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Conductance of nanotube junctions and its scaling law

Ryo Tamura and Masaru Tsukada
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~Received 26 March 1996; revised manuscript received 5 November 1996!

The conductance of junctions connecting two different metallic carbon nanotubes is calculated by Landau-
er’s formula with a simple tight-binding model. The structures of the junctions are characterized by the relative
positions of a pair of disclinations, i.e., a five-membered ring and a seven-membered ring. Conductances of
about six thousand kinds of junctions are obtained. The conductance is determined only by the ratioR2 /R1

whereR1 is the the circumference of the thinner tube andR2 is that of the thicker tube. WhenR2 /R1@1, the
conductance is found to be almost proportional to (R2 /R1)

23. The wave function in the junction also shows a
power-law decrease as a function of the distance measured from the thinner tube.@S0163-1829~97!03108-1#
n
u
al

rm
sc
-

h

l
th
m
th
an
fa

o
n
ec
io
m
tt
b
a
le
nc
oi
ra
ne
ye
u
e
tic
g
n

n

but

n-
ger
ides
Be-
ron
ated
nly

any
nc-
the
t six
in-

ng
ci-
able
ally
the

at
nce

on
al-
the
the

no-

f the
e
the

s by
hat
ome
are
I. INTRODUCTION

Recently, one-dimensional structures called carbon na
tubes have been discovered and have attracted m
interest.1 Structures related to the nanotubes have been
found, which include helically coiled nanotubes,2,3 junctions
between nanotubes,4 and cap structures.5 Disclinations are
key ingredients to generate the curved graphitic sheet fo
ing these three-dimensional nanostructures. Here the di
nations meann-membered ring (nÞ6) defects in the other
wise hexagonal lattice of two-dimensional~2D! graphite. It
forms a center of positive~negative! curvature whenn,6
(n.6), and causes a variety of structures made by grap
sheets such as fullerenes,6 minimal surfaces structures,7and
torus structures.8 The disclination is a sort of topologica
defect: their distribution on the honeycomb lattice causes
change of the topology in the bond network of carbon ato
Compared to the problems of local potential disorders,
effects of the topological disorder on the electronic state
the quantum transport have not been well investigated so
in particular, for the honeycomb lattice.

Among these structures, the nanotube junction is imp
tant as a part of more complex structures, e.g., double ju
tions and multiple junctions, which are candidates of el
tronic devices with nanometer size. In the double junct
where a semiconductor tube is connected between two
tallic tubes, the semiconductor tube will behave as a bo
neck part, through which electrons are transmitted only
tunneling. A sequence of such weak junctions might work
a single electron tunneling transistor of the nanometer sca9

The single junction itself also might behave as a weak ju
tion in certain cases, and scattering properties at the j
should afford an important base for the study of gene
more complex junctions. Though we have already obtai
local density of states around a disclination in the monola
graphite,10 they are not enough for the discussion abo
transport phenomena through the nanotube junctions. Th
fore we attempt in the present paper to develop a theore
method for the transport properties of electrons throu
nanocages of graphitic sheet and apply it to the single ju
tion formed by two metallic nanotubes.

Recently, some theoretical calculations about the na
tube junctions have been reported.11,12Saito and co-workers
550163-1829/97/55~8!/4991~8!/$10.00
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calculated the conductance of the nanotube junctions,
they use finite cluster models for the calculation.11 Such a
boundary condition is not suitable for calculating the co
ductances, when the mean free path of the electron is lon
than the cluster size. In this case, the nanotubes in both s
of the junctions should be treated as semi-infinite ones.
cause, otherwise, general properties of ballistic elect
transport cannot be discussed. Chino and co-workers tre
semi-infinite nanotubes in the junctions, but they treat o
fused pentagon-heptagon pairs.12 Both authors of Ref. 11 and
Ref. 12 have treated only several junctions. Therefore,
systematic dependence of the ballistic transport on the ju
tion size and shape has not been clarified enough. In
present paper, in contrast to it, the conductances of abou
thousand junctions are systematically calculated. These
clude a number of different structures with widely rangi
values of length of junctions, various combinations of heli
ties, and diameters of the tube parts. The most remark
result of the present paper is a scaling rule which gener
holds in all the cases. It can be simply expressed that
conductance is determined only by the ratio ofR2 /R1, where
R2 andR1 are the circumference of the thicker tube and th
of thinner tube, respectively. Furthermore, the conducta
s is expressed in the form of (R2 /R1)

23 for the larger val-
ues ofR2 /R1.

The outline of the paper is as follows. In the next secti
~Sec. II! the models of the junction and the method for c
culation of the conductance are described. In Sec. III,
result of the calculated conductances are presented and
observed scaling law is analyzed with a simple phenome
logical arguments.

II. METHOD FOR CALCULATION

Figure 1 shows bars representing zig-zag segments o
C-C bond network in the circumferential direction of th
single junction. They are aligned and numbered along
directioneW12eW2, whereeW1 andeW2 are the unit vectors of the
graphite plane. Each bar is connected with adjacent bar
the remaining C-C bonds. The network is rolled up so t
the atoms in the top and the bottom of the same bar bec
the identical one. The top atoms and the bottom atoms
represented by filled circles and open circles in Fig. 1~b!,
4991 © 1997 The American Physical Society
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4992 55RYO TAMURA AND MASARU TSUKADA
respectively. The structure of the barj for j<0 is formed by
connectingm unit cells andn unit cells of the 2D graphite
which are aligned alongeW1 and eW2 , respectively. So the
(m,n) tube defined in Ref. 13 is formed there. The barj for
1< j< l 1 is defined as that made by adding (j21) unit cells
and one atom along the direction ofeW1 to the bottom of the
bar 0. For j> l 111, the barj is made from the barl 1 by
exchanging (l 221) unit cells and one atom alongeW1 with
l 2 unit cells alongeW2. The network made in this way repre
sents the junction of the (m,n) tube (j<0) and the
(m2 ,n2) tube (j> l 111), where l 15(m21n2)
2(m1n)>0 and l 25n22n>0. This junction is called an
(m,n)-(m2 ,n2) junction hereafter. The conditionn2>n does
not lose generality because the (m,n)-(m2 ,n2) junction is
the mirror image of the (n,m)- (n2 ,m2) junction. A seven-
membered ring is formed at the bottom of the bar 1 an
five-membered ring is introduced between the barl 1 and the
bar l 111. There are only six membered rings elsewhe
Based on this bond network, we use a simple tight-bind
model including onlyp orbitals with a common hopping
integral and site energy which are used as the unit and
origin of the energy, respectively. In order to get more ac
rate results, the effects from the mixing withs orbitals
caused by the curvature of the graphitic plane also have t
considered. But these are minor effects compared to th
from theconnectivityof the bond network if the curvature i

FIG. 1. ~a! The development map showing the bond networks
the (m,n)-(m1 l 12 l 2 ,n1 l 2) junction. It is represented by aligne
bars. Figures 5 and 7 in circles show the positions of the fi
membered ring and seven-membered ring, respectively.~b! The de-
velopment map showing the bond network of the~2,2!-~3,3! junc-
tion. The filled circle at the top and the open circle at the bottom
each bar indicate an identical atom. To form the junction, the
velopment map is rolled up so that the filled circle and the op
circle coincide with each other in each bar.
a

.
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small. For example, the one-dimensional band structures o
helically coiled nanotube are calculated with the simp
tight-binding model including only thep orbitals and with
the model including both of thes andp orbitals in Ref. 3 .
The results of the both methods qualitatively coincide wi
each other near the Fermi level. So we use the simple tig
binding model which is convenient to focus on the effec
caused by the topological disorder.

The Schro¨dinger equation isEai52( j8aj , whereai is
the amplitude at the sitei and the sum aboutj is restricted to
the nearest neighbors which are connected with the siti
directly by the bonds described above. The number of t
nearest neighbors is three for any of the sites. In the pres
paper, the junctions which are not doped are consider
Then the Fermi levelEF coincides with the common site
energies, i.e., zero. The number of atoms in the barj is
d( j ) defined as below

d~ j !5H 2~m1n!, j<0

2~m1n!12 j21, 0< j< l 1

2~m1n!12l 152~m21n2!, j> l 111.

~1!

The amplitudes of the wave function in the barj are repre-
sented by the vectorcW j whose dimension isd( j ). Then
Schrödinger equation is written as

EcW j5PjcW j211
tPj11cW j111HjcW j , ~2!

where Pj and Hj are a d( j )3d( j21) matrix and a
d( j )3d( j ) matrix, respectively. The matrixesPj andHj be-
come constant because of the translational symmetry wh
j is greater thanl 1 or less than 1, i.e.,Pj5PL ,Hj5HL
( j<0) andPj5PR ,Hj5HR ( j> l 111) . The wave function
in the tubes of the both ends is described by

cW j5 (
k51

m1n

$xk1~lk1
L ! juW k1

L 1xk2~lk2
L ! juW k2

L % ~3!

for the left tube,j<0 ~Ref. 14! and

cW j5 (
k51

m21n2

$yk1~lk1
R ! j2 l121uW k1

R 1yk2~lk2
R ! j2 l121uW k2

R %

~4!

for the right tube, j> l 111, where lk151/lk2 and
ulk1u<1. The index1 (2) means a running wave or a
decaying evanescent wave toward the right~the left!. In the
present paper, we consider conductances at absolute
temperature of the nanotube junctions which are not dop
Then the tubes in the both ends have to be metallic, i.e., b
of m2n andm22n2 have to be multiples of three.

13,15Oth-
erwise the conductance becomes zero. At the Fermi lev
there are extended states only at theK andK8 points in the
Brillouin zone of the 2D graphite. These states are assign
to k51 andk52 in Eq. ~3! and Eq.~4! and all the other
states correspond to the evanescent waves. Thus

H ulks
m u51, k51,2

ulk2
m u.1,ulk1

m u,1, k>3. ~5!
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These evanescent waves can be obtained by an analytic
tinuation of the wave number from the real number space
the complex number space.~See, for example, Eqs.~19!–
~22! in Ref. 5!. The probability flow from the bar (j21) into
the barj is written asJj defined by

Jj[
2

\
Im~ tcW j*PjcW j21!. ~6!

Conservation of the probability flow at the barj is repre-
sented by

d

dt
ucW j u25Jj2Jj11 . ~7!

In the case of stationary states, the left hand side in Eq.~7! is
zero andJj is constant for arbitraryj , so the flow in the left
tube Jj coincides with that in the right tubeJj 8
( j<0,l 111< j 8). It is represented by

ImH (
k,k851

m1n

(
s,s856

I kk8
Lss8~ j !xks* xk8s8J

5ImH (
k,k851

m21n2

(
s,s856

I kk8
Rss8~ j 8!yks* yk8s8J , ~8!

where

I kk8
mss8~ j ![~lks

m !* ~ tuW ks
m !*PmuW k8s8

m
~lks

m* lk8s8
m

! j

~m5R,L !. ~9!

When the following relation holds,

I kk8
mss8~ j !5$I k8k

ms8s
~ j !%* , ~10!

the imaginary parts of the cross terms in the sum of Eq.~8!
cancel out. It can be proved that the relation~10! holds if the
condition

~lks
m !* lk8s8

m Þ1 ~11!

is satisfied. For details of this proof, see Appendix. As can
shown from the relation~5!, there are two kinds of terms fo
which the relation~11! does not hold so that this cancellatio
may not occur. One is the terms forsÞs8,k>3,k8>3
caused by the evanescent waves, and the other is thos
k51,2, k851,2 caused by the propagating waves. But it
not necessary to consider the former terms, becausexk1 and
yk2 for k>3, by which the former terms are multiplied, hav
to be zero to avoid solutions divergent atu j u→`. In other
words, evanescent waves do not contribute to the probab
flow. In the latter case of the propagating waves, the con
tion ~11! is the same as the condition

~lks
m !Þlk8s8

m , ~12!

sinceulu51. In the present case whenEF lies at theK point
and the K8 point, l115(l12)*5(l21)*5l22

5exp(i2p/3). Because of this degeneracy ofl, the condition
~12! does not hold when (k,k8)5(1,2), (2,1), andsÞs8.
But when one takes the appropriate linear combinations
on-
to

e

for

ty
i-

of

the degenerate states, they satisfy Eq.~10!. After all, the
imaginary parts of the cross terms in Eq.~8! cancel out ow-
ing to Eq. ~10!, except those of termsk5k851,2 and
s5s8.

The imaginary parts which do not cancel out are indep
dent of j . Their values are represented byvk

m.0 as
Im$I kk

m11%52Im$I kk
m22%[(vk

m)2, where k51,2, m5R,L.
Normalized amplitudes are defined byx̃k5vk

Lxk and
ỹk5vk

Ryk , so that each extended state has the unit flo
Then Eq.~8! is transformed to

(
k51

2

~ ux̃k1u22ux̃k2u2!5 (
k51

2

~ u ỹk1u22u ỹk2u2!. ~13!

The outgoing wavesx̃k2 , ỹk1 are determined by the incom
ing wavesx̃k1 , ỹk2 as

S x̃2

ỹ1
D 5S r t 8

t r 8
D S x̃1

ỹ2
D[SS x̃1

ỹ2
D , ~14!

wherer , r 8, t, andt8 are 232 matrices. Equation~13! guar-
antees that the 434 matrix S is unitary. The conductance
s is obtained from theS matrix by Landauer’s formula be
low:

s5
e2

p\ (
i , j51

2

ut i j u25
e2

p\ (
i , j51

2

ut i j8 u2. ~15!

So the range of the conductance is 0<s<2e2/(p\). About
conductances shown in this paper, the unitarity of the ca
latedSmatrix, which indicates the accuracy of the numeric
calculation, is confirmed to be very good.

TheSmatrix can be obtained by a recursive calculation
matrix inversion.16 But details of the method are differen
from those of Ref. 16. These differences are explained in
paragraph. The wave function in the tubes is represented

cW j5H FL
j cW0 ~ j<0!

FR
~ j2 l121!cW l111 ~ j> l 111!,

~16!

where

Fm5UmLmUm
21 , ~17!

U1m5~uW 11
m ,uW 21

m ,••• !, U2m5~uW 12
m ,uW 22

m ,••• !,

Um5~U1m ,U2m!, ~18!

Lm5S l11
m

l21
m

�

l12
m

l22
m

�

D
~m5L,R!. ~19!

Equations~2! for j50; l 111 are represented by
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S H̃L
tP1

P1 H1
tP2

�

Pl1
Hl1

tPl111

Pl111 H̃RD S cW0

cW1

A

cW l1

cW l111

D 50,

~20!

where

H̃L5HL1PLFL
2152 tPLFL ~21!

and

H̃R5HR1 tPRFR52PRFR
21 . ~22!

In Eq. ~20!, cW 21 andcW l112 are eliminated by using Eq.~16!.
Equation ~21! and Eq. ~22! are derived from equation
Hm1 tPmFm1PmFm

2150 (m5L,R) which comes from Eq.
~2! and Eq.~16!. Note that numbers ofk in Eq. ~3! and Eq.
~4! are only (m1n) and (m21n2), respectively,

14 so that
U1m andU2m are not square matrixes. The block tridiagon
matrix in the left hand side of Eq.~20! is singular as shown
below. In the tubes (j<0 or j> l 111), half of atoms in the
bar j connect only with the right barj11 and the other
atoms connect only with the left barj21. So half of row
vectors in tPL ,

tP1, PR , andPl1
are zero vectors, respec

tively. It means that the block tridiagonal matrix in Eq.~20!
has (m1n) and (m21n2) zero vectors in the top 2(m1n)
row vectors and the bottom 2(m21n2) row vectors, respec
tively. When these zero row vectors are removed, Eq.~20! is
represented by

S h̃L
tp1

P1 H1
tP2

�

Pl1
Hl1

tPl111

pl111 h̃R
D S cW0

cW1

A

cW l1

cW l111

D 50,

~23!

whereh̃L and
tp1 have (m1n) rows andh̃R andpl111 have

(m21n2) rows and all of these rows are nonzero vecto
WhencW0 andcW l111 are developed by using Eq.~3! and Eq.
~4!, Eq. ~23! can be transformed to Eq.~24!.
l

.

S h̃LU2L ,
tp1

P1U2L , H1
tP2

�

Pl1
Hl1

, tPl1U1R1

pl111 , h̃RU1R
D S xW 2

cW1

A

cW l1

yW 1

D
5S 2h̃LU1LxW 1

2P1U1LxW 1

0

2 tPl111U2RyW 2

2h̃RU2RyW 2

D . ~24!

Then the block tridiagonal matrix in Eq.~24! becomes a
nonsingular N3N matrix where
N5( j50

l111d( j )2m2n2m22n2. The inverse matrix can be
calculated efficiently by using the iterative formula belo
When a nonsingular matrixX has block matrixes as

X5S H a

b cD ~25!

and the inverse matrix ofH is already known asg5H21, the
corresponding block matrixes of the inverse matrixX21 rep-
resented by

X215S G00 G01

G10 G11D ~26!

can be obtained by formulas shown below:

G115~c2bga!21, G1052G11bg,

G0152gaG11, G005g1gaG11bg. ~27!

In this way, Eq.~24! can be solved, and one can obtain
matrix S̃, which determines the relation between the coe
cients$x% and$y% as

S xW 2

yW 1

D 5S̃S xW 1

yW 2

D . ~28!

As already mentioned in the previous paragraph, the pr
ability flow is determined only by the extended state
k51,2. So theSmatrix in Eq.~14! is obtained by extracting
the first, second, (m1n11)th, and (m1n12)th rows and
columns from theS̃matrix in Eq.~28!.

III. RESULTS AND DISCUSSION

To investigate the dependence of the conductance of
junctions on the system size and shape, we calculate con
tances of various (m,n)-(m2 ,n2) junctions. They are classi
fied as type I wherem5n13i , n25m213 j and type II
wherem5n13i , m25n213 j . The range of the integer
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i , j ,m2 for the calculations is i50–3, j50–5,
m25m2in–m2in120, wherem2in is the minimum value of
m2 which satisfies the conditionsm21n2>m1n and
n2>n. Here it is not necessary to consider the case w
n.m because the (m,n)-(m2 ,n2) junction is the mirror im-
age of the (n,m)-(n2 ,m2) junction, and both of them hav
the same conductance. The range of the value of the int
n in type I is n50–5, and that in type II isn50–5 when
iÞ j andn50–9 wheni5 j . Then the total number of the
calculated junctions is about 6000.

Figure 2 shows the calculated conductances of the ju
tions plotted with the values of R2 /R1, where
R15Am21n21mn and R25Am2

21n2
21m2n2 are the cir-

cumference of the thinner tube and that of the thicker tu
respectively. A clear scaling law is observed in Fig. 2, wh
will be discussed in more detail latter. The dependence of
calculated conductances on the junction parameters rev
the following features. First, the conductance decreases
the increase of the junction length, when either of the tu
in each side of the junction is fixed. Second, the conducta
increases as the circumferences of both the tubes bec

FIG. 2. Conductance as a function of the ratio of the circumf
encesR2 /R1 for ~a! R2 /R1,2 and ~b! R2 /R1.2. HereR1 and
R2 are the circumference of the thinner tube and that of the thic
tube, respectively. It has been found that the (m,n)-(m2 ,n2) junc-
tion has almost the same conductance as that of the (m,n)-
(n2 ,m2) junction. Since the two junctions have the same value
R2 /R1, the conductance of only one of the two is plotted in th
figure, so that the number of the plots is reduced and each plot
be distinguished.
n

er

c-

e,

e
als
ith
s
ce
me

larger, when the length of the junction is fixed. As the leng
and the circumference of the junction have opposite effe
on the conductance, it is expected that the conductanc
kept constant when both the length and the circumferenc
the junction are made longer or shorter, keeping a cer
relation. According to this idea, we have calculated the c
ductance of about eight hundred kinds of the (m,n)-
(m1 i ,n1 i ) junctions in the preceding letter,17 and found a
scaling law that the conductance is almost determined by
ratio i /R1, whereR1 is the circumference of the thinner tub
and i represents the length of the junction. But it does n
seem natural that the circumference of the thinner tube
pears in the scaling law while that of the thicker tube do
not, since there is no reason to consider that the thinner
is more important than the thicker tube. In fact, this scal
law cannot be necessarily applied to more general juncti
wherem2m2Þn2n2. In the present paper, we have foun
the more complete scaling law as the function of the ra
R2 /R1. This scaling law does not conflict with the result
Ref. 17, becauseR22R1 is approximately proportional to the
length of junctioni .18 The scaling law of Ref. 17 is a specia
case of that of the present paper.

As shown in Fig. 2, the conductances depends only on
the ratioR2 /R1. This is represented by a dimensionless sc
ing function f , as

s5
e2

p\
f SR2

R1
D . ~29!

The scaling law can be represented by another form usin
dimensionless conductanceg(R2)5 f (R2 /R1) with a fixed
R1 as

dlng~R2!

dlnR2
5b„g~R2!…, ~30!

whereb has only one parameterg. The initial condition of
the scaling equation~30! is

g~R1!52. ~31!

It means that whenR25R1, the length of the junction be
comes zero so thatg has its maximum value, which corre
sponds to the complete transmission.19 If the integral
B(g)5*g@dg/gb(g)# and its inverse functionB21 can be
obtained,g(R2) is represented by only one parameter tha
the ratio of the circumferenceR2 /R1 as

g~R2!5 f ~R2 /R1!5B21F lnSR2

R1
D1B~2!G . ~32!

The results of the numerical calculations can be well rep
duced by assuming the form of the functionb(g) as

b~g!52g~12ag!. ~33!

By substitutingb of Eq. ~33! for Eq. ~30!, g(R2) can be
obtained analytically as

g~R2!5 f ~R2 /R1!52F2a1~122a!SR2

R1
D gG21

. ~34!

The calculated data in Fig. 2 shows that the functiong(R2)
should have the form 7(R2 /R1)

23 whenR2@R1. Thus we

-
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4996 55RYO TAMURA AND MASARU TSUKADA
take the value of the parameters asg53 anda55/14. This
form of g(R2) are shown in Fig. 2 by the full line. Thoug
the numerical data are fitted well by the analytical curve,
deviation between them becomes slightly larger wh
R2 /R1,2 than whenR2 /R1.2. But the fitting will be im-
proved if higher terms ofg are included in Eq.~33!.

The origin of the scaling law can be understood in
itively as below. Consider the transformation shown in F
3, where the circumference of the thicker tubeC2C28 is en-
largedN times as large as that of the original oneC1C18 .
This transformation is realized by increasing the distance
tween the five-membered ring and the seven-membered
keeping their relative direction and the circumference of
thinner tube fixed. Here and in the following, the junction
represented by a pair of the circumferences of the tube
the both ends. The original junction (R1 ,R2) is embedded in
the transformed junction (R1 ,NR2). Equation~30! is equiva-
lent to the fact that the conductance of the transformed ju
tion g(NR2) is determined only byN and g(R2). Though
this discussion is similar to that of the scaling theory for t
Anderson localization,20 the functional form ofb(g) shown
in Eq. ~33! is quite different from that of the Anderson lo
calization. This difference shows that the scattering proc
of the electron in the present problem is different from th
of the Anderson localization problem.

The scaling law has a remarkable feature that the cond
tance decays with an increase ofR2 asR2

23 whenR2@R1.
Since the length of the junction is approximately prop
tional toR22R1 as seen in Fig. 3, it means that the condu
tance decays as the inverse third power of the length of
junction whenR2@R1. This result suggests that the wav
function in the junction also shows a power-law decrease
a function of the distance from the contact region with t

FIG. 3. The scheme of transformation of a nanotube juncti
The figureABC1D12A8B8C18D18 represents a projection map o
the junction which is the same as that of Fig. 1 in Ref. 11. To fo
the junction joining the tubes whose circumferences areBB85R1

and C1C185R2, the line ABC1D1 is connected with the line
A8B8C18D18 so that the pointsA,B,C1, andD1 coincide with the
pointsA8,B8,C18 , andD18 , respectively. Then a seven-member
ring defect and a five-membered ring defect are introduced
B(B8) and C1(C18), respectively. When the thinner tub
AB2A8B8 is fixed and the distance between the five-membe
ring defect and seven membered ring defect is made longer
junction ABC1D12A8B8C18D18 is transformed into a large
junction ABC2D22A8B8C28D28 . The original junction
ABC1D12A8B8C18D18 is embedded in the transformed junctio
ABC2D22A8B8C28D28 . The circumference of the thicker tube o
the transformed junction becomesN times as long as that of th
original junction.
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tube. One may consider that the distance mentioned h
should be measured from the tube from which the electro
incident. But surprisingly it is not true when the electron
incident from the thicker tube as shown below. The distan
related to the power-law decrease of the wave funct
should always be measured from the thinner tube. To un
stand this from the scaling properties, consider the juncti
(R1 ,R2) and the junction„R(x),R2… in Fig. 4, on which a
unit flow of an electron wave is incident from the thick
tube. The latter junction„R(x),R2… is formed from the
former junction (R1 ,R2) in the following way as seen in Fig
4. ~1! Cut the junction alongC1C18 . ~2! The left half of the
junction ABC1C18B8A8 is removed.~3! The tube with its
circumferenceR(x) is connected as the new thinner tube
C1C18 . Herex means the distance between the cross sec
C1C18 and the pointO, andR(x) is the length of the cross

sectionuC1C18
→

u. The definition of the pointO is as below.
When only a five-membered ring is introduced in the thick
tube instead of a pair of a five-membered ring and a sev
membered ring, the circumference of the thinner tube
comes zero and a part of a cone, which is represented
OC2C28 in Fig. 4, is formed at the end of the nanotub
instead of a junction. Then the pointO is defined as the
vertex of the cone.11

The norm of the wave function on the cross secti
C1C18 in the original junction (R1 ,R2) becomes the source o
the transmitted wave in the newly formed junctio

.

at

d
he

FIG. 4. The scheme showing the relation between the trans
sion rate and the wave function, when the electronic wave is in
dent from the thicker tube. Each figure of~1!, ~2!, and ~3! are
projection maps similar to Fig. 3. See text for detail.
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„R(x),R2…. Thus the transmission rate per chann
f „R2 /R(x)…/2 and the normucW (x)u2 are almost proportiona
to each other, wherecW (x) represents the amplitudes of th
wave function at the cross sectionC1C18 and corresponds to

cW j in Eq. ~2!. When the incident wave comes from the thi
ner tube,f „R(x)/R1… and ucW (x)u2 are almost proportional to
each other, as can be shown from the similar discussion
sidering the junction„R1 ,R(x)… as the newly formed one
WhenR(x)@R1 „R(x)!R2…, f „R(x)/R1… „f (R2 /R(x)…) is
almost proportional toR23(x) „R3(x)… as can be seen from
Eq. ~34!. Then the norm of the wave functionucW (x)u2 is
almost proportional toR23(x)„R3(x)… when the electron is
incident from the thinner tube~the thicker tube!. It means
that the norm of wave function decays asx23 (x3), since
R(x) andx is proportional to each other. Note that the d
tance from the thicker tube, for example,y2x in Fig. 4 ~1!,
does not appear in the power-law decay rule, even when
electron is incident from the thicker tube.

To confirm this discussion, the norm of the wave functi
in each barucj u2 is plotted as a function ofR( j )/R1 in Fig. 5
for the (0,3)-~0,21! junction whereR2 /R157. For definition
of cW j and j , see Fig. 1 and Eq.~2!. TheR( j ) represents the
length of the barj , and R( j )531 j , R(0)5R153, and
R(19)5R2521 (j50,1,•••,19) in the present case in uni
of ueW1u in Fig. 1. The diamond plots correspond to the ca
where the electron is incident from the thinner tube and
cross plots correspond to the case where the electron is
dent from the thicker tube, respectively. These plots sh

FIG. 5. The norm of the wave functionucj u2 for the ~0,3!-~0,21!

junction. For a definition ofcW j and j , see Fig. 1 and Eq.~2!. The
diamond plots correspond to the case where the electron is inc
from the thinner tube and the cross plots correspond to the
where the electron is incident from the thicker tube, respectively
each case, there are two kinds of the incident waves correspon
to theK andK8 points, which cause two wave functions. But th

have common values ofucW j u2 because one of them is the mirro
image of the other with respect to the mirror plane that the (0,n)-
(0,n2) junctions have. The full line and the dotted line show t
scaling functionsf „R( j )/R1… and f „R2 /R( j )…, respectively. The
horizontal axis isR( j )/R1, which represents the distance from th
pointO. For the definition of the pointO, see Fig. 4 and text. Here
R1, R2, andR( j ) are the circumference of the thinner tube, that
the thicker tube, and the length of thej 8th bar, respectively. That is
to say,R153, R2521, andR( j )531 j .
l
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he
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ci-
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that the norm of wave functionucW j u2. The norm in the former
case and that in the latter case are almost proportiona
R( j )23 and R( j )3, respectively. For comparison
f „R( j )/R1…/2 and f „R2 /R( j )…/2 are shown by the real line
and the dotted line, respectively. Their behaviors are sim
to those ofucW j u2, and they show that the above discussi
relating the norm of the wave function to the scaling law
reasonable.

All the above discussion is valid when the junction is n
doped, i.e., when the Fermi energyEF is fixed to the com-
mon site energy, which corresponds to theK andK8 points
in 2D Brillouin zone of the graphite. In this case, the numb
of the channels of any metallic nanotubes is kept at two
independent of the diameter of the tube. When the Fe
energy is shifted by doping, the number of the channels
creases as the tube becomes thicker. Our next concern is
the conductance changes when the Fermi energy chan
But it would go beyond the purpose of the present pape
follow up this problem further. Thus we only point out he
that it is necessary that the junction is not doped for the
parameter scaling law to hold.

In this work, the conductances of the various nanotu
junctions formed by a pair of disclinations, the five
membered ring and the seven-membered ring, are obta
and they are described concisely by the scaling law; they
determined only by a single parameter, i.e., the ra
R2 /R1, whereR1 is the circumference of the thinner tub
andR2 is that of the thicker tube. When this ratio is large, t
conductance is nearly proportional to (R2 /R1)

23. It means
that the conductance decays as the inverse third power o
length of the junction whenR2@R1. The wave function
shows the same power-law decay. The norm of the w
function is almost proportional tox23 andx3 when the elec-
tron is incident from the thinner tube and the thicker tub
respectively, wherex is the distance measured from the thi
ner tube. These results are valid when the Fermi energy
at theK andK8 points of the Brillouin zone, i.e., when th
junctions are not doped.
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APPENDIX: PROOF OF EQ. „9…

The index ofm5L,R is omitted in the following proof of
Eq. ~10! for simplicity. For example,PL or PR is represented
by P. The pair of indexes (k,s) is concisely represented b
k. Since the wave functioncj5(lk)

juW k satisfies the
Schrödinger equation~2! in the tube, the relation

~H1lk
21P1lk

tP!uW k50 ~A1!

holds, which is equivalent to

tuW k* $H1~lk* !21tP1lk*P%50. ~A2!

Using this equation, it is shown that
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I kk8~ j !5~ tuW k!* $2H2~lk* !21 tP%uW k8~lk* lk8!
j

52 tuW k*Huk8~lk* lk8!
j2lk8

tuW k8P~uW k!* ~lk* lk8!
~ j21!.

~A3!

The second term in the last line of the above equation c
cides with2I k̃8k̃( j21), whereuW k̃5uW k* andl k̃5lk* . When
the first term is represented byHkk8( j ), Eq. ~A3! becomes

I kk8~ j !52Hkk8~ j !2I k̃8k̃~ j21!. ~A4!

When the second term is transformed again in the same w
one can get
v,

a
s,

ys

al

s
,
ys

B

ie,

n,

o

e

-

y,

~akk8
2

21!I kk8~ j22!5~12akk8!Hkk8~ j21!, ~A5!

where akk8[lk* lk8 and the relations I kk8( j )
5akk8

2 I kk8( j22), Hkk8( j )5akk8Hkk8( j21), and
H k̃8k̃( j21)5Hkk8( j21) are used. Ifakk8Þ1.0 then

I kk8~ j22!52Hkk8~ j21!/~akk811!, ~A6!

which shows I k8k( j22)5$I kk8( j22)%* because
ak8k5akk

* andHk8k( j21)5$Hkk8( j21)%* .
8
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