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Charge density and charge transfer in stage-1 alkali-graphite intercalation compounds
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First-principles electronic structure calculations are carried out for the stage-1 alkali graphite intercalation
compounds LiG andXCg (X=Li, Na, K, Rb, and Cs We analyze the charge densities and the differences to
the reference charge densities of graphite host and intercalant sublattice. For the alkali metals Na, K, Rb, and
Cs the computed charge transfer is nearly constant at a value of 0.7 elementary cbgrgaisi¢s of 0.8 and
0.4e are found for the Li compounds LiCand LiCg, respectively. It is shown that the main fraction, about
0.4e, of the charge transfer is a geometrical consequence of the simple overlap of the charge densities of the
graphite and intercalant sublattic§$0163-1827)05508-2

I. INTRODUCTION the charge transfer considered only a subset of the alkali
GIC'’s that we take into account in the present study.
Graphite intercalation compound&IC’s) have been the

subject of many experimental and theoretical investigations Il. METHOD
(Dresselhaus and Dresselhtasd references theréjn The ) )
anisotropy of these materials results in unusual electronic A. Computational details

and chemical properties. Especially the Li compounds have In our ab initio study the charge density is calculated
received experimental attention due to their possible applicawithin the framework of the local-density approximation to
tions in electrochemical celSGIC's are commonly classi- the density-functional theory DA/DFT). The electron-ion
fied into donor and acceptor types, depending on whether thiateractions are described by separable norm-conserving
graphite layers in the GIC acquire a negative or a positivpseudopotentials in the Kleinman-Bylander folfnEx-
charge. In alkali GIC’s the metal atoms always act as donorshange and correlation energy is calculated with the para-
Nevertheless the exact magnitude of charge transfer in GIC'&ietrization given by Perdew and Zungeaccording to the
has been highly controversial in spite of the progress made ifuantum Monte Carlo results of Ceperley and AltfeThe
both experimental and theoretical methods. singlg-particle orbitals are expanded in a plane-wave basis
During the past ten years the local density approximatiors€t With a cutoff energy of 60 Rydbet&y) at 9 or 18 spe-
within the density-functional theory has been developed to £/@ k points in the Brillouin zone. The Kohn-Sham equa-
commonly accepted model for calculating electronic and'ons are sol\{ed by direct minimization OT the total—ene_rgy
structural properties of solids. Once the electronic grounéunctlogglmwnh_ a preconditioned c.o.njugated grad!ent
state of a system is determined partial charges of each ato gheme™ = Periodic boundary conditions are - applied

S roughout all calculations.
and therefore the charge transfer occurring in the system can For carbon and the alkali metals smooth pseudopotentials
be assigned. Unfortunately “charge transfer” is not observ—h

ble i ¢ hanical e th _ ave been generated using the scheme of Troullier and
able In a quantum-mechanical Sense, 1.€., tNere IS No Unafzaing15 pseudopotential parameters are summarized in

biguous way to calculate its value from the electronicrape | The pseudopotential parameters for carbon are taken
ground-state wave function. Several different methods havgom Ref. 16. For lithium and sodium one-electron pseudo-

been proposed to distribute the total charge between the %‘otentials have been generated fer0 and|=1 where
oms constituting the system. Most theoretical treatments of

charge transfer are based on the projection of the electronic TABLE I. Pseudopotential parameters for the alkali metgs.
wave function$™® or charge densitiésonto selected atomic (1=0,1,2) are cutoff radiil o stands for the angular momentum of
reference states. But even the same method can lead to difie local part of the pseudopotentidl.is the number of valence
ferent results due to the use of different orbital electrons. For potassium an excited configuration, given in the sec-
representation$.Other methods assign point charges to theond line, is used for the generation of the2 part of the potential
atomic positions in order to fit the computed electrostatic(See Ref. 50

potential at a number of points on or near the van der Waals

surface’ Because of this lack of a unique definition of the Z  Configuration  ti—o  fi-s M=z lic
term “charge transfer” the use of different methods has ledi 1 2st2p?® 237 237 1
to the controversy over the experimental and theoretical reng 1 F13p° 2.94 2.94 1
sults for the alkali GIC's. We present here the results of & 7 3p®3d%4s! 351 1.06  3.69 0
parameter-freeab initio study of a series of stage-1 alkali 3p%3d°2%4s°

GIC’s. All calculations have been performed by exactly therp 7 4p%4d°5st 3.49 1.38 3.70 0
same theoretical model and analysis, so that trends within thes 7 5°5d%6s! 398 200 298 0

series can become obvious. Previous theoretical studies ef

0163-1829/97/58)/49537)/$10.00 55 4953 © 1997 The American Physical Society



4954 C. HARTWIGSEN, W. WITSCHEL, AND E. SPOHR 55

=1 has been chosen as the local part. For the heavier alkali 1

metals simple one-electron pseudopotentials are known to QiEZi_ﬁf drn(r), 2

give only poor results. The frozen core assumption fails as Vi

the innerp electrons show significant relaxation dependingwhereZ; is the atomic number of atom and() the volume

on the chemical environmeht.Within the pseudopotential of the elementary cell. As a consequence of this definition
approach this effect can be taken into account by either inthe charge transfer occurring in a system can be divided into
troducing a nonlinear core-exchange correcfiasr explic-  two componenté® the first component corresponds to the
itly treating the innerp electrons as valence statés’ The  change of charge due to the change of the volinef atom
second possibility is more straightforward and we treat the when another atomic species is introduced into the system.
inner p electrons explicitly. Due to the localized nature of This so-called geometrical charge transfer occurs in every
the p electrons their description by a plane-wave basis setystem, even if there are no physical interactions between the
requires large cutoff energies of 50 to 60 Ry to yield suffi-primary system and the added atoms. The second component
ciently converged results. Nevertheless this requirement doesf the charge transfer is caused by the donor or acceptor
not increase the computational effort substantially, as for agharacter of the added atomic species, resulting in a transfer
appropriate treatment of the weak interplanar interactions inf charge density into or out of the volunig.

GIC’s a cutoff energy of approximately 60 Ry is required. In order to distinguish between the purely geometrical
For K, Rb, and Cs thé=0 component is chosen to be the effect and the charge transfer due to physical interactions, the
local part of the pseudopotential; nonlocal parts are incorpoactual charge density(r) in Eq. (2) has to be replaced by
rated forl=1,2. In the case of Rb and Cs semirelativistic the difference charge density

pseudopotentials have been generated by averaging over all

scalar terms of the fully relativistic potenti&@sAll pseudo- an(r)=n(r)—ner). ©)
potentials have been carefully tested by calculating the lat-

tice constants of diamond and the bcc alkali-metal crystals'j'ref(r) is the superposition of the charge densities of the

All our results are close to the experimental values with er_graphite host and the intercalant sublattice, calculated sepa-

rors typical for DFT-pseudopotential studies of theserately in the geometry of the compound system. The charge
materialst®22 transfer calculated froman(r) will be called physical charge

Several equivalent intercalation sites in GIC’s, denoted b);ransfer as it takes into account only the changes(@)

Greek letters, exist for the intercalants within a single pIane.Caused by physical interactions between the graphite host

The arrangement of the intercalants in adjacent planes @nd the intercalant. The total charge transfer is the sum of the

called the stacking sequence. A stacking sequeniceneans gecljmttra]tncal an(?( ttﬁelphysu(:jalG(l:gr'npg]nents.l is of the ch
that all intercalants in different planes have the same posi h IN€ case orthe layere S, the analysis of the charge

tions when looking along the axis. For computational rea- densities can be greatly simplified if plane-averaged densities

sons calculations are performed for a single unit cell with 1
intercalant stacking sequeneer which, except in the case n(z)= —f f dxdyn(r) (4)
of LiCg, differs from the experimentally observed stacking Ayl Ja

sequence. As a test, we also calculated the properties gte considered rather than the complete three-dimensional
KC g with stacking sequenceB. Almost the same value for densityn(r) (A, is the area of the plane in the unit delin

the charge transfer is obtained, indicating that the stacking,is case the boundary between the graphitic sheets and the

sequence is o_nly of minor importance. All calc_ulations areintercalant planegEq. (1)] is replaced by a single point
performed with the experimentally determined IattlceZbd where the condition
y

constant&’ except for the hypothetical compounds Li@nd
NaCg. Lattice constants of the hexagonal unit cell of KIC dn(z)
(a=4.64 A, c=3.58 A) and NaG (a=4.94 A, c=4.78 A iz
are determined by minimizing the total energy with respect

to the lattice constants.

=0 (5)

Zpdy

is fulfilled. The charge on the intercalant is given by

B. Calculation of the charge transfer 2AXy Zody
The electronic charge of an atomcan be obtained by Q=4 QN fo ). ©
integrating the total charge density within the voluebe- . .
longing to this particular atom. The atoms-in-molecules con2"d the physical charge transfer is
struction by Badéf is used to define each volumg . The 2. (2
Bader construction is a physically motivated distribution of Xy bdydzgn(z)_ (7)

) Q=
the total volume between atoms that is based on the topology QN Jo
of the total electronic charge distribution. The boundary sur-

face ofV; is defined by the condition that the gradient of theThe intercalant plane is Iocatgdatco. The factqr 2 reflects
. . . . . the symmetry of the systeri\, is the number of intercalated
electronic densityn(r), is zero on this surface, i.e.,

atoms.
Vn(r)=0. (1) Up to this point our analysis of the plane-averaged charge
density appears to be identical to the method already de-
Therefore, the total charg®; of an atomi in a chemical scribed by Benedekt al?® Two differences exist, however:
compound is defined as in our study the reference density,(r) is the superposition
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of the densities of nonintercalated graphite and the alkali
sublattice, whereas Benedeé&t al. used the electronic
ground-state density of the graphite lattice and isolated alkali
atoms to calculata(r). We decided to use the charge den-
sity of the complete alkali sublattice of the GIC fof(r)
because we are mainly interested in the charge transfer be-
tween the graphitic and intercalant planes without consider-
ing possible contributions resulting from the alkali-alkali in-
teractions. Nevertheless, the difference is probably of minor
importance, since, as Benedekal. stated, at least in the
case of Rb the charge density of the Rb sublattice is very
similar to that of the superimposed atomic densities. The
second difference is that we use the total electronic charge
densityn(z) in Eq. (6) and Eq.(7) and not just the valence
charge density, as in the work of Benedslal. This is nec-
essary since Bader's boundary conditjég. (1)] is valid for

total densities rather than valence densities. The full charge
density was computed by simply adding the core densities
from the inner electrons to the computed valence charge den- FIG. 1. Difference charge densign(r) of LiC in the graphitic
sities. Especially in the calculations of the GIC's with Plane(@ and perpendiculafb). Positions of the lithium atoms are
lithium and sodium, where & pseudopotentials have been denoted by stars. Positions of the carbon gtoms are denoted by the
applied, the inclusion of the core densities is crucial. Atwo hexagqns. Contourvalue_s on the left side are chosen fqraclear
charge transfer between 0.4 andedig observed in this case, representation of the underlying structure. Small asymmetries are a

whereas the use of the valence density always results in @nSeduence of numerical inaccuracies in the generation of con-
tours. The numbers in brackets shown below the three-dimensional
complete charge transfer o Xsee Sec. Il A.

representations on the right side denote the rangn@f) (in units
of 0.01 elementary charges per)A

{b) [~4.70;+9.60]

lll. RESULTS

the reference state. This behavior is characteristic for a co-

valent bond. From the shape 6A(r) in Fig. 1(b) one rec-
The valence charge densitiegr) of some of the alkali ognizes ther* character of the Li-C bonds with respect to

GIC's have been computed and published by several othghe graphitic plane. Our results agree with the findings by

group$®~? using different computational methods. The in- Kohanoffet al28 who computed the additional charge distri-
teractions between the graphite host and the intercalated m&fytion n,y(r) for LiC g, i.e., Nagdr) =N ic.(r) —nc(r). For
, e, o ().

als are rather weak and not much insight can be gained from
n(r) since the valence charge densities are almost identical
to a superposition of the valence charge densities of the two R —
sublattices. The nature of the alkali-graphite interactions is ﬁﬁj%@
more clearly reflected by the difference densdty(r). Fig- 7 .
ures 1 and 2 shown(r) for LiCg, LICg, and KCg within

and perpendicular to the graphitic plane. The difference
charge densities of RbiCand CsG are similar to that of

KCg and are therefore not shown here. Oﬁ@ =
@ e

1. LiCg, LiCg a) [~5.41;-0.77]

A. Charge densities

Figure 1 showsSn(r) of LiCg in the graphitic plane and
within a perpendicular plane containing the lithium atoms in 5
contour representatiofieft) and as three-dimensional plots
(right). From Fig. 1a) it is obvious that intercalation of
lithium in graphite leads to two different types ofs®exa-
gons in the graphite hos#in(r) in the middle of the G
hexagons lying above and below the lithium atoms is higher 3]
than in the middle of the adjacent one(r) is negative
everywhere in the graphitic plane, except in the centers of
the Cs hexagons directly above the Li atoms, indicating that
there is a net charge transfer from the graphitic plane towards g 2. pifference charge densign(r) in contour representa-
the intercalant plane. The character of the charge transfer cagn for Lic, (a,b of KCg (c,d) in the graphitic planéa,d and in a
be seen from Fig. (b). Figure 1b) shows a significant in- perpendicular plane containing the intercalémt). Contour values
crease of charge density along the Li-C directions, where thare chosen for a clear representation of the underlying structure.
maximum lies closer to the carbon atoms. At both the carboismall asymmetries are consequences of numerical inaccuracies in
and the lithium sites the charge density is reduced relative tthe generation of contours. See also Fig. 1.

(b) [—4.18;+7.52] (d) [—2.45:+8.00]
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FIG. 4. n(z) of LiCg¢ (continuous ling computed from the total

FIG. 3. n(2) of LiCg (continuous ling computed from the va- X o
charge. Broken lines correspondri¢z) of the carbon and lithium

lence charge only. Broken lines ging€z) of the isolated sublattices A X
where the density contribution from the lithium atoms is multiplied Sublattices. See also Fig. 3.

by 10 for better legibility. The marks along the axis give the

position of the graphite and lithium planes. The magnified insetCide with the intercalant planes, and calculation of the charge
demonstrates, that the minimum ofz) coincides exactly with the  transfer using Eq6) would yield a complete charge transfer
lithium planes. of the X lithium electrons to the graphite host.

Bader’'s boundary criterion, however, refers to the total
direct comparison we also computegy{r) and obtained charge densities, and core contributions must be included.
the same values as Kohaneff al. The main difference be- Figure 4 shows the total electronic density when thelec-
tween §n(r) and nadc(r) is a relative shift of approximate trons of both carbon and lithium atoms are considered.
0.017%/A % of theny{r) values relative tan(r), which is a Minima between the graphitic and the intercalant plane are
consequence of the fact that the integralsngfi(r) and  clearly visible. The minimum of(z), i.e., z,qy, is No longer
sn(r) over the complete unit cell yieldeland @, respec- identical to the position of the intercalant planes. Integration
tively. of n(z) from 0 toz,q, yields 0.% remaining on the Li atom.

This result is contrary to the picture of a fully ionized lithium
2. XCg, X=Na, K, Rb, and Cs in LiC obtained by an experimental stuth/To further

. . . .. clarify the character of the graphite-lithium interactions the
Figure 2 shows the difference charge densities forgLiC planar difference densityn(z) is given for LiCq in Fig. 5. It

and KGg. The comparison of F_|gs.(a) and 2b) with F'g' 1. shows the existence of a region with increased charge den-
reveals that, except for the different symmetry, which is asity (b) lying between the graphitiéc) and the intercalant
consequence of the different stochiometry, only small quan:

o ) . : ! — regions(a). The difference charge density inside region
titative dn‘ferenc_es exist _be_tween LiCand LiCs. The ele_c (0.24e) stems from both the lithium ator®.07e/atom; re-
tronic structure is very similar and the partial occupation of

an almost graphitic* band originating from carbom gion a) and the carbon atom®.03/atom; regionc) which

states is evident. These states are polarized by the aIIZ<aIi a(f[early llustrates the covalent character of the bonding.

oms. In Fig. 2b) t.he carborp, states show a strong orienta- For all other alkali GIC’s the charge density was analyzed
. . 2

tion towards the Li atoms, whereas in the case ofH(Ei in an analogous manner. The charge transfer data are col-
; : Lo 8%519. jacted in Table 1. One notices that there is a total charge
2(d)] this orientation is still visible but much less pro-

nounced, indicating that the alkali-carbon interactions have gansfer of 0.8 (0.4) in the case of LiG (LICg) and an

. . almost constant value of about 8.7r the remaining alkali
more covalent character in the case of Li. For the same 8% s The smaller value for the lithium compounds is a
son the range obn(z) is smaller for KG; than for LiCg. ' P

B. Charge transfer

Charge transfer in stage-1 alkali GIC’s has been calcu- '
lated by analyzing planar averaged charge densifig} (see 005 ¢
Sec. 11B. In Fig. 3 the valence charge densitfz) of o / b
c a \

LiC ¢ together with the valence charge densities of the graph-
ite host and the intercalant sublattice is given. Contrary to the
density contribution of the graphite host, which is centered
around the graphitic planes, the charge introduced by the
lithium atoms is almost homogeneously distributed over the
whole unit cell. The complete valence density of ki
very similar to the superimposed valence densities of the two 025 L
sublattices; its minimum is located exactly in the middle be-
tween two adjacent graphitic planes. Therefore, on the basis
of the valence charge densitiegg, in Eq. (5) would coin- FIG. 5. Planar difference densign(z) for LiCg.

on(z) (a.u.)
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TABLE II. Charge transfer in units of the elementary charge in stage-1 alkali GIC’s. For an explanation
of the regionsa, b, andc, see text.

Charge transfer Region
total physical geometric a b c
LiCgq —0.515 —0.070 —0.445 -0.071 +0.243 —0.029
LiCg —0.404 —-0.023 -0.381 —-0.024 +0.230 —-0.025
NaCg -0.703 —-0.252 —-0.451 -0.147 +0.267 —-0.015
KCgq -0.692 —-0.250 —0.442 —-0.254 +0.364 -0.014
KCg? —-0.663 -0.231 —-0.432 -0.237 +0.333 -0.012
RbCq -0.671 —-0.234 —-0.437 —0.236 +0.336 -0.012
CsGq —0.657 —-0.219 —0.438 -0.219 +0.310 —-0.011

&Calculated with the experimental lattice constant of RbC

consequence of the more covalent character of the lithiumbeing the hypothetical system LiCwhere we find a some-
carbon interactions relative to the other alkali GIG&e what smaller value of 0.28atom. As a consequence of the
Fig. 2, which is also true for alkali organometallic more covalent bonding the physical charge transfer is very
compounds? The reason for the difference of the calculatedsmall for the lithium compoundg0.07% and 0.02 for
charge transfer between LiCand LiCg is at present not LiC g and LiCg, respectively. The more ionic bonding of the
clear. The values in Table Il include three significant figuresfemaining alkali GIC's results in values of 0.22—
the systematic error due to the choice of methods is, how0-2%/alkali-atom for all other compounds.
ever, larger than 0.0@l Nevertheless, as all calculations
were donge on the same level of theory, one can assume that IV. DISCUSSION AND CONCLUSION
systematic errorffor instance, due to the definition of charge  The calculated charge densities and difference charge
transfey cancel when comparing data for the whole seriesdensities show a common behavior for all stage-1 alkali
Our calculations will thus give the correct trends, even if theGIC’s. The intercalated planes are made up from partially
differences are small compared to the systematic error of thimnized alkali atoms. The bonding interactions between
method. graphite and the intercalants result in a region of increased
From the values in Table Il one can see that the chargeharge density located between the graphitic and the interca-
transfer has its smallest value for the lithium compoundslated planes. This region refers to the so-called interlayer
reaches a maximum for sodium, and then decreases slowly fate already observed in other theorefftdd and
the series of the heavier alkali atoms potassium, rubidiumexperimenta*°studies. The lithium GIC's differ from the
and cesium. This is somewhat surprising since, parallel to th@ther alkali GIC’s in that the bonding character is more co-
decreasing ionization energies in the sequence sodium, p¥alent. , , ,
tassium, rubidium, and cesium, one would expect at least g1 Ne amount of charge transfer in alkali GIC’s has been

small increase of the total charge transfer. Therefore, in ad2iScussed controversially for a long time. Pietronero and
trassler® correlated the charge transfer with the changes of

dition to the ionization energy another parameter must exist e intralaver carbon bond lenaths uoon intercalation and
which determines the magnitude of the charge transfer. On Y 9 P
ound an almost constant value of 8.fbr all stage-1 com-

such parameter IS the interlayer d|stance...lt IS easy to undeg; unds. Most theoretical calculations of the charge transfer
stand that the distance between graph|_t|c and intercalategf ¢ 5504 on first-principles band-structure calculations. The
planes also affects the charge transfer, since the total char¢e.; ~5culations were done for KE738 where the authors
transfer is zero in the limit of infinitely separated planes.ty ,nq a charge transfer 6£0.7e/K atom. In a more recent
When the interlayer distance increases parallel to the increa?(orringa-Kohn-Rostoker(KKR) ab initio calculation of

ing atomic radii from NaG to CsG;, there is a trend in the  kc, Divincenzo and Rab¥ concluded that the charge
tptal charge transfer opposite to the one related to the ionizaransfer is complete. Theoretical work by Holzwaethal *°

tion energy. also shows complete charge transfer in iGn a DFT/

In order to test this idea, we computed the charge transfgsseudopotential study of potassium adsorbed on graphite An-
of KCg using the experimental lattice constants of RbC cilotto and Toig8' found a charge transfer of 0.4&rom
The charge transfer calculated in this way is indeed smallegach K atom to the graphite substrate in the case ¢ a
than in RbG and also smaller than in KCwhen using the X 2)K overlayer. This is interesting insofar as this system is
correct lattice constantsee Table . We thus conclude that very similar to KG, and that earlier experimental res(fts
there are two different trends determining the total chargelso suggested an almost complete charge transfer for the K
transfer in alkali GIC’s:(i) increasing charge transfer with atoms. The charge transfer of Oel8alculated by Ancilotto
decreasing ionization energy of the alkali metal amgde- and Toigo rather corresponds to the charge transferred from
creasing charge transfer with increasing interlayer distancethe K atoms into the interlayer regigregionb in Fig. 5, i.e.,

In all stage-1 alkali GIC’'s the geometrical part of the 0.36 for KCg) than to what is defined as the total charge
charge transfer gives the dominant contribution to the totatransfer in our study. In a recent DFT/pseudopotential study
charge transfer. The geometrical charge transfer has a neary Rb-intercalated graphites Benedetkal ?® found a charge
constant value of 0.43-0.8f&lkali-atom, the only exception transfer of 0.76 for the stage-1 compound, which is very
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similar to ours(0.67). This finding is not surprising as they charge transfer is not a quantum-mechanical observable.
also used plane-averaged densities and the Bader criterium

(see Sec. Il Bto determine the charge transfer. The small

difference in their calculation and ours are mainly a conse- V. SUMMARY

e e e O el 1 We Pave perormed frstprniles totaenergy clul
lyzed only the valence charge density rather than the tot ons to study the charge-density distribution of all stage-1

. . e . Ikali graphite intercalation compounds including also the
;harge density, which results in slightly different values thypothetical compounds Licand NaG. The amount of
bd

y : _
On the experimental side there is no clear picture of thecharge transfer from the alkali atoms to the graphite host was

charge transfer in stage-1 alkali GIC’s. X-ray photoemissiorfetermined from an analysis of plane-averaged densities. For
(XPS) 34 glectron energy loss spectroscShyEELS) and he stage-1 alkali GIC’s we find a nearly constant charge

de Haas—van Alphdf measurements on KCwere inter- transfer of 0.@/alkali atom with the exception of the Li com-
preted as an indication for total charge transfer. Further deplcl)unds Whﬁre we find O&Tem Lf'ChG art:d 0.4 for Lf'CS' Inl
tailed high-resolution EELS measurements on K, Rb, and c§’ cases, the major pafd.4e) of the charge transfer results

) ; from a simple overlap of the charge densities of the sublat-
stage 1 GIC's h_ave demonstrathat the states above the tices. Our comparison with other theoretical and experimen-
Fermi level, which are relevant for the charge transfer, ar

identically perturbed by the different intercalants. This resul?al results makes it clear that the use of a unique definition is

suggests that the charge transfer is complete for the hea crucial for the discussion of charge transfer, especially when

V . .
alkali metal stage-1 GIC’s. On the other hand, in an X_ray_é/omparlng different compounds. In the present study we sys-

absorption near-edge  photoabsorption spectroé&opytemaﬂca”y compared the various compounds using a com-

8 mon definition of charge transfer. This study is thus an im-
(XANEPS) and‘. EELS study of .KCS a charge transfer of portant step towards a consistent description of charge
0.8% and 0.® is found, respectively. An Auger spectros- ; - ,
9 : Do : . transfer in alkali GIC’s.
copy studyl® of CsGC; is also in disagreement with full ion-
ization of the Cs atom; instead a charge transfer of only
0.7e is observed.

The differences in the experimental results obtaind by dif-
ferent methods are a consequence of the approximations be- Financial support by the Fonds der chemischen Industrie
ing made and the reference states being used in the daitagratefully acknowledged. We thank N. Troullier for pro-
analysis(see also Ref. 48 A unique exerimental definition viding the computer program for the calculation of the
of charge transfer does not exist, consistent with the fact thgiseudopotentials.
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