurity embedded
into the supersymmetrict-J model. The Bethe ansatz equ
tions automatically ensure the integrability of the model. T
model is defined by the scattering matrices via the quan
inverse scattering method. The Hamiltonian and other c
served currents can in principle be constructed from
transfer matrix. The impurity consists of a spinS on a given
link m, which by construction interacts only with both neig
boring sites. The impurity can absorb~and release it again!
one conduction electron and form an effective spinS1 1

2.
The impurity has therefore intermediate valence charac
which can be changed as a function of a model parame
The model is structurally similar to the generalization of t
Anderson impurity to two magnetic configurations, whi
was found to be integrable some time ago.29,39,40Close to
integer valence two fixed points play a role:~i! at low T and
small fields the impurity behaves like an asymptotically fr
spinS and ~ii ! if either T or H ~or both! are large the fixed
point corresponds to the asymptotic freedom of a spinS1
1
2. There is a smooth crossover between these regime
intermediateT andH.

The rest of the paper is organized as follows. The ver
weights, the monodromy matrix, the diagonalization of t
transfer matrix, and the discrete Bethe ansatz equations
introduced in Sec. II. These equations define the lat
model and determine the properties of the impurity. In S
II we also explicitly construct the interaction Hamiltonia
between the impurity and the correlated itinerant electr
for the continuum limit. In Sec. III we classify the solution
of the Bethe ansatz equations according to the string hyp
esis and derive the thermodynamic Bethe ansatz equat
The thermodynamic properties of the impurity are studied
Sec. IV and a summary with concluding remarks follows
Sec. V.

II. TRANSFER MATRIX AND THE BETHE
ANSATZ EQUATIONS

We begin this section by briefly restating the results
the supersymmetrict-J model we need here. Then we intro
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duce the impurity scattering matrix, construct the mon
dromy matrix, and derive the discrete Bethe ansatz equat
for the lattice model. Finally, we present the interacti
Hamiltonian between the impurity and the correlated itin
ant electrons, which we construct in the continuum limit~but
not for the lattice!.

A. Supersymmetric t-J model

The one-dimensionalt-J model is defined by the Hamil
tonian

H052t(
is

P~cis
† ci11s1ci11s

† cis!P

1J(
i

SSiSi112
1

4
nini11D , ~2.1!

where cis
† creates an electron of spins at site i , P is a

projector that excludes the multiple occupancy of each s
Si5cis

† Sss8cis8 are the spin-
1
2 operators andni5(scis

† cis is
the number operator for sitei . HereJ is the exchange cou
pling ~assumed antiferromagnetic! and without loss of gen-
erality t can be equated to 1.

Model ~2.1! is only integrable forJ52t, i.e., at the super-
symmetric point.19,23The scattering matrix for two electron
with wave numbersk1 andk2 then takes the form4

X̂~k1 ,k2!5
~p12p2! Î1 i P̂

p12p21 i
, ~2.2!

wherep5 1
2cot(k/2), Î5ds1s

18
ds2s

28
and P̂5ds

18s2
ds

28s1
are

the identity and permutation operators for the spin indic
respectively. Here unprimed~primed! spin indices refer to
states before~after! scattering. It is easy to verify that th
two-electron scattering matrix satisfies the Yang-Baxter
angular relation

X
s2s

28

s1s18~p12p2!Xs3s
38

s18s19~p12p3!Xs
38s

39

s28s29~p22p3!

5X
s3s

38

s2s28~p22p3!Xs
38s

39

s1s18~p12p3!Xs
28s

29

s18s19~p12p2!, ~2.3!

where repeated indices are summed over. Relation~2.3!, in
addition to the excluded multiple occupancy of sites, are n
essary and sufficient conditions for the integrability of E
~2.1!.

The energy is determined by the wave numbers; fo
particle of wavenumberk we have4

E522cos~k!52212
1/2

p211/4
. ~2.4!

B. Impurity scattering matrix

We introduce the impurity via its scattering matrix wit
the itinerant electrons. If the integrability of the model is
be preserved, the impurity scattering matrixŜ has to satisfy
the following triangular Yang-Baxter relation28,29
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X
s2s

28

s1s18~p12p2!SMM8

s18s19~p12p0!SM8M9

s28s29 ~p22p0!

5S
MM8

s2s28~p22p0!SM8M9

s1s18 ~p12p0!Xs
28s

29

s18s19~p12p2!, ~2.5!

where the sum over repeated indices is implicit. The ind
M refers to the spin component of the magnetic impurity.
principle, there is not a unique impurity scattering mat
satisfying Eq.~2.5!, i.e., there is more than one impurit
form that could be constructed without destroying the in
grability of the supersymmetrict-J model.

In this paper we consider the impurity scattering matri

SMM8
ss8 ~p2p0!5dss8dMM81~MsuM1s!~M 8s8uM 81s8!

3
i ~2S11!

p2p02 i ~2S11!/2
PMM8

ss8 , ~2.6!

where again the unprimed~primed! indices refer to the in-

coming ~outgoing! states and PMM8
ss8 5dss8dMM8

1d2ss8dM8M12s . HereS is the spin of the impurity and
necessarily uM u<S. The Clebsch-Gordan coefficien
(MsuM1s), which is actually a shorthand notation for

„SM; 1
2 suS 1

2 ~S1 1
2 !M1s…, ~2.7!

selects the way the impurity interacts with the itinerant el
trons. The impurity is then capable of temporarily absorb
the spin of one conduction electron to form an effective s
(S1 1

2), i.e., it exists in two different spin configuration
This is characteristic of intermediate valence systems, wh
actual states are the linear superposition of two electro
configurations of the ions.29,39,40 Here p0 is the parameter
that controls the degree of ‘‘valence admixture.’’ Note th
both, Eqs.~2.2! and ~2.6!, are unitary.

C. Monodromy matrix and Bethe ansatz equations

The monodromy matrix28,29 is defined as

L
$s1•••sNM %t

$s18•••sN8M8%t8
~a;a1 , . . . ,aN11!

5X
s
18s1

t8m1~a12a!X
s
28s2

m1m2~a22a!•••X
s
N8 sN

mN21mN~aN2a!

3S
M8M
mNt

~aN112a!, ~2.8!

with the implicit summation over all them j indices. With
respect to the indicest andt8 the monodromy matrix forms

a 232 matrix, which we will denoteL̂t
t8(a) omitting the

spin indices and the parametersa j .
From the Yang-Baxter relations it follows that the mon

dromy matrix satisfies the identity28,29

X
t2t

28

t1t18~a2a8!L̂t3

t18~a8!L̂
t
38

t28~a!

5L̂
t
28

t2~a!L̂
t
18

t1~a8!X
t
28t

38

t18t3~a2a8!, ~2.9!
x

-

-
g
n

re
ic

t

where the sum over repeated indices is implicit. Using t
X̂(a)X̂(2a)51̂, we multiply Eq. ~2.9! from the left by

X
t
38t2

t3t1(a82a) and sum over the indicest1 andt2 to obtain

dt3t
18
dt

38t
28
L̂

t
18

t18~a8!L̂
t
28

t28~a!5 (
t1t2

X
t
38t2

t3t1~a82a!L̂
t
28

t2~a!

3L̂
t
18

t1~a8!X
t
28t

38

t18t3~a2a8!. ~2.10!

Summing overt18 , t28 , t3, andt38 the left-hand side is jus
T̂(a8)T̂(a), whereT̂(a)5(tL̂t

t(a) is known as the transfe
matrix. The right-hand side corresponds to the trace o
product of operators. Using the invariance of the trace un
a cyclic permutation of these operators and taking into
count thatX̂ is unitary, we obtainT̂(a)T̂(a8). Hence, trans-
fer matrices at differenta values commute and can all b
diagonalized simultaneously.

Consider nowNe itinerant electrons and the impurity in
box of Na sites with periodic boundary conditions. Period
boundary conditions imposed on a given electron means
it has to interchange position with all other electrons. Ea
shifting through~permutation! involves a two-particle scat
tering matrix, such that when the particle is back at the or
nal position we obtained an operator that consists of a pr
uct of (Ne21) electron-electron scattering matrices,X̂, and
one scattering matrix due to the impurity,Ŝ, i.e.,

T̂j~kj !5X̂j , j11
21 ~pj2pj11!•••X̂j ,N

21~pj2pN!Ŝj
21~pj2p0!

3X̂j ,1
21~pj2p1!•••X̂j , j21

21 ~pj2pj21!. ~2.11!

The periodic boundary condition for each electron gives r
to one such operator, i.e.,j51, . . . ,Ne , and theNe opera-
tors have to be diagonalized simultaneously. The co
sponding eigenvalues are exp(ikjNa) or expressed in terms o
the rapiditypj

Fpj1 i /2

pj2 i /2G
Na

. ~2.12!

With aN115p0, a l5pl for l51, . . . ,Ne and a5pj ,
j51, . . . ,Ne , Eq. ~2.11! is just the trace over the mono
dromy matrix, which as shown above can be diagonaliz
simultaneously for all values of the spectral parameter.

The four components of the monodromy matrix with r
spect to the indicest andt8 are denoted by28

L̂1
15Â, L̂2

15B̂, L̂1
25Ĉ, L̂2

25D̂, ~2.13!

so that the diagonalization ofT̂(a) corresponds diagonaliz
ing Â(a)1D̂(a). The operatorsÂ, B̂, Ĉ, andD̂ obey com-
mutation relations which are obtained from Eq.~2.9! by ex-
plicitly using the two-electron scattering matrix,~2.2!. The
procedure is tedious and the results are similar to those
rived in Refs. 28 and 29, so that they will not be repea
here. We denote withV0 the state of maximum spin~usually
called the vacuum state!, i.e., the state in which all electro
spins point upward and the impurity spin is in the sta
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M5S. The Ĉ operator acts like a ‘‘spin-raising’’ operato
and when applied toV0 it yields zero. The diagonal opera
tors satisfy

Â~a!V05LA~a!V0 , D̂~a!V05LD~a!V0 ,

LA~a!5
aN112a1 i ~2S11!/2

aN112a2 i ~2S11!/2
, ~2.14!

LD~a!5
aN112a2 i ~2S21!/2

aN112a2 i ~2S11!/2 )
j51

Ne a j2a

a j2a1 i
.

On the other hand,B̂ has properties like a ‘‘spin-lowering’
operator, such that the vector

V~a18 , . . . ,aM*
8 !5 )

b51

M*

B̂~ab8 !V0 ~2.15!

corresponds toM* flipped spins and has a spin projectio
equal to1

2Ne2M*1S.
The Bethe ansatz equations are the conditions on the

of parametersa18 , . . . ,aM*
8 under which the vector~2.15! is

an eigenvector ofÂ(a)1D̂(a). We applyÂ(a)1D̂(a) to
V(a18 , . . . ,aM*

8 ) and commute (Â1D̂) through all theB̂
operators. Two types of terms arise, namely,~i! terms that
reproduce the vector~2.15! and ~ii ! terms of the form

(
g51

M*

Lg~a,$ab8 %! )
b51,bÞg

M*

B̂~ab8 !B̂~a!V0 , ~2.16!

which are usually refered to as ‘‘unwanted’’ terms. The a
tual expression ofLg(a,$ab8 %) is obtained by making use o
the commutation relations of the operators~2.13!. Hence, the
vector ~2.15! is an eigenvector of (Â1D̂) only if
Lg(a,$ab8 %)50 for eachg. This leads to the following con
dition on the set of parameters$ab8 %:

aN112ag81 i ~2S11!/2

aN112ag82 i ~2S21!/2 )
j51

Ne a j2ag81 i

a j2ag8

52 )
b51

M* ag82ab82 i

ag82ab81 i
. ~2.17!

The eigenvalue of (Â1D̂), i.e., the amplitude multiplying
the term of type~i! that reproduces the vector~2.15!, is again
obtained using the commutation relations of the opera
~2.13!

LA~a! )
b51

M* a2ab81 i

a2ab8
1LD~a! )

b51

M* a2ab82 i

a2ab8
.

~2.18!

With aN115p0, a l5pl for l51, . . . ,Ne , a5pj , setting
ab85Lb1 i /2 and using Eq.~2.12!, we obtain the discrete
Bethe ansatz equations29 for the t-J model with impurity
et

-

rs

pj2p01 i ~2S11!/2

pj2p02 i ~2S11!/2 Fpj1 i /2

pj2 i /2G
Na

5 )
b51

M*
pj2Lb1 i /2

pj2Lb2 i /2
,

j51, . . . ,Ne , ~2.19!

La2p01 iS

La2p02 iS )
j51

Ne La2pj1 i /2

La2pj2 i /2
52 )

b51

M*
La2Lb1 i

La2Lb2 i
,

b51, . . . ,M* . ~2.20!

In each equation the first factor on the left-hand side ari
from the impurity. The remaining factors correspond to t
supersymmetrict-J model without impurity. The energy o
the system is given by Eq.~2.4! summed over allj and the
magnetization isSz5

1
2Ne2M*1S.

D. Impurity Hamiltonian

Our model is defined by the scattering matrices,~2.2! and
~2.6!, via the quantum inverse scattering method. By co
struction of the transfer matrix the impurity spin interac
only with the two nearest neighbor sites, i.e., we can assu
the impurity on a given link and interacting with the site
joined by the link. The Hamiltonian and higher conserv
currents, which describe the interaction between the impu
and the itinerant electrons can be obtained by differentia
the logarithm of the transfer matixT̂(a) with respect to the
spectral parametera. The first derivative determines th
Hamiltonian of the lattice interacting with the impurity. Th
procedure is tedious and has explicitly been carried out
the Heisenberg antiferromagnet with impurity32 in terms of
reduced tensor operators for the lattice and impurity sp
This leads to complicated expressions and little understa
ing. To gain some insight into the physics of the impur
and its interaction with the conduction electrons, it is instru
tive to derive the Hamiltonian in the continuum limit of th
model, i.e., in the limit where the lattice constant tends
zero. This situation is considerably simpler. All properti
derived in this paper, except for this subsection, are valid
the lattice model.

In the continuum limit we can linearize the kinet
energy in the momentum around the Fermi level and
strict ourselves to low-energy excitations. Assume
two Fermi points are given by6kFS related to6pFS by
pFS5

1
2cot(kFS/2). Denoting v5@2sin(kFS/2)#

22 the group
velocity of the electrons we have that the scattering matri
take the form

X̂~k12k2!5
~k12k2! Î2 iv21P̂

k12k22 iv21 , ~2.21!

SMM8
ss8 ~k2e!5dss8dMM82~MsuM1s!~M 8s8uM 81s8!

3
iv21~2S11!

k2e1 iv21~2S11!/2
PMM8

ss8 . ~2.22!

Identifying v215V2/(2S11) these scattering matrices a
exactly those of a mixed valence impurity with two magne
configurations of spinsS andS1 1

2 hybridized via electron of
spin 1

2.
29,39,40Here e is related top0 and represents the en
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ergy difference between the two configuration relative to
Fermi level. The two partial waves in one dimension, e
forward and backward moving electrons, can be transform
into even and odd parity states about the impurity site. Si
odd parity states do not interact with the impurity in t
continuum limit~contact potential!, they can be disregarded
Hence, actually only even parity states play a role in
continuum limit. Allowing for a rescaling of the length of th
box, the continuum limit Hamiltonian for the impurity place
at the origin can be written as41,42

H imp5e(
M1

uS1M1&^S1M1u1V (
sMM1

~MsuM1!E dxd~x!

3@cs
†~x!uSM&^S1M1u1uS1M1&^SMucs~x!#, ~2.23!

where the bra and ket denote the impurity states,S15S1 1
2

andM15M1s is the correspondingz projection. The com-
pleteness condition for the impurity requires

(
M1

uS1M1&^S1M1u1(
M

uSM&^SMu51. ~2.24!

There is a fundamental difference between the impurity e
bedded in the noninteracting gas of electrons29,39,40and in the
correlated electron gas discussed here. In the former cas
properties of the impurity are determined as a function
two parameters, namely,« andV, so that charge and spin
fluctuations can occur on different energy scales. The im
rity in the correlated gas of electrons has only one free
rameter,p0, while the second parameter is fixed by t
condition of integrability. The degree of charge fluctuatio
however, strongly depends on the parameterp0, and for large
up0u the Kondo limit is obtained.

Note that with minor modifications to the impurity sca
tering matrix ~2.6! the model can also be defined fo
S15S2 1

2. In the case of the mixed-valent Anderson mod
embedded into a gas of uncorrelated electrons, this
straightforwardly achieved by interchanging electrons a
holes. The case is more subtle for correlated electrons, w
the caseS15S2 1

2 requires an independent and new solutio
In contrast to the continuum limit the impurity interactio

on the lattice has additional complications. Since the inter
tion is no longer a contact potential, both partial waves~even
and odd parity states! play a role in the interaction. Further
more, the sign of the parameterp0 is important, in particular
if finite size effects are considered. It gives rise to an eff
tive mesoscopic momentum, i.e., to a persistent charge
rent.

III. THERMODYNAMICS

In this section we first classify the possible states of
system according to the string hypothesis, then we derive
thermodynamic Bethe ansatz equations, and finally
briefly discuss the high-temperature andT→0 ~ground state!
limits of the thermodynamic equations.

A. Classification of states

Each eigenstate of the system is specified by two set
rapidities,$pj% and $La%, for the charges and the spins, r
spectively, which satisfy the discrete Bethe ansatz equati
e
.,
d
e

e

-

the
f

u-
-

,

l
is
d
re
.

c-

-
r-

e
he
e

of

s,

~2.19! and~2.20!. The structure of the solutions of the Beth
ansatz equations is determined by the host~supersymmetric
t-J model!, rather than by the impurity, and can be tak
over from Ref. 4. The classification of states is also similar
that of the fermion gas with attractived-function
potential43,44 and the j51/2 Anderson impurity in the
U→` limit.45

In the thermodynamic limit the rapidities are classifi
according to~i! (Ne22M* 8) real charge rapidities, corre
sponding to unpaired propagating electrons,~ii ! 2M* 8 com-
plex charge rapidities, representing bound or spin-pai
electron states, of the form

pa
65La86 i /2, ~3.1!

whereLa8 is a real spin rapidity,a51, . . . ,M* 8, and ~iii !
Mn* strings of complex spin rapidities~bound spin states! of
length (n21), n51, . . . ,̀ , of the form

La,n
m 5La,n1 im/2,

m52~n21!,2~n23!, . . . ,~n21!, ~3.2!

where againLa,n is a real parameter. The integersM* 8 and
Mn* satisfy the relation

M* 81 (
n51

`

nMn*5M* . ~3.3!

Distribution functions for the rapidities and their ‘‘holes
are now introduced for each class, i.e.,r(p) andrh(p) for
the real charge rapidities,s8(L) and sh8(L) for the spin-
paired states andsn(L) andsn,h(L) for the strings ofn spin
rapidities. Inserting Eqs.~3.1! and~3.2! into the discrete Be-
the ansatz equations, we obtain after Fourier transform
and some algebra4

ŝm11,h~v!1ŝm21,h~v!1dm,2Se
ip0v/~2pNa!

52coshS 12v D @ŝm~v!1ŝm,h~v!#, m>1, ~3.4!

ŝ1,h~v!1ŝh8~v!1152coshS 12v D @ r̂~v!1 r̂h~v!#,

~3.5!

e2~1/2!uvuŝh8~v!1e2~1/2!uvu1e[ ip0v2~S11/2!uvu] /~2pNa!

52coshS 12v D @ŝ8~v!1ŝh8~v!#1 r̂~v!, ~3.6!

where r̂(v)[ŝ0,h(v). The terms proportional to 1/Na are
due to the impurity scattering matrix. The energy, the to
number of electrons and the magnetization are given by4

E/Na522Ne /Na12E dpr~p!
1/2

p211/4

12E dLs8~L!
1

L211
,

Ne /Na5E dpr~p!12E dLs8~L!, ~3.7!
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Sz /Na5S/Na1
1
2 E dpr~p!2 (

n51

`

nE dLsn~L!.

B. Thermal equilibrium

The above equations are valid quite generally for
states. We now restrict ourselves imposing thermal equ
rium by minimizing the free energy functional with respe
to the density functions subject to Eqs.~3.4!–~3.6! and the
constraints of constant number of electrons and cons
magnetization~the corresponding Lagrange multipliers a
the chemical potentialm and the magnetic fieldH). We in-
troduce an energy function for each class of rapidit
through

rh /r5exp@«~p!/T#, sh8/s85exp@c~L!/T#,

sn,h /sn5exp@wn~L!/T#5hn~L!, w0[2«. ~3.8!

which satisfy the following integral equations4

«~p!5JpG0~p!1TG0! ln@~11ec/T!/~11h1!#,
~3.9!

c~L!5221JpG1~L!2m1TG1! ln~11ec/T!

1TG0! ln~11e2«/T!, ~3.10!

wn~L!5TG0! ln@~11hn11!~11hn21!#, ~3.11!

where the last equation holds forn51, . . . ,̀ , the star de-
notes convolution,h05e2«/T, and Gl(L) is the Fourier
transform of exp(2luvu/2)/2 cosh(v/2). The field depen-
dence is introduced via the field boundary condition,

limn→`
1
2 wn~L!5H. ~3.12!

By differentiating Eqs.~3.9!–~3.11! with respect toJ, we
obtain from similarity with Eqs.~3.4!–~3.6! that the relation
between energy potentials and density functions is

sn,h52@]wn /]~pJ!#/~11e2wn /T!, ~3.13!

r5@]«/]~pJ!#/~11e«/T!, ~3.14!

sh85@]c/]~pJ!#/~11e2c/T!. ~3.15!

The complementary functions can be obtained with the aid
Eq. ~3.8!.

An alternative set of integral equations, equivalent to E
~3.9!–~3.11!, is the following4

«~p!52212pa1~p!2 1
2 H2m1Ta1! ln~11e2c/T!

2T(
n51

`

an! ln~11hn
21!, ~3.16!

c~L!52412pa2~L!22m1Ta2! ln~11e2c/T!

1Ta1! ln~11e2«/T!, ~3.17!
ll
-

nt

s

of

.

ln@11hn~L!#5~nH/T!1an! ln~11e2«/T!

1 (
n51

`

Anm! ln~11hm
21!, ~3.18!

where

an~L!5~n/2p!/@L21~n/2!2# ~3.19!

andAnm(L) is the Fourier transform of

coth~ 1
2 uvu!@e2un2muuvu/22e2~n1m!uvu/2#. ~3.20!

The equilibrium free energy of the system is the sum
the free energies of the supersymmetrict-J model and the
impurity

FtJ /Na52c~0!22m2252TE dpa1~p!ln~11e2«~p!/T!

2TE dLa2~L!ln~11e2c~L!/T!, ~3.21!

F imp52TE dLG2S11~L2p0!ln~11ec~L!/T!

2TE dLG0~L2p0!ln~11ew2S~L!/T!, ~3.22!

where the impurity energy is defined up to a temperat
independent function ofp0.

In the following subsections we consider theT→` and
T→0 limits of these equations.

C. High-temperature limit

If the temperature is much larger than the bandwidth, i
T@2, we can neglect the independent~driving! terms in Eqs.
~3.9!–~3.11!, so that the potentials«, c, andwn do not de-
pend on the variablesp andL. Equations~3.9!–~3.11! re-
duce to a system of algebraic equations, which has the
lowing solution:4,40,43

11hn5@sinh~nH/2T1x!/sinh~H/2T!#2,

e2«/T5~11ec/T!/~11h1!, ~3.23!

e2~c1m!/T5~11e2«/T!~11ec/T!,

whereh05e2«/T and

e2x5e2H/T@11e2~H12m!/2T#/@11e~H22m!/2T#.
~3.24!

The free energy of the host corresponds to the three deg
of freedom per site~a hole and a spin 1/2!

FtJ /Na52Tln@112em/Tcosh~H/2T!#, ~3.25!

wherem is measured from the bottom of the band. The fr
energy of the impurity is discussed in Sec. IV.

D. Ground state equations

The ground state integral equations are obtained fr
Eqs. ~3.11!, ~3.16!, and ~3.17! in the limit T→0. From Eq.
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~3.11! it follows that the energy potentialswn are positive
over the entireL range for alln>1. Hence, asT→0 the
string states are not occupied. Only the« band ~unpaired
electrons! and thec band~spin-paired electrons! are popu-
lated. We separate these energy potentials into their pos
and negative parts, i.e., «(p)5«1(p)1«2(p),
c(L)5c1(L)1c2(L), so that the terms with ‘‘1 ’’ su-
praindex are positive~empty states or holes! and those with
‘‘ 2 ’’ are negative~occupied states or particles!. The zeroes
of the potentials define the integration limits,«(6B)50 and
c(6Q)50. Both,B andQ, are functions ofm andH. In the
limit T→0, Eqs.~3.16! and ~3.17! yield4

«~p!52212pa1~p!2 1
2 H2m

2E
uLu.Q

dLa1~p2L!c~L!, ~3.26!

c~L!52412pa2~L!22m

2E
uL8u.Q

dL8a1~L2L8!c~L8!

2E
upu.B

dpa1~L2p!«~p!. ~3.27!

Similar equations, which can be obtained using Eqs.~3.14!
and ~3.15!, determine the density functions.

The energy, the number of electrons and magnetizatio
the host are given by

E/Na522Ne /Na12pE
upu.B

dpr~p!a1~p!

12pE
uLu.Q

dLs8~L!a2~L!,

Ne /Na5E
upu.B

dpr~p!12E
uLu.Q

dLs8~L!, ~3.28!

Sz /Na5S/Na1
1
2 E

upu.B
dpr~p!.

In zero magnetic field we haveB5` and the unpaired elec
tron band is empty. As a function of fieldB decreases mono
tonically. In zero field the number of electrons in the syst
is a decreasing function of the parameterQ.4

The ground state properties of the impurity are discus
in Sec. IV.

IV. PROPERTIES OF THE IMPURITY

In this section we present results for the impurity emb
ded in the supersymmetrict-J lattice, first in the high-
temperature limit, then the ground state properties, and
nally the Kondo limit. It is evident from Eq.~3.22! that the
impurity is driven by the host, i.e., the supersymmetrict-J
model, through the energy potentialsc(L) and w2S(L).
Some impurity properties are then expected to be differ
from those of the mixed-valent impurity with two magnet
configurations embedded in a noninteracting electron g
Except for special limits the integral equations for the ene
ve

of

d

-

fi-

nt

s.
y

potentials of thet-J model cannot be solved analytically an
a solution has to be obtained numerically.

A. High-temperature limit

In the high-temperature limit the leading contribution
obtained by assuming the energy potentials constant,
independent ofL andp. The impurity free energy~3.22! is
then approximately given by

F imp52 1
2 Tln@~11ec~p0!/T!~11ew2S~p0!/T!# ~4.1!

and by using Eqs.~3.23! and ~3.24! this reduces to

F imp52Tln„Z~S11/2!1exp$@g~p0!2m#/T%ZS…, ~4.2!

where m is measured from the bottom of the conducti
band and

ZS5
sinh@~2S11!H/2T#

sinh~H/2T!
~4.3!

is the partition function of a free spinS in a magnetic field.
Expression~4.2! corresponds to an impurity with two coex
isting configurations, one of spin (S1 1

2) and the other of
spinS. The degree of admixture of the two configurations
a function of p0 via the functiong(p0), which is even in
p0 and monotonically decreasing forp0.0 with
g(p056`)50. The functiong(p0) can be approximated
by 2pG1(p0). The properties of the impurity depend on th
band filling through the chemical potential. For a given i
termediatep0 the spinS configutation is favored form→0,
i.e., for low electron densities where the impurity is unlike
to localize an electron, while close to half-filling
m52ln(2), the configuration of spin (S1 1

2) is favored, since
the impurity can bind one itinerant electron. Next to leadi
corrections to Eq.~4.2! can be obtained following the proce
dure outlined in Ref. 40.

For a fixed field the specific heat of the impurity as
function ofT displays a Schottky anomaly and the zero-fie
susceptibility follows a Curie law.46 The Curie constant and
the entropy under the Schottky peak depends on the ad
ture, i.e., the parameter@g(p0)2m#.

B. Ground state integral equations

Equations~3.4!–~3.6! are linear in the densities and hav
driving terms arising from the itinerant electrons and fro
the impurity. Hence, the density functions can be separa
into a host and an impurity contribution. Since the impur
is driven by the itinerant electrons, onlyr i(p) for upu.B and
s i8(L) for uLu.Q are nonzero rapidity distributions in th
groundstate. In the limitT→0 the impurity density functions
satisfy

r i ,h~p!1r i~p!1E
uLu.Q

dLa1~p2L!s i8~L!

5a2S11~p2p0!, ~4.4!
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s i ,h8 ~L!1s i8~L!1E
uL8u.Q

dL8a2~L2L8!s i8~L8!

1E
upu.B

dpa1~L2p!r i~p!5a2S12~p2p0!,

~4.5!

and the impurity energy, magnetization and valence
given by

Eimp52pE
upu.B

dpr i~p!a1~p!

12pE
uLu.Q

dLs i8~L!a2~L!,

M imp5S1 1
2 E

upu.B
dpr i~p!,

nimp5E
upu.B

dpr i~p!12E
uLu.Q

dLs i8~L!. ~4.6!

The integral equations are of the Fredholm type and di
from those of the corresponding Anderson impurity, whi
are coupled Wiener-Hopf equations.40 Note that the impurity
density functions are not symmetric in their argument,
asymmetry being introduced byp0 in the driving terms.
Without loss of generality we can symmetrize them by co
sidering the half-sum for6p0.

In the absence of a magnetic field, i.e.,B→`, only one
integral equation remains. Analytical results can be obtai
in the limits of low electron density (Q→`) and low
‘‘hole’’ density (Q→0). For largeQ the Fredholm integra
equation can be transformed into a hierarchical sequenc
Wiener-Hopf integral equations. The leading contribution
the valence~fraction of bound itinerant electron! of the im-
purity is

nimp5
2S12

2p

Q

Q22p0
2 , ~4.7!

where we assumed thatQ@up0u. On the other hand, if the
electron band is filled,Q50, the integral equation can b
solved by Fourier transformation and

nimp512O~Q!. ~4.8!

Hence, in this limit we have one localized conduction ele
tron. Corrections for smallQ ~low hole concentraction! re-
duce the valence proportionally toQ. Hence, as a function o
band filling the valence smoothly varies between
(Ne→0) and 1 (Ne→Na).

C. Ground state magnetization

The ground state magnetization is obtained followi
standard procedures~see Refs. 29 and 40! from Eqs. ~4.4!
and~4.5!. From Eq.~4.5! we expresss8 as a function of the
remaining quantities and insert it into Eq.~4.4!. We obtain a
Fredholm integral equation forr with two kinds of driving
terms, namely, independent terms depending onp0 and a
term involvingsh8 . The magnetization is then the sum of tw
re

r

e

-

d

of

-

contributions, the magnetization due to the internal degr
of freedom of the impurity and the magnetization arisi
from the valence admixture. Since the magnetic field is u
ally much smaller than the bandwidth, the latter contributi
is small and linear in the field and will be neglected he
The Fredholm equation for the ‘‘Kondo’’-like spin excita
tions is

r i ,h~p!1r i~p!2E
up8u.B

dp8G1~p2p8!r i~p8!

5G2S~p2p0!, ~4.9!

where we may assume thatp0 is positive and large. Equation
~4.9! can then be reduced to a hierarchical sequence
Wiener-Hopf integral equations. The leading contribution
given by Eq.~4.9! with the integration range restricted t
positivep8 larger thanB. The equation then depends only o
the parameter p02B which we parametrize by
(1/p)ln(H/TK), whereTK plays the role of a ‘‘Kondo’’ tem-
perature. The solution of the Wiener-Hopf equation yield40

M imp5S@11 1
2L212 1

4 ln~L!/L21•••#,

H!TK , ~4.10!

M imp5~S1 1
2 !@12 1

2L212 1
2 ln~L!/L21•••#,

H@TK , ~4.11!

whereL5u ln(H/TK)u. Hence, in a small field the impurity ha
an asymptotically free spinS, while in strong magnetic fields
the effective spin is (S1 1

2) weakly coupled~logarithm char-
acterize asymptotic freedom! to the itinerant electrons. Fo
intermediate fields the magnetization smoothly interpola
between these two limits. Higher order corrections to E
~4.10! and ~4.11! require the solution of other equations
the hierarchical sequence of Wiener-Hopf equations.

If S50, on the other hand, the ground state is a sing
and the small-field magnetization is proportional to the fie
Equation~4.10! is not valid for this case, although Eq.~4.11!
is still applicable.

D. ‘‘Kondo’’ limit

In order to obtain the ‘‘Kondo’’ limit we must suppres
the valence fluctuations. Charge fluctuation are described
the energy potentialc(L), so that Eq.~3.9! can be replaced
by

«~p!5eFe
2pupu2TG0! ln~11h1!, ~4.12!

where we kept only the low-lying excitations, given by larg
upu, andeF is an energy scale of the order of the band ha
width. The coupled integral equations~3.11! and ~4.12! are
very similar to those of the Kondo problem, except that th
are two Fermi points in the Dirac sea of spin rapidities,
contrast to the Kondo problem which involves only one p
tial wave.27,28 The impurity free energy due to spin fluctua
tions is given by the term of Eq.~3.22! involving w2S . This
term contains the onlyp0 dependence in the problem. Aga
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we assume thatp0 is positive and large~Kondo limit!. The
interference of the two Fermi points~backward scattering o
spin waves! is then not very important for the impurity prop
erties and can be neglected. Redefining the integra
variables, p51

2 @l2(2/p)ln(eF /T)] and L51
2 @l2(2/

p!ln(eF /T)] and denoting

h̃1~l!5e2«~p!/T, h̃n11~l!5hn~L!5ewn~L!/T,
~4.13!

we obtain from Eqs.~3.11! and ~4.12! the thermodynamic
Bethe ansatz equations for the single orbital channel Ko
problem and the impurity free energy is now given by27–29,40

F imp52 1
4 TE dl ln@11h̃2S11~l!#

3$cosh@ 1
2 pl2 ln~T/TK!#%21, ~4.14!

where p05(1/p)ln(eF /TK). Equation~4.14! is the free en-
ergy of the Kondo exchange model for arbitrary spin (S1
1
2).
For SÞ0 the magnetic susceptibility shows Kondo log

rithms in both the high- and low-temperature limits

x5~m2/3T![12L211 1
2 lnuLu/L21•••], ~4.15!

whereL5 ln(TK /T) andm is the effective magnetic momen
which is different in the two limits, i.e.,m25S(S11) as
T→0 andm25(S1 1

2)(S1 3
2) asT→`. Hence, as seen a

ready for the ground state the impurity spin is only partia
compensated at lowT. If S50, on the other hand, the groun
state is a singlet and the susceptibility is finite.

V. CONCLUDING REMARKS

Impurities are expected to play a relevant role in high
correlated electrons and may alter the properties of the
tem. In this paper we pursued the exact solution of amag-
netic impurity embedded into a one-dimensional lattice w
strongly interacting electrons. The model has one free
rameter,p0, that tunes the properties of the impurity. In co
trast, the same impurity in a host without correlations h
two parameters, such that charge and spin fluctuations ca
varied independently. The absence of backward scatte
~condition for the integrability! makes this impurity problem
probably nongeneric, in the sense that away from supers
metry and for a different impurity-lattice coupling the low
temperature properties of the impurity may change. Ex
solutions, even for simplified systems, may provide insig
and a testing ground for approximations intended for m
complicated problems.

In contrast to other proposed integrable impur
systems36,37we consider here amagneticimpurity, i.e., break
the translational invariance by introducing an additional s
S into the lattice. The integrable model providing the bac
ground of itinerant electrons is the supersymmetrict-J
model. Its integrability was shown long ago19,23and its prop-
erties were studied in Refs. 4 and 24, including ground s
properties, thermodynamics, and excitation spectrum.
n

o

s-

a-

s
be
ng

-

ct
s
e

n
-

te
e

constructed an impurity scattering matrix, Eq.~2.6! that
obeys the triangular Yang-Baxter relations with the scat
ing matrix of the supersymmetrict-J model. This, together
with the excluded multiple occupation of the lattice sites,
the necessary and sufficient condition for the integrability
the t-J model with impurity. The scattering matrices als
define the Hamiltonian and higher conserved currents via
quantum inverse scattering method.

The interaction of the itinerant electrons with the impur
is via an effective hybridization with the two neighborin
sites to the impurity. The impurity of spinS is capable of
localizing one itinerant electron. The Clebsch-Gordan co
ficient selects the coupling of the conduction electron spin
the impurity to form a total spin (S1 1

2).
We derived the Bethe ansatz equations diagonalizing

t-J model with impurity, classified all the states according
the string hypothesis, obtained the thermodynamic equat
including the free energy of the impurity, and discussed
high-temperature and ground state properties.

At high temperatures the impurity is in a mixed vale
state resulting from the superposition of the spinS and spin
(S1 1

2) configurations. The susceptibility is Curie-like and
a magnetic field the specific heat as a function of tempera
displays the expected Schottky anomaly. The degree of
mixture is a function of the parameterp0 ~related to the
energy difference between the two configurations! and the
chemical potential. For a givenp0 the fraction of localized
electron~valence! increases monotonically with the band fil
ing. The variation of the valence with the band filling is mo
dramatic at low temperatures, where its range is from 0 to

In the limit of large up0u and for a given finite electron
density, the impurity has an effective spin (S1 1

2) at low
temperatures. We have shown how this situation can
mapped onto the single orbital channel Kondo problem
spin (S1 1

2). This mapping is only approximate, because t
interaction between impurity and itinerant electrons is no
contact potential for the lattice problem; hence, the impur
is not only scattered by the even parity states~about the
impurity site!, but also by the odd parity states. Cons
quently, backward scattering across the spin rapidity Fe
surface cannot be neglected, but as argued, it does not ha
dramatic effect on the impurity properties.

Hence, in the Kondo limit the impurity is undercompe
sated, i.e., it has an effective spinS in a small field at low
temperatures. The field and/or the temperature~if larger than
TK) break up the partial screening and the effective s
(S1 1

2) is recovered. The susceptibility follows a Curie la
with a temperature dependent Curie constant. In a sm
magnetic field the specific heat has two peaks, one is
Schottky peak atT'H arising from the underscreened sp
S and at higherT ('TK) the broad structure of the Kond
resonance gives rise to the second peak.46 At larger fields,
the two energy scales are no longer separated, and
peaks merge into one.
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