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Optical properties of graphite from first-principles calculations
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We present theoretical results for the frequency-dependent dielectric response, both for the electric field
parallel and perpendicular to tleeaxis of graphite. The calculations are performed using a full-potential linear
muffin-tin orbital method. Our calculations show fair agreement with experimental data and the different
features observed are identified from interband transitions in various regions of the Brillouin zone. The an-
isotropy of the dielectric function is discussed in detail and shown to be due to the difference in the optical
matrix elements for the two different polarizations, which is a result of the anisotropic crystallographic and
electronic properties of graphitgS0163-182807)03904-7

I. INTRODUCTION close to the Fermi energyEg) was first calculated by
McClure'® and Slonczewski and Weitfs(commonly known
Graphite can be regarded as an archetype of layered cryas the SWMcC modglusing thek-p method. In this model
tals. Intraplanasp? bonding leaves a singly occupigdor-  the energy eigenvalues neag are given in terms of seven
bital at each C atomic site, and intraplanarorbitals are  parameters that define the interaction energies between the
formed from these states, causing the semimetallic charac-orbitals from different carbon atoms within the basal plane
ter of the solid. The weak interplanar interaction is welland carbon atoms in the neighboring planes. The electronic
known, giving graphite its utility as a lubricant. Two poly- structure of graphite has also been calculated self-
morphic forms of graphite are common: the hexagonal anaonsistently by means of the local density approximation
rhombohedral form. Hexagonal graphitehich we focus on  (LDA), using different computational methods such as the
here has an abnormally large/a ratio (c/a=2.7259). This linear combination of atomic orbitals methdl, the
gives rise to a large anisotropy in the structural and elecKorringa-Kohn-Rostoker methdd, the full-potential linear-
tronic properties. The carbon atoms in the basal plane areged augmented plane wav@PLAPW) method?>?* the
bound together by strong covalent bonds) (whereas the pseudopotential methdd,?’ and the full-potential linear
binding between the adjacent planes is weak and caused Iuffin-tin orbitals(FPLMTO) method?®
van der Waals bonds. As a result the interlayer nearest- There are also excellent optié&t®? and Fermi surface
neighbor distance between the atof8$85 A) is much larger  dat&® available for graphite but most of the energy band
than the in-plane nearest-neighbor distait&t2 A). This  calculations do not make any serious attempt to compare
rather unigue formation of and 7r orbitals in graphite also these data with theory. However, earlier, empirical band cal-
strongly influences the optical properties, as we shall demeulations did make this comparison and obtained relatively
onstrate below. good results. Recently the present authors calculated the
There are many measurements of the structural and elepressure dependence of the so-callddandA2 optical tran-
tronic properties of hexagonal graphite. The physical propersitions (attributed to interband transitions occurring at the
ties of graphite have been extensively studied through Rasymmetry pointK) and found good agreement with recent
man scattering;* infrared reflectanc&®~’ inelastic neutron optical reflectivity data of Hanfland, Beister, and Syassen.
scattering elastic constant measuremehtangle-resolved However, to our knowledge no first-principles work on the
photoemissiot®~*® and inverse photoemissibh'® experi-  frequency-dependent dielectric constants has been published
ments. It has been established that in general the results @r graphite. In the present work we report on such calcula-
various experiments are in agreement with energy bandions and compare with available high-quality experimental
structure calculations at ambient press(gee below. data?® The present work also describes in some detail how,
The energy band structure of graphite in an energy ranga our full-potential linear muffin-tin orbital method, we have
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implemented the formalism describing the dielectric re-mean that one performs a so-called two panel calculation,
sponse. We thus report on self-consistent calculations of thehere different sets of states are treated separately from the
frequency-dependent dielectric functigwith the electric  others. In our present theory we include all states in one fully
field vector of the light both parallel and perpendicular to thehybridizing basis set thus maintaining good variational free-
crystallographic axis) of graphite at ambient pressure using dom for all states considered. Next, from the Reyleigh-Ritz
a method that does not rely on approximations concerningnethod we obtain a secular determinant, which, when it has
the geometry of the calculated potential and that is based dpeen diagonalizethumerically, yields eigenvalues and for

so-called linear muffin-tin orbitaf&' each eigenvalues,, a corresponding set @gbptimized co-
efficients,c,, thus giving a best representation of the crystal
IIl. DETAILS OF CALCULATIONS wave function®*.
_ _ ) In the generation of the potential and charge density the
A. Generating the potential and eigenvalues unrestricted shape was provided by an expansion of spherical

As mentioned, we have used an all-electron, FPLMTOharmonic functiongwith the correct symmetjyinside the
technique* In this method one makes use of the variationalmuffin-tin spheres and by a Fourier series in the interstitial
principle, thus expressing the crystal wave function as a linfegion. The integration over the Brillouin zone was done
ear combination of Bloch sums of so-called muffin-tin orbit- using the special point samplifigvith a Gaussian smearing

als, which are centered on the atoms. Hence the wave fun®f width 20 mRy and using 108& points in 1/12th of the
tion is written as Brillouin zone. Moreover, the calculations were done at the

experimental lattice constants. The exchange and correlation
K R part of the potential was calculated using the LDA with the
v (r)zg 2, € Repy(r—r—m), (1) Hedin-Lundquist® (HL) parametrization.
R

wherek is the crystal momentunR a Bravais lattice vector, B. Calculating the dielectric functions
7; an atomic site; a muffin-tin orbital, and a common

index for atomic type and the different quantum numbers The (q=0) d'EIECt.”C func_tlon was calculatgd in the mo-
mentum representation, which requires matrix elements of

characterizing the atomiclike basis functions. For instance ) . )
the momentump, between occupied and unoccupied eigen-

the indext includes the principle quantum numbaer)( an- . . : ; .
, ! states. To be specific the imaginary part of the dielectric

gular momentum (), and magnetic quantum numben}. function, e,() =Ime(q=0v), was calculated frof

The basis functions are augmented linear muffin-tin 152 b

orbitals®*3® This basis is defined to be numerical, atomic- Am2e?

like, functions inside the muffin-tin spheres surrounding each Eg(w): > 2 (kna|pilkn’ o)(kn’ o|p;|kna)

atom of the lattice. Outside the sphe(@&sthe interstitia) the Ve oo

basis functions are linear combinations(afomic centered X (1= ) (€t — € — i) @)
n n’ n’ n .

Hankel or Neuman functiongso-called tails or envelope

functions with nonzero kinetic energy«{). At the muffin-  |n Eq.(2), e is the electron chargey its mass) the volume,

tin sphere boundary each basis function from inside is conandf,,, the Fermi distribution. Moreovetkno) is the crys-
nected in a continuous and differentiable way to a tail outta| wave function corresponding to tmth eigenvalue with
side, with a specific kinetic energy. We did not use acrystal momentunk and sping. With our spherical wave
minimal basis set but instead a so-called double basis. Th%ss functionsy the matrix elements of the momentum opera-
Eq. (1) involved sums over pairs of basis functions inside ator are conveniently calculated in spherical coordinates and
muffin-tin sphere, with the two atomiclike functions in a for this reason the momentum is written psS e pM,4o
given pgir charact_erized by_the_ sannel,_ and m, bL_Jt each where » is —1, 0, or 1, e,lz(l/\/i)(ex—iey), =6,
ggnnezctmg toza dlfferept tail with a unique kl.netlc energy, e1=(—1/\/§)(ex+iey), and p,1=(1/\/§)(px—ipy),

y «7 and k3, respectively. Thus the indek in Eq. (1) Po=DP,, andp,=(—112)(py+ip,). "
includes also the kinetic energy of the tail functions used. OThé,evaIualtion of the mgtrix éléments in E8) is done

Since (_:alculatlor_ls of interband transitions, which areé IN-gyer the muffin-tin region and the interstitial separately. The
volved in the optical spectra, require very accurate eigenval

“integration over the muffin-tin spheres is similar to that re-

ues it is beneficial to b_e able to go beyond_a minimal b_‘"‘s'?)orted by Oppeneeet al®? and Gasch¥ in their atomic
set. In the summation in Eq1) one normally includes basis g nere approximation calculations. In our theoretical
functions that are the mqst |mportant ones for descnb_lng thﬂwethod, a basis functiorzb{‘(r)=2Re‘k'R¢t(r— #—R) [see
valence states. In graphite this mearss 2p, and possibly

3d basis functions. However, the accuracy of the calculateﬁi
eigenvalues is also improved if one augments the traditiona
basis functions, mentioned above, with states that have a
higher principle quantum number. In the case of graphite this;sf(r)||r,ﬂ<s =2 iYL (r)U (&1,

means including also thes3and 3 states. As a matter of Tt

fact we found it necessary to include also these states in

order to obtain well converged wave functions and optical XQ (k) T ot (K6, K), )
spectra. In previous work we have routinely used this tech- . o

nique for systems where low-lying pseudo core states had t4here the indexL denotes the pair/m, U (e;r)
be included in the basis. Note that this does not necessarils[ ¢,(e;r), ¢ (e;r)] is a row vector containing the LMTO

g. (1)] inside a muffin-tin sphere at, in the primitive cell
in a compact form expressed as
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radial basis functiond ¢, (e;r) is a numerical function

evaluated at energy using the spherical part of the potential ‘I’/T(DJ, S, Q3= 0, (DK, (k, ST)/‘I’/T(DK' S,

inside the muffin-tin sphere and¢, (e;r) is the
energy derivative of this funcﬂdﬁ T (K,K)
=[&(7r7")6(LL"),B .1/ (k, k)]T is a column vector con-
taining the structure constanBs and(, . is a 2X2 matrix
that matchedJ continuously and differentiably to the vector
of (scaled spherical Bessel functiofts
[KAk,S,),d (k,S;)] at the muffin-tin radiusS,. The ma-
trix £, may be written as

Q/TZ(

0

Q3

QZ) (@

Q,)’

pI(IY, m(f)=—2 €
M

+G(/m;/+1m+pu;lu)

where the coefficient§ are related to Gaunt coefficients:
G(/1My;/ 5My;/ gmg)=i1~ /2+/3(

In the interstitial, a basis function is expressed as

¢ik(r)=§R‘, e*RK, (ki |r=5—=RDI“IY_(r—5—R).

Because the momentum operator commutes with the Laplacian, the matrix elements of momentum over the interstitial can be
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G(/m;/—1m+ u;1u)
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where Q,=K,(x,S)/®,(Dg,S,), O»=3,,(«,S,)!
and
=w,(D3y)J, (x,S)P,.(D;,S,). In the expressions

aboveDK andD; are the values of the logarithmic derivative
of the spherical Bessel functions at the muffin-tin sphere.
Moreover,®(D,r)= ¢ (e;r)+ w(D) ¢, (e;r), whereD is
the value of the logarithmic derivative, w(D)
=—[¢,(e;r) ¢, (e;r)](D—Dg)/(D— De) and D, and D,

are the logarithmic derivatives of the funct|o¢$(e r) and

¢ ,(e;r), respectively. Thus the wave function inside each
muffin-tin spherd Eqg. (3)] may simply be written as a radial
function times a spherical harmonit(r)i”Y ,(F).

Using this expression for the wave function inside the
muffin-tin spheres, we calculate the matrix elements in Eq.
(2) using

d /+1y )
aJFTf(T)I' Y/ ams (1)

)f(r)i/+lY/+1m+,u(f) ) )

172
27,51 f dQY/ m, Y7 m,Y /my- (6)
)

calculated as an integral over the surface of the muffin-tin spheres:

-1
ngdgr qS,* qu]:;Jz_—I(Iz% e:i J'Qldsrv'[d)rvppﬂsj_(V({bi)* p,ud)]]

- 2
K'_KI T

Analogous to Eq(3), a basis function on the surface of a muffin-tin sphere atssite

Analogous to Eq(5), we calculate the surface integral, E8),

PLK Ak, 1), 3 (1,117 (F) =2 €8 { =G/ m; /= Imt i L) [ k2K 4 1 (6,0, (6,017
"

J J *
ﬁsTdQ[¢i an(bj_(E@ p%}- (8)
SO sms,= 2 1 YUK (1,53, (k1 ST T i (). 9
using
1Y/—1m+,u,(F)
+G(/M/+Im+ L) [K (6,8, 6241 (6,) 1YY g u(F)} (10)
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TABLE |. Characteristic energy levelén eV) at thel" point for graphite relative to the Fermi energy using different basis sets.

3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p) 3(2s2p)2(3d) 3(2s2p)3(3d) Experimental

2(3s3p) 3(3s3p) 2(3d) 3(3d) 3(3s3p) 3(3s3p)
Bottom o —1955 —-19.68 —19.32 -—19.36 —19.46 —19.44 —19.44 —20.6
—-19.34 —-19.37 -—-1896 -—19.15 -—19.14 —-19.14 —19.13
Bottom = —8.69 -8.70 —8.82 —8.57 —8.59 —8.58 —8.57 -8.1,2-85"
—6.66 —6.68 —6.54 —6.51 —6.52 —6.52 —6.51 ~7.23 -5.7° 6.8
Top o -3.21 -3.21 —2.83 —2.93 -3.02 —3.04 —3.03 —46%-55P
-3.20 -3.20 -2.82 —2.92 -3.02 —-3.04 -3.02
—-3.19 -3.19 -2.81 -291 —3.00 -3.02 -3.01
—3.18 -3.18 —2.80 —-291 —3.00 —3.02 —3.00
Unoccupiedo™ 4.39 3.98 3.08 4.02 3.91 3.91 3.92
8.28 8.21 8.49 8.52 8.29 8.26 8.27 8.9
8.28 8.22 8.50 8.52 8.29 8.27 8.27
8.33 8.26 8.56 8.58 8.35 8.31 8.32
8.34 8.26 8.57 8.58 8.35 8.32 8.33

8EDberhardtet al. (Ref. 11).
bLaw et al. (Ref. 12.
‘Bianconiet al. (Ref. 44.

In the limit x’—«7 in Eq. (8), the differencex’—«7 is  sets. As is clear from the table, graphite is a very delicate
absorbed intac? derivatives of the Bessel function vectors material to study in that one needs a very large basis set to
(K,J) and «? derivatives of the structure functions in the achieve convergence. For the calculation with the largest ba-
vector T. Finally, by using the symmetrized momentum op- Sis we can compare theory and the experimentally obtained
erator (| p| ¢j5%(<¢i|p¢j>+<p¢i|¢j>), both muffin-tin  eigenvalues at thE point. The_ agreement is typi_cally wit_hin
and interstitial contributions to the matrix elements are sepal €V, but one should bear in mind that density functional
rately Hermitian and are explicitly calculated as such. theory is designed to give a good ground-state total energy
The summation over the Brillouin zone in EQ®) is cal- and may not necessarily give excited-state properties through
culated using linear interpolation on a mesh of uniformlythe one-particle eigenvalues. In our previous vidria
distributed points, i.e., the tetrahedron method. Matrix elesSmaller basis set was used resulting in less accurate eigen-
ments, eigenvalues, and eigenvectors are calculated in th@lues.
irreducible part of the Brillouin zone. The correct symmetry
for the diglectric; constgnt was obtained by averaging the cal- B. Optical spectra
culated dielectric function. Finally, the real part of the dielec-

tric function, e,(w), is obtained frome,(w) using the In the discussion that follows we will refer t&) (w) as

Kramers-Kronig transformation, €3() wheni=j=x and ase(w) wheni=j=z. The same
notation will be used foe} (w). In Fig. 1 we compare theory
e1(w)=Rde(q=0,w)] with experiment for the imaginary part of the perpendicular

dielectric function,e; (), and in Fig. 2 we make the corre-
sponding comparison for the parallel dielectric function,
)- 11 | . .
e5(w). The experimental data in Figs. 1 and 2 are from
Danielset al?® Before comparing experiment and theory in
In order to calculates; one needs to have a good repre- detail we note that we have not included a Drude term in the
sentation ofe, up to high energies. In the present work we theoretical curves. The Drude term represents a phenomeno-
have calculated@, up to 4 Ry above the Fermi level and this logical way to describe intraband transitions, which domi-
was the truncation energy in E@L1). A test that modified nate at low energies. Since this term was not considered in
this energy cutoff showed that 4 Ry is accurate to give aour theory we will only compare our theoretical curves with

-—w o +to

1 [~ 1
=1+—f dw'ez(a)')( -
mJo w

reliable e, function at lower energies. experiment for energies larger thanl eV, since below this
energy the Drude term is important whereas above it the
. RESULTS AND DISCUSSIONS intraband transitions are negligible. The calcula¢ég@w) in

Fig. 1 has two pronounced peaks-a#t and~15 eV and a

minimum at around~9 eV. This should be compared with
Since the quality of the calculated optical spectra dependthe experimental data, which also shows two peaks-at

on the accuracy of the one electron energies and wave fun@nd~15 eV and a minimum around 9 eV. Thus our cal-

tions we discuss shortly the convergence of the eigenvaluesulations are in excellent agreement with experiment. In the

with respect to basis set truncation. In Table | we thus comhigh-energy regime #20 eV) both experiment and theory

pare the eigenvalues at tiiepoint for seven different basis show a featureless behavior &f ().

A. Electronic structure
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FIG. 1. Calculated and experimente] of graphite. The solid H S .
line is the calculateds; while the dotted line(Ref. 30 and the " Energy V)
dashed line(Refs. 31 and 2Pare the experimentally measured

FIG. 3. Theoreticak; and el together with the joint density of

- . states(JDOS of graphite.
The calculated?g(w) in Fig. 2 also has two main features, SIDOS of graphi

one smaller at~4 eV and a larger two peak feature at

~11-14 eV. In between these two peaks there is a minimur@ted Eq.(2) setting all matrix elements equal to unity. The
mDPOS function is compared, in Fig. 3, with our calculated

at around 9 eV. The experimental data are obtained fro '
& (w) andeg(w) functions. Note that the JDOS curve shows

electron energy-loss spect(BELS, dashed lineand from | !
optical measurementslotted ling. It is somewhat disturbing Some resemblance to thg(w) functions. However, the in-

that the two experimentai curves are not consistent with eacﬁlUSion of matrix elements shifts the relative intensities of
other and this makes a comparison with theory less straigh€ertain peaks. This is especially pronounced for the features
forward. The optical measurements seem to resemble th8 the energy region 10-14 eV.

theoretical two-peak structure at 11-14 eV, albeit with too Next, we will try to explain the origin of the different
low intensity. On the other hand, the EELS data have théeaks in the calculated dielectric functions. Since the differ-
correct intensity but show one dominating peak at11 eV an@nt peaks are due to interband transitions it is useful for our
a much weaker feature at 14 eV. We thus have to concludéiscussion to first analyze the energy band structure. For this
that our theory does not fully agree with any of the tworeason we display in Fig. 4 the calculated energy bands for
experimental curves. On the other hand one may questiographite. In this figure we have also indicated which bands
these experimental data, since they are not internally consi§ave o,0*, 7, and 7* character. Note that the in-plare

tent. Further experimental efforts to resolve this problem aré@rbitals give rise to low-lying bonding states in the energy
range~ —20.0— — 3.0 eV and high-lying antibonding states

highly desired.
In order to analyze our calculateg(w) curves we also in the energy range-5.0-25.0 eV. Ther bands, which are
calculated the joint density of staté3DOS; i.e., we evalu- dominated byp, orbitals, give rise to states in the energy
region around the Fermi leveEg). In an analysis of the

e
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FIG. 2. Calculated and experimemé'} of graphite. The solid
line is the calculate(t! while the dotted lingRef. 32 is the ex- FIG. 4. Calculated energy band structure of graphite at the equi-

perimental data deduced from optical measurements and the dashidafium volume along the major symmetry directions. Energy is in
line (Refs. 31 and 2Pis obtained from electron energy-loss spectra.eV and the Fermi levelKy) is set at zero energy.
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optical transitions in graphite it is also important to consider
the symmetry aspects of the different optical matrix ele-

ments,(i|pyf) and(i|p,/f) (i andf are occupied and un- T Graphite
occupied band states, respectiyeklyhich enters Eq(2). In

order to do this it is illustrative to consider a simplified prob- Perpendicular

lem with only one isolated, single graphite layer. Since in T e

bulk graphite the different atomic layers interact very little 7

this is, from the electronic structure point of view, nota bad ! —

approximation. A single graphite plane has reflection sym- 00 M
metry in the plane and as a consequence the following sym- s
metry restrictions apply to the matrix elements of the mo-
mentum operator: concerning,, transitions are only a0}
allowed fromsr to #* or from ¢ to o* bands, and concern-
ing p,, transitions are only allowed from to ¢* bands, or
from o to 7* bands. These requirements help to identify the
different interband transitions that give rise to the dielectric
function of graphite. An inspection of the different interband

transitions(not showQ reveals that fozﬁ(w) the fgatures in FIG. 5. Calculated and experimental of graphite. The solid
the low-energy region(0 through ~5eV) of Fig. 3 are line is the calculated; while the dashed linéRefs. 31 and 29is
mostly due to transitions between threand 7* bands. From  the experimentally measured .

an inspection of the energy band struct(Fay. 4) this seems , )

quite natural since on the line betwedh and K (a high mte_gral comes from the energy region cIOS@t’c;:O. In this
symmetry line in the hexagonal plane of the Brillouin zpne 2?3&%% EE?S E(;%?r?bltﬁirg Lié%%g;?gé;gﬂtﬁgglgvﬁsh?‘é‘? ex-
the 7 and #* bands show similar dispersion and are thus | (w) the experimental curve displays two peaks at around 3
relatively parallel. Along this line these two bands are sepa$1\® P play P

rated by 0 and-5 eV and thus transitions between them giveand 11 ?1\/ and a memum. In beltween, at 5 eV. At
ise to peaks between 0 and5eV. The features at ~12 eV there is, in the experimental data, a second, more

fel inl f . . pronounced minimum. Our calculations reproduce this be-
~14 eV of e (w) mainly come froms to o™ states at points  yior quite well except for the minimum at high energies,

on the symmetry line betwedh andM. Concerningey(®)  which occurs at slightly larger energiéks eV) compared to
the absence of sharp features at low energ@eshrough  experiment. For the same reason as dbrthe neglect of a

~5 eV) may be understood from the fact that the only tran-Drude term causes a large disagreement between experiment
sitions that can give rise to such peaks are fremo 7* and theory in low-energy regime.

bands[in analogy with the discussion about the peak at

~4 eV for e;(w)]. However, forp, such transitions are for- IV. CONCLUSIONS

bidden for a single graphite layer. For the true three-

dimensional lattice these transitions are not strictly forbidden,,|ations of the optical properties,(w) and e;(w), for the

but the matrix elements are much smaller ﬁhan[fpr. This  electric field component polarized both parallel and perpen-

explains why there is a feature at4 eV in e3(w) (Figs. 2 gjcular to the crystallographiz axis, using a general poten-

and 3, which is much smaller than the corresponding peakia| electronic structure method, based on linear muffin-tin

in ;(w). The peak at~14 eV in el(w) is mainly due to

transitions fromsr to o* at the points betweeK andI” and

betweerA andL as well as from transitions from to 7* at

points betweerM and K, betweenH and A, and between

A andL. The identification of the different interband transi-

tions discussed above was made by a direct calculation of

isolated band-band transitions in E8). In order to keep the

length of our discussion within reasonable limits we have

chosen not to display these individual transitions. o
Having calculated,(w), the functione,(w) is computed

using the Kramers-Kronig transformation. This was done for

both the parallel and perpendicular components. In Fig. 5 we

compare experiment with theory fet (») and in Fig. 6 we '

compare our theoretic&l”l(w) with the experimental data. \/K/

L '
100 30.0

290
Energy (eV)

We have described details of our implementation of cal-

Graphite

Parallel

Concerningﬁ(w) both experiment and our calculation show

a feature with high intensity in the region 0—4 eV, a mini-

mum at 5 eV and a peak at 14 eV. There is also a small
minimum of ; (w) at 16 eV. The largest disagreement be-

tween theory and experiment is found at low energies FIG. 6. Calculated and experimentd) of graphite. The solid
(w=0). The reason for this is clear from an inspection ofline is the calculatea] while the dashed linéRefs. 31 and 2gis

Eq. (12). In the limit w—0 the largest contribution to the the experimentally measured .

200 00
Energy (eV)
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orbitals. With our method we have calculated the dielectricdicular component ofe,(w) involves mostly 7— 7* and
response of graphite, a highly anisotropic material. In thesr— ¢* transitions and the parallel componente&f{w) in-
comparison with experimental data we have found quitevolves mostly 7— o* transitions ando— #* transitions.
good agreement for both the real and imaginary parts of th&uch aspects of the interband transitions help identify the
dielectric function. Apart from deviations from experiment different bands anét points that are responsible for the op-
in €, at low energiegwhich we explain as due to the Drude tical transitions of graphite, and explains the unusually large
contribution) the general shape ef ande; is reproduced by anisotropy of the optical properties of graphite.

our theory. This is quite encouraging especially since we

base our theqry on _one—electrpn Kohn-Sham eigenvalues, ACKNOWLEDGMENTS
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