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Core effects in lithium hydride
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Calculations of the directional Compton profiles and of the anisotropies of Compton scattering are reported,
based on density-functional theory within the local-density approximation, performed using a plane-wave
basis, and using~i! pseudopotentials and~ii ! full, unscreened Coulomb potentials for both Li and H atoms. The
pseudopotential calculations yield Compton profiles with unsatisfactory agreement with experiment. The rea-
son of this failure is discussed. It is then shown that, with the total Coulomb potentials, converged results can
be obtained, and that the Compton profiles obtained are in excellent agreement with experiment. Possibilities
~and limits! of extending the plane-wave calculations with the full Coulomb potentials to other atoms and
substances are discussed. Furthermore, a simple method is proposed that allows the reproduction of the full
Coulomb potential results at a much lower cost, by orthogonalizing the pseudo-wave-functions to the core
orbitals calculated separately.@S0163-1829~97!00708-X#
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I. INTRODUCTION

Although the Compton effect has been known for mo
than 70 years, its importance for solid state physics has o
been recognized since the beginning of the 1970’s.1,2 As a
matter of fact, Compton scattering is a very straightforwa
way of probing the ground-state electronic structure of m
terials and, during the past two decades, a large volum
experimental data has been accumulated, concerning m
light atoms and their compounds~for a review, see, e.g.
Refs. 1,3!, as a consequence of the development of tuna
high-flux x-ray sources. From our point of view, Compto
scattering offers an excellent possibility of verifying the c
culations of electronic structure. Being a ground-state pr
erty, the Compton effect is amenable to treatment by
density-functional~DF! theory and, within the framework o
the local-density approximation~LDA !, it allows one to
judge the approximations involved or the assumptions ma
It turns out that Compton profiles are fairly sensitive to d
tails of the electronic valence-charge distribution.

A few theoretical works which proceed along similar lin
as our present work deserve to be mentioned: The pse
potential calculations of Compton profiles in beryllium,4 the
Hartree-Fock calculations on LiH and BN,5,6 the works on
graphite and intercalation compounds,7–9 still another
pseudopotential calculation on BN,10 and finally our previous
work on LiH within the Hartree-Fock theory and in the bas
of Wannier-type functions.11 A more extensive review can
be found, e.g., in Ref. 3.

In this paper we report calculations, in a plane-wave
sis, of the directional Compton profiles and their anisotrop
which are based on using~besides the DF theory and th
LDA ! the norm-conserving pseudopotentials but also
full, unscreened Coulomb potentials forboth Li and H at-
550163-1829/97/55~8!/5006~9!/$10.00
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oms. We show that employing pseudopotentials does
succeed in reproducing accurately the Compton profiles.
the other hand, when avoiding the pseudization of the
lence wave function by using the full, unscreened Coulo
potentials, the theoretical Compton profiles become in ex
lent agreement with experiment. In this study, we ident
the problem of the pseudopotential method in the descrip
of the Compton profiles and propose a simple method ba
on the orthogonalization of the valence pseudo-wa
functions to the lithium core orbital, which allows us to r
produce, within the framework of pseudopotential calcu
tions, the Compton results obtained with the full Coulom
potentials. Finally, the possibilities, as well as the limits,
extending the plane-wave calculations with the full Coulom
potentials to other atoms and substances are discussed.

We start by describing in Sec. II the different methods
will use in this article, then discuss in Sec. III the results
the pseudopotentials calculations, and the convergence o
all-electron calculations for the basic ground-state proper
of LiH. Finally, Sec. IV concerns the main aspect of th
work, i.e., the advantages and limitations of the differe
electronic methods used to describe the Compton profile

II. ELECTRONIC METHODS

A. Total-energy calculations: Pseudopotential and full nuclear
potential

For the calculation of the total energy of the LiH cryst
we first develop the one-electron wave functionscn,kW in a
plane-wave basis:12

cn,kW5(
GW

Cn,kW~GW !exp@ i ~kW1GW !•rW#, ~1!
5006 © 1997 The American Physical Society
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55 5007CORE EFFECTS IN LITHIUM HYDRIDE
wherekW is a wave vector restricted to the first Brillouin zon
~BZ!, n is the quantum number indexing the band,GW stands
for reciprocal-lattice vectors, andCn,kW(GW ) are the coeffi-
cients of the development.

Then we use the local-density approximation,13 with the
Ceperley-Alder exchange and correlation14 as parametrized
by Perdew and Zunger.15 The kW -space summation is per
formed using ten ‘‘special points’’ which, in the Monkhors
Pack notation,16 correspond toq1q2q35444.

The unscreened21/r Coulomb potential is always use
for hydrogen, while the lithium potential is described by tw
different techniques:~i! within the pseudopotential approac
where the pseudopotential of the lithium is generated by
Kerker method,17 using the 1s22s1 and 1s22p0.253d0.25

atomic electronic configurations for obtaining thes-, p-, and
d-components of the pseudopotential, while the correctio18

for the nonlinearity of the exchange and correlation
lithium is taken into account;~ii ! using the all-electron de
scription, where we give up to the frozen-core approximat
for Li and deal with the full nuclear potential23/r . In the
all-electron approach, the system studied consists of the
clei 13e and11e, and of four electrons per primitive cel
compared to the pseudopotential calculations, the core e
trons are dealt with explicitly, on the same footing as t
valence ones. The information that one obtains in this C
lomb potential calculation is the ‘‘correct’’ behavior of th
valence wave function in the core regions of lithium~in par-
ticular, the existence of a node!—which will be used for
assessing its importance for the Compton effect.

B. The orthogonalization method

We have also attempted to ‘‘reconstruct’’ the comple
valence wave function from the results obtained in
pseudopotential calculation. The procedure we employ c
sists in orthogonalizing the pseudo-wave function with
spect to the core wave function — so as to complete
information normally missed in the pseudopotential fram
work, but at a much less cost than by performing the f
Coulomb potential calculations.

It is easy to demonstrate that two wave functionscn1 ,k
W
1

andcn2 ,k
W
2
belonging to two different bandsn1 andn2 can be

nonorthogonal only if the vectorskW1 and kW2 are identical.
This implies that we have to orthogonalize the valence w
functions, obtained within the pseudopotential approa
with respect to the corresponding core ones separately
everyone of thekW vectors needed.

Let us first pay attention to the core functionsc1,kW ~i.e.,
the ‘‘first’’ ones, which correspond to the lowest Kohn-Sha
energies in an ‘‘all-electron’’ calculation!. We start by ex-
pressing them in terms of localized orbitals:

c1,kW~rW !5
1

NBL
(
RW nW

fcore~rW2RW nW !exp@ ikW•RW nW #, ~2!

whereRW nW runs over the Bravais lattice, havingNBL sites,

fcore(rW2RW nW) is a localized orthogonal orbital centered on t

siteRW nW . The easiest way of getting this localized orbital is
take it from an atomic calculation. By combining Eqs.~1!
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and ~2!, we find that the coefficientsC1,kW(GW ) of the plane-
wave expansion forc1,kW are proportional to the Fourier trans
form of the localized orbital:

C1,kW~GW !}E fcore~rW !exp@2 i ~kW1GW !rW#drW. ~3!

Once the core functionsc1,ki
W are constructed within a

plane-wave expansion@Eq. ~1!# from the localized orbital
@Eq. ~3!#, we apply, as already done in the Ref. 4, t
Gramm-Schmidt orthogonalization, which becomes parti
larly simple when only two functions are dealt with:

c2,
rec

kW5a@c2,
pseudo

kW2c1,kW~^c1,kWuc2,
pseudo

kW&!#. ~4!

Here n51,2 stands for the core and the valence ba
c2,
rec

kW is the reconstructed valence~Bloch! wave function,
c2,
pseudo

kW is the valence function obtained within the pseud
potential approach, andc1,kW is the core Bloch wave function
constructed as explained above;a is the normalization fac-
tor, and^c1,kWuc2,

pseudo
kW& denotes the scalar product of the co

functions with the pseudopotential valence one.

III. STATIC PROPERTIES

A. Pseudopotential results

The static equilibrium quantities predicted by the pseu
potential approach and shown in Table I are obtained
fitting by the Murnaghan equation19 the energies calculate
for seven different volumes; they correspond to the pla
wave cutoff of 100 Ry. At this kinetic energy, all static pro
erties are safely converged; in fact, we have observed
the second decimal of the lattice constanta0, expressed in Å,
is stable starting from the cutoff of 50 Ry, and that the co
vergence of the bulk modulusB0 occurs even earlier: the
second decimal ofB0, expressed in Mbar, is stable startin
from the cutoff of 36 Ry. On the other hand, the convergen

TABLE I. The equilibrium properties of LiH crystal~lattice
constanta0, bulk modulusB0 and pressure derivativeB08 of the bulk
modulus! predicted by the present peudopotential calculations w

ten specialkW points for BZ sampling and the kinetic energy cuto
of 100 Ry, compared with the experimental values. Results of o
calculations are quoted as well. The zero-point vibrations are
accounted for.

a0 ~Å! B0 ~Mbar! B08

Present work 4.11 0.34 3.01
Other worka 3.90 0.40
Other workb 3.34 0.66 3.57
Other workc 4.10 0.34
Other workd 4.11 0.35 2.96
Experiment 4.06e 0.336–0.362f 3.80g

aSee Ref. 20.
bSee Ref. 21.
cSee Ref. 5.
dSee Ref. 11.
eSee Ref. 35.
fSee Ref. 36.
gSee Ref. 37.
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of B08 ~the pressure derivative of the bulk modulus! requires
more numerical effort: the second decimal ofB08 only be-
comes stable at cutoffs> 70 Ry. Somewhat surprisingly fo
a LDA calculation, our results approximate the experimen
value ofa0 from above.

In Table I, we also report theoretical predictions of fo
other works. Neither of the results quoted in Table I includ
the effect of the zero-point lattice vibrations. One of the
four studies is fairly similar to our present calculation
Martins20 performed LDA calculations with the Ceperley
Alder correlation, and using a pseudopotential with a non
ear core-correction for lithium and the unscreened Coulo
potential for hydrogen. His study differs from ours by a fe
technical points, essentially the atomic configurations to g
erate pseudopotentials, which demonstrates that the choi
the atomic configurations is by no means negligible: o
present results disagree with the results of Ref. 20 by ab
5% for a0 to some 15% forB0, and it could seem that ou
equilibrium values are closer to the experiment than in R
20. However, since it has been estimated that accounting
the zero-point vibrations implies increasing the lattice co
stant of LiH by approximately 1.7–3.5%,20–22some caution
should be exercised in judging which of the calculations
ported in Table I is actually the most realistic.

On the other hand, there is no doubt that the nonlin
core correction for lithium is essential in LiH: in the study
Rodriguez and Kunc,21 neglecting this core correction led t
the lattice constant far too small and to the bulk modulus
high—even when the zero-point vibrations were sub
quently taken into account.

The last two theoretical results reported in Table I co
cern Hartree-Fock calculations. One5 is a standard calcula
tion, yielding optimized Bloch wave functions. The second11

refers to an approach, which demonstrates that a large pa
the optimization of the Hartree-Fock calculations can
avoided by transferring some local aspects of the Wann
type orbitals from small systems to the crystal. We obse
that the latter two calculations give essentially identical p
dictions fora0 andB0 and that, somewhat surprisingly, the
results are quasi-identical with our present LDA calculatio
As for the values ofB08 , i.e., the third derivative of the tota
energyEtot with respect to the volumeV, they are too uncer-
tain to be used for judging the quality of one or anoth
calculation: the experiments are approximate and also
Murnaghan fit reveals a considerable statistical error@e.g.,
when including~or leaving out! one more~or one less! cal-
culated pointEtot(V)#.

B. The convergence of the all-electron method in plane-wave
basis

The first results suggesting that realistic converged pla
wave calculations with the unscreened Coulomb poten
2Z/r are feasible for LiH date back to 1988–89.23 The LDA
energies of solid hydrogen were determined, using the b
Coulomb potential in Ref. 24@plane-wave cutoffEpw5150
Ry ~Refs. 25!#. The possibility of extending such a treatme
to heavier atoms was examined by Teter,26 who calculated
the equation of state of carbon in diamond structure,
plane-wave basis as well (Epw5600 Ry!. Now we start by
reexamining more closely the question of convergence of
l
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all-electron calculations with the number of plane waves.
Table II we illustrate the effect of increasing the number
plane waves on static properties; the quantityf ce quoted in
this table is the ‘‘convergence-error factor,’’ which will b
introduced and further discussed in Sec. V.

Judging from the values ofa0 andB0, one obtains con-
verged results with the kinetic energy cutoffs starting fro
140 Ry. Here we do not take into account the behavior of
pressure derivativeB08 , because the error margin of its ca
culations is rather large — a consequence of the statistic
fluctuations in the Murnaghan fitting19— and the experimen-
tal value is approximate as well. Like in most densit
functional calculations, the predicted lattice constant is n
lower than the experimental one — in this respect,
pseudopotential calculations on LiH reported in Table I a
atypical.

It is interesting to note that another ‘‘all-electron
calculation,22 viz., one using the augmented plane-wa
method, predicts a value of the lattice constant of 3.93
when neglecting the zero-point vibrations. This value is
deed very close to the one we obtained when using the ‘‘s
plest’’ plane waves for both core and valence states.

The lattice constant obtained with the full Coulomb p
tentials is 3.7% under the experimental value. The agreem
somewhat improves when we account for the effect of
zero-point vibrations, which tend to increase the lattice
rameter: when the estimate of 1.7–1.8 %~or 3.5%!, for the
influence of the zero-point energy, derived in Refs. 21
~Ref. 20!, is used, the discrepancy decreases by half~or ex-
actly cancels!. As for the bulk modulus, the estimates for th
effect of the zero-point motion vary between232% and
222% ~Refs. 21 and 20!; whatever its exact magnitude, th
effect moves our calculatedB0 towards the experiment~if
not somewhat beyond!.

On the other hand, if we neglect the effect of the ze
point vibrations, the prediction for the lattice constant o
tained by the pseudopotential method~see Table I! turns out
to be slightly better than in the calculations with the fu

TABLE II. Convergence test for the static equilibrium in LiH
~lattice constanta0, bulk modulusB0 and pressure derivativeB08 of
the bulk modulus! calculated using the unscreened potenti
23/r and21/r . The quantityf ce is the ‘‘convergence-error factor’’
defined by Eq.~13!. The total energy was evaluated at seven latt
constants betweena53.6 Å and 4.2 Å and interpolated by th

Murnaghan equation; ten specialkW points were used for BZ sam
pling,Epw denotes the kinetic energy cutoff. The contribution of t
zero-point vibrations was not taken into account.

Epw ~Ry! a0 ~Å! B0 ~Mbar! B08 f ce

72 3.94 0.44 3.43 0.0050
100 3.95 0.40 1.57 0.0031
140 3.91 0.39 3.74 0.0017
180 3.92 0.40 2.87 0.0011
210 3.91 0.40 3.19 0.0009
240 3.91 0.40 3.48 0.0007
Experiment 4.06a 0.336–0.362b 3.80c

aSee Ref. 35.
bSee Ref. 36.
cSee Ref. 37.
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55 5009CORE EFFECTS IN LITHIUM HYDRIDE
Coulomb potentials, which employ one approximationless.
Apparently, the pseudopotential calculations on LiH ben
from some sort of compensation between the LDA and
pseudopotential approximation.

The major difficulty, known and expected, with the fu
Coulomb potential calculations is in reaching convergence
the quantities that depend on the core electrons’ wave fu
tions. In order to verify how well the lithium core can b
described in the plane-wave calculations, we report in Ta
III the convergence of two quantities directly related to t
core size: the position, along the~100! direction, of the maxi-
mum of the core radial density — defined byr 2nc , where
the core charge densitync is obtained from the wave func
tions associated with the lowest eigenvalue — and the p
tion, again along the~100! direction, of the node of the va
lence wave function at theG point. It is understood that the
origin is on the lithium atom, and the lattice parameter us
is the one minimizing energy in the calculations with 2
Ry.

We can see from Table III that the full convergence of t
core-related quantities is reached for the kinetic energy
off of 180 Ry — which explains the analogous convergen
properties of the lattice constant and bulk modulus obser
in Table II. The above results show clearly that realis
plane-wave calculations using the bare Coulomb poten
are possible in solids — on the condition that the Four
expansions are sufficiently ‘‘long ranged’’~in theG space!
to reproduce the small size~in the real space! of the core
orbitals. Calculations at this scale are possible with sup
computers becoming a standard tool in physics, and e
more so with the appearance of the iterative methods of
Car-Parrinello type. The relatively large size and the cor
sponding computer cost of these calculations are partly c
pensated by the overwhelming simplicity of dealing with t
Coulomb potentials, as well as by the more pronounced
fect of vectorization of the codes~local potentials!. Solving
the Schro¨dinger equation in a plane-wave basis is not
most appropriate way of dealing with the localized stat
such as core orbitals. Nonetheless, this basis is by no m
powerless when it comes to describing atomic states o
certain ~i.e., not too small! spatial extent. It may also b
useful to remember that, unlike most codes designed for
spherically symmetrical problem~atomic calculations!, the
plane-wave algorithms do not involve any spherical aver
ing of the Hartree potential. This may represent certain c

TABLE III. Convergence, within the full Coulomb potential
calculations, of the core radial density maximum maxcore and of
nodeval , the position of the node of the valence wave function at
G point, calculated in the@100# direction, versus the kinetic energ
cutoff Epw. Npw denotes the number of planes waves included in
calculations of the wave functions.

Epw ~Ry! Npw maxcore ~a.u.! nodeval ~a.u.!

72 1052 0.41 0.96
100 1723 0.38 0.96
140 1845 0.35 0.93
180 4149 0.34 0.92
210 5213 0.34 0.92
240 6366 0.34 0.92
t
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ceptual advantage, nevertheless, in practice, the finite siz
the basis set imposes another constraint on the spherici
the potentials involved, viz., their shape is approximated
polyhedra.

Taking as the simplest example a spherically symmetr
potentialV(r ), it is obvious that, when represented by a
nite plane-wave expansion, the potential becomes direct
ally dependent. The surfaces of constant potentialV(r )5E
will be planes, as many different ones as there are indep
dent directionsGW in the plane-wave expansion. As a resu
every sphere will be approximated, more or less faithfu
by a polyhedron.

This finding is not a new problem; it is not a consequen
of replacing the pseudopotentials by the unscreened C
lomb potentials, but an inherent property of the plane-wa
basis set. The ‘‘nonsmoothness’’ does not usually have c
sequences in the pseudopotential calculations, but one
wonder whether this imperfect sphericity does not beco
critical when the spherical ‘‘objects’’ to represent are
much smaller size. The first check to perform is thus to
amine how well~how smoothly! any given set ofGW vectors
can approximate a sphere.

We have verified that the present full Coulomb potent
calculations in the LiH crystal yield the core charge dens
spherical, like in the lithium atom: at the kinetic energy cu
off of 210 Ry, and with the density constructed from the co
wave functions calculated at 10 special pointskW i , we find
numerically that the maximum of the core radial density do
not depend on the direction ofrW to within three decimals —
whetherrW is chosen along a ‘‘simple’’ crystallographic d
rection such as@100#, @110#, or along an ‘‘uneven’’ one such
as@17, 31,217# or @36, 10,211#, which is not represented
in the plane-wave expansion of the core density. The sp
ricity once checked out, it is interesting to compare thes
core radial density calculated in the solid with the one c
culated for the isolated lithium atom. This is done in Fig.
in which the two quantities are plotted, with the origin on t
lithium atom. The figure demonstrates that the two densi

e

e

FIG. 1. Radial density of core electronsr 2nc in the lithium atom
~solid lines! and along the@100# direction in the LiH crystal~dotted
lines!, as calculated with the full Coulomb potentials using the c
off of 210 Ry and the Ceperley-Alder correlation.
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5010 55L. BELLAICHE AND K. KUNC
are, indeed, very close. They slightly differ in the position
the maxima — which is the ‘‘radius’’ of the core: 0.3
atomic units in the crystal versus 0.36 atomic units in
atom.

In order to further check whether this difference is not
artifact of the methods used, we have verified two other f
tures of the maximum of the core radial density in t
solid: it turns out that~1! the maximum does not depend o
the lattice constant selected for the calculations in solid;~2!

increasing the number of special pointskW i used for the inte-
gration over the BZ from 10 to 28 does not shift the ma
mum of the core radial density.

Thus the small difference of 0.02 a.u. in the lithium co
size is, apparently, an effect of a slight core polarization
the LiH crystal, as suggested, e.g., in Ref. 27. Also,
present calculations predict a core bandwidth of appro
mately 0.1 eV; the existence of the~weak! dispersion of this
band evidences, as well, the same influence of the envi
ment on the core wave functions. Before further discuss
the calculations with the unscreened Coulomb potential
Sec. V, we will now turn to the Compton effect.

IV. COMPTON PROFILES

A. The Compton effect

The Compton process is an inelastic scattering of a p
ton by an electron. The relationship between the double
ferential Compton cross section, which is the quantity m
sured experimentally, and the Compton profile~CP! is given
~in atomic units,\5m5e51) by

d2s

dVdv2
5S ds

dV D
Th

v2

v1

J~v12v2!

uKW u
. ~5!

HereJ is the CP,v1 andv2 are the energies of the inciden
and scattered photons, respectively, (ds/dV)Th is the Thom-
son differential cross section andKW is the scattering vector.

Within the impulse approximation~IA !, adopting the in-
dependent particle and frozen orbital approximations, the
can be expressed as~see Ref. 2!

J~q,eW !5E n~pW !d~pW •eW2q!dpW , ~6!

wherepW is the electron momentum in the initial state,n(pW )
the momentum density of electrons,eW the unit vector along
KW , andq the projection ofpW along the scattering vector. W
notice that the CP is a directional quantity~through the de-
pendence oneW ).

In typical experimental conditions~x-ray energy range!,
the IA is only valid for valence electrons and not for th
core,28 whereas the experiments measure a total CP tha
sults from scattering on both groups of electrons. As
core-electron scattering is known not to be usually a grou
state property, an adequate treatment of the experime
data consists in subtracting from the measured CP the
contribution, calculated by using the quasi-self-consiste
field ~QSCF! approximation28–30rather than the IA. Compar
ing then the experimental valence CP to the theoretical
f

e

-

-

n
e
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o-
f-
-

P

e-
e
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e

obtained from Eq.~6! provides a direct test for the quality o
the calculated ground-state valence-electron density.

Recently,31 high-resolution x-ray measurements of Com
ton profiles have been performed on a LiH monocrystal
12 different directions of the scattering vector. For three
them, two main corrections have been applied to
data,11,32 viz., the contribution of the core electrons wa
evaluated using the QSCF approximation, and the effect
multiple scattering were taken into account~i.e., the possi-
bility that one photon may scatter more than once in
sample!. Neither of these two corrections turned out to
negligible.11 Consequently, in the present paper we will us
for comparison with our theoretical results, these ‘‘cleane
experimental data relating to the@100#, @110#, and@210# ori-
entations of the scattering vectorKW .

Both within the DFT and the Hartree-Fock approach, t
ground-state charge densityn(rW) in a nonmetallic solid can
be written as a sum over one-electron wave functionscn,kW of
the occupied states:

n~rW !5(
n,kW

ucn,kWu2. ~7!

kW are the wave vectors restricted to the first Brillouin zo
~BZ!, andn runs over the bands.

With the plane-wave expansion ofcn,kW @see Eq.~1!# and
using Eq.~2!, thevalenceCompton profileJ of a nonmetallic
crystal, in the IA, becomes4

J~q,eW !5
1

N(
n

(
kW

(
GW

uCn,kW~GW !u2d@~kW1GW !•eW2q#. ~8!

HereN is the normalization factor,4 GW stands for reciprocal-
lattice vectors, andn is now limited to the valence states.

The Brillouin zone summation in Eq.~8! is carried out, in
this work, using the tetrahedron method of Lehmann a
Taut, and Jepsen and Andersen;33 an irreducible segment o
the Brillouin zone is divided into 33 tetrahedra having
common apices, and theCn,kW(GW ) coefficients are exactly cal
culated only on these 22kW points while a linear interpolation
is performed inside each tetrahedron.

B. CALCULATIONS OF THE COMPTON PROFILES

In Fig. 2 two sets of theoretical valence Compton profi
are compared to the experimental ones, for the three di
tions already evoked in Sec. IV A. One set corresponds
the calculations with the unscreened Coulomb potentials
the other shows the results of pseudopotential calculatio
The @100# Compton profile calculated from the reconstruct
valence wave functions~and corresponding to the theoretic
equilibrium predicted by the full Coulomb potential calcul
tions! is also given in Fig. 2~a!. A similar comparison for the
anisotropies of CP is done in Fig. 3. The reconstruction p
cedure@see Eq.~4!# has been applied separately for eve
one of the 22kW points needed for the evaluation of th
Compton profile from Eq.~8!, and by choosing the atomi
1s orbital to describe the localized function of Eqs.~2! and
~3!. As a matter of fact, atomic calculations are the eas
source of information about the core orbitals; using them
solid nevertheless implies assuming tacitly the frozen-c
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55 5011CORE EFFECTS IN LITHIUM HYDRIDE
approximation. We have seen in Sec. III that the solid c
density in LiH is indeed close to the 1s lithium atomic one,
although Fig. 1 suggests that a slight polarization of the c
may take place in the solid. The subsequent calculations

FIG. 2. DifferenceDJ(q) between the theoretical and expe
mental valence Compton profiles corresponding to the@100# ~a!,
@110# ~b! and@210# ~c! directions. The theoretical profiles have be
evaluated with the full Coulomb potentials~cutoff of 210 Ry! or
with pseudopotential~cutoff of 100 Ry!, at the corresponding theo
retical lattice constants.~a! also shows the result of the orthogona
ization procedure starting from the pseudopotential calculati
~cutoff of 100 Ry and with the lattice constant of the full Coulom
potential calculations, i.e.,a53.91 Å!. All the theoretical Compton
profiles have been convoluted with the experimental resolution~a
Gauss function with the half-width of 0.19 a.u.!. The experimental
data were obtained as described in the Sec. IV. All profiles
normalized to 2~the number of valence electrons per primitiv
cell!; pseudostands for the pseudopotential calculations,rec for the
reconstruction procedure, and FCP for the full Coulomb poten
ones. The error bars are the statistical error bars of the~experimen-
tal! data.
e

re
an

thus also be considered as a verification that the influenc
the core polarization on the Compton effect is negligible
LiH.

We notice a marked disagreement of the theoretical C
predicted by the pseudopotential approach with experim
for example, at small values ofq, the difference between
theory and experiment is approximately 7 times larger th
the experimental statistical error bars. On the other hand
turns out that, due to compensation effects, the pseudopo
tial results for the anisotropies of the Compton profiles—i.
results of subtraction between two different direction
Compton profiles— agree with the experimental ones m
better than the results on individual profiles. However, d
agreements still remain: the results for the anisotropy d
played in Fig. 3~a! ~which concerns the@100# and the@110#
directions! and Fig. 3~b! ~related to the@100# and the@210#
directions! differ from the experiment at the values ofq
close to zero and, to some extent, forq around 0.8–1.0 a.u

Unlike in the pseudopotential calculations, employing t
full Coulomb potential yields both the theoretical profile
and anisotropies in very good agreement with the experim
tal ones; in particular, for the directional profiles, the discre
ancies at the smallq values have now disappeared and, w
the exception of one point in Fig. 3~a!, all values of the
theoretical anisotropies are now within the experimental s
tistical uncertainties.

We can thus conclude that the behavior of the vale
electrons in the lithium core region has an important eff
on the valence Compton profiles. Obviously, this is a con
quence of the fact that the valence-charge density obtaine
the pseudopotential approach is not correct in the core
gions. This incorrect description implies that the quantit
deriving from the 1D or 2D integrals over charge dens
cannot be accurately reproduced in pseudopoten
calculations—unless the integrand is equal to zero eve
where in the core regions. On the other hand, due to
norm-conservationcondition underlying the construction o
the pseudopotential, the three-dimensional integrals over
pseudocharge density can be accurate, which would exp
the success of the total energy pseudopotential method in
description of the basic static properties~Table I! and of
similar quantities. Since the Compton effect implies integ
tion of the electronic density in two dimensions@cf. the pres-
ence ofd function in Eq.~8!#, it cannot be accurately calcu
lated within the pseudopotential scheme for ionic syste
such as LiH, where a large part of the true valence densit
around the nuclei. A simple orthogonalization procedu
which ‘‘corrects’’ the valence density around the nucle
leads thus to very good results for the CP@see Figs. 2~a! and
3~a!#. We can see that the@100# Compton profile calculated
using the orthogonalization scheme@Eq. ~4!# is nearly iden-
tical with the one obtained with the unscreened Coulo
potential ~and thus also with experimental results!: the dif-
ferences between the two theoretical results are much sm
than the experimental statistical error bars. The anisotrop
CP plotted in Fig. 3~a! demonstrates, as well, that the o
thogonalization procedure makes it possible to reprodu
within the pseudopotential method, the result obtained w
the full Coulomb potential. We have also checked for seve
other directions, and at several lattice parameters, that

s

e

l



v
ia

is
ir
a
nc
u

re-
m.
ned
the
eir
ne
ub-

ost
ss-

ed

ion:

in
on

in
e

ave
or

en

ve
g

g
the
r 1

p

ith

e
e

l

a
l

ia

5012 55L. BELLAICHE AND K. KUNC
present reconstruction method reproduces very well the
lence Compton profile obtained in the full Coulomb potent
calculations.

V. DISCUSSION

We performed LDA calculations, in a plane-wave bas
of the directional Compton profiles for LiH, and of the
anisotropies. The results obtained with pseudopotentials
in rather poor agreement with experiment. The discrepa
between this type of calculation and measurements res

FIG. 3. Theoretical and experimental anisotropies of the Com
ton profiles corresponding to the differences@100#-@110# ~a! and
@100#-@210# ~b!. The theoretical profiles have been evaluated w
the full Coulomb potentials~cutoff of 210 Ry! or with the pseudo-
potentials~cutoff of 100 Ry!, at the corresponding theoretical lattic
constants.~a! also shows the result of the orthogonalization proc
dure starting from the pseudopotential calculations~cutoff of 100
Ry and with the lattice constant of the full Coulomb potential ca
culations, i.e.,a53.91 Å!. All the theoretical Compton profiles
have been convoluted with the experimental resolution~a Gauss
function with the half-width of 0.19 a.u.!. The experimental data
were obtained as described in the Sec. IV. All profiles are norm
ized to 2 ~the number of valence electrons per primitive cel!;
pseudostands for the pseudopotential calculations,rec for the re-
construction procedure, and FCP for the full Coulomb potent
ones. The error bars are the statistical error bars of the~experimen-
tal! data.
a-
l

,

re
y
lts

from the impossibility for pseudopotentials to generate a
alistic valence-charge density in the core region of lithiu
We have demonstrated that by employing the full unscree
Coulomb potentials, i.e., by avoiding the pseudization of
wave functions, the theoretical Compton profiles and th
anisotropies are in excellent agreement with experiment. O
may then wonder if such an approach can be used for s
stances other than LiH.

To answer the question, we will now determine the c
of such a calculation which, obviously, is the cost of expre
ing by plane waves@see Eq.~1!# the core wave function
c1,kW in any arbitrary crystal. Let us then take for the localiz
orbital of Eq.~2! the atomic 1s orbital of the heaviest atom
in the crystal, and describe it by the hydrogenlike express

fcore~rW !5Aj3

p
exp~2jr !, ~9!

with j controlling the decay of the orbital. We then obta
from Eq.~3! for the coefficients of the plane-wave expansi
at theG point:

C1,kW50W~GW !}
j2.5

~GW 21j2!2
. ~10!

The proportionality coefficient can be easily expressed
terms of theC1,kW50W(GW 50W ) — i.e., the spatial average of th
wave functionc1,kW50W — so that finally

C1,kW50W~GW !5C1,kW50W~GW 50W !
j4

~GW 21j2!2
. ~11!

With the plane-wave cutoff energy, given in Ry,Epw~Ry!,
the largest plane wave included in the expansion of the w
function at theG point corresponds to the wave vect
GW max given, in atomic units, by

Epw~Ry!5GW max
2 ~a.u.!. ~12!

Let us introduce the ‘‘convergence-error factor’’f ce that
expresses the ‘‘quality’’ of the convergence:

f ce[
C1,kW50W~GW max!

C1,kW50W~GW 50W !
5

j4

@Epw~Ry!1j2#2
. ~13!

In this notation, the plane-wave expansion is cut off wh
the Fourier coefficients becomef ce times smaller than the
average value of the wave function. Rewriting the abo
expression~13!, the plane-wave cutoff required for obtainin
a given convergence-error factor is

Epw~Ry!5SA 1

f ce
21D j2. ~14!

One can estimatej by adopting the simple screenin
model of Slater; in terms of the effective charge and of
screening constant reflecting the presence of the othes
electron, we get for any atom

-

-

-

l-

l



in

th

no
—
s
ta
e
-

in
ff
-
fo

in
in
al

he

ital
her
for
al-

he
e-

t

—
-
iH;
to

he
an

ctly
ial
u-
to

.J.
and
of
Sci-

55 5013CORE EFFECTS IN LITHIUM HYDRIDE
j5Z2s1s , ~15!

whereZ is the nuclear charge~of the heaviest atom in the
crystal!, s1s50.3 for any atom heavier than hydrogen~see,
e.g., Ref. 34! ands1s50 for the hydrogen. We thus obtain

Epw~Ry!5SA 1

f ce
21D ~Z2s1s!

2. ~16!

According to this equation, the cutoff required to atta
any given ‘‘quality of convergence’’f ce only depends on the
heaviest atom present in the crystal and not at all on
crystal structure; this reflects the idea that the 1s electrons in
a crystal are not sensitive to the environment. Also, we
tice that Eq.~16! does not depend on the lattice constant
it is only the conversion ofEpw to the number of plane wave
that does~both on the lattice constant and on the crys
structure!. In our full potential calculations performed in th
Sec. III B with the cutoffEpw 5 210 Ry, the convergence
error factor@evaluated from its definition~13!, and on the
Fourier expansion actually used# reachesf ce 5 0.0009. On
the other hand, in terms of the Slater model, requir
f ce50.0009 andZ53, we find that the corresponding cuto
proposed by the Eq.~16! is approximately 235 Ry. This sug
gests the approximate uncertainty of the Slater model
Epw: 10%.

For judging what the ‘‘quality of convergence’’ means
terms of the ‘‘quality of the results,’’ we have reported
Table II, the values off ce ~evaluated, again, on the actu
Fourier series! corresponding to the differentEpw used. They
can be confronted with the quality of reproduction of t
basic ground-state properties.
lde

m

y

,

S

e

-

l
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r

The above simple way of expressing the localized orb
and its exponential decay allows us to estimate, with rat
good accuracy, the kinetic energy cutoffs required
achieving the convergence of the full Coulomb potential c
culations in an arbitrary substance. Using Eq.~16!, we can
judge the feasibility of the plane-wave calculations with t
full Coulomb potential for the next few elements of the P
riodic Table: beryllium (Z54), boron (Z55), and carbon
(Z56). Choosing the samef ce50.001 as in the presen
work, it turns out that theEpw cutoff of approximately 400
Ry is needed for Be, 675 Ry for B, and 1000 Ry for C
which drastically limits the possibility of using the full un
screened Coulomb potential for compounds other than L
it is thus in the first row of the Periodic Table that we have
locate the border between the feasible and~presently! im-
practicable.

However, we have also shown that by starting from t
more modest pseudopotential calculations and by using
orthogonalization method, it is possible to reproduce exa
the Compton profiles obtained in the full Coulomb potent
calculations. This detour is numerically simple and comp
tationally not costly, and it could be certainly generalized
larger systems composed of heavier atoms.

ACKNOWLEDGMENTS

The authors wish to thank B. Le´vy, R.M. Martin, S. Rabii,
and J. Ridard for valuable advice, Y. Garreau, J. Hutter, R
Needs, and M. Sauvage-Simkin for useful discussions,
G. Loupias for providing us with the experimental data
Ref. 31. The computer resources were provided by the
entific Committee of IDRIS~Institut du Développement et
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