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Uniqueness of wave-plate measurements in determining the tensor components
of second-order surface nonlinearities

Jeffery J. Maki, Martti Kauranen, Thierry Verbiest, and Andre´ Persoons
Laboratory of Chemical and Biological Dynamics and Center for Research on Molecular Electronics and Photonics,

University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
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The relative amplitude and phase of the components of the second-order susceptibility tensors for second-
harmonic generation from a chiral surface can be determined by making measurements of the second-harmonic
intensity. The intensity of thep ands components of the reflected or transmitted second-harmonic wave must
be measured, but the measurements need not be calibrated nor even be on the same relative intensity scale.
However, these intensity measurements must be made as functions of the polarization state of the fundamental
radiation. We prove that it is sufficient to make these measurements at a single angle of incidence provided that
a wave plate of any retardation other than half wave is used to manipulate the polarization state of the
fundamental radiation. Quarter-wave retardation is a good choice. We derive explicit formulas to determine the
susceptibility components from the parameters found to describe the intensity measurements, where the electric
dipole approximation is made in the description of the nonlinearity.@S0163-1829~97!03908-8#
en
o
-
ly
e

c
n
to
is
sm
-
ir

ica
n
fe

a
r

at

ivi
o
a

ac
t

r

of
ar
may
ese
-
e of
em.
po-
ight

ow-
s in
re-
ned.
e

ic
i-
-
the

tive

ied

uely
s

his
re-
ic
ic
I. INTRODUCTION

Chiral molecules have received attention lately as pot
tial nonlinear-optical materials owing to the rich nature
their optical response.1,2 In linear optics, chirality of a mate
rial system is exhibited by optical activity and is typical
quantified through measurements of optical rotatory disp
sion or circular dichroism.3 A nonlinear-optical technique
has been discovered for detecting molecular chirality.4 The
efficiency of second-harmonic generation from a surfa
composed of chiral molecules depends upon the handed
of the circularly polarized fundamental radiation used
drive the nonlinearity. The difference in the efficiency
known as second-harmonic generation circular dichroi
difference~SHG-CD!,4,5 and the sign of the difference de
pends upon the particular enantiomer composing the ch
surface.

SHG-CD was first used to demonstrate nonlinear opt
activity of chiral surfaces,2,4–15but other methods have bee
discovered. One is second-harmonic generation linear dif
ence ~SHG-LD!,16–18 which is where the efficiency of the
harmonic generation changes between two different line
polarization states for the fundamental radiation. Anothe
second-harmonic generation optical rotatory dispersion11,19,20

~SHG-ORD! or polarization-azimuth rotation.5 Still others
are possible,5 but all require isotropic surfaces such th
these effects can be used to detect chirality.15,21 An experi-
ment has already demonstrated that nonlinear optical act
can occur for an anisotropic achiral surface, where the m
ecules composing the surface are neither chiral nor even
ranged on the surface with chiral symmetry properties.21

Regardless of the symmetry type of the nonlinear surf
layer, the second-harmonic photon can always be though
as resulting from the annihilation of twop-polarized funda-
mental photons, twos-polarized fundamental photons, o
one p-polarized fundamental photon with ones-polarized
fundamental photon. An equation describing this is
550163-1829/97/55~8!/5021~6!/$10.00
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I ~2v!5u fEI p
2 ~v!1gEIs

2 ~v!1hEIp~v!EIs
~v!u2, ~1!

where the expansion parametersf , g, and h are complex
valued andEIp

(v) andEIs
(v) are, respectively, thep- and

s-polarized components of the complex-valued amplitudes
the fundamental electric field incident upon the nonline
surface. We note that some of the expansion parameters
vanish for some surfaces, but there are no more than th
three parameters. Also, Eq.~1! shows that the second
harmonic signal does not depend upon the overall phas
the parameters, but only on the relative phase among th
The expansion parameters are linear functions of the com
nents of the second-order susceptibility tensors. One m
consider f , g, and h to be susceptibilities,15 but in a p-s
coordinate system rather than in Cartesian coordinates; h
ever, these parameters will change in value with change
the angle of incidence, so they are not purely material
sponse parameters as susceptibilities are usually defi
Nevertheless,f , g, and h are the parameters that can b
measured most directly in an experiment.

In earlier measurements of SHG-CD of chiral isotrop
surfaces,2,10,22,23 a quarter-wave plate was not only pos
tioned to yield left- and right-hand circularly polarized fun
damental radiation, but was varied continuously over
whole range of possible wave-plate angles. By fitting Eq.~1!
to the measured response curve, the amplitude and rela
phase of the parametersf , g, and h were determined. In
related experiments, achiral isotropic surfaces were stud
using a half-wave plate,24,25but a limitation of this method is
the fact that the parameters cannot be determined uniq
~even to an overall scaling of phase! unless measurement
are made at more than one angle of incidence.25 Such a limi-
tation does not occur when using a quarter-wave plate. T
advantage of using a quarter-over a half-wave plate has
cently been exploited in a study of an achiral isotrop
surface26 and could be exploited in studying anisotrop
surfaces.21
5021 © 1997 The American Physical Society
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In this paper, we extend the theoretical results of Ref.
to form a theoretical basis for methods already used in R
2, 10, 22, and 23. In Sec. II we examine the action of a w
plate in manipulating the polarization state of the fundam
tal radiation and we prove that the parametersf , g, andh can
be determined uniquely~within an overall phase ambiguity!
from measurements of the surface second-harmonic in
sity. The results also prove that measurements at on
single angle of incidence are required providing that a w
plate of any retardation other than half wave is used. Thi
a general result applicable to many surface types. In Sec
we also illustrate the information content and utility in me
suring the parameters by giving formulas relating the co
ponents of the second-order susceptibility tensor directly
the parameters for a chiral isotropic surface. These form
are derived under the assumption that the nonlinearity of
surface can be described within the electric dipole appro
mation. In Sec. IV we summarize the results of the paper
discuss their applicability to future experiments.

FIG. 1. Typical geometry of surface second-harmonic gene
tion showing the unit vectors for the incident fundamental wa
and the reflected and transmitted second-harmonic waves.
hatched line indicates the thin nonlinear surface layer. The cir
with dots or crosses indicate vectors out of or into the drawi
respectively.
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II. UNIQUENESS OF THE EXPANSION PARAMETERS

We examine to what extent the expansion parameterf ,
g, andh can be determined assuming the use of a wave p
to manipulate the polarization state of the fundamental ra
tion. The fundamental electric field

EI~r !5@EIp
~v!p̂12

v 1EIs
~v!ŝ#exp~ ik12

v
•r ! ~2!

incident on the surface~see Fig. 1! after traversing a wave
plate ~see Fig. 2! is related to the electric field

Elaser~r !5@Ep
laser~v!p̂12

v 1Es
laser~v!ŝ#exp~ ik12

v
•r ! ~3!

of the laser by

FEIp
~v!

EIs
~v! G5TWP~d!FEp

laser~v!

Es
laser~v!G . ~4!

The Jones matrix for a wave plate of linear retardationd is27

-
,
he
s
,

FIG. 2. ~a! Preparation of the polarization state of the incide
fundamental electromagnetic field by propagation of ap-polarized
laser beam~i.e.,Elaser5Elaserp̂12

v ! through a wave plate.~b! Defini-
tion of the wave-plate angleuWP with respect to thep̂12

v and ŝ
directions, wherek̂12

v is the propagation direction of the laser bea
The circle with a dot indicates a vector out of the drawing.
is
hand

f

TWP~d!5Fcosd2 i sind cos2uWP 2 i sind sin2uWP

2 i sind sin2uWP cosd1 i sind cos2uWP
G , ~5!

whered5p/4 for a quarter-wave plate andd5p/2 for a half-wave plate. We shall consider the situation where the laserp
polarized only~i.e., Es

laser50!. Note that, for this case of input polarization to a quarter-wave plate, right- and left-
circularly polarized light are produced foruWP5p/4 and2p/4, respectively.

The completely general expressionsf5( f 11 i f 2)e
iw, g5(g11 ig2)e

iw, andh5h1e
iw with h1.0 make the overall phase o

the parameters explicit. Equation~1! gives the second-harmonic intensity, after substituting the expressions forEIp
(v) and

EIs
(v) from Eq. ~4!, to be

I ~2v!5 1
4 @~ f 11g1!sin

2d22 f 1cos
2d24 f 2cosd sind cos2uWP1~ f 12g1!sin

2d cos4uWP1h1sin
2d sin 4uWP#

21 1
4 @~ f 2

1g2!sin
2d22 f 2cos

2d14 f 1cosd sind cos2uWP1~ f 22g2!sin
2d cos4uWP12h1cosd sind sin2uWP#

2, ~6!
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where the expansion parametersf 1, f 2, g1, g2, andh1 have
been scaled uniformly to remove the explicit dependence
the intensity of the fundamental field. Equation~6! shows
that measurement of the second-harmonic intensity does
provide any information about the absolute phasew of the
parametersf , g, andh. However, the amplitude and relativ
phase off , g, andh may be determined providing the rea
valued parametersf 1, f 2, g1, g2, andh1 can be determined
uniquely.

For a half-wave plate, Eq.~6! reduces to

I ~2v!5
@ f 11g11~ f 12g1!cos4uWP1h1sin4uWP#

2

4

1
@ f 21g21~ f 22g2!cos4uWP#

2

4
. ~7!

Equation~7! is unchanged when the signs of the two para
eters f 2 and g2 are transformed usingf 2→2 f 2 and
g2→2g2 . Hence these two parameters cannot be de
mined uniquely when using a half-wave plate to manipul
the polarization state of the fundamental radiation, wh
shows the need to prove that the parameters can be d
mined uniquely for other cases of retardationd.

Equation~6! can be expanded out and written as a Fou
series. The result is

I ~2v!5a01 (
m51

4

@amcos~2muWP!1bmsin~2muWP!#,

~8!

where the coefficients are

a05~ f 1
21 f 2

2!cos2d2~ f 1g11 f 2g22
1
2h1

2!cos2d sin2d

1 1
8 @3~ f 1

21 f 2
21g1

21g2
2!1h1

212~ f 1g11 f 2g2!#sin
4d,

~9a!

a15~ f 1g22 f 2g1!cosd sin3d, ~9b!

a25~ f 1
21 f 2

22 1
2h1

21 f 1g11 f 2g2!sin
2d cos2d

1 1
2 ~ f 1

21 f 2
22g1

22g2
2!sin4d, ~9c!

a35~ f 2g12 f 1g2!sin
3d cosd, ~9d!
th

e

n
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r-
e
h
er-

r

a45
1
8 ~ f 1

21 f 2
21g1

21g2
22h1

222 f 1g122 f 2g2!sin
4d,

~9e!

b152 1
2 f 2h1~cosd sin3d14 cos3d sind!

1 3
2g2h1cosd sin3d, ~10a!

b25
1
2 f 1h1sin

2d~sin2d12 cos2d!1 1
2g1h1sin

4d,
~10b!

b352 1
2 ~ f 21g2!h1cosd sin3d, ~10c!

b45
1
4 ~ f 12g1!h1sin

4d. ~10d!

The values of Fourier coefficients can always be determi
uniquely. By showing that only a single solution set exis
that relates the parametersf 1, f 2, g1, g2, andh1 to the Fou-
rier coefficientsam andbm , the uniqueness of the paramete
is proven.

The general case of retardation is where sindÞ0, and
cosdÞ0, which includes the case of a quarter-wave pla
but not a half-wave plate. Equations~10! give

f 15
b212b4
h1sin

2d
, ~11a!

f 25
2b123b3

2h1sind cosd
, ~11b!

g15
b212b4
h1sin

2d
2

4b4
h1sin

4d
, ~11c!

g25
b113b3

2h1sind cosd
2

2b3
h1cosd sin3d

. ~11d!

At this stage, we see thatf 1, f 2, g1, andg2 can be deter-
mined uniquely providing thath1 can be determined
uniquely. The substitution of Eqs.~11! into the expressions
for the Fourier coefficientsam @i.e., Eqs. ~9!# gives five
equally valid equations forh1. That only a single solution for
h1 exists for one of these five equations will prove thath1
can be determined uniquely. Equation~9b! has the single
solution
h15F ~b1b21b2b324b3b4!2~2b1b412b2b3110b3b4!cot
2d

a1
G1/2, ~12!
nd
n

since only the positive square root is to be taken under
initial assumption thath1.0. A single solution forh1 thus
proves that all of the parameters can be determined uniqu

Later we shall need to consider a situation in whichg
vanishes. In this case, we get

f 15
4b4

h1sin
4d
, ~13a!
e

ly.
f 25

22b3
h1sin

3d cosd
, ~13b!

h152Fa0 sin4d2a4~8 cos
2d13 sin4d!

sin4d~31cos 2d! G1/2. ~13c!

A single solution in terms of the Fourier coefficients is fou
and thereforef andh can be determined uniquely even whe
g is zero.
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Another possible situation is that all of the parametersf ,
g, andh are real valued. In this case, Eqs.~11a! and ~11c!
are still valid and a single solution

h15csc2dF 2

4a4cos
2d2a2sin

2dG1/2@b42~4 cos6d
116 cos4d sin2d18 cos2d sin4d!2b2

2cos2d sin4d

1b2b4~2 cos
4d sin2d24 cos2d sin4d22 sin6d!#1/2

~14!

is found, which proves the parameters in this limit can
determined uniquely.

For a half-wave plate, Eqs.~9! and ~10! give

f 15
b212b4

h1
, ~15a!

g15
b222b4

h1
, ~15b!

f 256
2@h1

2~a02a21a4!2~b222b4!
2#1/2

h1@2b2
228b4

21h1
2~122a016a4!#

3@~b212b4!
22h1

2~a01a21a4!#. ~15c!

g256
@h1

2~a02a21a4!2~b222b4!
2#1/2

h1
, ~15d!

h1
624~a023a4!h1

414~a2
218a4

228a0a41b2
224b4

2!h1
2

132~2a0b4
22a2b2b41a4b2

222a4b4
2!50, ~15e!

where the upper or lower signs among the equations mus
taken together when forming a given solution set. Equat
~15e! has either one or two positive, real-valued solutions
h1. Because there are two solutions forf 2 andg2 for a par-
ticular value ofh1, there can be up to four different solutio
e

be
n
r

sets for the parameters, but there is always a minimum
two. Therefore there is no unique set of parameters that
scribe the second-harmonic signal. In summary, a half-w
plate can never be used to determine the expansion pa
eters uniquely from a single angle-of-incidence measu
ment, but a wave plate of any other retardation can, wh
includes a quarter-wave plate.

III. SUSCEPTIBILITY-TENSOR COMPONENTS

General expressions for the expansion parametersf , g,
andh have already been derived using the general formal
of Sipe28 and are given by Eqs.~38! of Ref. 14. These equa
tions and measurements of the parameters provide one
the information required to determine the components of
second-order susceptibility tensors. One could determine
calibrated parametersf 1, f 2, g1, g2, andh1 from calibrated
measurements of the second-harmonic intensity made u
the quarter-wave-plate technique, but that is not necessa
order to find only the relative amplitude and phase of
susceptibility components. All one needs to find is the re
tive parametersf rel5( f 11 i f 2)/h1 , g

rel5(g11 ig2)/h1 , and
hrel51. The true calibrated amplitude parameter can then
related to these relative parameters by

f Rj /Tj5qRj /Tj f Rj /Tj
rel , ~16a!

gRj /Tj5qRj /TjgRj /Tj
rel , ~16b!

hRj /Tj5qRj /Tj , ~16c!

where j again equals eitherp or s andqRj /Tj are unknown
constants of proportionality. After substituting Eqs.~16! into
Eqs. ~38! of Ref. 14 and taking the limit of only electric
dipole response~i.e., xeem andxmee are zero!, the resulting
equations can be solved directly. We scale the absolute p
and amplitude of the susceptibility components such t
x xxz
eee51 and the remaining nonvanishing independent co

ponents are
xzzz
eee562 f Rs /Ts

rel f Rp /Tp
rel S ts13

v

12r s31
v r s32

v D 2S 12r p31
v r p32

v

tp13
v D 2 @11r s32

v #2

@11r p32
v #@12r p32

v #
secu3

vcsc3
v
12r p3i

2v

11r p3i
2v cotu3

2v

72 f Rs /Ts
rel gRp /Tp

rel
12r p32

v

11r p32
v cotu3

v
12r p3i

2v

11r p3i
2v cotu3

2v62
12r p32

v

11r p32
v cotu3

v
12r p3i

2v

11r p3i
2v cotu3

2v , ~17a!

xzxx
eee562 f Rs /Ts

rel gRp /Tp
rel

11r p32
v

12r p32
v tanu3

v
12r p3i

2v

11r p3i
2v cotu3

2v , ~17b!

xxyz
eee5 f Rs /Ts

rel
ts13
v

12r s31
v r s32

v

12r p31
v r p32

v

tp13
v

11r s32
v

12r p32
v secu3

v , ~17c!
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wherei52 and the upper sign is valid ori51 and the lower
sign is valid for the susceptibility components determin
using the reflected or transmitted waves, respectively.
quantitiesr andt represent the Fresnel amplitude reflectiv
and transmission coefficients, respectively, of either thep- or
s-polarized waves as indicated. The angleu3 with respect to
the surface normal for which a wave vector propaga
within the nonlinear surface layer is related to the angle
incidenceu1 by Snell’s law. The superscriptsv or 2v indi-
cate whether a quantity is to be computed at the fundame
or second-harmonic frequencies, respectively. The pre
definitions of all quantities can be found in Ref. 14. Note th
gRs /Ts is predicted to be zero for only electric dipole r

sponse and that in Sec. II it was provenf Rs /Ts andhRs /Ts can

still be determined uniquely even ifgRs /Ts vanishes.
Equations~17! represent a very useful means of determ

ing the susceptibility components in the limit of only electr
dipole response. The key feature of the experimental met
is that each intensity measurement can be made using a
ferent arbitrary intensity scale. Thep- ands-polarized com-
ponents of the second-harmonic intensity do not even hav
be measured on the same relative intensity scale. In addi
the susceptibility components can be determined from
expansion parameters measured using either the reflect
transmitted second-harmonic intensity. Both schemes co
be used to check for self-consistency in the determination
the susceptibility components.

The susceptibility componentx xyz
eeevanishes when there i

no chirality for an isotropic surface. Thus the coupling b
tween Eqs.~38! of Ref. 14 for thep- ands-polarized com-
ponents of the expansion parameters is lost and the solu
given by Eqs.~17! would not be valid. Solutions for the
susceptibility components of an achiral surface can be fou
though, by making the additional measurement of the sca
factor between thep- and s-polarized components of th
expansion parameters.26

IV. CONCLUSIONS

A method for determining the relative amplitude a
phase of the components of the second-order susceptib
tensors for a chiral surface has been developed. The me
makes use of the information gained from studying the p
cess of surface SHG as the polarization state of the fun
mental radiation is varied. It is found that a quarter-wa
plate is a good choice to use as a polarization manipula
ls
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element for the fundamental radiation, but a half-wave pl
is not a good choice. The use of a quarter-wave plate allo
for the determination of the various parameters describ
the strength of SHG arising from the annihilation of tw
p-polarized photons, twos-polarized photons, or one
p-polarized photon with ones-polarized photon. Explicit
formulas are given for calculating the susceptibility comp
nents in Cartesian coordinates from the measured value
the parameters in a givenp-s coordinate system. An overa
amplitude and phase ambiguity remains in the determina
of the susceptibility components. This problem could
solved, however, by using the well-known reference-sam
interferometric technique to measure the absolute magni
and phase of one of the susceptibility components.29

Equations~17! include all the effects of linear-optica
Fresnel reflection and transmission. They are applicable
any angle of incidence including those where total inter
reflection occurs. We find that one may determine the s
ceptibility components from measuring thep- and
s-polarized components of the second-harmonic wave in
one direction. The use of the reflected or transmitted dir
tions should give the same relative values for the susce
bility components. Any discrepancy would suggest that
material response cannot be described either as an opti
thin film or within the electric dipole approximation.

In any future experiments, the parametersf 1, f 2, g1, g2,
and h1 appearing in Eq.~6! must be determined first. Be
cause Eq.~6! is a nonlinear functional of the parameters,
nonlinear algorithm must be used to fit a data curve for
second-harmonic intensity measured as a function of
continuous variation of the wave-plate angleuWP. Another
approach would be to fit the data to the Fourier series Eq.~8!
~which requires only a linear fitting algorithm! and then to
use Eqs.~11! and~12! to compute the parametersf 1, f 2, g1,
g2, and h1 from the Fourier-coefficient data. A somewh
similar approach of using Fourier methods to determine
parameters has already been used, but in the study of ac
surfaces.25,26 The use of Eq.~6! and a nonlinear fitting rou-
tine is the most direct, though, and gives excellent agreem
in practice.18
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