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Conductance of nanotube junctions and its scaling law
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The conductance of junctions connecting two different metallic carbon nanotubes is calculated by Landau-
er’s formula with a simple tight-binding model. The structures of the junctions are characterized by the relative
positions of a pair of disclinations, i.e., a five-membered ring and a seven-membered ring. Conductances of
about six thousand kinds of junctions are obtained. The conductance is determined only by tRg f@&tio
whereR; is the the circumference of the thinner tube dhdis that of the thicker tube. WheR,/R;>1, the
conductance is found to be almost proportionalRg {R;) 3. The wave function in the junction also shows a
power-law decrease as a function of the distance measured from the thinngiSib@3-182607)03108-1

I. INTRODUCTION calculated the conductance of the nanotube junctions, but
they use finite cluster models for the calculatidrSuch a
Recently, one-dimensional structures called carbon nandsoundary condition is not suitable for calculating the con-
tubes have been discovered and have attracted mudhictances, when the mean free path of the electron is longer
interestt Structures related to the nanotubes have been aldhan the cluster size. In this case, the nanotubes in both sides
found, which include helically coiled nanotub®edjunctions  Of the junctions should be treated as semi-infinite ones. Be-
between nanotubésand cap structuresDisclinations are cause, otherwise, general properties of ballistic electron
key ingredients to generate the curved graphitic sheet formiransport cannot be discussed. Chino and co-workers treated
ing these three-dimensional nanostructures. Here the discigemi-infinite nanotubes in the junctions, but they treat only
nations meam-membered ring i+ 6) defects in the other- fused pentagon-heptagon paif8oth authors of Ref. 11 and
wise hexagonal lattice of two-dimension@D) graphite. It ~Ref. 12 have treated only several junctions. Therefore, any
forms a center of positivénegativé curvature whem<6 systematic dependence of the ballistic transport on the junc-
(n>6), and causes a variety of structures made by graphitdon size and shape has not been clarified enough. In the
sheets such as fulleren®sninimal surfaces structurdand ~ Present paper, in contrast to it, the conductances of about six
torus structure§. The disclination is a sort of topological thousand junctions are systematically calculated. These in-
defect: their distribution on the honeycomb lattice causes thglude a number of different structures with widely ranging
change of the topology in the bond network of carbon atomsvalues of length of junctions, various combinations of helici-
Compared to the problems of local potential disorders, théies, and diameters of the tube parts. The most remarkable
effects of the topological disorder on the electronic state an@esult of the present paper is a scaling rule which generally
the quantum transport have not been well investigated so fafolds in all the cases. It can be simply expressed that the
in particular, for the honeycomb lattice. conductance is determined only by the ratidfR;, where
Among these structures, the nanotube junction is imporR2 andR; are the circumference of the thicker tube and that
tant as a part of more Comp|ex structures, e.g., double jun@f thinner tube, respectively. Furthermore, the conductance
tions and multiple junctions, which are candidates of elec is expressed in the form oR/R;) ~* for the larger val-
tronic devices with nanometer size. In the double junctionues ofR;/R;.
where a semiconductor tube is connected between two me- The outline of the paper is as follows. In the next section
tallic tubes, the semiconductor tube will behave as a bottléSec. 1) the models of the junction and the method for cal-
neck part, through which electrons are transmitted only byeulation of the conductance are described. In Sec. Ill, the
tunneling. A sequence of such weak junctions might work agesult of the calculated conductances are presented and the
a single electron tunneling transistor of the nanometer Scaledbserved scaling law is analyzed with a simple phenomeno-
The single junction itself also might behave as a weak junclogical arguments.
tion in certain cases, and scattering properties at the joint
should afford an important base for the study of general II. METHOD FOR CALCULATION
more complex junctions. Though we have already obtained . .
local density of states around a disclination in the monolayer Figure 1 shows bgrs representing zig-zag segments of the
graphite’® they are not enough for the discussion aboutC-C b(_)nd r_1etwork in the c!rcumferentlal direction of the
transport phenomena through the nanotube junctions. Theré&ingle junction. They are aligned and numbered along the
fore we attempt in the present paper to develop a theoreticalirectione; —e,, wheree; ande, are the unit vectors of the
method for the transport properties of electrons throughgraphite plane. Each bar is connected with adjacent bars by
nanocages of graphitic sheet and apply it to the single juncthe remaining C-C bonds. The network is rolled up so that
tion formed by two metallic nanotubes. the atoms in the top and the bottom of the same bar become
Recently, some theoretical calculations about the nancthe identical one. The top atoms and the bottom atoms are
tube junctions have been reportéd? Saito and co-workers represented by filled circles and open circles in Fig),1
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(a) small. For example, the one-dimensional band structures of a
helically coiled nanotube are calculated with the simple
jo=-1 0 12 1o L+l Lu+2 tight-binding model including only ther orbitals and with

n \n the model including both of the and 7 orbitals in Ref. 3 .
The results of the both methods qualitatively coincide with
weee each other near the Fermi level. So we use the simple tight-
AL binding model which is convenient to focus on the effects
(m+1;
12

-1,.n+1;) caused by the topological disorder.

tube The Schrdinger equation i:F_aiz—Ej’aj, wherea; is

the amplitude at the siteand the sum aboytis restricted to

the nearest neighbors which are connected with theisite
directly by the bonds described above. The number of the
nearest neighbors is three for any of the sites. In the present
paper, the junctions which are not doped are considered.
Then the Fermi leveEg coincides with the common site
energies, i.e., zero. The number of atoms in the pas

d(j) defined as below

2(m+n), i<0
fube d(j)=4 2(m+n)+2j—-1, osj<l; (1
2(m+n)+21,=2(my+n,), j=I;+1.

The amplitudes of the wave function in the Ljaare repre-

sented by the vectoE]- whose dimension igl(j). Then
FIG. 1. (a) The development map showing the bond networks ofSchralinger equation is written as
the (m,n)-(m+1,—15,n+1,) junction. It is represented by aligned
bars. Figures 5 and 7 in circles show the positions of the five-
membered ring and seven-membered ring, respectidaiyrhe de-
velopment map showing the bond network of {2¢2)-(3,3) junc- where P, and H; are a d(j)xd(j—1) matrix and a

tion. The filled circle at the top and the open circle at the bottom ind(j) x d(j) matrix, respectively. The matrixd?ﬁ ande be-

each bar indicate an identical atom. To form the junction, the de'come constant because of the translational symmetry when

velopment map is rolled up so that the filled circle and the open. . ; _ _
circle coincide with each other in each bar. J is greater tharl, or less than 1, i.e.P;j=P,H;=H.

(J=0) andP;=Pg,H;=Hg (j=1,+1) . The wave function
respectively. The structure of the bjafor j <0 is formed by  in the tubes of the both ends is described by
connectingm unit cells andn unit cells of the 2D graphite

which are aligned along, and e, , respectively. So the - _ Lol Loyl
(m,n) tube defined in Ref. 13 is formed there. The pdor G gl {Xicr Vi) Uiy %0 (V) U} 3
1<j=lI, is defined as that made by adding~(1) unit cells _
and one atom along the direction ef to the bottom of the ~for the left tube,j<0 (Ref. 14 and
bar 0. Forj=1,+1, the barj is made from the bal; by o

. . - . 2 2
exchanging I(2—1)* unit cells and one atom alorgy with g = Z {yk+(>\5+)j_'l_1ﬁf++yk7(>\f,)j_'l_lﬁf,}
[, unit cells alonge,. The network made in this way repre- =
sents the junction of theng,n) tube (<O) and the (4)
(my,ny)  tube  (=I,+1), where [;=(my+n,) ) )
—(m+n)=0 andl,=n,—n=0. This junction is called an fOr the right tube, j=I;+1, where A, =1/, and
(m,n)-(m,,Ny) junction hereafter. The conditiam>n does | M+|<1. The index+ (—) means a running wave or a
not lose generality because then,f)-(m,,n,) junction is decaying evanescent wave toward the righe lef). In the
the mirror image of ther(,m)- (n,,m,) junction. A seven- present paper, we consider conductances at absolute zero

membered ring is formed at the bottom of the bar 1 and demperature of _the nanotube junctions which are not doped.
five-membered ring is introduced between the laand the Then the tubes in the both ends have to be metallic, i.e., both

_ _ ; 15 )
bar I,+1. There are only six membered rings elsewhere® M—n andm,—n, have to be multiples of thre€:™® Oth
rwise the conductance becomes zero. At the Fermi level,

Based on this bond network, we use a simple tight-bindin L
model including only orbitals with a common hopping here are extended states only at kbh@ndK’ points in the

integral and site energy which are used as the unit and thBrillouin zone of the 2D graphite. These states are assigned

origin of the energy, respectively. In order to get more accul® k=1 andk=2in Eq. (3) and Eq.(4) and all the other

rate results, the effects from the mixing with orbitals  States correspond to the evanescent waves. Thus
caused by the curvature of the graphitic plane also have to be

considered. But these are minor effects compared to those IMG1=1, k=12

from the connectivityof the bond network if the curvature is INE >N <1, k=3, (5)

Ecj:chj*l+tpj+lcj+l+HjCj! (2)

m+n
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These evanescent waves can be obtained by an analytic caire degenerate states, they satisfy ELf). After all, the
tinuation of the wave number from the real number space témaginary parts of the cross terms in Ef) cancel out ow-

the complex number spacéSee, for example, Eq$19)— ing to Eq. (10), except those of term&=k’'=1,2 and
(22) in Ref. 5. The probability flow from the barj-1) into  o=0¢".
the barj is written asJ; defined by The imaginary parts which do not cancel out are indepen-
dent of j. Their values are represented hy/>0 as
szglm(tgj*,:jgj_l). @ MG =—Im{IEc ) =(0f)? where k=12, u=RL.
Normalized amplitudes are defined by,=vxx and

Conservation of the probability flow at the baris repre-

sented by Then Eq.(8) is transformed to

2

Vk=vfyk, so that each extended state has the unit flow.

2
d . <~ 12T 12)— S 215 |2
alcj|2:‘-]j_‘]j+l' (7) kgl (lxk+| |Xk—| )_kgl (|yk+| |yk—| ) (13)

In the case of stationary states, the left hand side ifBds  The outgoing ngeik_ , Y+ are determined by the incom-

zero andJ; is constant for arbitrary, so the flow in the left ing wavesx, . , Yx_ as
tube J; coincides with that in the right tubel;s

(j<0J),+1<j’). It is represented by (3?) _(r t’)(?(}) =S<3(J+) 14
m+n & tor)\y- vy
Im( 2 E i (J)Xﬁaka] wherer, r’, t, andt’ are 2x2 matrices. Equatiofil3) guar-
k=1 oor== antees that the ¥4 matrix S is unitary. The conductance

o is obtained from thes matrix by Landauer’s formula be-

kk'=1 o,0' =%

m2+n2
= Im| E 2 IE;;(T (J ,)y:(ryk’(r’] ’ (8) low:

g2 2 g2 2
where = 2= 7|2
o 7Tﬁi,j2:1 |tIJ| Wﬁi,jzzl |t|]| . (19
U‘U" S t_, > .
Hee (D =MG)* Cuie)* Pt o (M N 0)! So the range of the conductance is 8<2e?/(w#). About
conductances shown in this paper, the unitarity of the calcu-
(v=R,L). C) lated S matrix, which indicates the accuracy of the numerical

When the following relation holds calculation, is confirmed to be very good.

The S matrix can be obtained by a recursive calculation of

vol - oo matrix inversiont® But details of the method are different
Lo (D ={li% “(D)}* (10) i ined in thi
Kk’ k’k ' from those of Ref. 16. These differences are explained in this

the imaginary parts of the cross terms in the sum of [Bj.
cancel out. It can be proved that the relati@6) holds if the

condition . | Fleo (j=<0)
CiT) pl-n-ug =141
()\,lkt *)\lkl«’ J#1 (11) R C|1+1 (J/ 1 )i
. - . . . where
is satisfied. For details of this proof, see Appendix. As can be
shown from the relatiofi5), there are two kinds of terms for F —U A UL
Iz I g

which the relation11) does not hold so that this cancellation
may not occur. One is the terms far#o’',k=3k'=3

caused by the evanescent waves, and the other is those for Y+x=(Uis Us. - --), U, =(ui_,u5_,--

k=1,2,k'=1,2 caused by the propagating waves. But it is

not necessary to consider the former terms, becausend Up=(Uy, U,
Yk for k=3, by which the former terms are multiplied, have

to be zero to avoid solutions divergent [af—. In other Ay

words, evanescent waves do not contribute to the probability N,

flow. In the latter case of the propagating waves, the condi-
tion (11) is the same as the condition

(O ECD Nu (12

since|\|=1. In the present case whé&i lies at theK point
and the K' point, N =(N\1_)*=(\o0)*=\o_
=exp(27/3). Because of this degeneracy\afthe condition (u=L,R).
(12) does not hold whenk(k’)=(1,2), (2,1), ando#0c'.

But when one takes the appropriate linear combinations oEquations(2) for j=0~1,+1 are represented by

paragraph. The wave function in the tubes is represented by

(16)

17

)

(18

(19
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Ho Py R hU_ ., 'py <
Pi Hi P, Co P.U_L, Hi P, N
& . Cy
: t :
P, Hi tI:)|1+1 ) =0, P, Hh Piua )
= C ~ C
Pi+1 Hg C Pi+1, hrULR g
6|1+1 Y+
20 = N
(20 —h U, x,
—P;U, X,
where 0 24
B o —'P U ry-
H =H +PF "=—"PF (22) ~ -
_hRU,Ry,

Then the block tridiagonal matrix in Eq24) becomes a

and nonsingular NX N matrix where
+1

N=E;1:O d(j) —m—n—my,—n,. The inverse matrix can be
~ . B 1 calculated efficiently by using the iterative formula below.
Hr=Hgr+ PrFr=—PgFg". (22) " \When a nonsingular matriX has block matrixes as
H a
In Eq. (20), ¢_; andc_., are eliminated by using E16). X=( b c) (25)
Equation (21) and Eg. (22) are derived from equation

t -1_ _ .
H,+P.F,+P,F, =0 (u=L,R) which comes from Eq. 4nq the inverse matrix df is already known ag=H 2, the
(2) and Eq.(16). Note that numbers df in Eq. (3)4and Ed-  corresponding block matrixes of the inverse maxix* rep-
(4) are only Mm+n) and (my+ny), respectively;’ so that  asented by
U, ,andU_, are not square matrixes. The block tridiagonal

matrix in the left hand side of Eq20) is singular as shown Goo Go1

below. In the tubesj=0 orj=I1,+1), half of atoms in the X=|lg. & (26)
bar j connect only with the right baj+1 and the other 10 =n

atoms connect only with the left bar—1. So half of row . _

vectors in'P_, 'Py, Pg, andP; are zero vectors, respec- ¢a" be obtained by formulas shown below:

tively. It means that the block tr|d|agon_al matrix in Q) Gy=(c—bga) !, Gyo=—Gybg,

has (m+n) and (m,+n,) zero vectors in the top &f+ n)

row vectors and the bottom &(+n,) row vectors, respec- Gei=—qgaG Go=0a+9aGb 2
tively. When these zero row vectors are removed, (2 is 0= 0850, L= gatn0g. @0
represented by In this way, Eq.(24) can be solved, and one can obtain a

matrix S, which determines the relation between the coeffi-
cients{x} and{y} as

he  'py S X_ < X o8
Pl Hl tpz 61 }7+ - }7* '
. : =0, As already mentioned in the previous paragraph, the prob-
P, H, Piua - ability flow is determined only by the extended states,
c
D 7 1 k=1,2. So theS matrix in Eq.(14) is obtained by extracting
l+1 R 5| o the first, second,i+n+1)th, and (M+n+2)th rows and
L Al

columns from theS matrix in Eq.(28).
(23
IIl. RESULTS AND DISCUSSION

e t ing To investigate the dependence of the conductance of the
whereh, and 'p, have n+n) rows andhr andp,, ;1 have junctions on the system size and shape, we calculate conduc-
(my+ nf) rows and all of these rows are nonzero vectors, . aq of variousrfi,n)-(m,,n,) junctions. They are classi-
Whenc, andc, . are developed by using E(3) and Eq.  fied as type | wheren=n+3i, n,=m,+3j and type II
(4), Eq. (23) can be transformed to E¢R4). where m=n+3i, m,=n,+3j. The range of the integers



55 CONDUCTANCE OF NANOTUBE JUNCTIONS AND 1S . .. 4995

larger, when the length of the junction is fixed. As the length
and the circumference of the junction have opposite effects
on the conductance, it is expected that the conductance is
kept constant when both the length and the circumference of
the junction are made longer or shorter, keeping a certain
relation. According to this idea, we have calculated the con-
ductance of about eight hundred kinds of thm,iq)-
(m+i,n+i) junctions in the preceding lettéf,and found a
scaling law that the conductance is almost determined by the
ratioi/Rq, whereR, is the circumference of the thinner tube
andi represents the length of the junction. But it does not
0.5 seem natural that the circumference of the thinner tube ap-

1 1.1 1315 1.7 1.9 pears in the scaling law while that of the thicker tube does

Ratio of the circumference R /R, not, since there is no reason to consider that the thinner tube

is more important than the thicker tube. In fact, this scaling
law cannot be necessarily applied to more general junctions
wherem—m,#n—n,. In the present paper, we have found
the more complete scaling law as the function of the ratio
R,/R;. This scaling law does not conflict with the result of
Ref. 17, becausB,— R, is approximately proportional to the
length of junctioni.'® The scaling law of Ref. 17 is a special
case of that of the present paper.

As shown in Fig. 2, the conductaneedepends only on
the ratioR,/R;. This is represented by a dimensionless scal-
ing functionf, as

10* : e (R,
2 4 6 8 10 = —1| —

(b) Ratio of the circumference Rz/ R1
The scaling law can be represented by another form using a

FIG. 2. Conductance as a function of the ratio of the circumfer-dimensionless conductan@gR,) =f(R,/R,) with a fixed
encesR, /R, for (8 R,/R;<2 and(b) R,/R,>2. HereR, and  Ri as
R, are the circumference of the thinner tube and that of the thicker
tube, respectively. It has been found that thgr()-(m,,n,) junc- ding(Ry)
tion has almost the same conductance as that of then)¢ dInR,
(n,,m,) junction. Since the two junctions have the same value of - .
R, /R;, the conductance of only one of the two is plotted in this Where,B_has only_one p_arametg. The initial condition of
figure, so that the number of the plots is reduced and each plot catrh1e scaling equatiof80) is
be distinguished.

(e%/xh)

Conductance

(e/xh)

Conductance

(29

=BO(Ry), (30

g(Ry)=2. (31

,j,m, for the —calculations _is i=0-3, j=0-5, Icfomeeinzseigaéowt?]%R?\:sRilt’strmealierrr]]gtrrr]l Sfalﬂ]: Jvl\J/Eii[Lorc]:o?ree-
M, = Myi,—Myi,+ 20, wherem,;, is the minimum value of . C o )
2 2 T2in 2in sponds to the complete transmissidnlf the integral

m, which satisfies the conditionsn,+n,=m+n and _ (g L Lo
n,=n. Here it is not necessary to consider the case wherl?(g)_f [d9/gB(g)] and its inverse functio8 ™~ can be

) . o . - obtainedg(R,) is represented by only one parameter that is
n>m because theng,n) (mz,nz) junction is the mirror im the ratio of the circumferenci, /R, as
age of the fi,m)-(n,,m,) junction, and both of them have

the same conductance. The range of the value of the integer R,

n in type | isn=0-5, and that in type Il i=0-5 when g(Ry)=f(R,/R;)=B"1 In(R— +B(2)} (32

i#j andn=0-9 wheni=j. Then the total number of the 1

calculated junctions is about 6000. The results of the numerical calculations can be well repro-

Figure 2 shows the calculated conductances of the juncduced by assuming the form of the functigfg) as
tions plotted with the values ofR,/R;, where

R,=Jm?+n?+mn and R,=Jm2+n2+m,n, are the cir- B(9)=—y(1-ag). (33

-1

2a+(1-2a) (34)

cumference of the thinner tube and that of the thicker tubegy, pstituting 8 of Eq. (33) for Eq. (30), g(R,) can be
respectively. A clear scaling law is observed in Fig. 2, whichgpisined analytically as

will be discussed in more detail latter. The dependence of the

calculated conductances on the junction parameters reveals R,\”

the following features. First, the conductance decreases with ~ 9(R2) =f(Rz/Ry)=2 R_)

the increase of the junction length, when either of the tubes !

in each side of the junction is fixed. Second, the conductanc&he calculated data in Fig. 2 shows that the functgR,)
increases as the circumferences of both the tubes becorsbould have the form R,/R;) 2 whenR,>R;. Thus we
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CZ&— D (1)
Cy D c
A—B/ 1 Cy 3 "2
R [R R;= N R: A—B
¥ ox R R(w) [R,
A B' | —_
D, ar i B
CING . i CiNG
cs D E Pcs P2
FIG. 3. The scheme of transformation of a nanotube junction. 0 * v >
The figureABC,D,—A’B’C;D; represents a projection map of C, D, (2)
the junction which is the same as that of Fig. 1 in Ref. 11. To form C1 F
the junction joining the tubes whose circumferences BB =R,
and C,C;=R,, the line ABC,D, is connected with the line R(x) R,

A’B’'C;D; so that the pointsA,B,C,, and D, coincide with the
pointsA’,B’,C;, andD;, respectively. Then a seven-membered

ring defect and a five-membered ring defect are introduced at €1 y

B(B’) and C,(C}), respectively. When the thinner tube Ch b
AB—A'B’ is fixed and the distance between the five-membered c, D,

ring defect and seven membered ring defect is made longer, the cl/’*' (3)
junction ABC,D,—A’B’'C;D; is transformed into a larger - 3

junction ABC,D,—A’'B'C;D,. The original junction R(x) R,
ABC,;D;—A’'B'C;D; is embedded in the transformed junction

ABC,D,—A'B’'C;,D;. The circumference of the thicker tube of v

the transformed junction becoméstimes as long as that of the Cl'\,

original junction. Cy, D,

take the value of the parameters s 3 anda=5/14. This FIG. 4. The scheme showing the relation between the transmis-

ity Q(Rz) are Showr) in Fig. 2 by the full I|.ne. Though sion rate and the wave function, when the electronic wave is inci-
the numerical data are fitted well by the analytical curve, the, .+ t.om the thicker tube. Each figure @), (2), and (3) are

deviation between them becomes slightly larger Wherbrojection maps similar to Fig. 3. See text for detail.
R,/R,<2 than wherR,/R;>2. But the fitting will be im-
proved if higher terms of) are included in Eq(33).

s . . tube. One may consider that the distance mentioned here
The origin of the scaling law can be understood intu- y

itivel below. Consider the transf i h i Fi should be measured from the tube from which the electron is
|3|vez as he ow. O?S' er ef rsns r?rn;a IOLTBS ?vyn N F19-incident. But surprisingly it is not true when the electron is

, where the circumference of the thicker tuBgC; is €N incident from the thicker tube as shown below. The distance
larged N times as large as that of the original 08gC;.  (gjated to the power-law decrease of the wave function
This transformation is realized by increasing the distance beshoy|d always be measured from the thinner tube. To under-
tween the five-membered ring and the seven-membered ringang this from the scaling properties, consider the junctions
keeping their relative direction and the circumference of thqr, R,) and the junction(R(x),R,) in Fig. 4, on which a
thinner tube fixed. Here and in the following, the junction is it flow of an electron wave is incident from the thicker
represented by a pair of the circumferences of the tubes igjpe. The latter junction(R(x),R,) is formed from the
the both ends. The original junctioR(,R,) is embedded in  former junction R,,R,) in the following way as seen in Fig.

the transformed junctionR; ,NR;). Equation(30) is equiva- 4 (1) Cut the junction along>;C}. (2) The left half of the

lent to the fact that the conductance of the transformedjun%ncﬂon ABC,C/B'A’ is removed.(3) The tube with its

tion g(NRy) is determined only biN and g(R,). Though circumferenceR(x) is connected as the new thinner tube at

this discussion s S.'m'(l)ar to that .Of the scaling theory for theclci. Herex means the distance between the cross section
Anderson localizatioR? the functional form ofg(g) shown

in Eq. (33) is quite different from that of the Anderson lo- C1C1 @nd the pointO, andR(x) is the length of the cross

calization. This difference shows that the scattering processection|C;C;|. The definition of the poinD is as below.

of the electron in the present problem is different from thatWhen only a five-membered ring is introduced in the thicker

of the Anderson localization problem. tube instead of a pair of a five-membered ring and a seven-
The scaling law has a remarkable feature that the condusnembered ring, the circumference of the thinner tube be-

tance decays with an increase Rf as Rg3 whenR,>R;. comes zero and a part of a cone, which is represented by

Since the length of the junction is approximately propor-OC,C; in Fig. 4, is formed at the end of the nanotube,

tional toR,—R; as seen in Fig. 3, it means that the conduc-instead of a junction. Then the poi@ is defined as the

tance decays as the inverse third power of the length of theertex of the coné!

junction whenR,>R;. This result suggests that the wave The norm of the wave function on the cross section

function in the junction also shows a power-law decrease a€,Cj in the original junction R, ,R,) becomes the source of

a function of the distance from the contact region with thethe transmitted wave in the newly formed junction
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10’ that the norm of wave functiokEj|2. The norm in the former
case and that in the latter case are almost proportional to
R(j)~® and R(j)%, respectively. For comparison,
f(R(j)/Ry)/2 andf(R,/R(j))/2 are shown by the real line
and the dotted line, respectively. Their behaviors are similar
to those of|c;|?, and they show that the above discussion

relating the norm of the wave function to the scaling law is
reasonable.

Norm of the Wave funt-:ﬁon IC,IZ

0 All the above discussion is valid when the junction is not
doped, i.e., when the Fermi energy is fixed to the com-
mon site energy, which corresponds to #teandK' points

102 in 2D Brillouin zone of the graphite. In this case, the number

-
o

of the channels of any metallic nanotubes is kept at two and
independent of the diameter of the tube. When the Fermi
N energy is shifted by doping, the number of the channels in-

~ FIG. 5. The norm of the wave functid;|* for the (030,21 ¢reages as the tube becomes thicker. Our next concern is how
junction. For a definition ot; andj, see Fig. 1 and Eq2). The  the conductance changes when the Fermi energy changes.
diamond plots correspond to the case where the electron is incided;t it would go beyond the purpose of the present paper to
from the thinner tube and the cross plots correspond to the casg)low up this problem further. Thus we only point out here
where the electron is incident from the thicker tube, respectively. 'rthat it is necessary that the junction is not doped for the one
each case, there are two kinds of the incident waves CorreSpondirEarameter scaling law to hold.

to theK andK’ points, wtﬂch cause two wave functions. But they In this work. the conductances of the various nanotube
have common values dt;|> because one of them is the mirror junctions forméd by a pair of disclinations, the five-
image of the other with respect to the mirror plane that the)¢0, membered ring and the seven-membered ring, are obtained

(0)n,) junctions have. The full line and the dotted line show the : ; ; .
. . . . . and they are described concisely by the scaling law; they are
scaling functionsf(R(j)/Ry) and f(Rp/R())), respectively. The determined only by a single parameter, i.e., the ratio

horizontal axis isR(j)/R;, which ts the dist from th . . ;
orizontal axis IsR()/R,, which represents the distance from the R,/R;, whereR; is the circumference of the thinner tube

point O. For the definition of the poinD, see Fig. 4 and text. Here . . . L
R,, R, andR(j) are the circumference of the thinner tube, that of andR; is that of the thicker tube. When this ratio is large, the

the thicker tube, and the length of thth bar, respectively. Thatis conductance is nearly proportional 'FRZ(/Rl)_s_- It means
to say,R;=3, R,=21, andR(j)=3+]. that the conductance decays as the inverse third power of the
length of the junction wherR,>R;. The wave function
(R(x),R,). Thus the transmission rate per channel?hr?é’;’.znthse aﬁrirggt S?g\pl)ec;r-tl'ivr\:a?;ﬁ%yér;rdhe?’ ”(;]rg;] ?rIetZIee(\:Nave
-2 : unction i i x3w -
f(R2/R(x))/2 and th% nomjc(x)|* are almost propomonal tron is incident from the thinner tube and the thicker tube,
to each other, where(x) represents ,the amplitudes of the regpeciively, where is the distance measured from the thin-
wave function at the cross secti@)C; and corresponds to per type. These results are valid when the Fermi energy lies

Ej in Eq. (2). When the incident wave comes from the thin- at theK andK’ points of the Brillouin zone, i.e., when the

ner tube,f(R(x)/R;) and|c(x)|? are almost proportional to junctions are not doped.

each other, as can be shown from the similar discussion con-

sidering the junction(R;,R(x)) as the newly formed one. ACKNOWLEDGMENTS
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R(x) andx is proportional to each other. Note that the dis-

tance from the thicker tube, for example; x in Fig. 4 (1), APPENDIX: PROOF OF EQ. (9)

does not appear in the power-law decay rule, even when the
electron is incident from the thicker tube.

Distance from the thinner tube F{(j)/H1

The index ofu=L,R is omitted in the following proof of
To confirm this discussion, the norm of the wave functionE9- (10) for simplic_ity. For exam_pIeP,_ or Pr s represented
in each batc;|? is plotted as a function dR(j)/R; in Fig. 5 by P..The pair of indexesk, ‘T) is concisely repr'es.ented by
for the (0,3)¢0,21) junction whereR,/R,=7. For definition k. Since the wave functionc;=(\y)'uy satisfies the
of 5]_ andj, see Fig. 1 and Eq2). TheR(j) represents the Schralinger equatior{2) in the tube, the relation
length of the barj, and R(j)=3+j, R(0)=R;=3, and
R(19)=R,=21 (j=0,1,- - -,19) in the present case in units
of |&,| in Fig. 1. The diamond plots correspond to the case'0lds, which is equivalent to
where the electron is incident from the thinner tube and the >
cross plots correspond to the case where the electron is inci- UEH + (O TP PE=0. (A2)
dent from the thicker tube, respectively. These plots showsing this equation, it is shown that

(H+ A P+ N P)U=0 (A1)
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Lo (1) = Cu)* {=H—=(AF) "2 'PIup (N Ay )]
= —'UFHU N ) = N U PO * (NEN ) U,
(A3)
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The second term in the last line of the above equation coinHy7(j —1)=H (j —1) are used. lizy, # 1.0 then

cides with—1%7(j —1), whereug=u? andAx=\} . When
the first term is represented Wi, (j), EqQ. (A3) becomes

e (1) =—Hye () — 15— 1). (A4)

When the second term is transformed again in the same wahich
* - .
ap=ay, andHy (j—1)={Hygo (j —1)}*.

one can get

(g =Dl (] =2)=(1- e )Hi (= 1),  (A5)
where  ape=Ng\ and the relations Iy (j)
:aikflkk’(j_z)a Hiw (1) = @ Hie (1 — 1), and

Ikk’(j_2):_Hkk’(j_1)/(akk’+1)i (A6)
shows (i —2)={l(—2)}* because
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