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Electronic-oscillator analysis of femtosecond four-wave mixing in conjugated polyenes

T. Meier, S. Tretiak, V. Chernyak, and S. Mukamel
Department of Chemistry and Rochester Theory Center for Optical Science and Engineering, University of Rochester,

Rochester, New York 14627
~Received 1 July 1996!

Equations of motion which describe the nonlinear optical response of conjugated polyenes using a collective
electronic-oscillator representation are derived. Specific signatures of electronic correlations which enter as
anharmonicities and scattering between oscillators are predicted in ultrafast resonant four-wave mixing. Only
few resonant oscillators need to be considered explicitly; effects of the remaining~off-resonant! oscillators are
introduced via renormalized anharmonic coupling coefficients. The connection with inorganic semiconductors
is established.@S0163-1829~97!05504-5#
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I. INTRODUCTION

Nonlinear optical spectroscopy of organic materials is
intensively developing field. It constitutes both fundamen
interest and potential practical applications. Compared to
organic semiconductors, investigations of organic molecu
are more difficult theoretically due to the complicated ele
tronic structure and experimentally due to problems rela
to sample quality, controlled synthesis, and poor solubility
large molecules.1,2Resonant time domain nonlinear spectro
copy provides direct information on the creation of carrie
and excitons and their subsequent dynamics.3–7Femtosecond
time-resolved absorption spectroscopy revealed the st
coupling between electronic and vibrational states in exc
state dynamics of the singlet exciton of polydiacetylen3

Time-resolved gain and absorption measurements have
performed to study the quantum yield of poly~paraphenyle-
nevinylene! for films, dilute blends and solutions, the defe
quenching of luminescence, the formation and decay
excitons,4 and the energy relaxation and field-induced ex
ton dissociation.5 Degenerate four-wave mixing measur
ments have been performed in perylenes.6 Recently, the
dephasing dynamics of vibronic states in polydiacetyle
films has been investigated.7 These experiments are usual
interpreted by simply applying kinetic equations for excit
state populations using phenomenological decay rates.

The calculation of electronic excitations in conjugat
polyenes constitutes a complex many-body problem du
the strong correlation effects expected for one dimensio
electronically delocalized systems. Exactab initio quantum
chemistry methods8–10 look at effects of correlations throug
the positions of energy levels and the transition dipole m
ments. These methods are limited to small systems.
time-dependent Hartree-Fock11 ~TDHF! approach offers a
convenient scheme for studying correlation effects in mu
larger systems. The method is not exact and neglects gro
state correlations, however, it includes some important
cited state correlation effects, which in many cases domin
the response. The approach further provides a classical
tronic oscillator picture for the optical response.12 This al-
lows the development of physical insight and establishe
connection between chemical structure and optical non
earities, which is not available through traditional a
550163-1829/97/55~8!/4960~18!/$10.00
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proaches based on eigenstates. This method has been
cessfully applied to several conjugated systems; details
the advantages of this approach as well as its limitations
be found in Refs. 12–15.

In this paper we investigate how ultrafast resonant fo
wave mixing ~FWM! can be used to provide some altern
tive, dynamical, signatures of electronic correlations. O
analysis is based on the recently developed coupled e
tronic oscillator representation of the optical response,
tained by following the dynamics of the reduced single el
tron density matrix.12We expand the equations of motion fo
the density matrix in terms of amplitudes of the vario
electron-hole oscillators. With these equations the optical
sponse is mapped onto a set nonlinear equations; optical
linearities are attributed to anharmonicities and scattering
oscillators.12–14 The equations of motion derived here ho
for the optical response up to the third order in the incom
field. However, extending the present framework to high
order nonlinearities is straightforward.

We have applied this technique to the calculation o
specific resonant time-domain experiment, namely dege
ate FWM in the two-pulse self-diffraction setup. We co
sider the signal generated in the 2k22k1 direction, where
k2 andk1 are the incoming wave vectors. We assume re
nant excitation of the lowest 1Bu oscillator and identify the
oscillators which contribute to this signal. Electronic corr
lations, which manifest themselves as nonlinear coupli
between oscillators, lead to distinct signatures in the FW
signal. Our analysis shows that for the signal conside
here, only two oscillators have to be considered explici
which allows for a very clear and intuitive description of th
various nonlinearities.16 We shall refer to these as the pr
mary oscillators. All other oscillators are excited of
resonance. Their dynamics follow adiabatically the exci
tion and therefore they can be eliminated from the equatio
which results in new anharmonic couplings as well as ren
malizations of the existing anharmonicities of the prima
oscillators.

To analyze the time-domain signatures of correlations,
compare calculations made using the simple Hu¨ckel ~SSH!
model,17 which includes no correlations in the optical r
sponse, with the Pariser-Parr-Pople~PPP! model, where
Coulomb interactions are included. We find some unique s
4960 © 1997 The American Physical Society
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natures of correlations in the ultrafast signals. First, due
correlations the shape of the FWM amplitude is chang
from a free-induction decay, which has a maximum imme
ately after the excitation, to one which displays a delay
maximum as function of time. The results are compared w
inorganic semiconductor nanostructures, where such eff
have been predicted18–20and observed.21,22 Second, the cor-
relations also strongly affect the dynamics of the phase of
FWM signal. The relative phase of the FWM signal wi
respect to the exciting pulses changes fromp/2 for the
Hückel model to about 0 orp, depending on the signs of th
anharmonic coupling coefficients. Third, for the PPP mo
we find strong signals for negative delays~pulsek2 comes
first!, which are absent in a simple two-level model. Su
signals reflect the contributions of a third level which cou
either be a two-photonAg oscillator or a many body effect o
two Bu oscillators.

23,24Our calculations show that anharm
nicities due to many-particle interactions dominate these
nals in conjugated polyenes. This state of affairs is remin
cent of molecular aggregates and was recently analyzed
photosynthetic antenna complexes.25

II. THE COUPLED ELECTRONIC OSCILLATOR
REPRESENTATION

We consider a system of manyp electrons described b
the tight-binding PPP Hamiltonian, which reproduces ma
important properties of conjugated polyenes26

Ĥ5 (
m,n,s

tmncm,s
1 cn,s1

1

2 (
m,n,s,s8

Vnmcm,s
1 cn,s8

1 cn,s8cm,s

2E~ t !(
n,s

mnncn,s
1 cn,s , ~1!

wherecm,s
1 (cm,s) is the creation~annihilation! operator of a

p electron on sitem with spin s and r̂nm
s 5cm,s

1 cn,s is the
reduced single-electron density matrix.

The first term is the Hu¨ckel Hamiltonian wheretnn is the
Coulomb integral at thenth atom @ tnn5(mVnm ; tmn
(mÞn) is the nearest-neighbor transfer integral betwe
nth andmth atoms# tn,n615b02b1l n andl n is the deviation
of thenth bond length from the mean bond length along
chain. The second term includes electron-electron Coulo
interactions. The repulsion between thenth andmth sites
Vnm is given by the Ohno formula

Vnm5
U

A11~r nm /a0!
2

~2!

representing the variation of the repulsion between thenth
andmth site with distance; here the on-site Hubbard rep
sion between thenth and mth sites U is given by
U5U0 /e, and e is the static dielectric constant. The la
term represents the coupling to and external electric fi
E(t). We assume a localized basis set so that the dip
moment is diagonalmnm5ezndnm . The dipole operator is
given by

m5(
n,s

mnncn,s
1 cn,s . ~3!
o
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We further assume that ground state is a singlet, and ca
described by the HF single electron density matrixr̄nm , so
that the spin variables may be eliminated.12

The parameters used were adjusted to reproduce the
ergy gap for polyacetylene~2.0 eV!: U0511.13 eV,
b0522.4 eV,b1523.5 eV Å21, e51.5, a051.2935 Å.13

For comparison, we also performed calculations using
Hückel model where the Coulomb interaction is neglect
U050. In this case we usedb1525 eV Å21 in order to
reproduce the PPP band edge.

The TDHF technique11 maps the calculation of the optica
response onto the dynamics of coupled electronic oscilla
representing the electron-hole pair components of the
duced single electron density matrix.12 We first find the
Hartree-Fock~HF! ground state. The stationary HF densi
matrix r̄ satisfies

@h~ r̄ !,r̄ #50, ~4!

where

h~ r̄ !5t1V~ r̄ !, ~5!

V~ r̄ !mn52Vmnr̄mn12dmn(
l
Vmlr̄ l l . ~6!

h is the Fock operator andV is the Coulomb operator. Equa
tion ~4! can be solved by an iterative diagonalization. W
have calculated the geometry optimized HF ground state27 as
described in Ref. 13.

When the polyene is driven by an external field, the de
sity matrix becomes time dependent. We shall represent

r~ t !5 r̄1j~ t !1T@j~ t !#. ~7!

Here,j represents the particle-hole andT(j) is the particle-
particle and the hole-hole parts of deviation of the reduc
single-electron density matrix from the ground stater̄. All
quantities in Eq.~7! areN3N matrices, whereN is the basis
set size. In this scheme, which is valid in the absence of p
dephasing, the particle-particle and hole-hole component
the density matrix need not to be considered as indepen
variables, since they can be expressed in terms of
particle-hole part.12 Therefore only the particle-hole compo
nents of the density matrix,j, need to be calculated explic
itly.

T can be expanded in a Taylor series which contains o
even powers ofj. For optical signals not higher thanx (3) it
is sufficient to retain only the lowest~second order! term

T~j!5 1
2 @@j,r̄ #,j#. ~8!

The equation of motion for the particle-hole part of th
density matrix is given by (\51):

i
]

]t
j~ t !5L~j!2E@m,r̄1j1T~j!#1@V~j!,j#

1@V~j!,T~j!#1@V„T~j!…,j#1@V„T~j!…,r̄ #,

~9!

where the Liouville space operator~superoperator! L repre-
sents the linear part of the equation13
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L~j!5@ t1V~ r̄ !,j#1@V~j!,r̄ #. ~10!

The induced-polarization@neglecting the equilibrium po
larization Tr(mr̄), which does not affect in the optical re
sponse# is given by the sum of its particle-hole and particl
particle contributions

P@j~ t !#5Tr@mj~ t !#1Tr$mT@j~ t !#%, ~11!

wherem is the dipole operator defined in Eq.~3!, andj(t) is
the time-dependent driven electron-hole part of the den
matrix.

A. Equations of motion for electron-hole oscillators

As shown in Ref. 12 the particle-hole part of the dens
matrix can be expanded on terms of modesja

j~ t !5 (
a.0

@jaza~ t !1ja
1za* ~ t !#. ~12!

Each oscillatora is described by two operatorsja andja
1 .

These oscillator variables are related to the oscillator coo
nate Qa5(1/A2)(ja1ja

1) and the momentumPa5( i /
A2)(ja2ja

1).12 As in Ref. 12 we definej2a5ja
1 . za and

its complex conjugatez2a5za* will be denoted as complex
oscillator amplitudes. The oscillator variables are the eig
modes of the linear part of Eq.~9! and satisfy

L~ja!5Vaja , L~j2a!52Vaj2a . ~13!

They are normalized using the condition

Tr~ r̄@j2a ,ja#!51. ~14!

Inserting the expansion Eq.~12! into Eq. ~9! gives the fol-
lowing equations for the complex amplitudeza(t) of the
oscillator variableja :

i
]

]t
za5Vaza2Ema2E(

b
ma,bzb2E(

bg
ma,bgzbzg

1(
bg

Va,bgzbzg1(
bgd

Va,bgdzbzgzd , ~15!

with

ma5Tr~@ r̄,j2a#@m,r̄ # !,

ma,b5Tr~@ r̄,j2a#@m,jb#!,

ma,bg5Tr~@ r̄,j2a#@m, 12 @@jb ,r̄ #,jg##!, ~16!

Va,bg5Tr~@ r̄,j2a#@V~jb!,jg#!1Tr„@ r̄,j2a#

3@V~ 1
2 @@jb ,r̄ #,jg#!,r̄ #…,

Va,bgd5Tr„@ r̄,j2a#@V~ 1
2 @@jb ,r̄ #,jg#!,jd#…1Tr„@ r̄,j2a#

3@V~jd!, 12 @@jb ,r̄ #,jg##….

Equation~15! constitutes the equations of motion forza with
a.0. The amplitudes for the adjoint~negative frequency!
variables are simply the complex conjugates, see Eq.~12!.
ty

i-

-

The summation indicesb, g, andd on the right hand side o
Eq. ~15! run over all~positive and negative frequency! oscil-
lator variables.

The first two terms in the right hand side of Eq.~15!
represent a linearily driven harmonic oscillator. The oth
terms are anharmonicities describing coupling among e
tronic oscillators. We label field-induced and purely mater
anharmonic coefficients bym andV, respectively. Note tha
the summations on the right hand side include terms wh
the summation indices are equal (b5g5d) ~diagonal anhar-
monicities!. It is important to note that, as is evident fro
Eq. ~16!, all the anharmonic coefficients can be calculat
using the ground state density matrixr̄ as well as the eigen
modesja of the linearized TDHF equation.

The optical polarization is given by

P~ t !5(
b

m̃bzb~ t !1(
bg

m̃bgzb~ t !zg~ t ! ~17!

with

m̃b5Tr~mjb!,

m̃bg5Tr~m 1
2 @@jb ,r̄ #,jg#!. ~18!

As in Eq. ~15! also in Eq.~17! the summation indicesb and
g run over all oscillator variables. Equations~15! and ~17!
may be used to compute the optical response of our ma
electron system. This task has therefore been mapped
finding the oscillators and the nonlinear couplingsm and
V. m describes optical transitions between the oscillat
whereasV describes scattering between oscillators, induc
by the many-body Coulomb-interaction.

For a polyacetylene chain withN carbon atoms andN
p electrons there areN2/4 particle-hole oscillators. Equatio
~15! therefore represents the equations of motion for
N2/4 complex amplitudes of oscillator variables associa
with positive frequencies. In Ref. 12 equivalent equations
motion have been given for the coordinateQa and the mo-
mentumPa of the oscillators. In the analysis of resona
optical nonlinearities it is more convenient to use the co
plex amplitudes, rather than coordinates and momenta.
expansion of the density matrix in the wave-vectors of
exciting fields, which corresponds to an expansion with
spect to the central excitation frequencies, is simpler in t
case. The equations used in Ref. 28 contain also part
particle and hole-hole oscillators to a total number ofN2.
These equations are also equivalent to the present ones,
within the TDHF the additional oscillators carry no inform
tion and can be eliminated rigorously.12

B. Two-oscillator representation of resonant four-wave mixing

In Appendixes A and B we show how our equations
motion can be applied to compute optical nonlinearities
duced by a multiple-pulse excitation. A major advantage
the oscillator representation is that in practical application
is usually necessary to include only very few oscillators. F
off-resonant susceptibilities these are the oscillators
couple most strongly to the ground state density matrix
tree diagram scheme for identifying the dominant oscillat
for the nonlinear response, order by order, has been de
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55 4963ELECTRONIC-OSCILLATOR ANALYSIS OF . . .
oped in Ref. 28. In this paper we consider resonant respo
and the most natural way to select the relevant oscillator
by including those oscillators whose frequencies are clos
various combinations of the incoming field frequencies. T
selectivity is expected to be more pronounced in the reso
case, which enables us to discuss the response using
few parameters~frequencies and anharmonic coefficien!
connected to the relevant oscillators.

The exciting field is given by

E~ t !5 (
j51,2

Êje
2[ ~ t2t j !/ t̄j ]

2
~eik j •r2 iv j t1e2 ik j •r1 iv j t!.

~19!

HereÊj is the real amplitude,t j is the time delay, andv j is
the central frequency of pulsej . In our numerical calcula-
tions we have assumed that the central frequencies of
exciting pulses coincide with that of the 1Bu oscillator,
which has the largest oscillator strength, i.
vL5v15v25V(1Bu)5V1, and we used a duration o
t̄15 t̄2520 fs for the Gaussian pulse envelopes. Since
spectral width of even these very short laser pulses~about
0.1 eV! is small compared to the frequency spacing betw
the oscillators, only a few oscillators will be excited res
nantly. Our calculations show that the first and third ord
response is to very good accuracy dominated by theBu
oscillator. In second order there may be oneAg oscillator
which appears as resonantly excited two-photon transit
This will be discussed later using Figs. 1 and 7.

In Appendix C we have developed equations which ret
only two resonantly excited primary oscillators, the 1Bu and

FIG. 1. Frequencies of allBu andAg oscillators for the Hu¨ckel
model of a 30 carbon atom polyacetylene chain. There are 113Bu

and 112Ag oscillators. The frequencies of the first eightBu (Ag)
oscillators are: 2.28, 3.35, 3.46, 3.46, 4.63, 4.66, 4.66, and 4.79
~2.82, 2.82, 3.99, 3.99, 4.13, 4.13, 5.30, and 5.30 eV!.
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oneAg oscillator, explicitly. The off-resonant contribution
from all other virtualAg oscillators in second order wer
adiabatically eliminated from the equations of motion, whi
results in renormalization of anharmonicities and scatter
constants. We thus obtain the following equations of mot
for the complex amplitudes of the two primary oscillators

i
]

]t
z15S V12vL2 i

1

T2
D z12m1E2E2~Y11X1!z1

2E2X21z212Em12z22E~s21Y31X3!z1z1

2E~s11Y21X2!z21z1

12V12z2z211~V11Y41X4!z21z1z1 , ~20!

z215z1* ,

i
]

]t
z25S V222vL2 i

1

T28
D z2

2Em12z11V12z1z1 . ~21!

Here we have added phenomenological dephasing timeT2
andT28 for the two oscillators andz21 denotes the amplitude
of the negative frequency variablej21 of the 1Bu oscillator,
see Appendix A. We assume that the relaxation times for
populations, i.e., particle-particle and hole-hole compone
of the density matrix, are given byT15T2/2. We thus do not
include pure dephasing processes. To investigate p
dephasing one needs to consider additional dyna
variables;29 this goes beyond the present treatment. In pr
ciple, the inclusion of dephasing times for the off-resona
oscillators results in imaginary contributions to the renorm
ization termsXi , Yi . Since in our case the detuning for th
off-resonant terms is very large compared to the depha
rate, those imaginary parts can be neglected.

All parameters appearing in Eqs.~20! and~21! have been
defined in Eqs.~C5!–~C10!. In Appendix C we also presen
the equations in more detail, including indices denoting
propagation directions. To obtain the FWM signal we so
Eqs. ~20! and ~21! order by order. In first order one has t
solve the equation forz1 keeping just them1E terms on the
right hand side. This represents a linearily driven harmo
oscillator with frequencyV1 and transition dipolem1. The
solution of this equation yieldsz1 for the propagation direc-
tionsk1 andk2. z21 is then the complex conjugate ofz1 with
the inverse directions2k1 and2k2 ~see the Appendixes!.
Then we solve the equation forz2 in second order, keeping
inhomogenities representing two-photon resonances, w
correspond to the direction 2k2. In the equation forz2 the
first term represents an oscillator with frequencyV2. The
other terms are nonlinear sources.m12 is a transition dipole
coupling the two oscillators andV12 a many-body induced
nonlinear coupling. Finally, the first and second order ter
are inserted again into the equation forz1 to calculate the
third orderkS52k22k1 component. The induced polariza
tion in this direction is given by

PS~ t !5e2 ivLtS m1z11(
b

m21bz21zb1(
b

m1bz1zbD .
~22!

V
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As shown in Appendix C the amplitudes for the virtualAg
oscillators be evaluated analytically. Inserting these exp
sions, Eqs.~C1!–~C4!, into Eq.~22! simplifies the expression
for the polarization,

PS~ t !5e2 ivLt@m1z11m12z21z21~A11B1!z21~z1!
2

1~A21B2!Ez21z11A3E~z1!
2#

5e2 ivLtuPS~ t !ue2 iw8~ t !. ~23!

The anharmonic constantsA1, A2, A3, B1, andB2 arise from
the elimination of the virtual oscillators, see Eq.~C11!.
uPS(t)u is the time-resolved amplitude andw8(t) is the
slowly varying part of the phase. The total phase of the s
nal is given bywS(t)52@vLt1w8(t)#52wL(t)2w8(t),
wherewL(t) is exactly the phase of the exciting laser puls
see Eq.~19!. We later examine the relative phase of t
signal with respect to the exciting pulses30

Dw~ t !5wL~ t !2wS~ t !5w8~ t !. ~24!

This phase can be measured using heterodyne detection
time-integrated FWM signal is given by

SINT~t!5E uPS~ t !u2dt, ~25!

wheret is the time delay between the two pulses.
The interpretation of the various terms in Eq.~20!, which

generate the FWM signal, are as follows. First we discuss
terms which only involve the 1Bu oscillator.s1 is the only
nonlinearity which is also present in a simple two lev
system.31 It represents the creation of a FWM signal by sc
tering of the field off a transient grating (k22k1). It has its
origin in the fact that electrons are fermions and is usua
referred to as Pauli blocking or phase-space filli
nonlinearity.18,19,21s2 describes a similar process, where no
the field is scattered off a term rotating with twice the tra
sition frequency of the 1Bu oscillator (22v2), instead of a
transient grating term (v12v2), which has no optical rota
tion frequency, sincev15v2. V1 formally appears as a
local-field-like nonlinearity.18,29 It describes self-scatterin
of the excitation of the 1Bu oscillator induced by the many
particle Coulomb-interaction. Next we discuss the terms
sulting from theAg oscillator, which is excited resonantly i
second order.m12 is the transition dipole which couples th
Ag and 1Bu oscillators. It describes the creation of a thi
order polarization associated with the 1Bu oscillator, created
from the excitation of theAg oscillator times a field.m12 also
appears in the definition of the polarization. This term com
from the particle-particle part of the density matrix.V12 de-
scribes the many-particle induced coupling between theAg
and the 1Bu oscillator, which gives rise to nonlinear signa
All other terms (Xi andYi) come from the elimination of
off-resonant second order contributions.X1 ,Y1 ,X21 de-
scribe the creation of a FWM signal by scattering of a line
term by two fields. In the definition of these coefficients
s-

-

,

he

e

l
-

y

-

-

s

r

follows that they are determined only by dipole momen
between oscillators. All other terms resulting from the elim
nation process involve many-particle interactions betwe
oscillators, which means that they are zero for the Hu¨ckel
model. By inspection of the equations of motion one fin
that all these terms lead to renormalizations of already ex
ing nonlinear coupling coefficientss1 ,s2 ,V1. Finally, the
particle-particle part of the density matrix leads to the qu
dratic terms in the polarization, Eq.~22!.

Depending on the time delay, the FWM technique cons
ered here yields information about different anharmonic c
plings. For positive delay~pulse k1 comes first! this tech-
nique is known as photon echo, since in an inhomogeneo
broadened system the amplitude of the signal will have
echo-like envelope.31,32 As can be analyzed using Eq.~C7!,
for a positive delay larger than the pulse duration, when
overlap between the two pulses can be neglected, only fe
the inhomogentities in Eq.~20! contribute to the signal. Like
in a two-level system, the phase-space fillings1 and its
renormalizationsY2 and X2 only contribute for positive
delay.31,32 Also, the small renormalization termX21 only
contributes for positive delay. All of these inhomogeniti
explicitly contain pulsek2 multiplying a term which is
present after both pulses have excited the system, see
~C7!. This only leads to nonvanishing results, if pulsek2
comes after pulsek1. For positive delays also the many
particle induced terms represented by the nonlinear sca
ing potentialsV12 and V1, as well as its renormalization
Y4 andX4 contribute.

18,19The sources of these terms do n
contain an electric field, but are given by products of co
plex amplitudes. These amplitudes do not vanish as fas
the exciting pulses, but decay slowly as determined by
dephasing times. Therefore these many-particle terms
contribute to the signal for any time delay.18–20

For large negative delay the two-photon resonances
duce FWM signals even if many-particle interactions a
neglected.23,24 ~Note that for a linearily driven harmonic
three-level system, i.e., equal energy spacing and dipole
ments scaling likeA2, all nonlinear terms cancel identically
and the optical response is purely linear.! This is represented
by m12 and s2, as well as its renormalizationsY3 andX3.
These inhomogeneties contain pulsek1 multiplying a term
which is present after pulsek2 has excited the system, se
Eq. ~C7!. Such terms are nonvanishing only if pulsek1
comes afterk2. For a small~positive or negative! delay,
when the two pulses temporarily overlap, all of the inhom
geneties in Eq.~20! contribute. In addition to the ones dis
cussed before, also the small source termsY1 andX1, may
contribute to the signal. Since they contain explicitly bo
pulsek1 andk2 they vanish unless both pulses overlap.

III. NUMERICAL RESULTS

In this section we compare the calculated FWM sign
for the Hückel and the PPP models for a 30 carbon at
polyacetylene chain. The signal will be analyzed in terms
the anharmonicities and scattering of the oscillators as
scribed in the previous section. We tabulate all relevant c
pling constants and show how many virtual oscillators
needed for calculating the renormalized anharmonicities.
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A. Hückel model

We first discuss the properties of the geometry optimiz
ground state for the Hu¨ckel model.13,27 The ground state is
characterized by a uniform charge densityr̄nn50.5 at each
carbon atom. The second quantity, which is closely relate
the stabilization mechanism of the ground state, is the b
order defined by

pn5 r̄n,n111 r̄n11,n . ~26!

We further introduce the bond order alternation parame
p n8

p n85^pn&2~21!npn , ~27!

where^pn& is the average bond order, which is 0.64 in o
calculation. The geometry optimized ground state is a b
order wave, wherepn alternates between every tw
bonds.13,14Except for boundary effects near the chain end
has an almost uniform bond order alternation paramete
p n850.21. The average bond length is 1.0660.11 Å. Thus
the transfer integral can be approximated
tn,n615b̄@12(21)nd#, with b̄523.9 eV andd50.13.

For the Hückel model most of the coupling constants a
pearing in the equations of motion, Eqs.~20! and ~21!, are
zero, since the Coulomb matrix vanishes, see Table I.
surviving termsm1 ,s1 ,s2 ,m1n do not include the Coulomb
interaction. As can be seen in Appendix C, most of the te
arising from the elimination of the off-resonantAg oscillators
involve the Coulomb interaction. Therefore on
X1 ,X21 ,Y1 are finite. Additionally, for the Hu¨ckel model we
find no Ag oscillator which can be resonantly excited as
two-photon resonance. This can be seen from Fig. 1, wh
displays the frequencies of all oscillators. The frequency
the lowest 1Bu oscillator is 2.28 eV. TheAg oscillators

TABLE I. Mode frequencies and anharmonic coupling consta
for the Hückel and the PPP models.

Hückel PPP

V(1Bu) 2.28 eV 2.28 eV
V(5Bu) 3.99 eV 4.52 eV
m1 3.86e Å 4.80e Å
s1 23.86e Å 22.81e Å
s2 0.0e Å 0.017e Å
V1 0.0 eV 0.063 eV
m12 0.0 eV 0.66e Å
V12 0.0 eV 20.012 eV
X1 21.99e Å 2V21 5.36e Å 2V21

X21 0.0e Å 2V21 0.078e Å 2V21

X2 0.0e Å 0.26e Å
X3 0.0e Å 0.13e Å
X4 0.0 eV 20.083 eV
Y1 236.16e Å 2V21 223.0e Å 2V21

Y2 0.0e Å 21.33e Å
Y3 0.0e Å 20.67e Å
Y4 0.0 eV 0.035 eV
d

to
d

r

r
d

it
of

-

e

s

h
f

which are closest in frequency to twice the frequency of
1Bu are the 6Ag and 7Ag oscillators at 4.13 eV. The fre
quency difference 2V(1Bu)2V(6Ag)50.43 eV is already
larger than the spectral width of the exciting 20 fs las
pulses, which is about 0.1 eV. Therefore all contributio
from Ag oscillators can be assumed to be off-resonant
the only primary oscillator is the 1Bu . In the numerical cal-
culations of the FWM signal we have included the pheno
enological relaxation timesT2580 fs for the Bu and
T28540 fs for theAg oscillators.

In Figs. 2~a! and 2~b! we show the density matrices of th
ground state and of the 1Bu oscillator using thep orbital
~real-space! basis. The diagonals of these plots represent
charge densityrnn , the off diagonal elements show the ele
tronic coherences in the system. The ground state is m
localized along the diagonal than the oscillator, which sho
that the optical excitation creates electronic coherence in
system.

In Table I we give the relevant coupling constants for t
Hückel model. It turns out thatm152s1; this resembles a
simple two-level model, where the inhomogenity of the o
tical Bloch equation for the polarization readsmE(12n)
~here n is the population!.31 We also find thats2 is zero,
indicating that no two-photon resonance involving solely t
1Bu oscillator contributes to the signal, which again mimi
a simple two-level system. Therefore the only nonlinear
involving just the 1Bu oscillator, is given bys1, which rep-
resents a scattering of the field off a transient grating.

Looking at the coupling coefficients arising from th
elimination of theAg oscillators, it turns out thatX21 van-
ishes, andX1 and Y1 are finite. Both of these coefficient
represent the scattering of two fields of the linear excitati
These terms result in small contributions to the FWM sig
and, as can be seen from Eq.~C7!, they only contribute when
the two pulses overlap in time.

To find out how many virtual oscillators contribute t
these two terms, we show in Fig. 3 the convergence ofX1
and Y1 with the number of virtualAg oscillator variables
taken into account. The summations over theAg oscillators,
see Eq.~C10!, have been made in such a way that we st
with the largest term and then one by one include the sma
coupling terms. We see that by taking just 2~out of 224)
Ag oscillators variables into account to obtain a 0.5% ac
racy for X1 and 2.5% forY1. The two oscillators most
strongly coupled to the 1Bu oscillator are the 2Ag and 3Ag
oscillators; both have a frequency of 2.82 eV.

In Fig. 4 we display the amplitude and the relative pha
of the time-resolved FWM signal for time delayt50 fs for
three different models. Model IH is a full calculation whic
includes all oscillators explicitly, according to Appendix B
In models IIH and IIIH only the 1Bu oscillator has been
considered explicitly. The off-resonantAg oscillators enter
via renormalizations of the anharmonic couplings in mo
IIH ~see Appendix C!, while in model IIIH they are ne-
glected. We find that all three calculations are very simil
Only during the excitation process, when the signal is s
small, there are slight differences in the phase of the sign
This analysis shows that the resonant FWM signal for
Hückel model is well described by the 1Bu oscillator alone,
which can also be described using a simple two-level mo
The shape of the amplitude of the FWM signal represen

s
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FIG. 2. ~color! ~a! Ground state density matrix and~b! absolute value of density matrix representing the 1Bu oscillator for the Hu¨ckel
model.~c! Ground state density matrix and absolute value of density matrix representing the 1Bu ~d!, 3Ag ~e!, and 5Ag ~f! oscillators for the
PPP model~large is denoted by blue, green, and yellow. Small is denoted by red!.
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55 4967ELECTRONIC-OSCILLATOR ANALYSIS OF . . .
free-induction decay, which means that the signal reache
maximum immediately after the excitation by the pulses, a
subsequently decays.31 We also compute the relative phas
Dw of the FWM signal, which is given in Fig. 4~b!, after the
excitation process (t.20 fs! is equal top/2. This means
that, as in a resonantly excited classical oscillator, the o

FIG. 3. Convergence of anharmonicities for the Hu¨ckel model
as function of number of virtualAg oscillator variables. Shown is
the relative percent difference of the quantity to its converg
value.

FIG. 4. ~a! Time-resolved amplitude and~b! phase of the FWM
signal for time-delayt50 fs for the Hückel model. Solid line:
model IH, dashed: model IIH, dotted: model IIIH, and dashe
dotted: laser pulse envelope.
its
d

i-

cally excited polarization follows the laser pulse with a pha
shift of p/2, which is in agreement with the analytical sol
tion of optical Bloch equations performed for ultrasho
pulses.18,31 It has been shown that in this limit the FWM
signal caused by phase-space filling has a negative imagi
prefactor, which gives a relative phase ofp/2.

The second order density matrix has ak22k1 ~transient-
grating! and a 2k2 ~two-photon! component. The latter is
negligible in the present calculation. Figure 5~a! shows the
second order density matrix representing a transient gra
in real space,

r~21u1!~ t !5ei ~v12v2!tS 12 ~@@j1 ,r̄ #,j21#

1@@j21 ,r̄ #,j1# !z21
~21u0!~ t !z1

~0u1!~ t !

1(
b

jbzb
~21u1!~ t ! D . ~28!

Here, the upper indices refer to the propagation directio
see Appendix A. Due to the symmetry of this expression
density matrixr i j representing this term is zero ifi1 j is
even~this is indicated by the red squares in Fig. 5~a!, where
we have used a different plot style but the same color cod
in Fig. 2!. TheAg oscillator amplitudes (zb

(21u1)) are small,
and the odd index combinations show therefore a pro
similar to the 1Bu oscillator shown in Fig. 2~b!.

Since we have shown that the Hu¨ckel model behaves like
a simple two-level system, we expect no time-integra
FWM signal for negative delays. This is verified by Fig.
where we compare model IH and IIIH. While the signal f
positive delays decays withT2/2, as expected for a homoge
neously broadened two-level system, the signal decays m
faster for negative delays. The small signals for negat
delays solely originate from the finite pulse width. Th
dashed line in Fig. 6 represents the time-integrated signa
model IIIH, it lies almost exactly on the solid line represen
ing model IH.

We should, however, point out that the absence of
second primary oscillator, appearing as a two-photon re
nance is not an intrinsic property of the Hu¨ckel model. For
other sizes or bond alternation parameters there may beAg
oscillators with frequencies in the vicinity of twice the fre
quency of the 1Bu oscillator, which may then also contribut
to the nonlinear response. For the same parameters
here, we find that for a chain containing 22 carbon atoms
6Ag and 7Ag oscillators can be resonantly excited as tw
photon resonances@V(1Bu)52.56 eV,V(6Ag)5V(7Ag)
55.11 eV#. Our calculations show, that compared to t
1Bu oscillators, even for this case, theAg oscillators contrib-
ute only weakly for the signal. For zero delay they are
sponsible for only 0.8% of the signal~for the 30 carbon atom
chain this value is 0.2%!. However, for large negative de
lays, when the contributions from the 1Bu oscillator vanish,
the two-photon resonances induce a finite FWM signal.
the chain of 22 carbon atoms these signals for negative
lays are very weak. The time-integrated FWM signal f

d

-
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FIG. 5. ~color! Absolute value of second-order density matrixr (2)(t) at t520 fs representing transient-grating (k22k1) for ~a! model IH,
Eq. ~27!, ~b! model IP, Eq.~28!, ~c! model IIP, Eq.~27!, and~d! two-photon resonances (2k2) for model IIIP, Eq.~29!.
n
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en-
t52100 fs is five orders of magnitude smaller than the o
for zero delay. We therefore believe that our conclusio
drawn for the resonant response of Hu¨ckel model, regarding
the weak coupling of the 1Bu to theAg oscillators, are of
general nature.

B. PPP model

We shall now explore the role of electronic correlatio
by repeating the previous calculations for the PPP mo
Similar to the Hu¨ckel model, the geometry optimized H
ground state is characterized by a bond order wave wi
uniform charge density.13,27This structure is stabilized by th
electron-phonon and the Coulomb exchange interactio
The calculated ground state has an average bond o
^pn&50.63 and alternation parameterp n850.24. The average
bond order alternation is a little larger than in the Hu¨ckel
e
s

l.

a

s.
er FIG. 6. Time-integrated FWM for the Hu¨ckel model. Solid line:
model IH, dashed: model IIIH, and dashed-dotted: laser pulse
velope.
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55 4969ELECTRONIC-OSCILLATOR ANALYSIS OF . . .
model. The average bond length is 1.3160.05 Å, where the
alternation is due to the larger force constant smaller tha
the Hückel model.27 The average transfer integral can
approximated bytn,n615b̄@12(21)nd#, with b̄522.7 eV
andd50.07.

All of the coupling constants in Eqs.~20! and ~21! can
contribute once the Coulomb interaction is incorporated,
Table I. The frequency of the lowest 1Bu oscillator is again
2.28 eV. TheAg oscillator which is closest in frequency t
twice the frequency of the 1Bu is the 5Ag at 4.52 eV, see
Fig. 7. The frequency difference 2V(1Bu)2V(5Ag)
50.049 eV is smaller than the spectral width of the exciti
20 fs laser pulses. All other contributions fromAg oscillators
can be assumed to be off resonant. So the two primary
cillators, which are considered explicitly, are 1Bu and
5Ag .

In Figs. 2~c! and 2~d! we show the density matrices of th
HF ground state and of the 1Bu oscillator. Compared to the
1Bu oscillator, see Fig. 2, calculated for the Hu¨ckel model,
which is strongly delocalized in the off-diagonal directio
the many-particle Coulomb-interaction leads to localizat
of the oscillator towards the diagonal. Still the ground stat
again more localized along the diagonal than the oscilla
which shows that the optical excitation creates electronic
herence in the system. Also shown in Fig. 2 are the m
strongly contributingAg oscillators, ~e! the 3Ag , which
gives the strongest off resonant contribution, and~f! the
5Ag , which appears as a two-photon resonance.

In Table I we give the relevant coupling constants for t
PPP model. To simplify the analysis of these numero

FIG. 7. Bu andAg oscillator frequencies for the PPP model f
a 30 carbon atom polyacetylene chain. There are 113Bu and 112
Ag oscillators. The frequencies of the first eightBu (Ag) oscillators
are: 2.28, 3.49, 4.10, 4.57, 4.59, 4.95, 5.48, and 5.62 eV (2
3.73, 4.06, 4.52, 5.05, 5.12, 5.13, and 5.37 eV!.
in

e

s-

n
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-
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terms, we split the discussion into three parts. In model
like in model IIIH for the Hückel model, we neglect all con
tributions except for the ones involving only the 1Bu oscil-
lator. In addition to these contributions we include in mod
IIP the renormalization originating from the elimination o
the Ag oscillators appearing as transient-gratings (Xi). Fi-
nally, in model IIIP we also add the explicitly considere
5Ag oscillator, as well as all renormalizations induced
Ag oscillators appearing as two-photon resonances (Yi).

In model IP only the following terms contribute
m1 ,s1 ,s2 ,V1. s1 describes the phase space filling, unlike t
Hückel model, due to correlations its magnitude is not eq
to the magnitude of the dipolem1 but is somewhat smaller
s2 describes a similar process, where now the field is s
tered off a term rotating with twice the transition frequen
of the 1Bu oscillator, instead of a transient grating term lik
in s1, which basically has no rotation. In the absence
correlation~the Hückel model! s2 was zero, heres2 is finite,
but still very small, only 0.6% ofs1, and can therefore be
neglected.V1 represents a many-particle induced scatter
potential, which formally appears like a local fiel
correction.18–20Actually it includes all many-particle contri
butions involving only the 1Bu oscillator. Neglecting the
smalls2 contribution, the equation is equivalent to a nonli
ear wave-equation, which has been extensively used for
description of nonlinear optical properties of inorgan
semiconductors.18,19,21,30 In this sense the nonlinear wave
equation appears as a special case of the present osci
equations, obtained when some terms are neglected.
nonlinear wave equations can be derived by expanding
semiconductor Bloch equation33,34 in an excitonic basis,
keeping only the 1s exciton. In the language of the semico
ductor Bloch equations the nonlinear scattering potential
cludes energy and field renormalization terms, which are
duced by the many-particle Coulomb interaction.20,30

The FWM signal for model IP is given by the solid line
in Fig. 8, where both the amplitude of the FWM signal a
its relative phase are plotted. Compared to the Hu¨ckel model
calculations, the amplitude changes its shape. It is no lon
a free-induction decay, but has a maximum at later tim
which are determined by the dephasing times. This is
same signature that has been observed in time-reso
FWM experiments on inorganic semiconductor nan
structures.21,22,35In semiconductors these signal shapes h
been interpreted by a nonlinear Ginzburg-Landau-like wa
equation for the 1s exciton amplitude.18,19,21,30If we only
consider the 1Bu oscillator and further neglect the smalls2
term, we obtain an identical wave equation as a special c
of the oscillator equations. Besides the phase-space fil
(s1) induced by the many particle Coulomb interaction it h
an additional nonlinearity (V1), which formally appears like
a local field correction. This nonlinear scattering potent
describes scattering of the induced polarizations, resultin
a FWM signal. According to analytical solutions of optic
Bloch equations including a local field, this contribution h
a real positive prefactor.18,30 SinceV1 itself is positive and
since the many-particle induced FWM signal is like in ino
ganic semiconductors larger than the phase-space filling
relative phase of the FWM signal, solid line in Fig. 8,
about 0, i.e., the induced polarization is in phase with
exciting pulse.

9,
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Figure 5~b! shows the second-order density matrix in re
space, representing a transient-grating (k22k1) formed by
the 1Bu oscillator

r~21u1!~ t !5ei ~v12v2!t 1
2 ~@@j1 ,r̄ #,j21#

1@@j21 ,r̄ #,j1# !z21
~21u0!~ t !z1

~0u1!~ t !. ~29!

Due to the symmetry of this expression, as in the Hu¨ckel
model, the density matrixr i j representing this term is zero
i1 j is even~this is indicated by the red squares!. The odd
index combinations show a profile similar to the 1Bu oscil-
lator shown in Fig. 2~d!. Accordingly, like the 1Bu oscillator,
the corresponding transient-grating is also more localize
the PPP than in the Hu¨ckel model.

In model IIP the off-resonant transient grating contrib
tionsX1-X4 are included. The convergence of these para
eters with the number of oscillator variables is shown in F
9. The value forX1, which is a small contribution, since
describes scattering of a linear term off two-fields, is
2.7% accuracy given by the coupling to the 3Ag oscillator.
For X21, we have to keep fiveAg oscillator variables to ge
5% accuracy.X2, which acts as a renormalization ofs1, is to
within 5% given by the coupling to the 3Ag oscillator alone.
For X3, which acts as a renormalization ofs2, we have to

FIG. 8. ~a! Time-resolved amplitude and~b! phase of the FWM
signal for time-delayt50 fs for the PPP model. Solid line: mode
IP, dashed: model IIP, dotted: model IIIP, and dashed-dotted: l
pulse envelope.
l

in

-
-
.

keep contributions from threeAg oscillators variables to ge
it to 3% accuracy. To getX4, the renormalization of the
nonlinear scattering potentialV1 also within 5%, we have to
keep 16 oscillator variables. The expression forX4 is entirely
determined by the Coulomb interaction between different
cillators. Its slow convergence as function of the number
oscillators variables compared to the other quantities in
cates, that the Coulomb interaction couples the oscilla
much less selectively than the dipole coupling, which
present in the expressions for the other terms.

The FWM signal for model IIP is given in Fig. 8~dashed
lines! where the absolute value as well as the relative ph
of the FWM signal are plotted. The most notable chang
between the signal involving only the 1Bu oscillator and the
present one are the decrease in amplitude and the chan
phase. These features can be simply explained by cons
ing the values ofV1 and its renormalizationX4. While V1 is
positive 10.063 eV,X4 is calculated to be negative an
larger in absolute value20.082 eV. Therefore the effectiv
nonlinear scattering potentialV11X4520.019 eV is nega-
tive and about a factor 3 smaller thanV1. This reduces the
amplitude of the interaction-induced contribution to the s
nal and changes its phase, which in turn explains the
served differences. This change of phase has strong influ
on the spectrally resolved FWM signal. While the Four
transform~FT! of the signal originating from the 1Bu oscil-
lator is, like in inorganic semiconductors,30,36 slightly asym-
metric with respect to detuning with a tail towards low
frequencies, the FT of the signal for model IIP, is asymm
ric with tails towards higher frequencies. These spectral f
tures can also be analyzed using a Wigner spectrogram37,38

as discussed in Ref. 16.
Figure 5~c! shows the transient-grating (k22k1) part of

the second order density matrix in real space. It is formed
the 1Bu oscillator and someAg oscillators and given by Eq
~28!. The density matrix contains contributions from th
1Bu and about eightAg oscillators, which contribute mos
strongly toX4. r i j is again zero ifi1 j is even~this is indi-

er

FIG. 9. Convergence of theX anharmonicities for the PPP
model as function of number of virtualAg oscillator variables.
Shown is the relative percent difference of the quantity to its c
verged value.
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55 4971ELECTRONIC-OSCILLATOR ANALYSIS OF . . .
cated by the red squares!. Due to the contributingAg oscil-
lators, the resulting density matrix extends further to the of
diagonal than the one originating from the 1Bu oscillator
alone.

So far, our analysis demonstrated that the off-resona
terms involving transient gratings contribute significantly. I
addition to the previous terms we include in model IIIP a
renormalizations arising from terms representing two-phot
resonancesY12Y4. Their convergence with the number o
virtual oscillators variables is shown in Fig. 10. The valu
for Y1 ~which is a small contribution, since it describes sca
tering of a linear term off two fields! is to 0.7% given by the
coupling to the 3Ag oscillator. The value forY2 (Y3), which
act as renormalizations ofs1 (s2), is to 0.1% (0.2%! given
by the coupling to the 3Ag oscillator. The reason that we
essentially only need the 3Ag oscillator to determineY1-Y3
is that in addition to its strong dipole coupling to the 1Bu
oscillator, it is not too much off resonant compared to mo
other oscillators. To getY4, the renormalization of the non-
linear scattering potentialV1 also within 5%, we have to
keep two oscillators the 3Ag and the 8Ag . As a two-photon
resonance we also keep the 5Ag explicitly. It is dipole and
Coulomb coupled to the 1Bu oscillator bym12 andV12.

The FWM signal for model IIIP is given in Fig. 8~dotted
line!. Compared to model IIP, the amplitude increases aga
and the phase is close to 0. In order to explain these chan
we have to consider two effects. First, like before, the reno
malization ofV1. The effective nonlinear scattering potentia
is now given byV11X41Y4 which is 0.016 eV, a positive
but quite small value. Second, the increase in amplitude
caused by the contribution from the two-photon resonan
represented byV12, which describes the Coulomb coupling
between the 1Bu and the 5Ag oscillator.

This change of phase will again influence the spectra
resolved FWM signal, which is now again asymmetric wit
respect to the detuning with tails towards negative detunin
This is the same signature which appears when we keep o
the 1Bu oscillator, and is also the typical signature in the F
FWM signal of inorganic semiconductors.30,36

Figure 5~d! shows the two-photon resonance (2k2) part of
the density matrix in real space, which is formed by th
1Bu oscillator and someAg oscillators, and given by

FIG. 10. Same as Fig. 11 but for theY anharmonicities.
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r~0u2!~ t !5e22iv2tS 12 ~@@j1 ,r̄ #,j1#1@@j1 ,r̄ #,j1# !~z1
~0u1!~ t !!2

1(
b

jbzb
~0u2!~ t ! D . ~30!

The density matrix consists of small contribution from t
1Bu and about mainly twoAg oscillators, namely 3Ag and
5Ag . Its shape is essentially a superposition of the den
matrices representing the 3Ag and the 5Ag oscillators, shown
in Fig. 2.

Having analyzed the different contributions to the nonl
ear optical response within the PPP model, we propos
simplified two-oscillator model,16 which to a good accuracy
reproduces the signal. Compared to the model resulting f
the elimination of off-resonant contributions, we further n
glect small contributions likeX1, X21, andY1, and alsos2
and its renormalizationX3 andY3. We further neglect the
anharmonic constantsA1, A2, A3, B1, andB2 that appear in
the definition of the polarization. So now the off-resona
oscillators only enter in renormalizations ofs1 andV1. The
equations considered within this reduced model are16

i
]

]t
z15S V12vL2 i

1

T2
D z12m1E2Em12z22E~s11Y2

1X2!z1z2112V12z2z211~V11Y41X4!z21z1z1 ,

~31!

z215z1* ,

i
]

]t
z25S V222vL2 i

1

T28
D z22Em12z11V12z1z1 . ~32!

The induced polarization is given by

PS~ t !5e2 ivLt~m1z11m12z2z21!. ~33!

We compare the results obtained for this model~IVP! with
results obtained by a full calculation~VP!, where we have
kept all oscillators explicitly~in practice these results wer
obtained by a real-space calculation!, see Appendix B. The
good agreement between the two calculations shown in
11, confirms the validity of this simplified description. The
are only slight differences in the amplitude and the phase
the FWM signal mainly during the initial excitation proces

Another important effect is the existence of strong FW
signals for negative delays, which may be induced by eit
two-photonAg oscillator variables, or by many-body anha
monicities of theBu oscillators. Our calculations show tha
as for positive delay, the many-body anharmonicities c
tribute most strongly to the signal for negative delays. T
time-integrated signals in Fig. 12 decay for positive dela
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4972 55T. MEIER, S. TRETIAK, V. CHERNYAK, AND S. MUKAMEL
with T2/2, and for negative delays with aboutT2/4.
18,19 The

very weak modulations, which can be seen for negative
lays, are due to quantum beats with a frequency determ
by 2V(1Bu)2V(5Ag). The results for the full model VP
~solid line! and the reduced model IVP~dashed line! are
again in very good agreement.

IV. SUMMARY

In summary, we have modeled resonant two-pulse fo
wave mixing experiments in conjugated polyenes using

FIG. 11. ~a! Time-resolved amplitude and~b! phase of the FWM
signal for time-delayt50 fs for the PPP model. Solid line: mode
VP, dashed: model IVP, and dashed-dotted: laser pulse envelo

FIG. 12. Time-integrated FWM for the PPP model. Solid lin
model VP, dashed: model IVP.
e-
ed

r-
e

electronic-oscillator representation. We found that it is on
required to consider two electronic oscillators explicitly. T
role of electronic correlations has been clarified by comp
ing calculations done in the absence of electronic corre
tions ~Hückel model! and with strong electronic correlation
~PPP model!. While both models have similar linear optica
properties, i.e., a strong lowest transition at the same spe
position, their nonlinear optical properties are very differe
For the PPP model we predict signatures of electronic co
lations, which should be observable in ultrafast optical sp
troscopy, in both the phase and the amplitude of the sig
We expect analogous effects to be observable us
frequency-domain resonant four-wave mixing technique39

The coupling coefficients leading to the nonlinear optic
response as well as the calculated signals have been
pared to theoretical and experimental treatments for in
ganic semiconductors. The present approach provides a
fied theoretical analysis of resonant nonlinear experiment
organic and inorganic materials.
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APPENDIX A: EQUATIONS OF MOTION
FOR TWO-PULSE NONLINEAR OPTICAL RESPONSE

In this appendix, we show how the oscillator equations
motion can be used to describe multiple-pulse optical exp
ments. We consider a two-pulse nonlinear optical exp
ment, where the exciting field is given by

E~ t !5E1~ t !~e
ik1•r2 iv1t1e2 ik1•r1 iv1t!

1E2~ t !~e
ik2•r2 iv2t1e2 ik2•r1 iv2t!

5E1
1~ t !e2 iv1t1E1

2~ t !eiv1t

1E2
1~ t !e2 iv2t1E2

2~ t !eiv2t. ~A1!

E1,2(t) are the pulse envelopes. The termEi
1 (Ei

2) refer to
the components ofE with direction 1k i (2k i). Such an
exciting field will create excitations associated with differe
directions eiK•r, K5nk11mk2, where n,m can be any
integers.20,40We label these different directional componen
by (num), which refers to the excitation associated with t
direction nk11mk2. Inserting this decomposition into th
equations of motion, Eq.~15!, and transforming to the rotat
ing frame leads to

e.
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The polarization is given by

P~num!~ t !5ei ~nk11mk2!•r2 i ~nv11mv2!tS (b m̃bzb
~num!

1 (
n8,m8,bg

m̃bgzb
~n2n8um2m8!zg

~n8um8!D . ~A3!

These equations can be used to describe two pulse ex
ments; the generalization to experiments with more than
exciting pulses is straightforward. In Eq.~A2! we have only
to solve explicitly for the complex amplitudes of the oscill
tor variables associated with positive frequency (a.0). The
amplitudes for the corresponding modes with negative
quencies are determined byz2a

(num)5(za
(2nu2m))* . Here,2a

refers to the adjoint mode ofa. All oscillator variables and
amplitudes have to be included in the summations appea
on right-hand sides of Eqs.~A2! and ~A3!.

APPENDIX B: ITERATIVE CALCULATION
OF THE FOUR-WAVE MIXING SIGNAL

In the following we perform a detailed analysis of FW
in self-diffraction geometry, where the third-order signal
monitored in the direction 2k22k1. Only Bu oscillators can
be excited in the linear response,

i
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The second order response consists of different contr
tions. The particle-particle part is given byT(j) and has not
to be calculated separately, but is completely determined
the linear response.12 Additionally Ag oscillators can be ex-
cited in second order, representing the particle-hole par
the response. To calculate the FWM signal in the direct
2k22k1 in third order, we have to consider a transien
grating (k22k1; v12v2) and a two-photon (2k2; 22v2)
response.
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In third order again, onlyBu oscillators can be excited,
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The polarization in the 2k22k1 direction is finally given by

P~21u2!~ t !5ei ~2k112k2!•r2 i ~2v112v2!tS (
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Equations~B3! and ~B4! include all resonant and nonres
nant pathways that can contribute to the two-pulse FW
experiment considered here.

APPENDIX C: ELIMINATION OF OFF-RESONANT
OSCILLATORS

Below we describe how the general equations of mot
of Appendix B can be reduced to include only the relev
oscillators, which are needed for the description of reson
FWM. In our numerical calculations we have assumed t
the central frequency of both exciting pulses is in resona
with the transition to the 1Bu oscillator, i.e.,
vL5v15v25V(1Bu). The pulse envelopes are assumed

be Gaussian,E(t)}e2[( t2 t̂ )/ t̄ ] 2, with a width of t̄520 fs.
Since the spectral width of even these very short laser pu
~about 0.1 eV! is small compared to the frequency spaci
between the dominant oscillators, only a few oscillators w
be excited resonantly. Our calculations show that the fi
and third order response is to very good accuracy domin
by only the 1Bu oscillator. In second order there may be o
Ag oscillator which appears as resonantly excited two-pho
transition. We now develop equations which only retain t
primary oscillators, the 1Bu and oneAg oscillator explicitly.
The off-resonant contributions from all otherAg oscillators
in second order, can be eliminated from the equations
motion and will result in renormalization of anharmoniciti
and scattering constants.

The elimination of the off-resonant oscillators goes as f
lows: In the equation of motion for the two-photon res
nancesza

(0u2) we assume that the amplitude adiabatically f
n
t
nt
t
e

o

es

l
st
ed

n

of
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lows its inhomogeneity on the right hand side of t
equation. So we can set (]/]t)za

(0u2)50 and then solve the
equation, which gives
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The contributions ofAg oscillator variables associated wit
negative frequency are given by
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Here the index 1 refers to the positive frequency oscilla
variable of 1Bu oscillator and21 to its adjoint, i.e. the nega
tive frequency variable.

The similar elimination can be done for the transie
grating like terms. Here all oscillators can be assumed to
off resonant, since there is no particle-hole oscillator w
zero frequency,

za
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and
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These expressions for the off-resonant second order q
tities can be inserted into the equation for the third or
amplitude, which leads to the renormalization of some n
linear coupling constants and a few additional terms. Af
this elimination, keeping just two oscillators explicitly (
refers to the 1Bu oscillator and 2 theAg considered as a
two-photon resonance!, the FWM signal is determined by th
following set of equations. In first order,
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In second order,
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And in third order,
. They
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The polarization in the direction is given by
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In these equations we have used some abreviations:

m15m̃1 ,

m1n5m1,n5mn,15~m̃21n1m̃n21!,

s15~m1,2111m1,121!,

s25m1,11,

V15~V1,11211V1,12111V1,2111!,

V125V2,115
1

2
~V1,2121V1,221!. ~C9!

The quantitiesXi andYi result from the elimination of the transient grating and two-photon resonances, respectively
are given by the following summations over theAg oscillator variablesb:

X15(
b

m1,bmb,11m1,2bmb,21

Vb
,

X215(
b

m1,bmb,211m1,2bmb,1

Vb
,
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The primes over the sum symbols forYi indicate, that the
summations exclude the positive frequency variable of
oneAg oscillator, which is explicitly considered as a two
photon resonance. In Sec. III we show, that to a very go
accuracy the approximate equations derived in this Appen
reproduce the full results calculated using Eqs.~B1!–~B4!.

Inserting the expressions for the amplitudes of the virt
oscillators Eqs.~C1!–~C4! into Eq. ~C9! allows to perform
the summations overb and simplifies the expression for th
polarization. As in the equations of motion, this procedu
results in some alternative anharmonic couplings:
n
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Here A1, A2, and A3 are obtained via elimination of the
transient-grating terms involving virtual oscillators, andB1,
as well asB2 from the corresponding two-photon terms.
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25O. Kühn, V. Chernyak, and S. Mukamel, J. Chem. Phys.105,
8586 ~1996!.

26H. Fukutome, J. Mol. Struct.~Theochem.! 188, 377 ~1989!, and
references therein.

27The geometry optimization enters into the Hamiltonian by a te
1
2(nK(xn2 x̄)2, wherexn is thenth bond length, we have used
force constant ofK521 eV Å(K538 eV Å! for the Hückel
~PPP! model and an equilibrium bond length ofx̄51.41 Å for
both models, see Ref. 13.

28G. Chen and S. Mukamel, Chem. Phys. Lett.240, 296 ~1995!.
e

.

,

.
.

29S. Mukamel,Principles of Nonlinear Optical Spectroscopy~Ox-
ford, New York, 1995!.

30D.S. Chemla, J.-Y. Bigot, M.-A. Mycek, S. Weiss, and W. Sch¨-
fer, Phys. Rev. B50, 8439~1994!.

31L. Allen and J.H. Eberly,Optical Resonances and Two-Level A
oms~Wiley, New York, 1975!.

32T. Yajima and Y. Taira, J. Phys. Soc. Jpn.47, 1620~1979!.
33W. Huhn and A. Stahl, Phys. Status Solidi B124, 167 ~1984!; S.

Schmitt-Rink, D.S. Chemla, and H. Haug, Phys. Rev. B37, 941
~1988!; M. Lindberg and S.W. Koch,ibid. 38, 3342~1988!.

34For a textbook discussion of the semiconductor Bloch equatio
see H. Haug and S.W. Koch,Quantum Theory of the Optica
and Electronic Properties of Semiconductors~World Scientific,
Singapore, 1994!, 3rd ed.

35F. Jahnke, M. Koch, T. Meier, J. Feldmann, W. Scha¨fer, P. Tho-
mas, S.W. Koch, E.O. Go¨bel, and H. Nickel, Phys. Rev. B50,
8114 ~1994!.

36J.-Y. Bigot M.-A. Mycek, S. Weiss, R.G. Ulbrich, and D.S
Chemla, Phys. Rev. Lett.70, 3307~1993!.

37Selected Papers on Coherence and Fluctuations of Light, w
Bibliography, edited by L. Mandel and E. Wolf~Dover Publica-
tions, 1970!.

38L. Cohen, Proc. IEEE77, 941 ~1989!.
39W.E. Torruelas, D. Neher, R. Zanoni, G.I. Stegeman, and F.

jzar, Chem. Phys. Lett.175, 11 ~1990!; M. Cha, W.E. Torruelas,
G.I. Stegeman, H.X. Wang, A. Takahashi, and S. Mukam
ibid. 228, 73 ~1994!; M.A. Dı́az-Garcı´a, I. Ledoux, F.
Fernández-Lázaro, A. Sastre, T. Torres, F. Agullo´-López, and J.
Zyss, J. Phys. Chem.98, 4495 ~1994!; M.A. Dı́az-Garcı´a, I.
Ledoux, J.A. Duro, T. Torres, F. Agullo´-López, and J. Zyss,
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