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Electronic-oscillator analysis of femtosecond four-wave mixing in conjugated polyenes
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Equations of motion which describe the nonlinear optical response of conjugated polyenes using a collective
electronic-oscillator representation are derived. Specific signatures of electronic correlations which enter as
anharmonicities and scattering between oscillators are predicted in ultrafast resonant four-wave mixing. Only
few resonant oscillators need to be considered explicitly; effects of the remaoffagsonank oscillators are
introduced via renormalized anharmonic coupling coefficients. The connection with inorganic semiconductors
is established.S0163-18207)05504-5

[. INTRODUCTION proaches based on eigenstates. This method has been suc-
cessfully applied to several conjugated systems; details of

Nonlinear optical spectroscopy of organic materials is arthe advantages of this approach as well as its limitations can
intensively developing field. It constitutes both fundamentalbe found in Refs. 12-15.
interest and potential practical applications. Compared to in- In this paper we investigate how ultrafast resonant four-
organic semiconductors, investigations of organic moleculewave mixing(FWM) can be used to provide some alterna-
are more difficult theoretically due to the complicated elec-tive, dynamical, signatures of electronic correlations. Our
tronic structure and experimentally due to problems relateé@nalysis is based on the recently developed coupled elec-
to sample quality, controlled synthesis, and poor solubility oftronic oscillator representation of the optical response, ob-
large moleculed? Resonant time domain nonlinear spectros-tained by following the dynamics of the reduced single elec-
copy provides direct information on the creation of carrierstron density matriX2 We expand the equations of motion for
and excitons and their subsequent dynaniiééemtosecond the density matrix in terms of amplitudes of the various
time-resolved absorption spectroscopy revealed the strorgjectron-hole oscillators. With these equations the optical re-
coupling between electronic and vibrational states in excitegponse is mapped onto a set nonlinear equations; optical non-
state dynamics of the singlet exciton of polydiacetyl2ne. linearities are attributed to anharmonicities and scattering of
Time-resolved gain and absorption measurements have beescillators>='* The equations of motion derived here hold
performed to study the guantum yield of pgdaraphenyle- for the optical response up to the third order in the incoming
nevinylené for films, dilute blends and solutions, the defect field. However, extending the present framework to higher
guenching of luminescence, the formation and decay oérder nonlinearities is straightforward.
excitons? and the energy relaxation and field-induced exci- We have applied this technique to the calculation of a
ton dissociatiorf. Degenerate four-wave mixing measure- specific resonant time-domain experiment, namely degener-
ments have been performed in perylefieRecently, the ate FWM in the two-pulse self-diffraction setup. We con-
dephasing dynamics of vibronic states in polydiacetylenesider the signal generated in thé,2-k, direction, where
films has been investigatédThese experiments are usually k, andk; are the incoming wave vectors. We assume reso-
interpreted by simply applying kinetic equations for excitednant excitation of the lowestH,, oscillator and identify the
state populations using phenomenological decay rates. oscillators which contribute to this signal. Electronic corre-

The calculation of electronic excitations in conjugatedlations, which manifest themselves as nonlinear couplings
polyenes constitutes a complex many-body problem due tbetween oscillators, lead to distinct signatures in the FWM
the strong correlation effects expected for one dimensionaignal. Our analysis shows that for the signal considered
electronically delocalized systems. Exadt initio quantum  here, only two oscillators have to be considered explicitly,
chemistry methods*°look at effects of correlations through which allows for a very clear and intuitive description of the
the positions of energy levels and the transition dipole movarious nonlinearitie$® We shall refer to these as the pri-
ments. These methods are limited to small systems. Thmary oscillators. All other oscillators are excited off-
time-dependent Hartree-Fdék(TDHF) approach offers a resonance. Their dynamics follow adiabatically the excita-
convenient scheme for studying correlation effects in mucttion and therefore they can be eliminated from the equations,
larger systems. The method is not exact and neglects grourmwhich results in new anharmonic couplings as well as renor-
state correlations, however, it includes some important exmalizations of the existing anharmonicities of the primary
cited state correlation effects, which in many cases dominatescillators.
the response. The approach further provides a classical elec- To analyze the time-domain signatures of correlations, we
tronic oscillator picture for the optical resporiéeThis al-  compare calculations made using the simpleckél (SSH
lows the development of physical insight and establishes aodel’ which includes no correlations in the optical re-
connection between chemical structure and optical nonlinsponse, with the Pariser-Parr-PoplePB model, where
earities, which is not available through traditional ap-Coulomb interactions are included. We find some unique sig-
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natures of correlations in the ultrafast signals. First, due t&We further assume that ground state is a singlet, and can be
correlations the shape of the FWM amplitude is changediescribed by the HF single electron density matrix,, SO

from a free-induction decay, which has a maximum immedi-that the spin variables may be eliminatéd.

ately after the excitation, to one which displays a delayed The parameters used were adjusted to reproduce the en-
maximum as function of time. The results are compared withkergy gap for polyacetyleng2.0 eV): Uy=11.13 eV,
inorganic semiconductor nanostructures, where such effecfg,= —2.4 eV, 8;=—3.5eVA™ 1 e=1.5a,=1.2935 A®

have been predictéd?°and observed:?? Second, the cor- For comparison, we also performed calculations using the
relations also strongly affect the dynamics of the phase of thellickel model where the Coulomb interaction is neglected,
FWM signal. The relative phase of the FWM signal with U,=0. In this case we use@;=—5 eV A1 in order to
respect to the exciting pulses changes fren2 for the reproduce the PPP band edge.

Hickel model to about O ofr, depending on the signs of the ~ The TDHF techniqu¥ maps the calculation of the optical
anharmonic coupling coefficients. Third, for the PPP modetesponse onto the dynamics of coupled electronic oscillators
we find strong signals for negative delafmilsek, comes representing the electron-hole pair components of the re-
first), which are absent in a simple two-level model. Suchduced single electron density matt&.We first find the
signals reflect the contributions of a third level which couldHartree-Fock(HF) ground state. The stationary HF density
either be a two-photoA oscillator or a many body effect of matrix p satisfies

two B, oscillators?>?* Our calculations show that anharmo- o

nicities due to many-particle interactions dominate these sig- [h(p),p]=0, 4

nals in conjugated polyenes. This state of affairs is reminis;
cent of molecular aggregates and was recently analyzed for
photosynthetic antenna complexXas. h(p)=t+V(p), (5

here

II. THE COUPLED ELECTRONIC OSCILLATOR R I _
REPRESENTATION V(P)mn=~VmnPmnT 26mn2 Vmipi - (6)

We consider a system of many electrons described by  is the Fock operator and is the Coulomb operator. Equa-
the tight-binding PPP Hamiltonian, which reproduces manytion (4) can be solved by an iterative diagonalization. We

important properties of conjugated polyeffes have calculated the geometry optimized HF ground tate
1 described in Ref. 13.
A= E tmCr Cnot = E VoG UC:(,rCn +Con o _ When.the polyene.is driven by an external field, the d(_an—
m.n,o T 2 e o ’ ' sity matrix becomes time dependent. We shall represent it as
t)=p+ &)+ TLEL)]. 7
—E(t)nE fennCrt oCr (1) p()=p+ &) +TLE(L)] )

Here, & represents the particle-hole amdé) is the particle-

wherec, , (Cn.,) is the creatior(annihilatior operator of a particle and the hole-hole parts of deviation of the reduced

7 electron on sitan with spin o and ;)g —c' ¢, is the smgle_—glegron density matrix frqm the groun_d stateAII_

reduced single-electron density matrixn.m e quantities in Eq(?) areNXN matrices, V.Vhe“N Is the basis
The first term is the Fickel Hamiltonian where, . is the set size. In this scheme, which is valid in the absence of pure

Coulomb integral at thenth atom [t =S, V. t. dephasing, the particle-particle and hole-hole components of

(m#n) is the nearest-neighbor transfer integral betweer;[he density matrix need not to be considered as independent

nth andmth atomg t, 1= Bo— Bal» andl, is the deviation variables, since they can be expressed in terms of the

particle-hole part? Therefore only the particle-hole compo-
of the nth bond length from the mean bond length along the ents of the density matrixt, need to be calculated explic-

chain. The second term includes electron-electron Coulomq

interactions. The repulsion between thth and mth sites ily. . . . .
S T can be expanded in a Taylor series which contains only
V,m is given by the Ohno formula

even powers of. For optical signals not higher thag® it

U is sufficient to retain only the lowessecond ordegrterm

Vin=——— 2 _
V1+(ram/@)® T(&)=2[[£p].€] ®

representing the variation of the repulsion betweenritie
and mth site with distance; here the on-site Hubbard repul
sion between thenth and mth sites U is given by
U=Uy/e, and e is the static dielectric constant. The last L
term represents the coupling to and external electric field iﬁg(t)=L(g)—E[,u,p+§+T(§)]+[V(§),§]
E(t). We assume a localized basis set so that the dipole

moment is diagonaj,m=€z,6,n. The dipole operator is +[V(E),T(E)]+[V(T(&)),E]+[V(T(€).p],
given by

The equation of motion for the particle-hole part of the
“density matrix is given by#{=1):

9

where the Liouville space operat@uperoperatorL repre-

N
= Ch oCh o+ 3 .
H nE;; Hon=n,otn.o ® sents the linear part of the equatidn
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L(&)=[t+V(p).£1+[V(&).p]. (10

The induced-polarizatiofneglecting the equilibrium po-
larization Tr(up), which does not affect in the optical re-
sponsgis given by the sum of its particle-hole and particle-
particle contributions

PLEM]=Tr u&(O) ]+ TH{aTLEMD ]} 11
wherew is the dipole operator defined in E@), and&(t) is
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The summation indiceg, v, andé on the right hand side of
Eq. (15 run over all(positive and negative frequencyscil-
lator variables.

The first two terms in the right hand side of E{.5)
represent a linearily driven harmonic oscillator. The other
terms are anharmonicities describing coupling among elec-
tronic oscillators. We label field-induced and purely material
anharmonic coefficients by andV, respectively. Note that
the summations on the right hand side include terms where

the time-dependent driven electron-hole part of the densitf® Summation indices are equg#i< y= 6) (diagonal anhar-

matrix.

A. Equations of motion for electron-hole oscillators

As shown in Ref. 12 the particle-hole part of the density
matrix can be expanded on terms of modgs

0= 2, [€azu(D+E,2,(D]. (12
Each oscillatore is described by two operatogs, and &, .
These oscillator variables are related to the oscillator coordi
nate Q,=(1/\2)(&,+ &) and the momentumP = (i/
V2)(é,—£)).1% As in Ref. 12 we definé_,=¢, . z, and

its complex conjugate_ =z will be denoted as complex
oscillator amplitudes. The oscillator variables are the eigen
modes of the linear part of E¢9) and satisfy

L()=Qu&s, L(§-0)=—0u8 . (13
They are normalized using the condition
Tr(p[é - o.€a])=1. (14

Inserting the expansion E@l2) into Eq. (9) gives the fol-
lowing equations for the complex amplitudg,(t) of the
oscillator variablet,,:

iﬁzaz 0,z,—Eu,— E% Ma,gZp~ EﬁE7 Ma,py252y
+ 2 Va,ﬁ’yzﬁzv'{' 2 Va,ﬂyﬁzﬂzﬂ/zﬁ' (15
By Byo
with
wa=Tr([p, &l 1.p]),
Ma’,ﬁ:Tr([Eg—a][Migﬁ])l
Ma,ﬁy:Tr([Eé:*a][lu“! %[[éﬁ vﬂvfy]])a (16)

Vesy=TH(pE_JIV(£0). £, )+ Tr(p 6]
X [V(% [[5,8 !ﬂ!g}/])vﬁ)y

Vagys=Tr((p.€- IV (3 [[€5.p1.6,D. €D+ Tr([(p,é- 4]

X [V(f,«;), % [[6,8 iﬁig'y]])'

Equation(15) constitutes the equations of motion fgy with
a>0. The amplitudes for the adjoirfthegative frequengy
variables are simply the complex conjugates, see (EJ.

monicitieg. It is important to note that, as is evident from
Eq. (16), all the anharmonic coefficients can be calculated
using the ground state density matgixas well as the eigen-
modes¢,, of the linearized TDHF equation.

The optical polarization is given by

P()=2 Tpzg(t)+ 2 Eapze(Dz,(1) (17
with
- Tip=Tr(uép),
Bpy=Tr( 3 [[€,01.6,]). (189

As in Eq.(15) also in Eqg.(17) the summation indiceg and
v run over all oscillator variables. Equatiof5) and (17)
may be used to compute the optical response of our many-
electron system. This task has therefore been mapped onto
finding the oscillators and the nonlinear couplingsand
V. w describes optical transitions between the oscillators
whereasV describes scattering between oscillators, induced
by the many-body Coulomb-interaction.

For a polyacetylene chain withl carbon atoms andi
m electrons there ard?/4 particle-hole oscillators. Equation
(15 therefore represents the equations of motion for the
N?/4 complex amplitudes of oscillator variables associated
with positive frequencies. In Ref. 12 equivalent equations of
motion have been given for the coordin&e and the mo-
mentum P, of the oscillators. In the analysis of resonant
optical nonlinearities it is more convenient to use the com-
plex amplitudes, rather than coordinates and momenta. The
expansion of the density matrix in the wave-vectors of the
exciting fields, which corresponds to an expansion with re-
spect to the central excitation frequencies, is simpler in this
case. The equations used in Ref. 28 contain also particle-
particle and hole-hole oscillators to a total numberNst
These equations are also equivalent to the present ones, since
within the TDHF the additional oscillators carry no informa-
tion and can be eliminated rigorousf.

B. Two-oscillator representation of resonant four-wave mixing

In Appendixes A and B we show how our equations of
motion can be applied to compute optical nonlinearities in-
duced by a multiple-pulse excitation. A major advantage of
the oscillator representation is that in practical applications it
is usually necessary to include only very few oscillators. For
off-resonant susceptibilities these are the oscillators that
couple most strongly to the ground state density matrix. A
tree diagram scheme for identifying the dominant oscillators
for the nonlinear response, order by order, has been devel-
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one Ay oscillator, explicitly. The off-resonant contributions

16 ; . )
from all other virtual Ay oscillators in second order were
adiabatically eliminated from the equations of motion, which
pp /] = i results in renormalization of anharmonicities and scattering
T — constants. We thus obtain the following equations of motion
_— for the complex amplitudes of the two primary oscillators
1?2 ——— S .
— —_— _ 0 1 )
E |Ezlz Ql_wL_|T_2 Zl_ILL]_E_E (Y1+X1)Zl
s 1o T—/—— _ -
S : _— —E?X_1Z 1~ Epipz,— E(S+ Y3+ X3)2424
) e— —_—
QDU_)- 8 - pe———— - _E(Sl+Y2+X2)Z,lZl
- T2V 15252 1+ (V1+ Y4+ X4)2-1212,, (20
6 4
z ,=77,
4 _ = ) é) ) l
——— |522: Or—2w —i T_é Z,
2r 7 —EBuioz1+Vi5217; . (21
Bu N Ag ] Here we have added phenomenological dephasing tirmes
0 andT, for the two oscillators and_, denotes the amplitude

of the negative frequency variabfe ; of the 1B, oscillator,

FIG. 1. Frequencies of aB, andA, oscillators for the Hokel  see Appendix A. We assume that the relaxation times for the
model of a 30 carbon atom polyacetylene chain. There areBL13 populations, i.e., particle-particle and hole-hole components
and 112A, oscillators. The frequencies of the first eigbi (Ay) of the density matrix, are given by, = T,/2. We thus do not
oscillators are: 2.28, 3.35, 3.46, 3.46, 4.63, 4.66, 4.66, and 4.79 e}hclude pure dephasing processes. To investigate pure
(2.82,2.82, 3.99, 3.99, 4.13, 4.13, 5.30, and 5.30. eV dephasing one needs to consider additional dynamic

. . . variables?® this goes beyond the present treatment. In prin-
oped in Ref. 28. In this paper we consider resonant responsgi,p|el the inclusion of dephasing times for the off-resonant

and the most natural way to select the relevant oscillators iggiators results in imaginary contributions to the renormal-
by including those oscillators whose frequencies are close t0 ation termsX. . Y. . Since in our case the detuning for the
[l [

varlou_s_co_mbmanons of the incoming field frequenmes. Theoff-resonant terms is very large compared to the dephasing
selectivity is expected to be more pronounced in the resona

. . : '?Elte, those imaginary parts can be neglected.
case, which enables us to discuss the response using very ,, parameters appearing in Eq0) and (21) have been
few parametergfrequencies a}nd anharmonic coefficignts defined in Eqs(C5)—(C10). In Appendix C we also present
connected to th? rele_:var_1t oscillators. the equations in more detail, including indices denoting the
The exciting field is given by propagation directions. To obtain the FWM signal we solve
_ Egs.(20) and (21) order by order. In first order one has to
E(t)= D Eje‘[“‘ﬁ)’ﬂz(e‘kj'r‘iw1t+ g ikjrHiofty solve the equation for, keeping just theu,E terms on the
=12 right hand side. This represents a linearily driven harmonic
(19 oscillator with frequencyl; and transition dipolew;. The

HereE, is the real amplituder; is the time delay, and; is ~ solution of this equation yields, for the propagation direc-
the central frequency of pulse In our numerical calcula- tionsky andk,. z_, is then the complex conjugate pf with
tions we have assumed that the central frequencies of bofRe inverse directions-k; and —k; (see the Appendixes
exciting pulses coincide with that of theBj oscillator, ~Then we solve the equation fag in second order, keeping
which has the largest oscillator strength, i.e.,inhomogenities representing two-photon resonances, which
o =w;=w,=0(1B,)=0;, and we used a duration of qorrespond to the directionl@. In the_ equation forz, the
t,=t,=20 fs for the Gaussian pulse envelopes. Since thdr'st term represents an oscillator with frequeri@y. The
spectral width of even these very short laser pulggmut  Other terms are nonlinear sources,, is a transition dipole
0.1 eV) is small compared to the frequency spacing betweegoupling the two oscillators andl;, a many-body induced
the oscillators, only a few oscillators will be excited reso-nonlinear coupling. Finally, the first and second order terms
nantly. Our calculations show that the first and third orderare inserted again into the equation farto calculate the
response is to very good accuracy dominated by tBg 1 third orderks=2k,—k; component. The induced polariza-
oscillator. In second order there may be ohg oscillator  tion in this direction is given by
which appears as resonantly excited two-photon transition.
This will be discussed later using Figs. 1 and 7. it

In Appendix C we have develgpeé;equations which retain T SV=® " MlzﬁEg ’u_lﬁz_lzﬁJr% H1p2aZp -
only two resonantly excited primary oscillators, thB land (22
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As shown in Appendix C the amplitudes for the virtug]  follows that they are determined only by dipole moments
oscillators be evaluated analytically. Inserting these expressetween oscillators. All other terms resulting from the elimi-

sions, Eqs(C1)—(C4), into Eq.(22) simplifies the expression nation process involve many-particle interactions between

for the polarization, oscillators, which means that they are zero for theckél
model. By inspection of the equations of motion one finds
P(t)=e 1l 1112, + sy 1Zo+ (A + Bz 4(21)? j[hat all these terms I_ead to re_nt_)rmalizations of already exist-

ing nonlinear coupling coefficients,;,s,,V,. Finally, the
+(Ay+By)Ez 12, +AsE(21)?] particle-particle part of the density matrix leads to the qua-

dratic terms in the polarization, ER2).

Depending on the time delay, the FWM technique consid-
ered here yields information about different anharmonic cou-
plings. For positive delaypulsek; comes first this tech-
The anharmonic constamdsg, A, Az, B;, andB, arise from  nique is known as photon echo, since in an inhomogeneously
the elimination of the virtual oscillators, see E(C11).  broadened system the amplitude of the signal will have an
|Ps(t)] is the time-resolved amplitude angd’(t) is the  echo-like envelopé:? As can be analyzed using E(C7),
slowly varying part of the phase. The total phase of the sigfor a positive delay larger than the pulse duration, when the
nal is given by og(t)=—[w t+¢'(t)]=— ¢ (t)—¢'(t),  overlap between the two pulses can be neglected, only few of
whereg (t) is exactly the phase of the exciting laser pulsesthe inhomogentities in Eq20) contribute to the signal. Like
see EQ.(19). We later examine the relative phase of thein a two-level system, the phase-space filling and its

=e leu|pg(t)|e ¢, (239

signal with respect to the exciting pulsés renormalizationsY, and X, only contribute for positive
delay3!%? Also, the small renormalization terrX_; only
contributes for positive delay. All of these inhomogenities
Ap()=¢L()~es() =0 (D). (24 P Y J

explicitly contain pulsek, multiplying a term which is
resent after both pulses have excited the system, see Eq.
. This only leads to nonvanishing results, if pulkg
comes after pulsé,. For positive delays also the many-
particle induced terms represented by the nonlinear scatter-
ing potentialsV,, and V,, as well as its renormalizations
Sint(7) = f |Ps(t)]%dt, (25 Y, andX, contribute!®'°The sources of these terms do not
contain an electric field, but are given by products of com-
_ _ plex amplitudes. These amplitudes do not vanish as fast as
wherer is the time delay between the two pulses. the exciting pulses, but decay slowly as determined by the
The interpretation of the various terms in Eg0), which  gephasing times. Therefore these many-particle terms will
generate the FWM signal, are as follows. First we discuss thggntripute to the signal for any time del&72°
terms which only involve the B, oscillator.s; is the only For large negative delay the two-photon resonances in-
nonlinearity which is also present in a simple two level gyyce FWM signals even if many-particle interactions are
systent! It represents the creation of a FWM signal by scat-neglected®?* (Note that for a linearily driven harmonic
tering of the field off a transient gratindk{—k). It has its  three-level system, i.e., equal energy spacing and dipole mo-
origin in the fact that electrons are fermions and is usuallyments scaling like/2, all nonlinear terms cancel identically,
referred to as Pauli blocking or phase-space fillinganq the optical response is purely lingdfhis is represented

H i+,,18,19,21 H imi . . .
nonlinearity. s, describes a similar process, where NOWpy 1., and's,, as well as its renormalizationgs and Xa.

the field is scattered off a term rotating with twice the tran-thage inhomogeneties contain pulse multiplying a term
sition frequency of the B, oscillator (—2w,), instead of & \yhich is present after pulse, has excited the system, see
t_ran5|ent grating t_ermaél—wz), which has no optical rota- Eq. (C7). Such terms are nonvanishing only if pulke
tion frequency, sincew;= @2 Vv, formally appears as @ comes afterk,. For a small(positive or negative delay,
Iocal-ﬁeld-.llkeT nonlinearity"® _It degcrlbes self-scattering \ynen the two pulses temporarily overlap, all of the inhomo-
of the excitation of the B, oscillator induced by the many- geneties in Eq(20) contribute. In addition to the ones dis-
particle Coulomb-interaction. Next we discuss the terms reg;ssed before. also the small source teMnsand X;, may
sulting from theA, oscillator, which is excited resonantly in contribute to the signal. Since they contain explicitly both

second ordeml_z is the transitio_n dipole which_ couples the pulsek, andk, they vanish unless both pulses overlap.
Ay and 1B, oscillators. It describes the creation of a third

order polarization associated with th8oscillator, created

from the excitation of thé\, oscillator times a fieldu,, also

appears in the definition of the polarization. This term comes
from the particle-particle part of the density matrik,, de- In this section we compare the calculated FWM signals
scribes the many-particle induced coupling betweenApe for the Hickel and the PPP models for a 30 carbon atom
and the B, oscillator, which gives rise to nonlinear signals. polyacetylene chain. The signal will be analyzed in terms of
All other terms ; andY;) come from the elimination of the anharmonicities and scattering of the oscillators as de-
off-resonant second order contributionX,;,Y,,X_; de-  scribed in the previous section. We tabulate all relevant cou-
scribe the creation of a FWM signal by scattering of a lineampling constants and show how many virtual oscillators are
term by two fields. In the definition of these coefficients it needed for calculating the renormalized anharmonicities.

This phase can be measured using heterodyne detection. T
time-integrated FWM signal is given by

Ill. NUMERICAL RESULTS
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TABLE I. Mode frequencies and anharmonic coupling constantsyhich are closest in frequency to twice the frequency of the

for the Hickel and the PPP models. 1B, are the &\ and 7A, oscillators at 4.13 eV. The fre-
- quency difference 2(1B,) - (6A;)=0.43 eV is already
Huckel PPP larger than the spectral width of the exciting 20 fs laser
Q(1B,) 228 eV 228 eV pulses, which is about 0.1 eV. Therefore all contributions
Q(5B,) 3.99 eV 452 eV from Ay os-cnlators can be. assumed to be off-regonant and
1y 3.86 A 480 A the qnly primary oscﬂla‘gor is theR,,. In_ the numerical cal-
S 38k A o8k A culations of the FWM signal we have included the phenom-
Sl 0 6eA 0 0i7eA enological relaxation timesT,=80 fs for the B, and
Ni 0.0 &V 0.063 eV T3=40 fs for theA, oscillators.
! 0'0 oV d%A In Figs. 2a) and Zb) we show the density matrices of the
\'L;lz 0.0 oV _0'012 oV ground state and of theBl, oscillator using ther orbital
12 b A2y -1 A2y -1 (real-spacgbasis. The diagonals of these plots represent the
X1 21.9% ) Vﬂ 536 2V _ charge density,,, the off diagonal elements show the elec-
X1 0.0e A%V 0.07& A%V tronic coherences in the system. The ground state is more
X2 0.0e A 0.26e A localized along the diagonal than the oscillator, which shows
X3 0.0e A 013 A that the optical excitation creates electronic coherence in the
X4 0.0 eV -0.083 eV system.
Y1 -36.1@ A%V -23.cA%v! In Table | we give the relevant coupling constants for the
Yo 0.0e A —-1.32A Huckel model. It turns out that;= —s,; this resembles a
Y3 0.0e A -0.67eA simple two-level model, where the inhomogenity of the op-
Y4 0.0eVv 0.035 eV tical Bloch equation for the polarization reageE(1—n)

(heren is the population®! We also find thats, is zero,
indicating that no two-photon resonance involving solely the
1B, oscillator contributes to the signal, which again mimics
We first discuss the properties of the geometry optimizeda simple two-level system. Therefore the only nonlinearity,
ground state for the Hikel model*?” The ground state is involving just the B, oscillator, is given bys,, which rep-
characterized by a uniform charge dengity,=0.5 at each resents a scattering of the field off a transient grating.
carbon atom. The second quantity, which is closely related to Looking at the coupling coefficients arising from the
the stabilization mechanism of the ground state, is the bondlimination of theA, oscillators, it turns out thaX_, van-
order defined by ishes, andX; andY; are finite. Both of these coefficients
represent the scattering of two fields of the linear excitation.
— — These terms result in small contributions to the FWM signal
Pn=pPnn+1t Pntan- (28)  and, as can be seen from EG.7), they only contribute when
the two pulses overlap in time.
We further introduce the bond order alternation parameter To find out how many virtual oscillators contribute to
Pn these two terms, we show in Fig. 3 the convergenc& pf
and Y; with the number of virtualA; oscillator variables
taken into account. The summations over fgoscillators,
see Eq.(C10), have been made in such a way that we start
with the largest term and then one by one include the smaller
where(p,) is the average bond order, which is 0.64 in ourcoupling terms. We see that by taking just(@ut of 224)
calculation. The geometry optimized ground state is a bongh | oscillators variables into account to obtain a 0.5% accu-
order wave, wherep, alternates between every two racy for X, and 2.5% forY;. The two oscillators most
+>14Except for boundary effects near the chain ends itstrongly coupled to the B, oscillator are the B, and 3A,

A. Huckel model

Pr=(Pn)—(—1)"py, (27

bonds:
has an almost uniform bond order alternation parameter ofscillators; both have a frequency of 2.82 eV.

pn=0.21. The average bond length is 1:08.11 A. Thus In Fig. 4 we display the amplitude and the relative phase
the transfer integral can be approximated byof the time-resolved FWM signal for time delay=0 fs for
thn+1=pB[1—(—1)"6], with B=—3.9 eV ands=0.13. three different models. Model IH is a full calculation which

For the Hickel model most of the coupling constants ap-includes all oscillators explicitly, according to Appendix B.
pearing in the equations of motion, Ed20) and (21), are  In models IIH and IlIH only the B, oscillator has been
zero, since the Coulomb matrix vanishes, see Table |. Theonsidered explicitly. The off-resonai, oscillators enter
surviving termsu,,S;,S,, 41, do not include the Coulomb  via renormalizations of the anharmonic couplings in model
interaction. As can be seen in Appendix C, most of the term$iH (see Appendix ¢ while in model IlIH they are ne-
arising from the elimination of the off-resonaiy oscillators  glected. We find that all three calculations are very similar.
involve the Coulomb interaction. Therefore only Only during the excitation process, when the signal is still
X1,X_1,Y; are finite. Additionally, for the Hekel model we  small, there are slight differences in the phase of the signals.
find no Ay oscillator which can be resonantly excited as aThis analysis shows that the resonant FWM signal for the
two-photon resonance. This can be seen from Fig. 1, whicltickel model is well described by theB], oscillator alone,
displays the frequencies of all oscillators. The frequency ofvhich can also be described using a simple two-level model.
the lowest B, oscillator is 2.28 eV. TheA, oscillators  The shape of the amplitude of the FWM signal represents a
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FIG. 2. (color) (a) Ground state density matrix arftd) absolute value of density matrix representing tii, bscillator for the Hekel
model.(c) Ground state density matrix and absolute value of density maitrix representing ie)13A, (e), and 54 (f) oscillators for the
PPP modellarge is denoted by blue, green, and yellow. Small is denoted by red
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cally excited polarization follows the laser pulse with a phase

A L L - shift of 7/2, which is in agreement with the analytical solu-
051 .\ R ] tion of optical Bloch equations performed for ultrashort
04r - V| 7] pulses®3! It has been shown that in this limit the FWM
03 p signal caused by phase-space filling has a negative imaginary
_ o o2r | ] prefactor, which gives a relative phaseof2.
o oir o ] The second order density matrix haka-k; (transient-
o 00F f=-Aa—a—a—a—a—u—4 grating and a X, (two-photon component. The latter is
g e g negligible in the present calculation. Figuréabshows the
T 02 r ] second order density matrix representing a transient grating
o 03 ] in real space,
-0.4 - .
OS5, ® e T

1 2 3 4 5 6 7 8 9 10

) 1 _
(=11 (4} = @i (@~ wo)t| —
number of A; oscillators variables p (t)=etorme2 (2 ([[&1,p].6-1]

1 (—1/|0) (0]1)
FIG. 3. Convergence of anharmonicities for theckel model TllE-1.p1 627 (D277 ()

as function of number of virtuah, oscillator variables. Shown is
the relative percent difference of the quantity to its converged

value. (28)

+% gﬁzgll>(t)>.

free-induction decay, which means that the signal reaches its

maximum immediately after the excitation by the pulses, andHere, the upper indices refer to the propagation directions,
subsequently decay$.We also compute the relative phase see Appendix A. Due to the symmetry of this expression the
A ¢ of the FWM signal, which is given in Fig.(8), after the  density matrixp;; representing this term is zero iif+j is
excitation processtt20 f9) is equal tow/2. This means even(this is indicated by the red squares in Figa)swhere
that, as in a resonantly excited classical oscillator, the optiwe have used a different plot style but the same color code as

amplitude of FWM signal

—_
o

05T iy

relative phase (n)

0.0 L ! 2 1

-50 0 50

100 150 200

time (fs)

in Fig. 2). The A, oscillator amplitudes#; V) are small,
and the odd index combinations show therefore a profile
similar to the B, oscillator shown in Fig. @).

Since we have shown that the kel model behaves like
a simple two-level system, we expect no time-integrated
FWM signal for negative delays. This is verified by Fig. 6,
where we compare model IH and llIH. While the signal for
positive delays decays with,/2, as expected for a homoge-
neously broadened two-level system, the signal decays much
faster for negative delays. The small signals for negative
delays solely originate from the finite pulse width. The
dashed line in Fig. 6 represents the time-integrated signal for
model IllH, it lies almost exactly on the solid line represent-
ing model IH.

We should, however, point out that the absence of the
second primary oscillator, appearing as a two-photon reso-
nance is not an intrinsic property of the ¢kel model. For
other sizes or bond alternation parameters there magbe
oscillators with frequencies in the vicinity of twice the fre-
quency of the B, oscillator, which may then also contribute
to the nonlinear response. For the same parameters used
here, we find that for a chain containing 22 carbon atoms the
6Ay and 7A4 oscillators can be resonantly excited as two-
photon resonance()(1B,)=2.56 eV, () (6A,)=Q(7A,)
=5.11 eV]. Our calculations show, that compared to the
1B, oscillators, even for this case, tiAg oscillators contrib-
ute only weakly for the signal. For zero delay they are re-
sponsible for only 0.8% of the signébr the 30 carbon atom
chain this value is 0.2% However, for large negative de-

FIG. 4. (a) Time-resolved amplitude an@) phase of the FwM  lays, when the contributions from theB} oscillator vanish,
signal for time-delayr=0 fs for the Hickel model. Solid line: the two-photon resonances induce a finite FWM signal. For
model IH, dashed: model IIH, dotted: model IlIH, and dashed-the chain of 22 carbon atoms these signals for negative de-
dotted: laser pulse envelope. lays are very weak. The time-integrated FWM signal for
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FIG. 5. (color) Absolute value of second-order density mapi®(t) att= 20 fs representing transient-gratirip (- k;) for () model IH,
Eq. (27), (b) model IP, Eq.(28), (c) model IIP, Eq.(27), and(d) two-photon resonances kg) for model IlIP, Eq.(29).

7=—100 fs is five orders of magnitude smaller than the one
for zero delay. We therefore believe that our conclusions
drawn for the resonant response ofdikal model, regarding
the weak coupling of the B, to the Ay oscillators, are of
general nature.

B. PPP model

LOG FWM signal

We shall now explore the role of electronic correlations
by repeating the previous calculations for the PPP model.
Similar to the Hwkel model, the geometry optimized HF
ground state is characterized by a bond order wave with a
uniform charge densit}y>?” This structure is stabilized by the time delay (fs)
electron-phonon and the Coulomb exchange interactions.

The calculated ground state has an average bond order FIG. 6. Time-integrated FWM for the Hiel model. Solid line:
(pn)=0.63 and alternation paramefef=0.24. The average model IH, dashed: model IlIH, and dashed-dotted: laser pulse en-
bond order alternation is a little larger than in théddel  velope.

-100 -50 0 50 100 150 200
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BT terms, we split the discussion into three parts. In model IP,
like in model IlIH for the Hickel model, we neglect all con-
tributions except for the ones involving only th& ] oscil-

14+ T lator. In addition to these contributions we include in model
IIP the renormalization originating from the elimination of
the A, oscillators appearing as transient-grating§) ( Fi-
12 7 nally, in model llIP we also add the explicitly considered
5Ay oscillator, as well as all renormalizations induced by
ok i A, oscillators appearing as two-photon resonandgs. (

In model IP only the following terms contribute:
M1,S1,S2,V4. S; describes the phase space filling, unlike the
i Huckel model, due to correlations its magnitude is not equal
to the magnitude of the dipolg, but is somewhat smaller.
e — e — s, describes a similar process, where now the field is scat-
6F e — = tered off a term rotating with twice the transition frequency

- ——— of the 1B, oscillator, instead of a transient grating term like
in s;, which basically has no rotation. In the absence of

frequency (eV)

4ar 7 correlation(the Hickel mode)] s, was zero, hers, is finite,
but still very small, only 0.6% of;, and can therefore be
oL i neglectedV, represents a many-particle induced scattering
potential, which formally appears like a local field
B, Ag 1 correction*®=2° Actually it includes all many-particle contri-
0 = butions involving only the B, oscillator. Neglecting the

small s, contribution, the equation is equivalent to a nonlin-
ear wave-equation, which has been extensively used for the
FIG. 7. B, andA, oscillator frequencies for the PPP model for description of nonlinear optical properties of inorganic
a 30 carbon atom polyacetylene chain. There areBJand 112  semiconductor$®1921:3%|n this sense the nonlinear wave-
A, oscillators. The frequencies of the first eidhf (Ag) oscillators  equation appears as a special case of the present oscillator
are: 2.28, 3.49, 4.10, 4.57, 4.59, 4.95, 5.48, and 5.62 eV (2.8%quations, obtained when some terms are neglected. This
3.73, 4.06, 4.52, 5.05, 5.12, 5.13, and 5.39.eV nonlinear wave equations can be derived by expanding the
semiconductor Bloch equatidit® in an excitonic basis,
model. The average bond length is 133105 A, where the  keeping only the & exciton. In the language of the semicon-
alternation is due to the larger force constant smaller than iguctor Bloch equations the nonlinear scattering potential in-
the Hickel modef” The average transfer integral can be cludes energy and field renormalization terms, which are in-
approximated by, ,+1=B8[1—(—1)"8], with 8=—2.7 eV duced by the many-particle Coulomb interactfdri®
and §=0.07. The FWM signal for model IP is given by the solid lines
All of the coupling constants in Eq$20) and (21) can  in Fig. 8, where both the amplitude of the FWM signal and
contribute once the Coulomb interaction is incorporated, sefs relative phase are plotted. Compared to thekélimodel
Table I. The frequency of the lowesB], oscillator is again  calculations, the amplitude changes its shape. It is no longer
2.28 eV. TheAy oscillator which is closest in frequency to a free-induction decay, but has a maximum at later times,
twice the frequency of the B, is the 5A, at 4.52 eV, see which are determined by the dephasing times. This is the
Fig. 7. The frequency difference (A1B,)—Q(5A) same signature that has been observed in time-resolved
=0.049 eV is smaller than the spectral width of the excitingFWM experiments on inorganic semiconductor nano-
20 fs laser pulses. All other contributions frofg oscillators  structures+?**In semiconductors these signal shapes have
can be assumed to be off resonant. So the two primary odeen interpreted by a nonlinear Ginzburg-Landau-like wave
cillators, which are considered explicitly, areB] and equation for the & exciton amplitudé®*®?13%If we only
SAg. consider the B, oscillator and further neglect the small
In Figs. Zc) and 2d) we show the density matrices of the term, we obtain an identical wave equation as a special case
HF ground state and of theB], oscillator. Compared to the of the oscillator equations. Besides the phase-space filling
1B, oscillator, see Fig. 2, calculated for the ¢kel model, (S;) induced by the many particle Coulomb interaction it has
which is strongly delocalized in the off-diagonal direction, an additional nonlinearity\(;), which formally appears like
the many-particle Coulomb-interaction leads to localizationa local field correction. This nonlinear scattering potential
of the oscillator towards the diagonal. Still the ground state iglescribes scattering of the induced polarizations, resulting in
again more localized along the diagonal than the oscillatora FWM signal. According to analytical solutions of optical
which shows that the optical excitation creates electronic coBloch equations including a local field, this contribution has
herence in the system. Also shown in Fig. 2 are the mosa real positive prefactdf=° SinceV; itself is positive and
strongly contributingAy oscillators, (e) the 3A;, which  since the many-particle induced FWM signal is like in inor-
gives the strongest off resonant contribution, dfidthe  ganic semiconductors larger than the phase-space filling, the
5Ay, Which appears as a two-photon resonance. relative phase of the FWM signal, solid line in Fig. 8, is
In Table | we give the relevant coupling constants for theabout 0, i.e., the induced polarization is in phase with the
PPP model. To simplify the analysis of these numerousxciting pulse.
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[T keep contributions from thre&, oscillators variables to get
0.0 e it to 3% accuracy. To geK,, the renormalization of the
-50 0 50 100 150 200

nonlinear scattering potential, also within 5%, we have to
keep 16 oscillator variables. The expressionXgiis entirely
determined by the Coulomb interaction between different os-
] . cillators. Its slow convergence as function of the number of
sigrlj;(lsfo?-tgr?eT:jn;g;fS%Vfidfc?mﬁlelt%dlfparrrﬁdgdgragglicélf|ti2§-Fn\¢g\élel oscillators variables compared to the other quantities indi-
IP, dashed: model IIP, dotted: model IlIP, and dashed-dotted: Iasecrates’ that the Cpulomb Interacthn couples .the osc_lllatc?rs
pulse envelope. much Ie;s selecnvely_than the dipole coupling, which is
present in the expressions for the other terms.

The FWM signal for model IIP is given in Fig. @ashed
lines) where the absolute value as well as the relative phase
of the FWM signal are plotted. The most notable changes
between the signal involving only theB}, oscillator and the
present one are the decrease in amplitude and the change in
phase. These features can be simply explained by consider-
ing the values oW/, and its renormalizatioX,. While V; is
positive +0.063 eV, X, is calculated to be negative and
larger in absolute value-0.082 eV. Therefore the effective
nonlinear scattering potentisd, +X,= —0.019 eV is nega-
tive and about a factor 3 smaller thaf. This reduces the
amplitude of the interaction-induced contribution to the sig-
nal and changes its phase, which in turn explains the ob-
served differences. This change of phase has strong influence
index combinations show a profile similar to th8 loscil-  on the spectrally resolved FWM signal. While the Fourier
lator shown in Fig. &d). Accordingly, like the B, oscillator,  transform(FT) of the signal originating from theB,, oscil-
the corresponding transient-grating is also more localized itator is, like in inorganic semiconductot$2® slightly asym-
the PPP than in the Hitel model. metric with respect to detuning with a tail towards lower

In model IIP the off-resonant transient grating contribu-frequencies, the FT of the signal for model IIP, is asymmet-
tions X;-X, are included. The convergence of these paramric with tails towards higher frequencies. These spectral fea-
eters with the number of oscillator variables is shown in Fig.tures can also be analyzed using a Wigner spectroram
9. The value forX;, which is a small contribution, since it as discussed in Ref. 16.
describes scattering of a linear term off two-fields, is to Figure §c) shows the transient-gratink{—k;) part of
2.7% accuracy given by the coupling to thégoscillator.  the second order density matrix in real space. It is formed by
For X_,, we have to keep fivé, oscillator variables to get the 1B, oscillator and somé,, oscillators and given by Eq.

5% accuracyX,, which acts as a renormalization®f, isto  (28). The density matrix contains contributions from the
within 5% given by the coupling to theA, oscillator alone. 1B, and about eigh#Ay oscillators, which contribute most
For X3, which acts as a renormalization 8, we have to  strongly toX,. p;; is again zero ifi + is even(this is indi-

time (fs)

Figure 5b) shows the second-order density matrix in real
space, representing a transient-gratikg—-k,) formed by
the 1B, oscillator

p () =02 S ([[&1,pT,6-1]

+[[£-1,01.6&DZ MO0V (1), (29

Due to the symmetry of this expression, as in théckél
model, the density matrig;; representing this term is zero if
i +]j is even(this is indicated by the red squaye¥he odd
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S L p<°2)(t)=e’2“°2‘(%([[élﬂ,fﬂ+[[§1ﬂ,§1])(2(1°”(t))z
o10F Y Y
L -e- Y,
0081 A Y| +> §Bz(ﬁo|2)(t)>. (30
w [ \ TV Y] p
S 006 L —
$ 0.04 - Y . The density matrix consists of small contribution from the
2 0.02 i 4 ] 1B, and about mainly twd\, oscillators, namely 84 and
% L \ v ] 5A,. Its shape is essentially a superposition of the density
= 000t :/ ’__,':_x;;'_;,l;; :.:-_l-.-:_l:j matrices representing theA3 and the 3\ oscillators, shown
r ST in Fig. 2.
-0.02 = 1' ' ; ' ; ' :1 ) ; ) é ' ; ' é ' é " Having analyzed the different contributions to the nonlin-
ear optical response within the PPP model, we propose a
number of A oscillators variables simplified two-oscillator modef® which to a good accuracy
reproduces the signal. Compared to the model resulting from
the elimination of off-resonant contributions, we further ne-
FIG. 10. Same as Fig. 11 but for tireanharmonicities. glect small contributions like<;, X_; andY,, and alsos,
and its renormalizatiorX; and Y;. We further neglect the
cated by the red squajeue to the contributingh, oscil-  anharmonic constants;, A,, Az, B;, andB, that appear in

lators, the resulting density matrix extends further to the off-the definition of the polarization. So now the off-resonant
diagonal than the one originating from thd3,1 oscillator  oscillators only enter in renormalizations sf andV,. The

alone. _ equations considered within this reduced modetre
So far, our analysis demonstrated that the off-resonant

terms involving transient gratings contribute significantly. In
addition to the previous terms we include in model llIP all 4
renormalizations arising from terms representing two-photon!—: 71 =
resonance¥;—Y,. Their convergence with the number of
virtual oscillators variables is shown in Fig. 10. The value
for Y4 (which is a small contribution, since it describes scat-
tering of a linear term off two fieldss to 0.7% given by the (31)
coupling to the 3\ oscillator. The value fo¥, (Y3), which
act as renormalizations & (s,), is to 0.1% (0.2% given
by the coupling to the &y oscillator. The reason that we
essentially only need theA3, oscillator to determiner;-Ys
is that in addition to its strong dipole coupling to th& 1
oscillator, it is not too much off resonant compared to most

. L J
other oscillators. To geY,, the renormalization of the non- i—22=(92—2wL—
linear scattering potentia¥; also within 5%, we have to at
keep two oscillators the8; and the &,. As a two-photon
resonance we also keep thépexplicitly. It is dipole and
Coulomb coupled to theB,, oscillator by, andVy,.

The FWM signal for model llIP is given in Fig. &lotted
line). Compared to model lIP, the amplitude increases again
and the phase is close to 0. In order to explain these changes
we have to consider two effects. First, like before, the renor-
malization ofV;. The effective nonlinear scattering potential We compare the results obtained for this modeP) with
is now given byV;+ X,+ Y, which is 0.016 eV, a positive results obtained by a full calculatiofvP), where we have
but quite small value. Second, the increase in amplitude ikept all oscillators explicitly(in practice these results were
caused by the contribution from the two-photon resonancebtained by a real-space calculatipeee Appendix B. The
represented by ;,, which describes the Coulomb coupling good agreement between the two calculations shown in Fig.
between the B, and the 3\ oscillator. 11, confirms the validity of this simplified description. There

This change of phase will again influence the spectrallyare only slight differences in the amplitude and the phase of
resolved FWM signal, which is now again asymmetric withthe FWM signal mainly during the initial excitation process.
respect to the detuning with tails towards negative detuning. Another important effect is the existence of strong FWM
This is the same signature which appears when we keep onsignals for negative delays, which may be induced by either
the 1B, oscillator, and is also the typical signature in the FTtwo-photonAy oscillator variables, or by many-body anhar-
FWM signal of inorganic semiconductot$3® monicities of theB,, oscillators. Our calculations show that,

Figure 5d) shows the two-photon resonancekg? part of  as for positive delay, the many-body anharmonicities con-
the density matrix in real space, which is formed by thetribute most strongly to the signal for negative delays. The
1B, oscillator and somé\; oscillators, and given by time-integrated signals in Fig. 12 decay for positive delays

1

Q-0 —i T_z) z;— 1 E—Epioz;—E(s1+Y>3

+X5)21Z 1 +2V15252 1+ (V1 + Y4+ X4)Z_ 12124,

— o%
z.,=277,

1
' ?) Zy—Epipz3+ V152121, (32)
2

The induced polarization is given by

Ps(t)=e w12y + a2z 7). (33
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electronic-oscillator representation. We found that it is only
required to consider two electronic oscillators explicitly. The
role of electronic correlations has been clarified by compar-
ing calculations done in the absence of electronic correla-
tions (Huckel mode) and with strong electronic correlations
(PPP model While both models have similar linear optical
properties, i.e., a strong lowest transition at the same spectral
position, their nonlinear optical properties are very different.
For the PPP model we predict signatures of electronic corre-
lations, which should be observable in ultrafast optical spec-
troscopy, in both the phase and the amplitude of the signal.
We expect analogous effects to be observable using
frequency-domain resonant four-wave mixing technicgijes.
The coupling coefficients leading to the nonlinear optical
response as well as the calculated signals have been com-
pared to theoretical and experimental treatments for inor-
ganic semiconductors. The present approach provides a uni-
fied theoretical analysis of resonant nonlinear experiments in
organic and inorganic materials.

amplitude of FWM signal

relative phase (n)
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. FIG. 11:(a) T'me'“isowed amplitude ari) phase.Of Fhe,FWM NATO through the Deutscher Akademischer Austauschdi-
signal for time-delayr=0 fs for the PPP model. Solid line: model enst(DAAD)

VP, dashed: model IVP, and dashed-dotted: laser pulse envelope:

with T,/2, and for negative delays with abols/4.281° The
very weak modulations, which can be seen for negative de- APPENDIX A: EQUATIONS OF MOTION

lays, are due to quantum beats with a frequency determined For TWO-PULSE NONLINEAR OPTICAL RESPONSE
by 2Q0(1B,)—Q(5A,). The results for the full model VP

(solid line) and the reduced model IVRlashed ling are In this appendix, we show how the oscillator equations of
again in very good agreement. motion can be used to describe multiple-pulse optical experi-
ments. We consider a two-pulse nonlinear optical experi-

IV. SUMMARY ment, where the exciting field is given by

In summary, we have modeled resonant two-pulse four-

wave mixing experiments in conjugated polyenes using the A , A A
E(t):El(t)(elkl-rfla)lt_i_eflkl-rﬂwlt)

4 Ez(t)(eikz»rfiwzt_’_e*ikz-rJriwzt)
=E; (t)e '“t'+E; (t)e'e1!

+E5 (t)e '+ E, (t)e' @2, (A1)

LOG FWM signal

E; /(t) are the pulse envelopes. The teEf (E;) refer to
the components oE with direction +k; (—k;). Such an
. exciting field will create excitations associated with different
-100  -50 0 50 100 150 200 directions €', K=nk;+mk,, where n,m can be any
time delay (fs) integers?>“°We label these different directional components
by (lm) which refers to the excitation associated with the
direction nk;+ mk,. Inserting this decomposition into the
FIG. 12. Time-integrated FWM for the PPP model. Solid line: equations of motion, Eq15), and transforming to the rotat-
model VP, dashed: model IVP. ing frame leads to
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The polarization is given by The second order response consists of different contribu-
tions. The particle-particle part is given B¥¢) and has not

P(n|m)(t) — ei(nk1+ mko) -1 —i(Nwq+Mmwy)t

> ﬁﬂz%n\m to be calculated separately, but is completely determined by
B the linear responsk. Additionally A, oscillators can be ex-
cited in second order, representing the particle-hole part of
~ _(n=n'Im-m")(n’'|m") the response. To calculate the FWM signal in the direction
v 2 Fpv?p | y | ) (A3) 2k,—k; in third order, we have to consider a transient-
ating K,—k;; w1—w,) and a two-photon (B,; —2w,)
sponse.

n",m’, By
These equations can be used to describe two pulse expe?é
ments; the generalization to experiments with more than two
exciting pulses is straightforward. In EGA2) we have onl .0 _ _
to solvge Fe)xplicitly for tr?e complex ampl(?:\ugles of the osci%la- ' ﬁzfx W= (Q,+ 01~ 02, 1V -E; EB: Foa 28"
tor variables associated with positive frequenay<0). The
amplitudes for the corresponding modes with negative fre-
quencies are determined ™= (z{"""™)* Here, — a
refers to the adjoint mode af. All oscillator variables and

-1|0
_E;% lu’uz,BZ;i’ | )

amplitudes have to be included in the summations appearing 4 V. 4V (-1]0)(0[1)
: . z 200
on right-hand sides of Eq§A2) and (A3). Bzy (Ve pytVa,yp)2p Y
APPENDIX B: ITERATIVE CALCULATION ANCIREIN Q=01+ w) 28 V—EF S g, 20 Y
OF THE FOUR-WAVE MIXING SIGNAL gt “ B

In the following we perform a detailed analysis of FWM —E5 D BapZd O+ 2 (Vo py
in self-diffraction geometry, where the third-order signal is B 110)(0]1) By
monitored in the direction ,—k,. Only B, oscillators can tVaypZg 2,

. d
= 219= (0 w20 - Ef

0[1),(0|1
<3 Va0
Y

J
=2 1= (Qt 002 10— B

J
9 _(0]-2 0-2)_ - 0-
|(9tz(a| )= (Q+2w,) 202~ E, Eﬁ fhogZd Y

0
: o1 o1 +
|EZL‘ '=(Q,— w2V - E5
(0]-1),(0]—1)
J +ﬁzy Va,ﬁyzﬁ Zy !
i— 20" V=(Q,+w) 2%V~ E,
ot e a 2) 4 Moo (~1/1) (1~ 1)
Z—a :(Za ) l
(1/0) — (5(—1]0)\
2 =(Z , _ _
Ty =z, ) Z(,lla D= (2t Un)yx
2= 10— (710 x

—a 0|2 0|—-2
200= 207,
(011) — (0] = 1)y
A _(Z ) ) -2 2
o o Z(—Oly ):(Z(aO| ))*. (BZ)

0|—-1)__ 0|1 . . . .
207D = (M), (B1)  In third order again, onlyB, oscillators can be excited,
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J
TP ~12)_ - 02 ~11)_ - 0[1),(0]1
|ﬁz(a 2= (O + 01— 2wy)2 1P —E; EB tho 28 P —E3 Eﬂ fho g2 1D —E] ﬂ% tho 2820
D 10,01 | 3 02),(~1/0) . 3 ~1]1)(0]1
_E; < ([La’ﬁ.y‘F,u,a'yB)Z‘(B | )Z(yl )+ < (Vayﬁy-i-VaJ,B)Z(ﬁl )Z(y I )+ < (Va'By'i‘Va',yB)Z‘% ‘ )Z()/‘ )

—1]|0)-(0]1),(0|1
+ﬁ§:5 (Va,ﬁ'y6+ Va,yﬁ5+ Va,y&,@)z(ﬁ | )Z(y | )2(6 1) '
Y

J
: -2 1|-2 o|-2 - 1|-1 0|-1),(0]—1
IEZ(C,(| )=(Qa—w1+2w2)zgy‘ )—EI Eﬁ ,ua'ﬁz(ﬁl )—EZ Eﬁ MQ’BZ(Bl )—EI EEY ,U«a,ﬁyz(gl )Z(},‘ )

- 1/0),(0|—1 0|—-2),(1|0 1/-1),(0|-1
CES e BN (Vo VB0 IO (Vo V2020
Y Y Y

1)0),,(0]—1)o,(0] -1
+BE§(Vaﬁyﬁvayﬂ;ﬁvayyﬁﬁ)z(ﬂ|)z(,/| 1201
Y
—-1|2 1|—-2
Z(fa‘):(z(al ))*’

2U-21 (7112 (B3)

The polarization in the B,—k, direction is finally given by

P(-12)(1) = gi(~kut2kp) T=i(— oy + 20t 3 ﬁﬁzgl\z)JrE (ﬁBYjLﬁyﬂ)(Z(B*l\O)Z(yO\Z)JFZ(ﬁo\l)z(;lm) ) (B4)
B By

Equations(B3) and (B4) include all resonant and nonreso- lows its inhomogeneity on the right hand side of the
nant pathways that can contribute to the two-pulse FWMequation. So we can set/@t)z(%?=0 and then solve the
experiment considered here. equation, which gives

APPENDIX C: ELIMINATION OF OFF-RESONANT
OSCILLATORS 2(0‘2):

1
) . ) a m(E;/*‘La,lzgo‘l)_Va,llzglo‘l)zglOIl)) (Cl)
Below we describe how the general equations of motion “« L
of Appendix B can be reduced to include only the relevant
oscillators, which are needed fo_r the description of resonanty s contributions ofA, oscillator variables associated with
FWM. In our numerical calculations we have assumed thaﬁegative frequency a?e given by
the central frequency of both exciting pulses is in resonance

with the transiton to the B, oscillator, i.e.,

w = w1=w;=0Q(1B). Theﬁpglse envelopes are assumed to 2002 1 (Efp 1Z<lo\1)_v . lZ<lo|1>z<1o|1>)
- - a,— a,—1- :

be GaussianE(t)ce [(t-V/t1° with a width of t=20 fs. Q1 20,

Since the spectral width of even these very short laser pulses (C2)

(about 0.1 eV is small compared to the frequency spacing ) . )
between the dominant oscillators, only a few oscillators will HeTe the index 1 refers to the positive frequency oscillator
be excited resonantly. Our calculations show that the first@riable of B, oscillator and—1 to its adjoint, i.e. the nega-
and third order response is to very good accuracy dominated/€ frequency variable. _
by only the 1B, oscillator. In second order there may be one T_he s_|m|lar elimination can be done for the transient-
A, oscillator which appears as resonantly excited tvvo-photorgrat'”g like terms. Here aII. osullator; can be assgmed to be
transition. We now develop equations which only retain twoOff resonant, since there is no particle-hole oscillator with
primary oscillators, the B, and oneA, oscillator explicitly. ~ %€ frequency,
The off-resonant contributions from all othéy, oscillators
in second order, can be eliminated from the equations of
motion and will result in renormalization of anharmonicities
and scattering constants.

The elimination of the off-resonant oscillators goes as fol- ~ (Va1 1+ Vg 112102010y (C3)
lows: In the equation of motion for the two-photon reso-
nances{®?) we assume that the amplitude adiabatically fol-and

(0]1)

1

—-1J1 - -1/0
ZEX |)=Q—(E1,ua’1zl +E2+,u,a’_1z(_1‘)

o
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1 Z(_l\o):(z(lw))*
—-1]1) _ - 0|1 -1/0 -1 1 ’
Z(fa‘ )_Q_[El Ma,*lzg.l )+E;/~La,lz(71| )
(23

_ -1/0)-,(0|1) .0
(Vi -11+ Ve 1-1)2 10207, (C4 |Ez(lo‘l)=(ﬂl—a),_)z(loll)—,ulE;,

These expressions for the off-resonant second order quan-
tities.can be i'nserted into the equation fqr the third order z<°|‘1)=(z(°|1))* (C5)
amplitude, which leads to the renormalization of some non- -1 1 '
linear coupling constants and a few additional terms. AfterI
this elimination, keeping just two oscillators explicitly (1
refers to the B, oscillator and 2 theAy considered as a
two-photon resonanggthe FWM signal is determined by the . J 02) _ ©02) =+ (0|1) (0]1)-,(0|2)
following set of equations. In first order, 52 = (= 200)2 " =By pazy ™+ Vazy "z

n second order,

(C6)

J
i (1]0) _ (1/0) _ +
Vot A Q- w)z #aEr, And in third order,

J
iﬁzgﬂm: (Q1— w2 P —ELE; (Y1 + X)) 2P0V = (E5)AX_ )2 O = Ef p1 020 —E{ (5,4 Y+ Xg) 201D 201

—E5 (511 Y+ X) 2 120 1 2V 2027250 4 (v Y 4+ X, 2O 2010201 (C7)

The polarization in the direction is given by
_ i(— r—i(— —-1[2 —1]0),(0]|2 0|1),(—1|1
p( 1|2)(t):el( kq+2ky) - r—i(—wj+2wy)t Mlz(l | )_,_% M1B2(71| )Zigl )_,_% /_L_lﬁz(l\ )ZEB [1) ) (C8)

In these equations we have used some abreviations:
Ml:ﬁb
M1n=p1n=pn1= (10t n-1),
S1=(M1,-11F H1,1-1),
S$2= M1,11s

Vi=(Vi11-1+tVii-11+t Vi 119,

1
V= V2,11:§(V1,712+ Vio-1) (C9

The quantities; andY; result from the elimination of the transient grating and two-photon resonances, respectively. They
are given by the following summations over thg oscillator variabless:

Miptpgat ma—pip -1
Xlzz Q ’
B B

MigMpg -1t 1 —pgg1
X_]_: E: Q ’
B B
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Xy= % Q_B[/U“l,ﬁ(vﬁ,fll‘l_ Ve1-1)tup-1(Vigit Vi) tur - pg(Vg1-1+Vg 10t ugi(Vi-git Vi pl,

-1
X3= % Q_B[/-Lﬁ,l(vl,ﬁl+ Vi) Tug -1(Vi-p1+Vii gl

-1
X4= % Q_'B[(V,B,fll"_ Ve1-1)(Vigit Vi) +(Vg1-1+t Vg 1) (V11T Vi gl

1 1

Y= _— + —_— U _ _
1 % QB—ZwLMl’BMB'l 2,3 Qﬁ+2wLMl’ BMB,—1

Yo=2, M#ﬁ,l(vl,ﬁfl_" Vi_1p)+ > Mﬂﬁ,fl(vl,fﬁfl—" Vi_1-p)

B B
' -1 -1
= _— + —
Y3 % Qﬁ_zle-Ll,ﬁvﬁ,ll EB QB+2(U|_M1'_BVB'_1_1,
Y4:§ M(Vl,ﬁ—l—i_vl,—lﬁ)vﬁ,lf’_% M(Vl,—5—1+V1,—1—5)V5,—1—1- (C10

The primes over the sum symbols ff indicate, that the p<—1|2)(t):ei<—k1+2kz)-r—i<—w1+2wz>t[ﬂlz<1—1\2)
summations exclude the positive frequency variable of the

one A, oscillator, which is explicitly considered as a two- + 2 10202 1 (A +By)Z MO (02
photon resonance. In Sec. Il we show, that to a very good T (~1]0),(0]1) 012
accuracy the approximate equations derived in this Appendix T (At Bo)E; Z 77z AgEy (277)7].
reproduce the full results calculated using Ed@&l)—(B4). (C11)

Inserting the expressions for the amplitudes of the virtual
oscillators Egqs(C1)—(C4) into Eq. (C9) allows to perform
the summations oves and simplifies the expression for the Here A;, A,, and A3 are obtained via elimination of the
polarization. As in the equations of motion, this proceduretransient-grating terms involving virtual oscillators, aBg,
results in some alternative anharmonic couplings: as well asB, from the corresponding two-photon terms.
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