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Calculations of the directional Compton profiles and of the anisotropies of Compton scattering are reported,
based on density-functional theory within the local-density approximation, performed using a plane-wave
basis, and using) pseudopotentials and) full, unscreened Coulomb potentials for both Li and H atoms. The
pseudopotential calculations yield Compton profiles with unsatisfactory agreement with experiment. The rea-
son of this failure is discussed. It is then shown that, with the total Coulomb potentials, converged results can
be obtained, and that the Compton profiles obtained are in excellent agreement with experiment. Possibilities
(and limity of extending the plane-wave calculations with the full Coulomb potentials to other atoms and
substances are discussed. Furthermore, a simple method is proposed that allows the reproduction of the full
Coulomb potential results at a much lower cost, by orthogonalizing the pseudo-wave-functions to the core
orbitals calculated separate[y50163-182807)00708-X]

I. INTRODUCTION oms. We show that employing pseudopotentials does not

succeed in reproducing accurately the Compton profiles. On

Although the Compton effect has been known for morethe other hand, when avoiding the pseudization of the va-
than 70 years, its importance for solid state physics has onlience wave function by using the full, unscreened Coulomb

been recognized since the beginning of the 19%8'as a  potentials, the theoretical Compton profiles become in excel-
matter of fact, Compton scattering is a very straightforwardent agreement with experiment. In this study, we identify

way of probing the ground-state electronic structure of mathe problem of the pseudopotential method in the description

terials and, during the past two decades, a large volume ¥ the Compton profiles and propose a simple method based
experimental data has been accumulated, concerning mainj? the orthogonalization of the valence pseudo-wave-
light atoms and their compound$or a review, see, e.g., functions to the lithium core orbital, which allows us to re-

Refs. 1,3, as a consequence of the development of tunabl@roduce, within the framework of pseudopotential calcula-
high-flux x-ray sources. From our point of view, Compton tions, the Compton results obtained with the full Coulomb
scattering offers an excellent possibility of verifying the cal- Potentials. Finally, the possibilities, as well as the limits, of
culations of electronic structure. Being a ground-state propeXtending the plane-wave calculations with the full Coulomb
erty, the Compton effect is amenable to treatment by théotentials to other atoms and substances are discussed.
density-functionalDF) theory and, within the framework of e start by describing in Sec. Il the different methods we
the local-density approximatiolLDA), it allows one to  Will use in this article, then discuss in Sec. IlI the results of
judge the approximations involved or the assumptions maddhe pseudopotentials calculations, and the convergence of the
It turns out that Compton profiles are fairly sensitive to de-all-€lectron calculations for the basic ground-state properties
tails of the electronic valence-charge distribution. of LiH. Finally, Sec. IV concerns the main aspect of this
A few theoretical works which proceed along similar lines WOrk, i.e., the advantages and limitations of the different
as our present work deserve to be mentioned: The pseud§lectronic methods used to describe the Compton profile.
potential calculations of Compton profiles in beryllidrthe
Hartree-Fock calculations on LiH and Bi‘@,thg works on Il. ELECTRONIC METHODS
graphite and intercalation compourlds, still another . )
pseudopotential calculation on BRand finally our previous A. Total-energy calculations: Pseudopotential and full nuclear

work on LiH within the Hartree-Fock theory and in the basis potential
of Wannier-type functions: A more extensive review can For the calculation of the total energy of the LiH crystal
be found, e.g., in Ref. 3. we first develop the one-electron wave functiafig; in a

In this paper we report calculations, in a plane-wave baplane-wave basi¥
sis, of the directional Compton profiles and their anisotropies
which are based on usin@esides the DF theory and the
LDA) the norm-conserving pseudopotentials but also the (/,n’E:E cn'ﬁ(é)exqi(EjLé).F], (1)
full, unscreened Coulomb potentials fboth Li and H at- G
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wherek is a wave vector restricted to the first Brillouin zone ~ TABLE I. The equilibrium properties of LiH crystallattice

. . . 2 constanfy, bulk modulusB, and pressure derivati\i; of the bulk
(B2), n.ls the qua_mum number IndeXIan the bamstand? modulug predicted by the present peudopotential calculations with
for reciprocal-lattice vectors, an@, g(G) are the coeffi-

- ten specialz points for BZ sampling and the kinetic energy cutoff
cients of the development. _ _ _ of 100 Ry, compared with the experimental values. Results of other

Then we use the local-density approximatidwith the  cajculations are quoted as well. The zero-point vibrations are not
Ceperley-Alder exchange and correlafibas parametrized accounted for.
by Perdew and ZungéP. The IZ-space summation is per-
formed using ten “special points” which, in the Monkhorst- ag (A) B, (Mbar) Bo
Pack notatiort® correspond tay;q,0;=444.

The unscreened- 1/r Coulomb potential is always used
for hydrogen, while the lithium potential is described by two b
different techniques(i) within the pseudopotential approach, e’ Workc 3.34 0.66 3.57
where the pseudopotential of the lithium is generated by th&ther Workd 4.10 0.34
Kerker method using the £22s' and 1s?2p®253d%-25 Other.work 411 0.35 2.96
atomic electronic configurations for obtaining the p-, and ~ Experiment 4.06 0.336-0.363 3.80°
d-components of the pseudopotential, while the corretiion See Ref. 20
for the nonlinearity of the exchange and correlation obeee Ref' 21'
lithium is taken into accountii) using the all-electron de- cSee Refl 5 '
scription, where we give up to the frozen-core approximatioruS ce R ef.. 1'1_
for Li and deal with the full nuclear potentiat 3/r. In the eSee Ref. 35.
all-electron approach, the system studied consists of the N¥s oo Ref 36.
clei +3e and + 1e, and of four electrons per primitive cell; 9See Ref. 37.
compared to the pseudopotential calculations, the core elec-
trons are dealt with explicitly, on the same footing as the

valence ones. The information that one obtains in this Coud"d (&) We find that the coefficient€,(G) of the plane-

lomb potential calculation is the “correct” behavior of the }/g?r\]/qe;xt%aenlilgglifzogjéygoﬁgﬁap:.roportlonal tothe Fourier trans-
valence wave function in the core regions of lithiim par- '

Present work 4.11 0.34 3.01
Other work? 3.90 0.40

ticular, the existence of a nogewhich will be used for . _ .
assessing its importance for the Compton effect. Cl,g(G)ocJ beord )X —i(k+G)r]dr. (3)
B. The orthogonalization method Once the core functionﬂxlgi are constructed within a

We have also attempted to “reconstruct” the completeplane-wave expansiofEq. (1)] from the localized orbital
valence wave function from the results obtained in thelEd. (3)], we apply, as already done in the Ref. 4, the
pseudopotential calculation. The procedure we employ conGramm-Schmidt orthogonalization, which becomes particu-
sists in orthogonalizing the pseudo-wave function with re-arly simple when only two functions are dealt with:
spect to the core wave function — so as to complete the rec._ r pseuda ) {ypseuda
information normally missed in the pseudopotential frame- 2. k= LY e k(P 0277 0) 1 (4)
work, but at a much less cost than by performing the full Here n=1,2 stands for the core and the valence band,

Coulomb potential calculations. rec. : .
It is easy to demonstrate that two wave functiqlf};‘i,gl l’bﬁ'selfuéf the reconstructed valend®loch) wave function,

q ~ belonai diff b q b 5>k is the valence function obtained within the pseudo-
andyn, k, belonging to two different ands, andn, can be potential approach, ang, ¢ is the core Bloch wave function

nonorthogonal only if the vectorEl and IZZ are identical. constructed as explained above;is the normalization fac-
This implies that we have to orthogonalize the valence waveor, and( g l/jgf’e”dﬁ) denotes the scalar product of the core
functions, obtained within the pseudopotential approachfunctions with the pseudopotential valence one.
with respect to the corresponding core ones separately for
everyone of the&k vectors needed. lll. STATIC PROPERTIES
Let us first pay attention to the core functioigy (i.e.,
the “first” ones, which correspond to the lowest Kohn-Sham
energies in an “all-electron” calculation We start by ex- The static equilibrium quantities predicted by the pseudo-
pressing them in terms of localized orbitals: potential approach and shown in Table | are obtained by
. fitting by the Murnaghan equatibhthe energies calculated
Lo - = Lo 2 for seven different volumes; they correspond to the plane-
Yai(r)= N_BL2 Poord I~ Re)explik- Ral, @ wave cutoff of 100 Ry. At this kinetic energy, all static prop-
Rn erties are safely converged; in fact, we have observed that
the second decimal of the lattice constagtexpressed in A,
R . , is stable starting from the cutoff of 50 Ry, and that the con-
beord" — Ry) is a localized orthogonal orbital centered on theyergence of the bulk moduluB, occurs even earlier: the
site R;;. The easiest way of getting this localized orbital is to second decimal 0B, expressed in Mbar, is stable starting
take it from an atomic calculation. By combining Eq4)  from the cutoff of 36 Ry. On the other hand, the convergence

A. Pseudopotential results

where Rj; runs over the Bravais lattice, havindg, sites,
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of B} (the pressure derivative of the bulk modylusquires TABLE II. Convergence test for the static equilibrium in LiH

more numerical effort: the second decimal B§ only be- (lattice constangy, bulk modulusB, and pressure derivativ@, of

comes stable at cutoffs 70 Ry. Somewhat surprisingly for the bulk modulus calculated using the unscreened potentials

a LDA calculation, our results approximate the experimental 3/ and—1/r. The quantityf, is the “convergence-error factor”

value ofa. from above defined by Eq(13). The total energy was evaluated at seven lattice
0 . _ )

In Table I, we also report theoretical predictions of four cOnStants betwee_a _3'6 A andﬁ 4'2_ A and interpolated by the
other works. Neither of the results quoted in Table | incIudeév'_“mf"‘gpr:fln equation; ten specialpoints were used for BZ sam-
the effect of the zero-point lattice vibrations. One of these?!Nd: E™ denotes the kinetic energy cutoff. The contribution of the
four studies is fairly similar to our present calculations: zero-point vibrations was not taken into account,

Martins® performed LDA calculations with the Ceperley-
. . e . EM (R ag (A B, (Mban By f
Alder correlation, and using a pseudopotential with a nonlin- Ry o M o ( ) ° i

ear core-correction for lithium and the unscreened Coulomkiy2 3.94 0.44 3.43 0.0050
potential for hydrogen. His study differs from ours by a few 100 3.95 0.40 1.57 0.0031
technical points, essentially the atomic configurations to gent40 3.91 0.39 3.74 0.0017
erate pseudopotentials, which demonstrates that the choice g 3.92 0.40 2.87 0.0011
the atomic configurations is by no means negligible: ouryqq 391 0.40 3.19 0.0009
present results disagree with the results of Ref. 20 by abouly 391 0.40 348 0.0007
5% for ap to some 15% foB,, and it could seem that our Experiment 406 0336-0362  3.80°

equilibrium values are closer to the experiment than in Ref

20. However, since it has been estimated that accounting fésee Ref. 35.

the zero-point vibrations implies increasing the lattice conSee Ref. 36.

stant of LiH by approximately 1.7—3.5%8,2?some caution °See Ref. 37.

should be exercised in judging which of the calculations re-

ported in Table | is actually the most realistic. all-electron calculations with the number of plane waves. In
On the other hand, there is no doubt that the nonlineaiable Il we illustrate the effect of increasing the number of

core correction for lithium is essential in LiH: in the study of plane waves on static properties; the quantityquoted in

Rodriguez and Kuné! neglecting this core correction led to this table is the “convergence-error factor,” which will be

the lattice constant far too small and to the bulk modulus toantroduced and further discussed in Sec. V.

high—even when the zero-point vibrations were subse- Judging from the values af, and By, one obtains con-

guently taken into account. verged results with the kinetic energy cutoffs starting from
The last two theoretical results reported in Table | con-140 Ry. Here we do not take into account the behavior of the

cern Hartree-Fock calculations. CGnis a standard calcula- pressure derivativ8), because the error margin of its cal-

tion, yielding optimized Bloch wave functions. The secbind culations is rather lag— a consequence of the statistical

refers to an approach, which demonstrates that a large part gifictuations in the Murnaghan fittihg— and the experimen-

the optimization of the Hartree-Fock calculations can betal value is approximate as well. Like in most density-

avoided by transferring some local aspects of the Wannierfunctional calculations, the predicted lattice constant is now

type orbitals from small systems to the crystal. We observéower than the experimental one — in this respect, the

that the latter two calculations give essentially identical prepseudopotential calculations on LiH reported in Table | are
dictions foray andB, and that, somewhat surprisingly, these atypical.

results are quasi-identical with our present LDA calculations. |t is interesting to note that another *“all-electron”
As for the values 0B, i.e., the third derivative of the total calculation?? viz., one using the augmented plane-wave
energyE™® with respect to the volum¥, they are too uncer- method, predicts a value of the lattice constant of 3.93 A,
tain to be used for judging the quality of one or anotherwhen neglecting the zero-point vibrations. This value is in-
calculation: the experiments are approximate and also thdeed very close to the one we obtained when using the “sim-
Murnaghan fit reveals a considerable statistical efeog., plest” plane waves for both core and valence states.
when including(or leaving out one more(or one lesscal- The lattice constant obtained with the full Coulomb po-
culated pointE™{(V)]. tentials is 3.7% under the experimental value. The agreement
somewhat improves when we account for the effect of the
zero-point vibrations, which tend to increase the lattice pa-
rameter: when the estimate of 1.7-1.8(86 3.5%, for the
influence of the zero-point energy, derived in Refs. 21,22
The first results suggesting that realistic converged planeRef. 20, is used, the discrepancy decreases by (walex-
wave calculations with the unscreened Coulomb potentiaactly cancels As for the bulk modulus, the estimates for the
—ZIr are feasible for LiH date back to 1988—89The LDA  effect of the zero-point motion vary between32% and
energies of solid hydrogen were determined, using the bare 22% (Refs. 21 and 20 whatever its exact magnitude, this
Coulomb potential in Ref. 24plane-wave cutofEPY=150 effect moves our calculateB, towards the experimerfif
Ry (Refs. 25]. The possibility of extending such a treatment not somewhat beyond
to heavier atoms was examined by Téfewho calculated On the other hand, if we neglect the effect of the zero-
the equation of state of carbon in diamond structure, irpoint vibrations, the prediction for the lattice constant ob-
plane-wave basis as welE["=600 Ry). Now we start by tained by the pseudopotential meth@ee Table )l turns out
reexamining more closely the question of convergence of th&o be slightly better than in the calculations with the full

B. The convergence of the all-electron method in plane-wave
basis
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TABLE lll. Convergence, within the full Coulomb potentials

2 2
calculations, of the core radial density maximum maxand of rn (a.u.)

node,,, the position of the node of the valence wave function at the 0.15 ' ’
I" point, calculated in th€100] direction, versus the kinetic energy
cutoff EPY. NP denotes the number of planes waves included inthe | - LiH crystal
calculations of the wave functions. ——Liatom
0.10 T~ q
EPY (Ry) NP MaXcore (a-u) nodQ/al (a-u) .
72 1052 0.41 0.96
100 1723 0.38 0.96 005 - ) |
140 1845 0.35 0.93 S
180 4149 0.34 0.92
210 5213 0.34 0.92
240 6366 0.34 0.92 , ‘ it SO
0005 0.5 1.0 1.5 2.0
r (a.u.)

Coulomb potentials, which employ one approximatleas
Apparently, the pseudopotential calculations on LiH benefit g\ 1. Radial density of core electror&n, in the lithium atom
from some sort of compensation between the LDA and thgsojig lineg and along thé100] direction in the LiH crystaldotted
pseudopotential approximation. lines), as calculated with the full Coulomb potentials using the cut-
The ma.jor dlfflCUlty, known and eXpeCted, with the full off of 210 Ry and the Ceperley-Alder correlation.
Coulomb potential calculations is in reaching convergence of
the quantities that depend on the core electrons’ wave funaeptual advantage, nevertheless, in practice, the finite size of
tions. In order to verify how well the lithium core can be the basis set imposes another constraint on the sphericity of
described in the plane-wave calculations, we report in Tabl¢he potentials involved, viz., their shape is approximated by
[l the convergence of two quantities directly related to thepolyhedra.
core size: the position, along t&00) direction, of the maxi- Taking as the simplest example a spherically symmetrical
mum of the core radial density — defined b$n., where  potentialV(r), it is obvious that, when represented by a fi-
the core charge density, is obtained from the wave func- nite plane-wave expansion, the potential becomes direction-
tions associated with the lowest eigenvalue — and the posilly dependent. The surfaces of constant potetial) =E
tion, again along thé€100 direction, of the node of the va- will be planes, as many different ones as there are indepen-
lence wave function at thE point. It is understood that the dent directionsé in the p|ane_Wa\/e expansion_ As a result,
origin is on the lithium atom, and the lattice parameter Use%very sphere will be approximated, more or less fa|thfu||y,
is the one minimizing energy in the calculations with 210py a polyhedron.
Ry. This finding is not a new problem; it is not a consequence
We can see from Table Il that the full convergence of theof replacing the pseudopotentials by the unscreened Cou-
core-related quantities is reached for the kinetic energy CUttomb potentiajs, but an inherent property of the p|ane-Wave
off of 180 Ry — which explains the analogous convergencepasis set. The “nonsmoothness” does not usually have con-
properties of the lattice constant and bulk modulus Observegequences in the pseudopotentia| calculations, but one may
in Table Il. The above results show clearly that I’ea"StiCWonder whether this imperfect Sphericity does not become
plane-wave calculations using the bare Coulomb potentialgritical when the spherical “objects” to represent are of
are possible in solids — on the condition that the Fouriefmuch smaller size. The first check to perform is thus to ex-
expansions are sufficiently “long rangedin the G space amine how well(how smoothly any given set o5 vectors
to reproduce the small sizén the real spaceof the core can approximate a sphere.
orbitals. Calculations at this scale are possible with SUper- -y have verified that the present full Coulomb potential
computers becoming a standard tool in physics, and eveg,qjations in the LiH crystal yield the core charge density
more so with the appearance of the iterative methods of thg o rica) ke in the lithium atom: at the kinetic energy cut-
Car-Parrinello type. The relatively large size and the correqs ¢ 519 Ry, and with the density constructed from the core
sponding computer cost of these calculations are partly com- e . = .
pensated by the overwhelming simplicity of dealing with theVave functlons calculatgd at 10 special pOI_htS we fmd
Coulomb potentials, as well as by the more pronounced e1;_1umer|cally that the maximum of the core radial density does
fect of vectorization of the codefocal potentials Solving ot depend on the direction ofto within three decimals —
the Schrdinger equation in a plane-wave basis is not thewhetherr is chosen along a “simple” crystallographic di-
most appropriate way of dealing with the localized statesrection such ag100], [110], or along an “uneven” one such
such as core orbitals. Nonetheless, this basis is by no meaas[17, 31,—17] or [36, 10,—11], which is not represented
powerless when it comes to describing atomic states of & the plane-wave expansion of the core density. The sphe-
certain (i.e., not too small spatial extent. It may also be ricity once checked out, it is interesting to compare tlse 1
useful to remember that, unlike most codes designed for theore radial density calculated in the solid with the one cal-
spherically symmetrical problertatomic calculations the  culated for the isolated lithium atom. This is done in Fig. 1,
plane-wave algorithms do not involve any spherical averagin which the two quantities are plotted, with the origin on the
ing of the Hartree potential. This may represent certain conlithium atom. The figure demonstrates that the two densities
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are, indeed, very close. They slightly differ in the position of obtained from Eq(6) provides a direct test for the quality of
the maxima — which is the “radius” of the core: 0.34 the calculated ground-state valence-electron density.
atomic units in the crystal versus 0.36 atomic units in the Recently®! high-resolution x-ray measurements of Comp-
atom. ton profiles have been performed on a LiH monocrystal for
In order to further check whether this difference is not an12 different directions of the scattering vector. For three of
artifact of the methods used, we have verified two other feathem, two main corrections have been applied to the
tures of the maximum of the core radial density in thedatal'® viz., the contribution of the core electrons was
solid: it turns out thatl) the maximum does not depend on evaluated using the QSCF approximation, and the effects of
the lattice constant selected for the calculations in s¢fjl; multiple scattering were taken into accounge., the possi-

increasing the number of special poitkisused for the inte-  bility that one photon may scatter more than once in the

gration over the BZ from 10 to 28 does not shift the maxi-samplé. Neither of these two corrections turned out to be
mum of the core radial density. negligible!* Consequently, in the present paper we will use,

Thus the small difference of 0.02 a.u. in the lithium corefor comparison with our theoretical results, these “cleaned”

size is, apparently, an effect of a slight core polarization inexperimental data relating to tfi200], [110], and[210] ori-
the LiH crystal, as suggested, e.g., in Ref. 27. Also, theentations of the scattering vectkr.
present calculations predict a core bandwidth of approxi- Both within the DFT and the Hartree-Fock approach, the

mately 0.1 eV; the existence of tiiweak) dispersion of this  ground-state charge densityr) in a nonmetallic solid can

band eVidenceS, as We”, the same influence of the enVirorb'e written as a sum over one-electron wave functh{]§ of
ment on the core wave functions. Before further discussinghe occupied states: ’

the calculations with the unscreened Coulomb potentials in
Sec. V, we will now turn to the Compton effect.

(=2 [l (7)
n,k

IV. COMPTON PROFILES > . . . .

k are the wave vectors restricted to the first Brillouin zone
A. The Compton effect (BZ), andn runs over the bands.

The Compton process is an inelastic scattering of a pho- With the plane-wave expansion ¢, ¢ [see Eq(1)] and
ton by an electron. The relationship between the double dif¥Sind EQ.(2), thevalenceCéompton profile) of a nonmetallic
ferential Compton cross section, which is the quantity meaS'ystal, in the 1A, becomés
sured experimentally, and the Compton profiP) is given

! X . .1 - .. -
(in atomic unitsi=m=e=1) by J(q,e)zﬁz 2 Z |IChi(G)|28[(k+G)-e—q]. (8
n k G
d’c _ (d_U) w2 I~ wy) 5) HereN is the normalization factdtG stands for reciprocal-
dQdw, \dQ Th@1 ||Z| ’ lattice vectors, and is now limited to the valence states.

The Brillouin zone summation in E8) is carried out, in
HereJ is the CP,w; andw, are the energies of the incident this work, using the tetrahedron method of Lehmann and
and scattered photons, respectivelyg(dQ), is the Thom-  Taut, and Jepsen and Andersémn irreducible segment of
son differential cross section amdis the scattering vector. the Brillouin zone is divided into 33 tetrahedra having 22
Within the impulse approximatiofiA), adopting the in- common apices, and ti&, g(G) coefficients are exactly cal-
dependent particle and frozen orbital approximations, the CRulated only on these 22 points while a linear interpolation
can be expressed &see Ref. 2 is performed inside each tetrahedron.

‘](q’é):f n(ﬁ) 5(5‘5_ q)d|5, (6) B. CALCULATIONS OF THE COMPTON PROFILES
In Fig. 2 two sets of theoretical valence Compton profiles
> . o - are compared to the experimental ones, for the three direc-
wherep is the electron momentum in the initial stat€p)  ns already evoked in Sec. IV A. One set corresponds to
the momentum density of electrorssthe unit vector along  the calculations with the unscreened Coulomb potentials and
K, andq the projection ofp along the scattering vector. We the other shows the results of pseudopotential calculations.
notice that the CP is a directional quanti{through the de- The[100] Compton profile calculated from the reconstructed
pendence o). valence wave function@nd corresponding to the theoretical

In typlcal experimental ConditionS(_ray energy ran@e eqUIllbI’Ium predlcted by the full CO.Ulomb pote_ntial calcula-
the IA is only valid for valence electrons and not for the tions) is also given in Fig. @). A similar comparison for the
core?® whereas the experiments measure a total CP that rénisotropies of CP is done in Fig. 3. The reconstruction pro-
sults from scattering on both groups of electrons. As thecedure[see Eq.(4)] has been applied separately for every
core-electron scattering is known not to be usually a groundene of the 22k points needed for the evaluation of the
state property, an adequate treatment of the experiment@ompton profile from Eq(8), and by choosing the atomic
data consists in subtracting from the measured CP the corks orbital to describe the localized function of E42) and
contribution, calculated by using the quasi-self-consistent{3). As a matter of fact, atomic calculations are the easiest
field (QSCP approximation®~Crather than the IA. Compar- source of information about the core orbitals; using them in
ing then the experimental valence CP to the theoretical onsolid nevertheless implies assuming tacitly the frozen-core
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ANQ) thus also be cpns?dered as a verification that_the inf!u_ence_ of
0.20 . ‘ the core polarization on the Compton effect is negligible in
045 L [100] direction (@) | LiH. . . .
--------- pseudo We notice a marked disagreement of the theoretical CP’s
0.10 | ----rec 1 predicted by the pseudopotential approach with experiment:
—FCP for example, at small values df, the difference between
0.05 - i theory and experiment is approximately 7 times larger than
0.00 T ; i the experimental statistical error bars. On the other hand, it
N turns out that, due to compensation effects, the pseudopoten-
-0.05 S 1 tial results for the anisotropies of the Compton profiles—i.e.,
P | results of subtraction between two different directional
Compton profiles— agree with the experimental ones much
-0.15 | - better than the results on individual profiles. However, dis-
agreements still remain: the results for the anisotropy dis-
-0.20 ' ' played in Fig. 8a) (which concerns th€100] and the[110]
0.20 ' ' ' directions and Fig. 3b) (related to th100] and the[210]
015 [ [110] direction () | directions differ from the experiment at the values gf
0.10 i _ close to zero and, to some extent, tparound 0.8-1.0 a.u.
Unlike in the pseudopotential calculations, employing the
0.05 /\\ | full Coulomb potential yields both the theoretical profiles
0.00 1 [ b — and anisotropies in very good agreement with the experimen-
20.05 S . tal ones; in particular, for the directional profiles, the discrep-
ool | ancies at the smat| values have now disappeared and, with
: the exception of one point in Fig.(8, all values of the
015 ] theoretical anisotropies are now within the experimental sta-
0.20 : ' ! tistical uncertainties.
0.20 ' ' ' We can thus conclude that the behavior of the valence
015 b [210] direction (© | electrons in the lithium core region has an important effect
T | on the valence Compton profiles. Obviously, this is a conse-
' quence of the fact that the valence-charge density obtained in
0.05 ] the pseudopotential approach is not correct in the core re-
0.00 /r\/}/\T gions. This incorrect description implies that the quantities
005 L deriving from the 1D or 2D integrals over charge densi_ty
' cannot be accurately reproduced in pseudopotentials
-0.10 T calculations—unless the integrand is equal to zero every-
015 _ where in the core regions. On the other hand, due to the
. ! . norm-conservatiorcondition underlying the construction of
02040 0.5 1.0 1.5 2.0 the pseudopotential, the three-dimensional integrals over the

pseudocharge density can be accurate, which would explain

FIG. 2. DifferenceAJ(q) between the theoretical and experi- the success of the total energy pseudopotential method in the

mental valence Compton profiles corresponding to [th&0] (a),

description of the basic static properti€able ) and of

[110] (b) and[210] (c) directions. The theoretical profiles have been Similar quantities. Since the Compton effect implies integra-

evaluated with the full Coulomb potentiaisutoff of 210 Ry or  tion of the electronic density in two dimensiojt. the pres-
with pseudopotentialcutoff of 100 Ry, at the corresponding theo- ence ofé function in Eq.(8)], it cannot be accurately calcu-
retical lattice constant¢a) also shows the result of the orthogonal- lated within the pseudopotential scheme for ionic systems,
ization procedure starting from the pseudopotential calculationsuch as LiH, where a large part of the true valence density is
(cutoff of 100 Ry and with the lattice constant of the full Coulomb around the nuclei. A simple orthogonalization procedure,
potential calculations, i.eq=3.91 A). All the theoretical Compton which “corrects” the valence density around the nuclei,
profiles have been convoluted with the experimental resoluion |eads thus to very good results for the 3Re Figs. &) and
Gauss function with the half-width of 0.19 g.uThe experimental 3(a)]. We can see that tHe.00] Compton profile calculated
data were obtained as described in the Sec. IV. All profiles argising the orthogonalization scherfq. (4)] is nearly iden-
normalized to 2(the number of valence electrons per primitive tical with the one obtained with the unscreened Coulomb
cell); pseudostands for the pseudopotential calculatiaes,for the otential (and thus also with experimental residtthe dif-
recons_;LUCt'on plr)ocedure,hand FCP f?r the 2’” CO‘;';’mb_ potentidke rences between the two theoretical results are much smaller
?;l)e Z.ata e error bars are the statistical error bars ofekgerimen- than the experimental statistical error bars. The anisotropy of
' CP plotted in Fig. 8) demonstrates, as well, that the or-
approximation. We have seen in Sec. lll that the solid coréhogonalization procedure makes it possible to reproduce,
density in LiH is indeed close to theslithium atomic one, within the pseudopotential method, the result obtained with
although Fig. 1 suggests that a slight polarization of the cor¢he full Coulomb potential. We have also checked for several
may take place in the solid. The subsequent calculations casther directions, and at several lattice parameters, that the
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from the impossibility for pseudopotentials to generate a re-

0.15 ; -
_ (a) alistic valence-charge density in the core region of lithium.
100 110 pseudo We have demonstrated that by employing the full unscreened
0.10 Coulomb potentials, i.e., by avoiding the pseudization of the
wave functions, the theoretical Compton profiles and their
0.05 L anisotropies are in excellent agreement with experiment. One
may then wonder if such an approach can be used for sub-
stances other than LiH.
0.00 To answer the question, we will now determine the cost
of such a calculation which, obviously, is the cost of express-
0.05 ing by plane wavegsee Eq.(1)] the core wave function
Y1 ¢ in any arbitrary crystal. Let us then take for the localized
orbital of Eq.(2) the atomic & orbital of the heaviest atom
-0.10 - 7 in the crystal, and describe it by the hydrogenlike expression:
-0.15 ' ‘ - 3
0.15 . . Deord )= o exp(—ér), 9
00" J (b)
100 210 . . . .
0.10 . . with & controlling the decay of the orbital. We then obtain
from Eq.(3) for the coefficients of the plane-wave expansion
0.05 F. at thel” point:
0.00 N Cor_i(@) £25 19
1k=00)* " =575
-0.05 (G7+ &)
The proportionality coefficient can be easily expressed in
-0.10 - i terms of theClylg:(j(ézﬁ) — i.e., the spatial average of the
o015 . ! | wave functiony, —g — so that finally
700 05 1.0 15 2.0
A@e? C14-3(G)=Ci4_5(G=0) ¢ (11)
l,k:O 1,k:0 (éz+ é:2)2 *

FIG. 3. Theoretical and experimental anisotropies of the Compyith the plane-wave cutoff energy, given in REPY(Ry)

ton profiles corresponding to the differendd90]-[110] (a) and the lar . . .

. . . gest plane wave included in the expansion of the wave
[100]-[210] (b). The theoretical profiles have been evaluated with . .
the full Coulomb potentialgécutoff of 210 Ry or with the pseudo- fLJnCtIOh at thel’ point corresponds to the wave vector

potentials(cutoff of 100 Ry, at the corresponding theoretical lattice Cmax given, in atomic units, by
constants(a) also shows the result of the orthogonalization proce-
dure starting from the pseudopotential calculati¢énstoff of 100

Ry and with the lattice constant of the full Coulomb potential cal-
culations, i.e.,a=3.91 A). All the theoretical Compton profiles
have been convoluted with the experimental resolut@rGauss
function with the half-width of 0.19 a.u. The experimental data
were obtained as described in the Sec. IV. All profiles are normal-
ized to 2 (the number of valence electrons per primitive xell
pseudostands for the pseudopotential calculatiores; for the re-
construction procedure, and FCP for the full Coulomb potential
ones. The error bars are the statistical error bars ofekperimen-
tal) data.

EPY(Ry)= G2 (a.u). (12)

Let us introduce the “convergence-error factofg, that
expresses the “quality” of the convergence:

_ C1i-3(Gmad _ ¢
© Ciig(G=0) [EMRy)+&7%

(13

In this notation, the plane-wave expansion is cut off when
the Fourier coefficients beconmfg, times smaller than the

average value of the wave function. Rewriting the above

present reconstruction method reproduces very well the Vasypressior(13), the plane-wave cutoff required for obtaining
lence Compton profile obtained in the full Coulomb potential 5 given convergence-error factor is

calculations.
W, 1 2
V. DISCUSSION EPY(Ry)= 1] (14

ce
We performed LDA calculations, in a plane-wave basis,
of the directional Compton profiles for LiH, and of their ~ One can estimat€ by adopting the simple screening
anisotropies. The results obtained with pseudopotentials amodel of Slater; in terms of the effective charge and of the
in rather poor agreement with experiment. The discrepancgcreening constant reflecting the presence of the otker 1
between this type of calculation and measurements resultdectron, we get for any atom
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E=Z—-04s, (15) The above simple way of expressing the localized orbital
) ) . and its exponential decay allows us to estimate, with rather
whereZ is the nuclear chargéof the'heawest atom in the good accuracy, the kinetic energy cutoffs required for
crysta), o15=0.3 for any atom heavier than hydrogesee,  5chieving the convergence of the full Coulomb potential cal-
e.g., Ref. 34and ;=0 for the hydrogen. We thus obtain ¢yjations in an arbitrary substance. Using ELf), we can
judge the feasibility of the plane-wave calculations with the
full Coulomb potential for the next few elements of the Pe-
EPW(Ry):( \/I_]-)(Z_O—ls)z- (16)  rodic Table: beryllium Z=4), boron £=5), and carbon
fee (Z=6). Choosing the samé.=0.001 as in the present

. . . . . work, it turns out that the&eP" cutoff of approximately 400
According to this equation, the cutoff required to attain Ry is needed for Be, 675 Ry for B, and 1000 Ry for C —

any given “quality of convergenceT only depends onthe ek drastically limits the possibility of using the full un-

heaweist atom prisentﬂln thehcr%stal ﬁnd igecétleat all on th%creened Coulomb potential for compounds other than LiH;
crystal structure; this refiects the idea that t Crons In- 4 is thus in the first row of the Periodic Table that we have to

a crystal are not sensitive to the environment. Also, We NOjy.ata the border between the feasible aptesently im-
tice that Eq.(16) does not depend on the lattice constant —practicable

it is only the conversion oEP" to the number of plane waves However, we have also shown that by starting from the
that does(both on the Iattllce consta_nt and on the _CryStalmore modest pseudopotential calculations and by using an
structure. In our full potent‘;\%l calculations performed in the 4,00 ajization method, it is possible to reproduce exactly
Sec. lll B with the cutoffEP™ = 210 Ry, the convergence- e compton profiles obtained in the full Coulomb potential
error factor[evaluated from its definitiori13), and on the 5 0jations. This detour is numerically simple and compu-
Fourier expansion actually uspteachesfe, = 0.0009. On  taignally not costly, and it could be certainly generalized to
the other hand, in terms of the Slater model, requirningiarger systems composed of heavier atoms.

f.e=0.0009 andZ= 3, we find that the corresponding cutoff

proposed by the Eq16) is approximately 235 Ry. This sug-
gests the approximate uncertainty of the Slater model for
EPY: 10%. The authors wish to thank B. kg, R.M. Martin, S. Rabii,

For judging what the “quality of convergence” means in and J. Ridard for valuable advice, Y. Garreau, J. Hutter, R.J.
terms of the “quality of the results,” we have reported in Needs, and M. Sauvage-Simkin for useful discussions, and
Table Il, the values off ., (evaluated, again, on the actual G. Loupias for providing us with the experimental data of
Fourier seriescorresponding to the differe®”” used. They Ref. 31. The computer resources were provided by the Sci-
can be confronted with the quality of reproduction of theentific Committee of IDRIS(Institut du Developpement et
basic ground-state properties. des Ressources en Informatique Scientifiq@¥say, France.
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