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Optical properties of graphite from first-principles calculations
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We present theoretical results for the frequency-dependent dielectric response, both for the electric field
parallel and perpendicular to thec axis of graphite. The calculations are performed using a full-potential linear
muffin-tin orbital method. Our calculations show fair agreement with experimental data and the different
features observed are identified from interband transitions in various regions of the Brillouin zone. The an-
isotropy of the dielectric function is discussed in detail and shown to be due to the difference in the optical
matrix elements for the two different polarizations, which is a result of the anisotropic crystallographic and
electronic properties of graphite.@S0163-1829~97!03904-0#
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I. INTRODUCTION

Graphite can be regarded as an archetype of layered c
tals. Intraplanarsp2 bonding leaves a singly occupiedp or-
bital at each C atomic site, and intraplanarp orbitals are
formed from thesep states, causing the semimetallic chara
ter of the solid. The weak interplanar interaction is w
known, giving graphite its utility as a lubricant. Two poly
morphic forms of graphite are common: the hexagonal
rhombohedral form. Hexagonal graphite~which we focus on
here! has an abnormally largec/a ratio (c/a52.7259). This
gives rise to a large anisotropy in the structural and e
tronic properties. The carbon atoms in the basal plane
bound together by strong covalent bonds (s), whereas the
binding between the adjacent planes is weak and cause
van der Waals bonds. As a result the interlayer near
neighbor distance between the atoms~3.35 Å! is much larger
than the in-plane nearest-neighbor distance~1.42 Å!. This
rather unique formation ofs andp orbitals in graphite also
strongly influences the optical properties, as we shall de
onstrate below.

There are many measurements of the structural and e
tronic properties of hexagonal graphite. The physical prop
ties of graphite have been extensively studied through
man scattering,1–4 infrared reflectance,2,5–7 inelastic neutron
scattering,8 elastic constant measurements,9 angle-resolved
photoemission,10–13 and inverse photoemission13–18 experi-
ments. It has been established that in general the resul
various experiments are in agreement with energy ba
structure calculations at ambient pressure~see below!.

The energy band structure of graphite in an energy ra
550163-1829/97/55~8!/4999~7!/$10.00
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close to the Fermi energy (EF) was first calculated by
McClure19 and Slonczewski and Weins20 ~commonly known
as the SWMcC model! using thek–p method. In this model
the energy eigenvalues nearEF are given in terms of seven
parameters that define the interaction energies between
orbitals from different carbon atoms within the basal pla
and carbon atoms in the neighboring planes. The electro
structure of graphite has also been calculated s
consistently by means of the local density approximat
~LDA !, using different computational methods such as
linear combination of atomic orbitals method,21 the
Korringa-Kohn-Rostoker method,22 the full-potential linear-
ized augmented plane wave~FPLAPW! method,23,24 the
pseudopotential method,25–27 and the full-potential linear
muffin-tin orbitals~FPLMTO! method.28

There are also excellent optical29–32 and Fermi surface
data33 available for graphite but most of the energy ba
calculations do not make any serious attempt to comp
these data with theory. However, earlier, empirical band c
culations did make this comparison and obtained relativ
good results. Recently the present authors calculated
pressure dependence of the so-calledA1 andA2 optical tran-
sitions ~attributed to interband transitions occurring at t
symmetry pointK) and found good agreement with rece
optical reflectivity data of Hanfland, Beister, and Syasse4

However, to our knowledge no first-principles work on th
frequency-dependent dielectric constants has been publi
for graphite. In the present work we report on such calcu
tions and compare with available high-quality experimen
data.29 The present work also describes in some detail ho
in our full-potential linear muffin-tin orbital method, we hav
4999 © 1997 The American Physical Society
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implemented the formalism describing the dielectric
sponse. We thus report on self-consistent calculations of
frequency-dependent dielectric function~with the electric
field vector of the light both parallel and perpendicular to t
crystallographicc axis! of graphite at ambient pressure usin
a method that does not rely on approximations concern
the geometry of the calculated potential and that is based
so-called linear muffin-tin orbitals.34

II. DETAILS OF CALCULATIONS

A. Generating the potential and eigenvalues

As mentioned, we have used an all-electron, FPLM
technique.34 In this method one makes use of the variation
principle, thus expressing the crystal wave function as a
ear combination of Bloch sums of so-called muffin-tin orb
als, which are centered on the atoms. Hence the wave f
tion is written as

Ck~r !5(
t
ct(

R̄

eik•Rf t~r2r2tt!, ~1!

wherek is the crystal momentum,R a Bravais lattice vector
tt an atomic site,f t a muffin-tin orbital, andt a common
index for atomic type and the different quantum numb
characterizing the atomiclike basis functions. For instan
the indext includes the principle quantum number (n), an-
gular momentum (l ), and magnetic quantum number (m).
The basis functions are augmented linear muffin-
orbitals.35,36 This basis is defined to be numerical, atom
like, functions inside the muffin-tin spheres surrounding ea
atom of the lattice. Outside the spheres~in the interstitial! the
basis functions are linear combinations of~atomic centered!
Hankel or Neuman functions~so-called tails or envelope
functions! with nonzero kinetic energy (k2). At the muffin-
tin sphere boundary each basis function from inside is c
nected in a continuous and differentiable way to a tail o
side, with a specific kinetic energy. We did not use
minimal basis set but instead a so-called double basis. T
Eq. ~1! involved sums over pairs of basis functions inside
muffin-tin sphere, with the two atomiclike functions in
given pair characterized by the samen, l, andm, but each
connecting to a different tail with a unique kinetic energ
say k1

2 and k2
2, respectively. Thus the indext in Eq. ~1!

includes also the kinetic energy of the tail functions us
Since calculations of interband transitions, which are
volved in the optical spectra, require very accurate eigen
ues it is beneficial to be able to go beyond a minimal ba
set. In the summation in Eq.~1! one normally includes basi
functions that are the most important ones for describing
valence states. In graphite this means 2s, 2p, and possibly
3d basis functions. However, the accuracy of the calcula
eigenvalues is also improved if one augments the traditio
basis functions, mentioned above, with states that hav
higher principle quantum number. In the case of graphite
means including also the 3s and 3p states. As a matter o
fact we found it necessary to include also these state
order to obtain well converged wave functions and opti
spectra. In previous work we have routinely used this te
nique for systems where low-lying pseudo core states ha
be included in the basis. Note that this does not necess
-
he

e

g
on

l
-

c-

s
e,

-
h

-
-

us

,

.
-
l-
is

e

d
al
a
is

in
l
-
to
ily

mean that one performs a so-called two panel calculat
where different sets of states are treated separately from
others. In our present theory we include all states in one fu
hybridizing basis set thus maintaining good variational fre
dom for all states considered. Next, from the Reyleigh-R
method we obtain a secular determinant, which, when it
been diagonalized~numerically!, yields eigenvalues and fo
each eigenvalue,ek , a corresponding set of~optimized! co-
efficients,ct , thus giving a best representation of the crys
wave functionCk.

In the generation of the potential and charge density
unrestricted shape was provided by an expansion of sphe
harmonic functions~with the correct symmetry! inside the
muffin-tin spheres and by a Fourier series in the intersti
region. The integration over the Brillouin zone was do
using the special point sampling37 with a Gaussian smearin
of width 20 mRy and using 108k points in 1/12th of the
Brillouin zone. Moreover, the calculations were done at
experimental lattice constants. The exchange and correla
part of the potential was calculated using the LDA with t
Hedin-Lundqvist38 ~HL! parametrization.

B. Calculating the dielectric functions

The (q50) dielectric function was calculated in the mo
mentum representation, which requires matrix elements
the momentum,p, between occupied and unoccupied eige
states. To be specific the imaginary part of the dielec
function, e2(v)[Ime(q50,v), was calculated from39

e2
i j ~v!5

4p2e2

Vm2v2 (
knn8s

^knsupi ukn8s&^kn8supj ukns&

3 f kn~12 f kn8!d~ekn82ekn2\v!. ~2!

In Eq. ~2!, e is the electron charge,m its mass,V the volume,
and f kn the Fermi distribution. Moreover,ukns& is the crys-
tal wave function corresponding to thenth eigenvalue with
crystal momentumk and spins. With our spherical wave
basis functions, the matrix elements of the momentum op
tor are conveniently calculated in spherical coordinates
for this reason the momentum is written asp5Smem* pm ,

40

where m is 21, 0, or 1, e215(1/A2)(ex2 iey), e05ez ,
e15(21/A2)(ex1 iey), and p215(1/A2)(px2 ipy),
p05pz , andp15(21/A2)(px1 ipy).

41

The evaluation of the matrix elements in Eq.~2! is done
over the muffin-tin region and the interstitial separately. T
integration over the muffin-tin spheres is similar to that
ported by Oppeneeret al.42 and Gasche39 in their atomic
sphere approximation calculations. In our theoreti
method, a basis functionf t

k(r )5SRe
ik•Rf t(r2tt2R) @see

Eq. ~1!# inside a muffin-tin sphere att t in the primitive cell
is in a compact form expressed as

f t
k~r !u ur2tu,St

5(
L

i l YL~r t!Ul t~et ;r t!

3V l t~etk t!TtL;t tLt
~k t ,k!, ~3!

where the index L denotes the pair l m, Ul (e;r )
5@f l (e;r ),ḟ l (e;r )# is a row vector containing the LMTO
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radial basis functions@f l (e;r ) is a numerical function
evaluated at energye using the spherical part of the potenti
inside the muffin-tin sphere andḟ l (e;r ) is the
energy derivative of this function#,35 TtL;t8L8(k,k)
5@d(tt8)d(LL8),BtL;t8L8(k,k)]

T is a column vector con-
taining the structure constantsB, andVl t is a 232 matrix
that matchesU continuously and differentiably to the vecto
of ~scaled! spherical Bessel functions43

@K l (k,St),Jl (k,St)# at the muffin-tin radiusSt . The ma-
trix Vl t may be written as

Vl t5S V1 V2

V3 V4
D , ~4!
where V15K l t(k,St)/F l t(DK ,St), V25Jl t(k,St)/
F l t(DJ ,St), V35v l t(DK)K l t(k,St)/F l t(DK ,St), and
V45v l t(DJ)Jl t(k,St)/F l t(DJ ,St). In the expressions
aboveDK andDJ are the values of the logarithmic derivativ
of the spherical Bessel functions at the muffin-tin sphe
Moreover,F t(D,r )5f l (e;r )1v(D)ḟ l (e;r ), whereD is
the value of the logarithmic derivative, v(D)
52@f l (e;r )/ḟ l (e;r )#(D2De)/(D2Ḋe) andDe and Ḋe
are the logarithmic derivatives of the functionsf l (e;r ) and
ḟ l (e;r ), respectively. Thus the wave function inside ea
muffin-tin sphere@Eq. ~3!# may simply be written as a radia
function times a spherical harmonic;f (r ) i l Yl m( r̂ ).

Using this expression for the wave function inside t
muffin-tin spheres, we calculate the matrix elements in
~2! using
al can be
pf ~r !i l Yl m~ r̂ !52(
m

eWm* FG~ l m;l 21m1m;1m!S ddr 1
l 11

r D f ~r !i l 21Yl 21m1m~ r̂ !

1G~ l m;l 11m1m;1m!S ddr 2
l

r D f ~r !i l 11Yl 11m1m~ r̂ !G , ~5!

where the coefficientsG are related to Gaunt coefficients:

G~ l 1m1 ;l 2m2 ;l 3m3![ i l 12l 21l 3S 4p

2l 311D
1/2E dVYl 1m1

Yl 2m2
* Yl 3m3

. ~6!

In the interstitial, a basis function is expressed as

f i
k~r !5(

R
eik•RK l i~k i ,ur2ti2Ru!i l iYLi

~r2ti2R!. ~7!

Because the momentum operator commutes with the Laplacian, the matrix elements of momentum over the interstiti
calculated as an integral over the surface of the muffin-tin spheres:

E
V I

d3rf i* pf j5
21

k j
22k i

2(
m

em* E
V I

d3r“•@f i*“pmf j2~“f i !* pmf j #

5
1

k j
22k i

2(
t
St
2E

ur2tu5St

dVFf i*
]

]r
pf j2S ]

]r
f i D * pf j G . ~8!

Analogous to Eq.~3!, a basis function on the surface of a muffin-tin sphere at sitet is

f i
k~r !u ur2tu5St

5(
L

i l YL~r t!@K l ~k i ,St!,Jl ~k i ,St!#TtL;t i Li
~k i ,k!. ~9!

Analogous to Eq.~5!, we calculate the surface integral, Eq.~8!, using

p@K l ~k,r !,Jl ~k,r !# i l Yl m~ r̂ !5(
m

em* $2G~ l m;l 21m1m;1m!@k2K l 11~k,r !, j l 11~k,r !# i l 21Yl 21m1m~ r̂ !

1G~ l m;l 11m1m;1m!@K l 11~k,r !,k2Jl 11~k,r !# i l 11Yl 11m1m~ r̂ !%. ~10!
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TABLE I. Characteristic energy levels~in eV! at theG point for graphite relative to the Fermi energy using different basis sets.

3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p)2(3d) 3(2s2p)3(3d) Experimental
2(3s3p) 3(3s3p) 2(3d) 3(3d) 3(3s3p) 3(3s3p)

Bottoms 219.55 219.68 219.32 219.36 219.46 219.44 219.44 220.6
219.34 219.37 218.96 219.15 219.14 219.14 219.13

Bottomp 28.69 28.70 28.82 28.57 28.59 28.58 28.57 28.1,a 28.5 b

26.66 26.68 26.54 26.51 26.52 26.52 26.51 27.2,a 25.7,c 26.6b

Top s 23.21 23.21 22.83 22.93 23.02 23.04 23.03 24.6 a - 5.5 b

23.20 23.20 22.82 22.92 23.02 23.04 23.02
23.19 23.19 22.81 22.91 23.00 23.02 23.01
23.18 23.18 22.80 22.91 23.00 23.02 23.00

Unoccupieds* 4.39 3.98 3.08 4.02 3.91 3.91 3.92
8.28 8.21 8.49 8.52 8.29 8.26 8.27 6.9a

8.28 8.22 8.50 8.52 8.29 8.27 8.27
8.33 8.26 8.56 8.58 8.35 8.31 8.32
8.34 8.26 8.57 8.58 8.35 8.32 8.33

aEberhardtet al. ~Ref. 11!.
bLaw et al. ~Ref. 12!.
cBianconiet al. ~Ref. 44!.
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In the limit k i
2→k j

2 in Eq. ~8!, the differencek j
2→k i

2 is
absorbed intok2 derivatives of the Bessel function vecto
(K,J) and k2 derivatives of the structure functions in th
vectorT. Finally, by using the symmetrized momentum o
erator ^c i upJuf j[

1
2(^f i upf j&1^pf i uf j&), both muffin-tin

and interstitial contributions to the matrix elements are se
rately Hermitian and are explicitly calculated as such.

The summation over the Brillouin zone in Eq.~2! is cal-
culated using linear interpolation on a mesh of uniform
distributed points, i.e., the tetrahedron method. Matrix e
ments, eigenvalues, and eigenvectors are calculated in
irreducible part of the Brillouin zone. The correct symme
for the dielectric constant was obtained by averaging the
culated dielectric function. Finally, the real part of the diele
tric function, e1(v), is obtained frome2(v) using the
Kramers-Kronig transformation,

e1~v![ Re@e~q50,v!#

511
1

pE0
`

dv8e2~v8!S 1

v82v
1

1

v81v D . ~11!

In order to calculatee1 one needs to have a good repr
sentation ofe2 up to high energies. In the present work w
have calculatede2 up to 4 Ry above the Fermi level and th
was the truncation energy in Eq.~11!. A test that modified
this energy cutoff showed that 4 Ry is accurate to give
reliablee1 function at lower energies.

III. RESULTS AND DISCUSSIONS

A. Electronic structure

Since the quality of the calculated optical spectra depe
on the accuracy of the one electron energies and wave f
tions we discuss shortly the convergence of the eigenva
with respect to basis set truncation. In Table I we thus co
pare the eigenvalues at theG point for seven different basi
a-

-
he

l-
-

a

s
c-
es
-

sets. As is clear from the table, graphite is a very delic
material to study in that one needs a very large basis se
achieve convergence. For the calculation with the largest
sis we can compare theory and the experimentally obtai
eigenvalues at theG point. The agreement is typically within
1 eV, but one should bear in mind that density function
theory is designed to give a good ground-state total ene
and may not necessarily give excited-state properties thro
the one-particle eigenvalues. In our previous work28 a
smaller basis set was used resulting in less accurate ei
values.

B. Optical spectra

In the discussion that follows we will refer toe2
i j (v) as

e2
'(v) when i5 j5x and ase2

i (v) when i5 j5z. The same
notation will be used fore1

i j (v). In Fig. 1 we compare theory
with experiment for the imaginary part of the perpendicu
dielectric function,e2

'(v), and in Fig. 2 we make the corre
sponding comparison for the parallel dielectric functio
e2

i (v). The experimental data in Figs. 1 and 2 are fro
Danielset al.29 Before comparing experiment and theory
detail we note that we have not included a Drude term in
theoretical curves. The Drude term represents a phenom
logical way to describe intraband transitions, which dom
nate at low energies. Since this term was not considere
our theory we will only compare our theoretical curves w
experiment for energies larger than;1 eV, since below this
energy the Drude term is important whereas above it
intraband transitions are negligible. The calculatede2

'(v) in
Fig. 1 has two pronounced peaks at;4 and;15 eV and a
minimum at around;9 eV. This should be compared wit
the experimental data, which also shows two peaks at;4
and;15 eV and a minimum around;9 eV. Thus our cal-
culations are in excellent agreement with experiment. In
high-energy regime (>20 eV) both experiment and theor
show a featureless behavior ofe2

'(v).
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55 5003OPTICAL PROPERTIES OF GRAPHITE FROM FIRST- . . .
The calculatede2
i (v) in Fig. 2 also has two main feature

one smaller at;4 eV and a larger two peak feature
;11–14 eV. In between these two peaks there is a minim
at around 9 eV. The experimental data are obtained fr
electron energy-loss spectra~EELS, dashed line! and from
optical measurements~dotted line!. It is somewhat disturbing
that the two experimental curves are not consistent with e
other and this makes a comparison with theory less strai
forward. The optical measurements seem to resemble
theoretical two-peak structure at 11–14 eV, albeit with t
low intensity. On the other hand, the EELS data have
correct intensity but show one dominating peak at 11 eV
a much weaker feature at 14 eV. We thus have to concl
that our theory does not fully agree with any of the tw
experimental curves. On the other hand one may ques
these experimental data, since they are not internally con
tent. Further experimental efforts to resolve this problem
highly desired.

In order to analyze our calculatede2(v) curves we also
calculated the joint density of states~JDOS!; i.e., we evalu-

FIG. 1. Calculated and experimentale2
' of graphite. The solid

line is the calculatede2
' while the dotted line~Ref. 30! and the

dashed line~Refs. 31 and 29! are the experimentally measure
e2

' .

FIG. 2. Calculated and experimentale2
i of graphite. The solid

line is the calculatede2
i while the dotted line~Ref. 32! is the ex-

perimental data deduced from optical measurements and the da
line ~Refs. 31 and 29! is obtained from electron energy-loss spect
m
m
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ated Eq.~2! setting all matrix elements equal to unity. Th
JDOS function is compared, in Fig. 3, with our calculat
e2

'(v) ande2
i (v) functions. Note that the JDOS curve show

some resemblance to thee2(v) functions. However, the in-
clusion of matrix elements shifts the relative intensities
certain peaks. This is especially pronounced for the featu
in the energy region 10–14 eV.

Next, we will try to explain the origin of the differen
peaks in the calculated dielectric functions. Since the diff
ent peaks are due to interband transitions it is useful for
discussion to first analyze the energy band structure. For
reason we display in Fig. 4 the calculated energy bands
graphite. In this figure we have also indicated which ban
haves,s* ,p, andp* character. Note that the in-planes
orbitals give rise to low-lying bonding states in the ener
range;220.0→23.0 eV and high-lying antibonding state
in the energy range;5.0–25.0 eV. Thep bands, which are
dominated bypz orbitals, give rise to states in the energ
region around the Fermi level (EF). In an analysis of the

hed
.

FIG. 3. Theoreticale2
' ande2

i together with the joint density of
states~JDOS! of graphite.

FIG. 4. Calculated energy band structure of graphite at the e
librium volume along the major symmetry directions. Energy is
eV and the Fermi level (EF) is set at zero energy.



e
le
-

b-
in
tle
ad
m
ym
o

-

h
tri
nd

e
u
pa
ve
t

n

a
-
e
e

a

i-
n

v

fo
w

.
w
i-
a
e
ie
o
e

ex-

d 3
At
ore
be-
s,

ment

al-

en-
-
tin

5004 55R. AHUJA et al.
optical transitions in graphite it is also important to consid
the symmetry aspects of the different optical matrix e
ments,^ i upxu f & and ^ i upzu f & ( i and f are occupied and un
occupied band states, respectively!, which enters Eq.~2!. In
order to do this it is illustrative to consider a simplified pro
lem with only one isolated, single graphite layer. Since
bulk graphite the different atomic layers interact very lit
this is, from the electronic structure point of view, not a b
approximation. A single graphite plane has reflection sy
metry in the plane and as a consequence the following s
metry restrictions apply to the matrix elements of the m
mentum operator: concerningpx , transitions are only
allowed fromp to p* or from s to s* bands, and concern
ing pz , transitions are only allowed fromp to s* bands, or
from s to p* bands. These requirements help to identify t
different interband transitions that give rise to the dielec
function of graphite. An inspection of the different interba
transitions~not shown! reveals that fore2

'(v) the features in
the low-energy region~0 through;5 eV) of Fig. 3 are
mostly due to transitions between thep andp* bands. From
an inspection of the energy band structure~Fig. 4! this seems
quite natural since on the line betweenM and K ~a high
symmetry line in the hexagonal plane of the Brillouin zon!
the p andp* bands show similar dispersion and are th
relatively parallel. Along this line these two bands are se
rated by 0 and;5 eV and thus transitions between them gi
rise to peaks between 0 and;5 eV. The features a
;14 eV ofe2

'(v) mainly come froms to s* states at points
on the symmetry line betweenG andM . Concerninge2

i (v)
the absence of sharp features at low energies~0 through
;5 eV) may be understood from the fact that the only tra
sitions that can give rise to such peaks are fromp to p*
bands @in analogy with the discussion about the peak
;4 eV for e2

'(v)#. However, forpz such transitions are for
bidden for a single graphite layer. For the true thre
dimensional lattice these transitions are not strictly forbidd
but the matrix elements are much smaller than forpx . This
explains why there is a feature at;4 eV in e2

i (v) ~Figs. 2
and 3!, which is much smaller than the corresponding pe
in e2

'(v). The peak at;14 eV in e2
i (v) is mainly due to

transitions fromp to s* at the points betweenK andG and
betweenA andL as well as from transitions froms to p* at
points betweenM andK, betweenH andA, and between
A andL. The identification of the different interband trans
tions discussed above was made by a direct calculatio
isolated band-band transitions in Eq.~2!. In order to keep the
length of our discussion within reasonable limits we ha
chosen not to display these individual transitions.

Having calculatede2(v), the functione1(v) is computed
using the Kramers-Kronig transformation. This was done
both the parallel and perpendicular components. In Fig. 5
compare experiment with theory fore1

'(v) and in Fig. 6 we
compare our theoreticale1

i (v) with the experimental data
Concerninge1

'(v) both experiment and our calculation sho
a feature with high intensity in the region 0–4 eV, a min
mum at 5 eV and a peak at 14 eV. There is also a sm
minimum of e1

'(v) at 16 eV. The largest disagreement b
tween theory and experiment is found at low energ
(v50). The reason for this is clear from an inspection
Eq. ~11!. In the limit v→0 the largest contribution to th
r
-

-
-
-

e
c

s
-

-

t

-
n

k

of

e

r
e
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-
s
f

integral comes from the energy region close tov850. In this
region the Drude term is important and since we have
cluded this contribution the disagreement fore1 follows. For
e1

i (v) the experimental curve displays two peaks at aroun
and 11 eV and a minimum in between, at 5 eV.
;12 eV there is, in the experimental data, a second, m
pronounced minimum. Our calculations reproduce this
havior quite well except for the minimum at high energie
which occurs at slightly larger energies~15 eV! compared to
experiment. For the same reason as fore1

' the neglect of a
Drude term causes a large disagreement between experi
and theory in low-energy regime.

IV. CONCLUSIONS

We have described details of our implementation of c
culations of the optical properties,e2(v) ande1(v), for the
electric field component polarized both parallel and perp
dicular to the crystallographicz axis, using a general poten
tial electronic structure method, based on linear muffin-

FIG. 5. Calculated and experimentale2
' of graphite. The solid

line is the calculatede1
' while the dashed line~Refs. 31 and 29! is

the experimentally measurede1
' .

FIG. 6. Calculated and experimentale1
i of graphite. The solid

line is the calculatede1
i while the dashed line~Refs. 31 and 29! is

the experimentally measurede1
i .
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orbitals. With our method we have calculated the dielec
response of graphite, a highly anisotropic material. In
comparison with experimental data we have found qu
good agreement for both the real and imaginary parts of
dielectric function. Apart from deviations from experime
in e1 at low energies~which we explain as due to the Drud
contribution! the general shape ofe2 ande1 is reproduced by
our theory. This is quite encouraging especially since
base our theory on one-electron Kohn-Sham eigenval
which may quite easily be obtained for almost any syste
Although it has not been proved that these eigenvalues a
ally correspond to quasiparticle excitations in a material
has over the years been shown that the Kohn-Sham ei
values may to a good approximation be associated w
excited-state properties, especially for optical data. We h
also argued that due to symmetry considerations the per
in

m

ni

T

er

.

at
c
e
e
e

e
s,
.
tu-
it
n-
th
e
n-

dicular component ofe2(v) involves mostlyp→p* and
s→s* transitions and the parallel component ofe2(v) in-
volves mostlyp→s* transitions ands→p* transitions.
Such aspects of the interband transitions help identify
different bands andk points that are responsible for the o
tical transitions of graphite, and explains the unusually la
anisotropy of the optical properties of graphite.
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