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We consider the one-dimensiortal model, which consists of spin-1/2 electrons on a lattice with nearest
neighbor hopping constrained by the excluded multiple occupancy of the lattice sites and spin-exchange
between neighboring sites. The model is integrable at the supersymmetricJsoRit, We extend the model
by introducing an impurity of arbitrary spi that interacts with the electrons on the neighboring sites without
destroying the integrability. The lattice model is defined by the scattering matrices via the quantum inverse
scattering method. The interaction Hamiltonian between the impurity and the itinerant electrons is only ex-
plicitly constructed in the continuum limit. The discrete Bethe ansatz equations diagonalizing the model are
derived and the solutions are classified according to the string hypothesis. The thermodynamic Bethe ansatz
equations are derived and the impurity free energy is obtained for arbitrary bandfilling as a function of
temperature and external magnetic field. The properties of the impurity depend on one coupling parameter. The
impurity can localize up to one itinerant electron and has in general mixed valent properties. The integer valent
low T smallH fixed point of the impurity corresponds to an asymptotically free $piwhile if either T or
H (or both become large the impurity behaves like an asymptotically free spB 3.
[S0163-18297)03605-9

[. INTRODUCTION trial wave function and exact diagonalizations are limited by
the relatively small cluster sizes. The most reliable results are
The Hubbard and-J models are frequently invoked as probably those obtained by variational Monte Carlo
models for highly correlated electrons, in particular for thesimulationst’ which are less limited by the size of the sys-
high-T, cuprate superconductots® but as well for heavy tem. The zero-temperature phase diagram as a function of
fermion system&° On one hand, the Hubbard model in the J/t and band fillingn shows three qualitatively different
limit of a strong Coulomb repulsion reduces to the phasesii) a Luttinger liquid ground state, which may have
model. The strong on-site correlations limit the site occupaan effective repulsive or attractive long-range interact{on,
tions to at most one electron. States with double occupation spin gap phase, artiii) a phase separated ground state in
are energetically unfavorable and can be projected out, swhich all electrongand all holes are clustered togethét.
that there are then three states per site, in contrast to four Unfortunately, the one-dimensionall model is not inte-
states for the Hubbard model. Virtual transitions to stategyrable for all ratios of/J. The necessary condition for the
with doubly occupied sites give rise to an exchange interacintegrability is the factorization of the many-electron scatter-
tion between electrons on nearest neighbor sites via a canonirg matrix into two-particle scattering matricééang-Baxter
cal transformatiofi—8 The validity of this transformation is triangular relation The Yang-Baxter relation imposes con-
restricted to small exchange constants or lddgand three  ditions on the scattering matrix that are only satisfied for
site interactiongcorrelated hoppingare usually neglected. J= +2t.%1° At this special point in a scattering process the
On the other hand, the low-energy excitations of the threesets of wave numbers of the incoming and outgoing particles
band Hubbard modditwo oxygenp states and one copper are identical, leading to permutation symmetry. The spin of
3d orbital per unit cell of the Cu@ plane can also be re- the electrons and the charge “holes” play a very similar role
duced to an effective one-batd model®~*2In this context, forming a graded superalgebi®?? The integrability of the
which does not involve the canonical transformation, onesupersymmetric model was first stated by “aiand
arrives at thet-J model without actually going through the Sutherland® and has subsequently been rediscovered by
traditional Hubbard model and/t is not restricted to be other authoré:?*?° Asymptotically exact results can also be
small. In factt andJ are comparable energies and we mayextracted from the Bethe ansatz for small deviations from
consider them as independent parameters not related supersymmetry and low electron concentratiths.
t?/U. Impurities play a very important role in correlated elec-
The phase diagram of the one-dimensianrdlmodel has tron compounds, since even a small amount of defects may
been investigated by numerous methods, e.g., with a variahange the properties of the system. Unfortunately, an impu-
tional ansatz for the Luttinger liquitf;'*by cluster diagonal- rity introduced into an integrable system usually destroys the
ization using Lanczos methdd!® and Monte Carlo integrability. Besides magnetic impurities in noninteracting
simulationst”*® Variational studies strongly depend on the metals(e.g., the Kondo effect, the Anderson impurity model,
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and the multichannel Kondo problem, see Refs. 27~30 duce the impurity scattering matrix, construct the mono-
there are only a few exceptions for integrable models withdromy matrix, and derive the discrete Bethe ansatz equations
interactions containing impurities. Andrei and Johanne¥son for the lattice model. Finally, we present the interaction
incorporated a magnetic impurity of arbitrary spin into the Hamiltonian between the impurity and the correlated itiner-
isotropic spins Heisenberg chain. The interaction betweenant electrons, which we construct in the continuum lifbit
the impurity and the neighboring lattice sites has to be of &t for the lattice.
special form to preserve the integrability. These results were
then extended to the Babujian-Takhtajan spin chain of spin
S’ and an arbitrary impurity of spi6.>223The properties of
isolated impurities are analogous to those of the multichan- The one-dimensionatJ model is defined by the Hamil-
nel Kondo problem, i.e., the underscreened, spintgnian
compensated and overscreened situations have to be
distinguished®3® It has been arguédl that these low-
temperature properties of the impurity correspond to nonge- Ho=—t> P(cl cii1otCli1,Cis)P
neric fixed points. The peculiarities, however, do not arise o
from integrability®>® Other author® proposed a different, 1
nonmagnetic impurity, model based on the Heisenberg chain, +JE (33+1_ —nin;.
which lacks of backward scattering. Within the context of i 4
the t-J model Bare¥ extended the ideas of Andrei and + ) o )
Johannessdhto introduce an integrable nonmagnetic impu- Where ¢;,, creates an electron of spim at sitei, P is a
rity which does not change the marginal Fermi liquid prop-projector that excludes the multiple occupancy of each site,
erties. Another avenue is pursued by Pfantenuand S=c;,S,,/Ci, are the spirs operators annizEUciTUcig is
Frahm who consider a fusion procedure for different rep-the number operator for siie HereJ is the exchange cou-
resentations of thgl(2,1) superalgebra. pling (assumed antiferromagnetiand without loss of gen-

In this paper we consider magneticimpurity embedded erality t can be equated to 1.
into the supersymmetrit-J model. The Bethe ansatz equa-  Model (2.1) is only integrable fod=2t, i.e., at the super-
tions automatica”y ensure the Integrablllty of the model. Thesymmetnc poinfl-_g'23 The Scattering matrix for two electrons

model is defined by the scattering matrices via the quantumyith wave numberk, andk, then takes the forfh
inverse scattering method. The Hamiltonian and other con-

served currents can in principle be constructed from the A (P1—p )f+i|5
transfer matrix. The impurity consists of a si8ron a given X(ky k)= ——2
link m, which by construction interacts only with both neigh- p1—p2tl
boring sites. The impurity can absotand release it again - -
one conduction electron and form an effective spini.  Wherep=3cot(k/2), | =8, 05,5, ANAP=38,1,,8,:,, are
The impurity has therefore intermediate valence charactethe identity and permutation operators for the spin indices,
which can be changed as a function of a model parametefespectively. Here unprimetprimed spin indices refer to
The model is structurally similar to the generalization of thegiates pefordaften scattering. It is easy to verify that the

Anderson impurity to two magnetic configurations, which yyo.electron scattering matrix satisfies the Yang-Baxter tri-
was found to be integrable some time &g6>“° Close to angular relation

integer valence two fixed points play a rol@: at low T and
small fields the impurity behaves like an asymptotically free ) ' '
spin S and(ii) if either T or H (or both are large the fixed X "X (p;—p,)X " (p1—p3)X 2 2(py—Pa)
point corresponds to the asymptotic freedom of a pin 7272 73%3 7373
1. There is a smooth crossover between these regimes at
intermediateT andH. _ 9273 7107 o101

The rest of the paper is organized as follows. The vertex —nggé(pz p3)xagag(p1 p3)XUégg(pl P2, (2.3
weights, the monodromy matrix, the diagonalization of the
transfer matrix, and the discrete Bethe ansatz equations avéhere repeated indices are summed over. Reld@08), in
introduced in Sec. Il. These equations define the latticeddition to the excluded multiple occupancy of sites, are nec-
model and determine the properties of the impurity. In Secessary and sufficient conditions for the integrability of Eq.
Il we also explicitly construct the interaction Hamiltonian (2.1).
between the impurity and the correlated itinerant electrons The energy is determined by the wave numbers; for a
for the continuum limit. In Sec. Il we classify the solutions particle of wavenumbek we havé
of the Bethe ansatz equations according to the string hypoth-
esis and derive the thermodynamic Bethe ansatz equations. 1/2
The thermodynamic properties of the impurity are studied in E=—2cogk)=—2+ Zm- (2.4
Sec. IV and a summary with concluding remarks follows in
Sec. V.

A. Supersymmetric t-J model

: 2.0

: (2.2

B. Impurity scattering matrix
Il. TRANSFER MATRIX AND THE BETHE

ANSATZ EQUATIONS We introduce the impurity via its scattering matrix with

the itinerant electrons. If the integrability of the model is to
We begin this section by briefly restating the results forbe preserved, the impurity scattering matas to satisfy
the supersymmetrit-J model we need here. Then we intro- the following triangular Yang-Baxter relatiéf?®
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oy} 'ol! aho where the sum over repeated indices is implicit. Using that
(pl DZ)SMM’(pl )SM’M”(DZ_DO) X(a)X(—a)=1, we multiply Eq. (2.9 from the left by
oo X"} (' — ) and sum over the indices; and 7, to obtain
ﬁ%(pz PO (py— Po)X " , ,,(p1 p2), (25 37

where the sum over repeated indices is implicit. The indexs. 6TrTrL l( 2(a)— > XTST1 (a'—a)L 7 (a)

M refers to the spin component of the magnetic impurity. In 172 2

principle, there is not a unique impurity scattering matrix - o

satisfying Eq.(2.5), i.e., there is more than one impurity XL (a")X, (a—a'). (2.10
form that could be constructed without destroying the inte- ' 23

grability of the supersymmetric.J model. Summing overr;, 75, 73, and 5 the left-hand side is just

In this paper we consider the impurity scattering matrix T(a )T(a) whereT(a)=3 L "(a) is known as the transfer

, matrix. The right-hand S|de corresponds to the trace of a
Sum (P—P0) =856/ Sy + (MalM+a)(M' o' M+ ") product of operators. Using the invariance of the trace under
. a cyclic permutation of these operators and taking into ac-
i(25+1) , ,
_ P (2.6) count thatX is unitary, we obtaifT(«)T(a'). Hence, trans-
P—Po—i(25+1)/2 fer matrices at differentr values commute and can all be
diagonalized simultaneously.

_ , oo Consider nowN, itinerant electrons and the impurity in a
coming (outgoing  states and Py, =6, dum'  box of N, sites with periodic boundary conditions. Periodic
+0_500Mmm+20- HereS is the spin of the impurity and poundary conditions imposed on a given electron means that
necessarily [M|<S. The Clebsch-Gordan coefficient it has to interchange position with all other electrons. Each
(Ma|M+0), which is actually a shorthand notation for  shifting through(permutation involves a two-particle scat-

tering matrix, such that when the particle is back at the origi-
(SM; 3 0|S3(S+ 3)M+0), (2.7 nal position we obtained an operator that consists of a prod-

uct of (Ne—1) electron-electron scattering matrlcé(s and
selects the way the impurity interacts with the itinerant elec one scattering matrix due to the impuris, i.e.,

trons. The impurity is then capable of temporarily absorbing
the spin of one conduction electron to form an effective spin - o1 S_q )
(S+1), ie., it exists in two different spin configurations.  1i(KD)=X; 4 1(Pj=Pj+1) - 'xj N(P;—=PN)S; (P~ Po)
This is characteristic of intermediate valence systems, where &—

y XX 2 p—py) - X La(p— Py, (21D

actual states are the linear superposition of two electronic
] : H ,39,40 H

configurations of the ion%:**“"Here p is the parameter The peripdic boundary condition for each electron gives rise

. Ne, and theN, opera-

that controls the degree of “valence admixture.” Note that;; gne such operator, i.g.=1, .
tors have to be diagonalized S|multaneously. The corre-

both, Egs.(2.2) and(2.6), are unitary.
sponding eigenvalues are ekpKl,) or expressed in terms of

where again the unprimegrimed indices refer to the in-

C. Monodromy matrix and Bethe ansatz equations the rapiditypj
The monodromy matrf?°is defined as _
p;+i/2]Na (2.1
oo M} —i '
Lri‘“rrzM}i (aiag,....ane1) P; 112
With any1=Po, ay=p; for I=1,... N, and a=p;j,
:XT’,M1 — )X gy — ) XN i=1,... Ne, Eq. (2.1 is just the trace over the mono-
Ulgl(al @) Uzvz(az @) TNON (an=a) dromy matnx which as shown above can be diagonalized
Nt simultaneously for all values of the spectral parameter.
XSymlans1i—a), (2.9 The four components of the monodromy matrix with re-

. o _ o _ spect to the indices and 7’ are denoted &}
with the implicit summation over all the; indices. With

respect to the indices and 7’ the monodromy matrix forms

a 2xX2 matrix, which we will denoteL:’(a) omitting the
spin indices and the parameters.

From the Yang-Baxter relations it follows that the mono-
dromy matrix satisfies the identf/°

Li=A, L}=B, L2=C, L%=D, (213

so that the diagonalization d’f(a) corresponds diagonaliz-
ing A(a)+D(a) The operatord\, B, C, andD obey com-
mutation relations which are obtalned from E.9) by ex-
plicitly using the two-electron scattering matri§2.2). The
XTlTl( —«a )LTl(a )L 2(a) procedure is tedious and the results are similar to those de-
272 rived in Refs. 28 and 29, so that they will not be repeated
) here. We denote witf), the state of maximum spifusually
=I:T?(a)IA_T}(a’)XT}T?(a—a’), (2.9 called the vacuum statei.e., the state in which all electron
273 spins point upward and the impurity spin is in the state
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M=S. TheC qperator _act_s like a “spin-rai;ing” operator pj— Poti(2S+1)/2 [pj+i/2 N, M* B Agtil2
and when applied té) it yields zero. The diagonal opera- - - = —_—,
tors satisfy Pj—Po—i(2S+1)/2 |pj—il2 B=1Pj—Ag—il2
A@)Qo=An(a)Q,  D(@)20=Ap(a) 0, J=1 - Ne, (219
.o Ng . mM* .
ans1— a+i(2S+1)/2 AamPotiS A= P2 Aam Apt
A= ami(2st D)2’ @19 Ay—po—iSiEi Ag—p—i/2 pE1i A= Ap—i

— *
any1—a—i(25-1)/2 Ne aj—a A=1.... M*. (229
Ap(a)= e a—1(2SY D)2 |24 ay—ati’ In each gquathn the first fat_:tqr on the left-hand side arises
from the impurity. The remaining factors correspond to the
supersymmetri¢-J model without impurity. The energy of
the system is given by Ed2.4) summed over al] and the
magnetization isS,= jN.—M* +S.

On the other handB has properties like a “spin-lowering”
operator, such that the vector

M*
e, ... ’“r,w*): H é(“};)ﬂo (2.15 D. Impurity Hamiltonian

p=1 Our model is defined by the scattering matrid@s?) and
(2.6), via the quantum inverse scattering method. By con-
struction of the transfer matrix the impurity spin interacts
The Bethe ansatz equations are the conditions on the sgqpéyixqv'th t_he two nearest _nelghbor sites, 1.e., we can assume

, / . , purity on a given link and interacting with the sites

of parameters; , A V) under which th? vecto(Ar2.15) IS joined by the link. The Hamiltonian and higher conserved
an eigenvector ofA\(«a) +D(«). We applyA(a) +D(a) to  currents, which describe the interaction between the impurity

corresponds toM* flipped spins and has a spin projection
equal to3N,—M* +S.

Qay, ... ,a,’vl*) and commute A+ D) through all theB and the itinerant electrons can be obtained by differentiating
operators. Two types of terms arise, namely,terms that the logarithm of the transfer matik(«) with respect to the
reproduce the vectd®.15 and(ii) terms of the form spectral parameter. The first derivative determines the
Hamiltonian of the lattice interacting with the impurity. This
M* M* procedure is tedious and has explicitly been carried out for

> Afadap) Tl BapB(a)Qo, (2.16  the Heisenberg antiferromagnet with imputftyn terms of
r=1 B=1p#y reduced tensor operators for the lattice and impurity spins.
. . . This leads to complicated expressions and little understand-

which are usually refered to as “unwanted” terms. The ac-ny 16 gain some insight into the physics of the impurity
tual expression of\ ,(«,{a}) is obtained by making use of gnq its interaction with the conduction electrons, it is instruc-
the commutation relations of the operat@sl3. Hence, the  {jye to derive the Hamiltonian in the continuum limit of the
vector (2.15 is an eigenvector of A+D) only if  model, i.e., in the limit where the lattice constant tends to
A ,(a,{ag})=0 for eachy. This leads to the following con- zero. This situation is considerably simpler. All properties

dition on the set of paramete{&’ﬁ}: derived in this paper, except for this subsection, are valid for
the lattice model.
ans1— @), +i(25+1)/2 Ne aj—al+i In the continuum limit we can linearize the kinetic
" (25=10/2 ; energy in the momentum around the Fermi level and re-
any1” @, ~1(25-1)/2j=1 aj—a, strict ourselves to low-energy excitations. Assume the
two Fermi points are given byt kgg related to =+ pgg by
M* o)~ ay—i Prs= _%cot(kFSIZ). Denoting v =[2sin(keg2)] 2 the group
=— P (2.17  velocity of the electrons we have that the scattering matrices
p=1 @y—apgTl take the form
The eigenvalue of/AH— I5), i.e., the amplitude multiplying R (k—k )f_iv—lls
the term of typd(i) that reproduces the vect(®.15), is again X(ky—ky)= L 2l —, (2.22
obtained using the commutation relations of the operators Ki—ko—iv
(2.13 :
S&OM,(k_G):gaor&MMr_(M(ﬂM+0')(MIO'I|MI+O'I)
M* ’y M* PR
aaptl aapl iv 1(2S+1) :
A [T —5—+Ap(@) [] ——. oo
MR a—ag P a—ay 218 ><k—e+izf1(28+1)/2PM'V"' (2.2
1

Identifying v ~*=V?/(2S+1) these scattering matrices are
With ay1=po, ay=p; for I=1,... Ng, a=p;, setting exactly those of a mixed valence impurity with two magnetic
ar’B=Aﬁ+i/2 and using Eq(2.12, we obtain the discrete configurations of spin§ andS+ 3 hybridized via electron of
Bethe ansatz equatidtisor the t-J model with impurity spin 3.29394%Here ¢ is related top, and represents the en-
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ergy difference between the two configuration relative to thg2.19 and(2.20. The structure of the solutions of the Bethe
Fermi level. The two partial waves in one dimension, e.g.ansatz equations is determined by the Hespersymmetric
forward and backward moving electrons, can be transformet-d mode), rather than by the impurity, and can be taken
into even and odd parity states about the impurity site. Sincever from Ref. 4. The classification of states is also similar to
odd parity states do not interact with the impurity in thethat of the fermion gas with attractives-function
continuum limit(contact potentia) they can be disregarded. potentiaf>*** and the j=1/2 Anderson impurity in the
Hence, actually only even parity states play a role in theU—c [imit.*°
continuum limit. Allowing for a rescaling of the length of the  In the thermodynamic limit the rapidities are classified
box, the continuum limit Hamiltonian for the impurity placed according to(i) (No.—2M*') real charge rapidities, corre-
at the origin can be written &s* sponding to unpaired propagating electra(ig,2M*’ ¢

plex charge rapidities, representing bound or spin-paired

Himp= > ISIM (S M| +V > (M0'|M1)J’ dx&(x) electron states, of the form
My oMM

po=AL*i/2, (3.1
X[C (X)|SMY{S;M 1| +|S;M 1){SM|c ( 2.2
[ ( NISMI(SM| +SiM1)(SMIc, ()], (223 where A, is a real spin rapiditye=1, ... M*’, and(iii)

where the bra and ket denote the impurity stafs; S+3  M* strings of complex spin rapiditiedound spin statesf
andM;=M + o is the corresponding projection. The com-  |jength (1—1), n=1, ... g, of the form
pleteness condition for the impurity requires
Al i =Agntinl2,

le |SlMl><SlM1|+% ISMY/{(SM|=1. (2.24 pm—(N=1),~(n=3), ... (n=1), 3.2
There is a fundamental difference between the impurity emwhere agaim\, , is a real parameter. The integdvs"’ and
bedded in the noninteracting gas of electrdrig*’and inthe ~ M* satisfy the relation
correlated electron gas discussed here. In the former case the
properties of the impurity are determined as a function of . « .
two parameters, namely, andV, so that charge and spin- M*"+ E nMp =M 3.3
fluctuations can occur on different energy scales. The impu-
rity in the correlated gas of electrons has only one free pa- Distribution functions for the rapidities and their “holes”
rameter, pg, while the second parameter is fixed by theare now introduced for each class, i.e(p) andpy(p) for
condition of integrability. The degree of charge fluctuations,the real charge rapiditiess’ (A) and ai(A) for the spin-
however, strongly depends on the parampigiand for large  paired states anl,(A) ando, 4(A) for the strings of spin
|pol the Kondo limit is obtained. rapidities. Inserting Eqg3.1) and(3.2) into the discrete Be-

Note that with minor modifications to the impurity scat- the ansatz equations, we obtain after Fourier transforming
tering matrix (2.6) the model can also be defined for and some algebfa

S1=S—3. In the case of the mixed-valent Anderson model R R ,
embedded into a gas of uncorrelated electrons, this is Tt 1n( @)+ Om_1p(@) + Oy 25870/ (27N,)
straightforwardly achieved by interchanging electrons and 1
holes. The case is more subtle for correlated electrons, where = Zcosréi‘”) [0m(@)+ Omp(@)], mM=1, (3.4
the cases; = S— 5 requires an independent and new solution.

In contrast to the continuum limit the impurity interaction 1
on the lattice has additional complications. Since the interac-
S ; . + +1=2cos +
tion is no longer a contact potential, both partial watesen o1n(@)+op(w) I{ )[p(w) pr(@)].
and odd parity stateplay a role in the interaction. Further- (3.5
more, the sign of the parametgg is important, in particular B . . o
if finite size effects are considered. It gives rise to an effec- € W2l (w)+e™ Mol glipoe= (S22l (27N,
tive mesoscopic momentum, i.e., to a persistent charge cur-

= 2005?6

©

rent.

[0 (w)+ap(w)]+p(w), (3.6)

ll. THERMODYNAMICS where p(w)=0on(w). The terms proportional to W, are
due to the impurity scattering matrix. The energy, the total

In this section we first classify the possible states of the gumber of electrons and the magnetization are giveh by

system according to the string hypothesis, then we derive th
thermodynamic Bethe ansatz equations, and finally we 1/2

briefly discuss the high-temperature ahe>0 (ground state E/N,=—2Ng/N,+ ZJ dpp(P) =7
limits of the thermodynamic equations. po+1/4

A. Classification of states +2j dAU’(A)ma

Each eigenstate of the system is specified by two sets of
rapidities,{p;} and{A .}, for the charges and the spins, re- . ,
spectively, which satisfy the discrete Bethe ansatz equations, Ne/Na= | dpp(p)+2 | dAa’(A), 37
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sz/lxlazs/|\1a+§fdpp(p)—gl nfdAan(A).

B. Thermal equilibrium

w
The above equations are valid quite generally for all

states. We now restrict ourselves imposing thermal equilib-

rium by minimizing the free energy functional with respect

to the density functions subject to Eq8.4)—(3.6) and the

constraints of constant number of electrons and constant
magnetization(the corresponding Lagrange multipliers are

the chemical potentigl and the magnetic fieltl). We in-
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IN[1+ 7,(A)]=(nH/T)+a,xIn(1+e *'T)

o

+ > Apmrin(1+9,h,  (3.18
n=1
ere
an(A)=(n/2m)I[ A%+ (n/2)?] (3.19
andA,(A) is the Fourier transform of
COtI"(% |w|)[e—|n—m\|w|/2_ e—(n+m)\w|/2]_ (32()

The equilibrium free energy of the system is the sum of

troduce an energy function for each class of rapiditiesyq free energies of the supersymmetd model and the

through

pnlp=exde(p)/T], oo’ =exi y(A)/T],

onnlon=exden(A)/T]=na(A), @o=—e. (3.9
which satisfy the following integral equatichs
&(p)=JmGo(p) + TG IN[(1+e”T)/(1+ 7y)],
(3.9
P(A)=—2+I7G (A)— u+TGyxIn(1+e?T)
+TGoxIn(1+e*T), (3.10
en(A)=TGoxIN[(1+ 7y 1) (1+7,-1)],  (3.1D

where the last equation holds far=1, . . . o, the star de-

notes convolution,zo=e"*'T, and G,(A) is the Fourier
transform of expfliw|/2)/2 cosh@/2). The field depen-
dence is introduced via the field boundary condition,

lim, o 3 @n(A)=H. (3.12
By differentiating Eqs(3.9)—(3.11) with respect tal, we

obtain from similarity with Eqs(3.4)—(3.6) that the relation

between energy potentials and density functions is

Ton=—[d@nld(md)](L+e ¢n'T), (3.13
p=[deld(7I)]I(1+e*T), (3.149
an=[oplo(mI)]/(1+e ¥'T). (3.19

The complementary functions can be obtained with the aid of

Eqg. (3.9).

impurity
Fi3/Na=—(0)—2u—2= —Tj dpay(p)In(1+e =PIT)

—Tf dAay(A)In(1+e ¥y, (3.20)

Fimp= _Tf dA G 1 (A —po)Iin(1+e ™M)

—Tf dAGo(A—po)In(1+e®2s MMy (3,22

where the impurity energy is defined up to a temperature
independent function of.

In the following subsections we consider the-o and
T—0 limits of these equations.

C. High-temperature limit

If the temperature is much larger than the bandwidth, i.e.,
T>2, we can neglect the independédtiving) terms in Egs.
(3.9—(3.11), so that the potentials, ¢, and ¢,, do not de-
pend on the variablep and A. Equations(3.9)—(3.11) re-
duce to a system of algebraic equations, which has the fol-

lowing solution®4%:43

1+ n,=[sinh(nH/2T +x)/sinh(H/2T)]?,

e T=(1+e’N)(1+ 75y), (3.23
e2(l//+/.L)/T:(1+e*SIT)(1+el///T),
where n,=e"*'T and
e2x:e2H/T[1+e—(H+2,u)/2T]/[1+e(H—2,u)/2T].
(3.29

An alternative set of integral equations, equivalent to EqsThe free energy of the host corresponds to the three degrees

(3.9—(3.12), is the followind'

e(p)=—2+2may(p)—sH—u+TaxIn(1+e ¥T)

oo

—T> axIn(1+7,Y), (3.1
n=1

Y(N)=—4+2may(A)—2u+TaxIn(1+e ¥T)
(3.17

+TayxIn(1+e M),

of freedom per sitda hole and a spin 1)2

Fy/Na=—TIn[1+2e*TcosiH/2T)], (3.25

whereu is measured from the bottom of the band. The free
energy of the impurity is discussed in Sec. IV.

D. Ground state equations

The ground state integral equations are obtained from
Egs. (3.1, (3.16, and(3.17 in the limit T—0. From Eq.
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(3.17) it follows that the energy potentialg, are positive potentials of the-J model cannot be solved analytically and
over the entireA range for alln=1. Hence, asT—0 the a solution has to be obtained numerically.

string states are not occupied. Only theband (unpaired
electron$ and they band(spin-paired electronsare popu-
lated. We separate these energy potentials into their positive
and negative parts, i.e., s(p)=e"(p)+e (p), In the high-temperature limit the leading contribution is
J(A)=y(A)+ ¢ (A), so that the terms with 4" su-  Obtained by assuming the energy potentials constant, i.e.,
praindex are positivéempty states or holg¢snd those with  independent of\ andp. The impurity free energy3.22 is

“ —" are negative(occupied states or particlesThe zeroes then approximately given by

of the potentials define the integration limitg,=B)=0 and

¥(=Q)=0. Both,B andQ, are functions ojx andH. In the Fimp=— 3 TIN[(1+e¥(Po/T) (14 e¢2sPI/T)] (4.1

limit T—0, Egs.(3.16 and(3.17) yield*

A. High-temperature limit

e(p)=—2+2may(p)—LH—u and by using Eqs(3.23 and(3.24) this reduces to

_f ‘ dAa;(p—A)y(A), (3.26 Fimp= = TIN(Z(s+ 12+ exp{[9(Po) — 1]/ T}Zs), (4.2
Al>Q
where x is measured from the bottom of the conduction
P(N)=—4+2ma(A)—2u band and
—f dA’a;(A—=A")¢g(A") sinH (2S+1)H/2T]
‘A/‘>Q sS= T (43)
sinh(H/2T)
— dpa(A—p)e(p). (3.27
jp>B Paul P=(p) is the partition function of a free spifi in a magnetic field.

Expression4.2) corresponds to an impurity with two coex-
and(3.15, determine the density functions. isting configurations, one of spinS¢-3) and the other of

The energy, the number of electrons and magnetization 0§pin S. The degree of admixture of the two configurations is
the host are given by a function of py via the functiong(pg), which is even in

po and monotonically decreasing forpy>0 with
g(po=*)=0. The functiong(p,) can be approximated
E/Na=—2Ne/Na+ 277[ dpp(p)as(p) by 27G;(po). The properties of the impurity depend on the
Ipl>B band filling through the chemical potential. For a given in-
termediatep, the spinS configutation is favored fop—0,
+ 27-rf dAo’(A)ay(A), i.e., for low electron densities where the impurity is unlikely
IA1>Q to localize an electron, while close to half-filling,
w=2In(2), the configuration of sping+ 3) is favored, since
Ne/Na=J dpp(p)+2J dAc’'(A), (3.28 the impurity can bind one itinerant electron. Next to leading
lp/>B [AI>Q corrections to Eq(4.2) can be obtained following the proce-
dure outlined in Ref. 40.
For a fixed field the specific heat of the impurity as a
function of T displays a Schottky anomaly and the zero-field
susceptibility follows a Curie la# The Curie constant and

In zero magnetic field we havé=c and the unpaired elec- he entropy under the Schottky peak depends on the admix-
tron band is empty. As a function of fiel8l decreases mono- e ie. the parametég(po) — 1 ]-

tonically. In zero field the number of electrons in the system
is a decreasing function of the parame@ef

Similar equations, which can be obtained using Egsl4)

sZ/Na=S/Na+§f

dpp(p).
|p|>B

The ground state properties of the impurity are discussed B. Ground state integral equations
in Sec. IV. Equations(3.4)—(3.6) are linear in the densities and have
driving terms arising from the itinerant electrons and from
IV. PROPERTIES OF THE IMPURITY the impurity. Hence, the density functions can be separated

In this section we present results for the impurity embed-'mo a host and an impurity contribution. Since the impurity

ded in the supersymmetrit-J lattice, first in the high- is,driven by the itinerant electrons, QV}MP)_ fo.r|p|.>B§nd
temperature limit, then the ground state properties, and il (A) for [A|>Q are nonzero rgp|d|ty dIStI’Ib.UtIOHS n the
nally the Kondo limit. It is evident from Eq3.22 that the groundstate. In the limit — 0 the impurity density functions

impurity is driven by the host, i.e., the supersymmetrit satisfy

model, through the energy potentia$g A) and ¢,5(A).

Some impurity properties are then expected to be different

from those of the mixed-valent impurity with two magnetic pin(P)+pi(P)+ JIAI
configurations embedded in a noninteracting electron gas.

Except for special limits the integral equations for the energy =ass:+1(P—Po), (4.9

dAa;(p—A)ai(A)
>Q
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O'i”h(A) +o{(A)+ J

dA’ay(A—A")o (A")
A"]>Q

+f dpay(A—p)pi(pP)=2azss2(P—Po),
[p|>B

(4.5
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contributions, the magnetization due to the internal degrees
of freedom of the impurity and the magnetization arising
from the valence admixture. Since the magnetic field is usu-
ally much smaller than the bandwidth, the latter contribution
is small and linear in the field and will be neglected here.
The Fredholm equation for the “Kondo”-like spin excita-
tions is

and the impurity energy, magnetization and valence are

given by

Eimp=27 f dppi(p)ai(p)
Ipl>B

+27Tf dAai’(A)az(A),

|AI>Q

Mimp:S+%J dppi(p),
Ip|>B

Nimp= fp>depi(p)+2fA>QdA0i (A). (4.9

The integral equations are of the Fredholm type and differ

from those of the corresponding Anderson impurity, which
are coupled Wiener-Hopf equatioffsNote that the impurity

Pi,h(p)+Pi(p)_f >de’Gl(p—p’)pi(p’)

p'l
=Gas(P—Po)» 4.9

where we may assume thgg is positive and large. Equation
(4.9 can then be reduced to a hierarchical sequence of
Wiener-Hopf integral equations. The leading contribution is
given by Eq.(4.9 with the integration range restricted to
positivep’ larger tharB. The equation then depends only on
the parameter po—B which we parametrize by
(1/7)In(H/TK), whereTg plays the role of a “Kondo” tem-
perature. The solution of the Wiener-Hopf equation yi&lds

Mimp=S[ 1+ 3£ 1= 3In(L)/L2+--],

density functions are not symmetric in their argument, the

asymmetry being introduced by, in the driving terms.

Without loss of generality we can symmetrize them by con-

sidering the half-sum for- p.
In the absence of a magnetic field, i.B5~~, only one

integral equation remains. Analytical results can be obtained

in the limits of low electron density @—«) and low
“hole” density (Q—0). For largeQ the Fredholm integral
equation can be transformed into a hierarchical sequence
Wiener-Hopf integral equations. The leading contribution to
the valencdfraction of bound itinerant electrorof the im-
purity is

_25+2  Q 4
nimp— 2 Qz_p(z), ( 7)
where we assumed th&>|p,|. On the other hand, if the
electron band is filledQ=0, the integral equation can be
solved by Fourier transformation and

Nimp=1—0(Q). 4.9

H<Tg, (4.10
Mimp=(S+ $)[1— 3£ 1= 3In(L)/ L3+ -],
H> Ty, (4.1

whereL=|In(H/Ty)|. Hence, in a small field the impurity has
an asymptotically free spi, while in strong magnetic fields

the effective spin is $+ 1) weakly coupledlogarithm char-

acterize asymptotic freedgnto the itinerant electrons. For
intermediate fields the magnetization smoothly interpolates
between these two limits. Higher order corrections to Egs.
(4.10 and (4.1 require the solution of other equations in
the hierarchical sequence of Wiener-Hopf equations.

If S=0, on the other hand, the ground state is a singlet
and the small-field magnetization is proportional to the field.
Equation(4.10 is not valid for this case, although E@.11)

is still applicable.

D. “Kondo” limit

In order to obtain the “Kondo” limit we must suppress

Hence, in this limit we have one localized conduction electhe valence fluctuations. Charge fluctuation are described by

tron. Corrections for smalQ (low hole concentractionre-
duce the valence proportionally €. Hence, as a function of
band filling the valence smoothly varies between 0
(Ng—0) and 1 N.—N,).

C. Ground state magnetization

The ground state magnetization is obtained following
standard procedurgsee Refs. 29 and 4Grom Egs.(4.4)
and(4.5. From Eq.(4.5 we expressr’ as a function of the
remaining quantities and insert it into E¢..4). We obtain a
Fredholm integral equation fgr with two kinds of driving
terms, namely, independent terms dependingpgrand a

term involvingay, . The magnetization is then the sum of two t

the energy potential(A), so that Eq(3.9) can be replaced
by

e(p)=ere” "PI—TGyxIn(1+ 7,), (4.12

where we kept only the low-lying excitations, given by large
|p|, andeg is an energy scale of the order of the band half-
width. The coupled integral equatio3.11) and(4.12 are
very similar to those of the Kondo problem, except that there
are two Fermi points in the Dirac sea of spin rapidities, in
contrast to the Kondo problem which involves only one par-
tial wave?”?® The impurity free energy due to spin fluctua-
tions is given by the term of Eq3.22) involving ¢,5. This
erm contains the onlp, dependence in the problem. Again
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we assume thagb, is positive and largéKondo limit). The  constructed an impurity scattering matrix, E.6) that
interference of the two Fermi pointbackward scattering of obeys the triangular Yang-Baxter relations with the scatter-
spin wavesis then not very important for the impurity prop- ing matrix of the supersymmetricJ model. This, together
erties and can be neglected. Redefining the integratiowith the excluded multiple occupation of the lattice sites, is
variables, p=3[A—(2/m)In(e/T)] and A=3[\—(2/  the necessary and sufficient condition for the integrability of

m)In(e=/T)] and denoting the t-J model with impurity. The scattering matrices also
define the Hamiltonian and higher conserved currents via the
TN =e #PIT T (V) =p(A) =T quantum inverse scattering method.
(4.13 The interaction of the itinerant electrons with the impurity

is via an effective hybridization with the two neighboring

we obtain from Eqgs(3.11) and (4.12) the thermodynamic sjtes to the impurity. The impurity of spis is capable of
Bethe ansatz equations for the single orbital channel Kondgycalizing one itinerant electron. The Clebsch-Gordan coef-
problem and the impurity free energy is now giverfby* ficient selects the coupling of the conduction electron spin to
the impurity to form a total sping+3).

We derived the Bethe ansatz equations diagonalizing the
t-J model with impurity, classified all the states according to
the string hypothesis, obtained the thermodynamic equations

Fimp=— %Tf dMIN[1+ 7554 1(N)]

x{costiz T\ =In(T/T )T} 4, (419  including the free energy of the impurity, and discussed the
high-temperature and ground state properties.
where po=(1/7)In(e:/Ty). Equation(4.14 is the free en- At high temperatures the impurity is in a mixed valent
ergy of the Kondo exchange model for arbitrary sp8(  state resulting from the superposition of the sBiand spin
3)- (S+13) configurations. The susceptibility is Curie-like and in
For S#0 the magnetic susceptibility shows Kondo loga- 3 magnetic field the specific heat as a function of temperature
rithms in both the high- and low-temperature limits displays the expected Schottky anomaly. The degree of ad-

mixture is a function of the parameter, (related to the
x=(u2BT)[1— L+ Lin|L|/c2+--],  (4.19 energy difference between the two configuratioasd the
chemical potential. For a givep, the fraction of localized
where£=In(Tc/T) and u is the effective magnetic moment, €lectron(valence increases monotonically with the band fill-
which is different in the two limits, i.e.u?=S(S+1) as ing. The variation of the valence with the band filling is more
T—0 and u?=(S+3)(S+32) asT—x. Hence, as seen al- dramatic at low temperatures, where its range is from 0 to 1.
ready for the ground state the impurity spin is only partially  In the limit of large|p,| and for a given finite electron
compensated at loW. If S=0, on the other hand, the ground density, the impurity has an effective spi$+3) at low

state is a singlet and the susceptibility is finite. temperatures. We have shown how this situation can be
mapped onto the single orbital channel Kondo problem of
V. CONCLUDING REMARKS spin (S+3). This mapping is only approximate, because the

interaction between impurity and itinerant electrons is not a

Impurities are expected to play a relevant role in highlycontact potential for the lattice problem; hence, the impurity
correlated electrons and may alter the properties of the syss not only scattered by the even parity statabout the
tem. In this paper we pursued the exact solution @ha&g-  impurity site), but also by the odd parity states. Conse-
neticimpurity embedded into a one-dimensional lattice withquently, backward scattering across the spin rapidity Fermi
strongly interacting electrons. The model has one free pasurface cannot be neglected, but as argued, it does not have a
rameter po, that tunes the properties of the impurity. In con- dramatic effect on the impurity properties.
trast, the same impurity in a host without correlations has Hence, in the Kondo limit the impurity is undercompen-
two parameters, such that charge and spin fluctuations can kated, i.e., it has an effective spin a small field at low
varied independently. The absence of backward scatteringmperatures. The field and/or the temperatiiriarger than
(condition for the integrabilitymakes this impurity problem T,) break up the partial screening and the effective spin
probably nongeneric, in the sense that away from supersyms+ 1) is recovered. The susceptibility follows a Curie law
metry and for a different impurity-lattice coupling the low- with a temperature dependent Curie constant. In a small
temperature properties of the impurity may change. Exacghagnetic field the specific heat has two peaks, one is the
solutions, even for simplified systems, may provide insightsschottky peak al ~H arising from the underscreened spin
and a testing ground for approximations intended for mores gnd at highefT (=Tg) the broad structure of the Kondo
complicated problems. resonance gives rise to the second p¥akt larger fields,

In contrast to other proposed integrable impuritythe two energy scales are no longer separated, and both
system3>¥"we consider here magnetidmpurity, i.e., break  peaks merge into one.

the translational invariance by introducing an additional spin
S into the lattice. The integrable model providing the back-
ground of itinerant electrons is the supersymmetrid
model. Its integrability was shown long a§é>and its prop-
erties were studied in Refs. 4 and 24, including ground state The support of the Department of Energy under Grant No.
properties, thermodynamics, and excitation spectrum. W®E-FG05-91ER45443 is acknowledged.
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