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Magnus force in superfluids and superconductors
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The forces on the vortex, transverse to its velocity, are considered. In addition to the superfluid Magnus
force from the condensate~superfluid component!, there are transverse forces from thermal quasiparticles and
external fields violating the Galilean invariance. The forces between quasiparticles and the vortex originate
from interference of quasiparticles with trajectories on the left and on the right from the vortex like similar
forces for electrons interacting with the thin magnetic-flux tube~the Aharonov-Bohm effect!. These forces are
derived for phonons from the equations of superfluid hydrodynamics, and for BCS quasiparticles from the
Bogolyubov–de Gennes equations. The effect of external fields breaking Galilean invariance is analyzed for
vortices in the two-dimensional Josephson junction array. The symmetry analysis of the classical equations for
the array shows that the total transverse force on the vortex vanishes. Therefore the Hall effect which is linear
in the transverse force is absent also. This means that the Magnus force from the superfluid componentexactly
cancels with the transverse force from the external fields. The results of other approaches are also brought
together for discussion.@S0163-1829~97!04502-5#
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I. INTRODUCTION

The Magnus force on a vortex has long been known
classical hydrodynamics.1 This force appears if the vorte
moves with respect to a liquid. The force is normal to t
relative vortex velocity and therefore is reactive and does
produce a work. In general, such a force arises always w
a body with a flow circulation around it moves through
liquid or a gas~the Kutta-Joukowski theorem!. The most
important example is the lift force on a wing of an aeropla
which keeps the aeroplane in the air.2

The key role of the Magnus force in vortex dynamics h
become clear from the very beginning of studying superfl
hydrodynamics.3,4 The superfluid Magnus force was define
as a force between a vortex and a superfluid and there
was proportional to the superfluid densityrs . But in the
two-fluid hydrodynamics the superfluid Magnus force is n
the only force on the vortex transverse to its velocity: th
was also a transverse force between the vortex and quas
ticles moving with respect to the vortex. The transverse fo
from rotons was found by Lifshitz and Pitaevskii5 from the
quasiclassical scattering theory. Later Iordanskii6 revealed
the transverse force from phonons which was equal in m
nitude and opposite in sign with the quasiclassical force
Lifshitz and Pitaevskii. From the very beginning the Iorda
skii force was a controversial matter. Iordanskii sugges
that his force and the Lifshitz-Pitaevskii force were of d
ferent origins and for rotons they should be summed. A
result, he concluded that the transverse force from rot
vanished. But the analysis done in Ref. 7 demonstrated
the Iordanskii force for rotons is identical to the Lifshit
Pitaevskii force and they must not be added. In addition,
Lifshitz-Pitaevskii force from rotons was calculated in t
original paper5 with a wrong sign. After its correction the
transverse force on the vortex had a same sign and a v
both for rotons ~the Lifshitz-Pitaevskii force! and for
phonons~the Iordanskii force!. In the same paper7 it was
550163-1829/97/55~1!/485~17!/$10.00
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pointed out that the Iordanskii force for phonons and roto
results from interference between quasiparticles which m
past the vortex on the left and on the right sides with diff
ent phase shifts, like in the Aharanov-Bohm effect.8

In the theory of superconductivity the Magnus force a
peared first in the paper by Nozie`res and Vinen.9 In clean
superconductors the BCS quasiparticles produce an a
tional transverse force on the vortex10,11 analogous to the
Iordanskii force in superfluids. The total transverse force
responsible for the Hall effect in the mixed state of a sup
conductor. But the Hall effect was rather weak in classi
superconductors. An explanation of it was suggested by K
nin and Kravtsov12 ~see also Ref. 13!: impurities interact
with quasiparticles bound in the vortex core and this inter
tion produces an additional transverse force on the vortex
contrast with the quasiparticle transverse force which
creases the total transverse force, the impurity force
creases it and in a dirty superconductor the Magnus forc
very small. As a result, the strong Hall effect is possible o
in superclean superconductors. The transverse force from
bound states in the core has been recently rephrased in t
of the spectral flow through the quasiparticle bound state14

A new wave of interest to the Magnus force came w
discovery of high-Tc superconductivity. A few reasons o
this interest might be mentioned.~i! The so-called Hall
anomaly was observed:15 nearTc the sign of the Hall voltage
is opposite to that expected from the standard vortex dyn
ics. ~ii ! It has become possible to obtain superclean sin
crystals with large Hall angle16 as predicted in the superclea
limit of the theory of Kopnin and Kravtsov. This made po
sible to observe magnetoresonances in the ac response o
superconducting single crystals connected with waves pro
gating along vortices.17 ~iii ! The effective Magnus force gov
erns quantum vortex nucleation in clean high-Tc supercon-
ductors intensively discussed now.18,19

Despite a lot of work done to understand and calculate
485 © 1997 The American Physical Society
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486 55E. B. SONIN
Magnus force, it still remains to be a matter of controve
with a number of conflicting points of view on it. A new
discussion has been launched by the paper of Ao
Thouless.20 The main claim of Ao and Thouless is that the
is an universalexactexpression for the total transverse for
on the vortex~the effective Magnus force! which does not
depend on the presence of quasiparticles or impurities. T
force derived from the concept of the geometrical phase~the
Berry phase! coincides with the superfluid Magnus force a
therefore is proportional to the superfluid density. Accord
to Ao and Thouless, there is no transverse force on the vo
from quasiparticles and impurities, though they might infl
ence the value of the superfluid density and thereby influe
the amplitude of the Magnus force.

The Ao-Thouless theory is in an evident disagreem
with the previous calculations of the transverse force on
vortex ~the effective Magnus force! in superfluids and super
conductors reviewed above. It attracted a great attention
has been supported in a number of recent publication
other theorists~see, e.g., Refs. 21–23!. If the Ao-Thouless
theory were true, it would be necessary to revise the wh
basis of the vortex dynamics. For example, on the basi
the Ao-Thouless theory Sˇ imanek22 suggested that quantum
vortex tunnelling is governed by the Magnus force obtain
from the Berry phase approach, i.e., proportional to the
perfluid density, in contradiction to the previous theory.18,19

Therefore it is important to understand what the Magn
force is and whether the Ao-Thouless theory is true or n

The present paper is to analyze this controversy. Am
the sources of controversy there is semantics. Therefore
important to define force terminology from the very beg
ning. The wordforce itself is only a label to describe a tran
fer of momentum between two objects. Before using th
labels one must analyze the momentum balance for any
ject and only then to label various contributions to the
balances as forces. Keeping this in mind, the forces un
discussion may be defined as the following:

~i! There is a momentum transfer between a vortex
the rest part of a superfluid. One reveals it analyzing
momentum balance for the superfluid moving with the v
locity vW s whereas the vortex moves through the superfl
with a different velocityvW L . This momentum transfer is th
superfluid Magnus force. It is proportional to the superfluid
densityrs and transverse to the relative velocityvW L2vW s .

~ii ! Analyzing the momentum balance for thewhole
Galilean-invariant liquid~including the superfluid and nor
mal parts of it! around the vortex one may reveal a cont
bution presenting the momentum transfer between the vo
moving with the velocityvW L and the normal fluid~the gas of
quasiparticles! moving with the velocityvW n . This force is
proportional to the relative velocityvW L2vW n and has the com
ponents longitudinal and transverse tovW L2vW n . The trans-
verse component of this force includes theIordanskii force.

~iii ! If there is no Galilean invariance, as in a dirty supe
conductor, the momentum balance for the whole liquid m
include also forces external for the liquid, namely, the m
mentum transfer to the impurities rigidly connected with t
crystal lattice. When the latter is at rest, this moment
transfer, or the force from impurities, is proportional to t
vortex velocity vW L in the laboratory reference frame~the
frame connected with the crystal at rest!. Its component
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transverse tovW L is theKopnin-Kravtsov force.
~iv! The momentum balance for the whole liquid arou

the vortex is at the same time an equation from which o
must find the vortex velocityvW L . Therefore it is useful to
collect all the terms proportional tovW L together. After it the
term uniting all contributions transverse tovW L is the total
transverse force on the vortex, or theeffective Magnus force.

Thus in general three forces contribute to the effect
Magnus force: the superfluid Magnus force, the force fro
quasiparticles~the Iordanskii force!, and the force from im-
purities, or other external fields breaking the Galilean inva
ance ~the Kopnin-Kravtsov force!. Usually in experiment
they can determine the effective Magnus force, but not
‘‘bare’’ superfluid Magnus force. In rotating superfluids th
effective Magnus force determines the mutual friction. O
can find the latest reviews of the experiment and the the
on mutual friction in 3He in Refs. 24 and 25. In supercon
ductors the Hall conductivity15,26 and the acoustic Farada
effect for the transverse ultrasound wave propagating al
vortices27 are linear in the effective Magnus force. The pr
cess of vortex quantum tunnelling is also influenced by
effective, but not the superfluid Magnus force. So the fi
outcome of the theory must be the amplitude of the effect
Magnus force. Its presentation as a combination of th
forces is an intermediate stage of the theory. In fact, t
presentation is valid only if~i! the number of quasiparticle
is not too large and their mutual interaction is weak;~ii !
external fields breaking Galilean invariance are not
strong. The first condition is violated close toTc , where
other approaches based on the Ginzburg-Landau theory~or
its analogue for superfluids, the Ginzburg-Pitaevskii theo!
must be used.28,29The second condition does not hold in th
Josephson junction array considered in the present paper~see
below!. In these cases the theory deals directly with the
fective Magnus force in the equation of vortex motion:
decomposition on the ‘‘bare’’ superfluid Magnus force a
the forces from quasiparticles or impurities becomes conv
tional and of a little physical sense.

Whereas there is a consensus among theorists on the
perfluid Magnus force, the Ao-Thoules theory rejects the I
danskii force from quasiparticles and the Kopnin-Kravts
force from impurities claiming that amplitudes of the effe
tive and the superfluid Magnus forces are exactly equ
Therefore the present paper considers the effect on the f
balance~i! from quasiparticles, and~ii ! from external fields
breaking the Galilean invariance of the superfluid.

In my analysis of the quasiparticle effect I chose t
phonon-vortex interaction which may be described by
nonlinear Schro¨dinger equation long ago suggested for
weakly nonideal Bose gas~the Gross-Pitaevskii theory30!.
The nonlinear Schro¨dinger equation yields the usual supe
fluid hydrodynamics. It is a good starting point for furth
discussion, which one may expect a consensus of all pa
on ~see discussion in Ref. 31!. The next step is to analyz
scattering of the sound wave~phonon! by the vortex in hy-
drodynamics. Just at this stage a disagreement appears
and Thouless believe that this scattering can produce on
dissipative force on the vortex, but not a transverse on32

Recently Demircan, Ao, and Niu33 tried to prove it using the
Born approximation. But they ignored peculiarities of th
phonon Born scattering at small angles which resulted in
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Iordanskii force. It is important to note that the controver
arises not from a difference in ideology; anyone is free
choose a language to derive the Magnus force atT50: either
the standard hydrodynamics, or newest topological conc
of the geometrical phase. But there is a disagreement in
culation of integrals describing the phonon scattering in
first order of the perturbation theory. We hope to show
this paper at which point Demircan, Ao, and Niu33 missed to
take into account the Aharonov-Bohm interference
phonons which was ignored by the Ao-Thouless theory.

Now discussions around the transverse force on the vo
in the presence of impurities concentrate mostly on the c
tribution of the core bound states in Fermi superfluids. T
requires a rather sophisticated analysis~see Ref. 14 and ref
erences therein!. In the present paper I chose another e
ample when the Galilean invariance is absent: the tw
dimensional Josephson junction array~JJA!. This is a regular
lattice of nodes with the Josephson coupling between th
Experimentally, any node corresponds to a superconduc
island in an artificially prepared JJA, or to a grain in a gran
lar superconducting film. The behavior of the JJA in an e
ternal magnetic field is usually described in the picture
moving vortices similar to the mixed state of type II supe
conductors. The dynamics of vortices in JJA attracts a g
interest of experimentalists34,35and theorists.36–45There is an
intrinsic pinning of vortices at the JJA cells, and vortices c
move only if the driving supercurrent is more than the cr
cal value. But when they start to move, in many cases a g
approximation is to replace the lattice by a continuous sup
conducting film. However, the hydrodynamic derivation
the Magnus force is not valid since it assumes the mom
tum conservation law and the Galilean invariance. In
present paper it will be shown that the Hall effect isexactly
absent in the classical theory of JJA which neglects
charge quantization. Since the Hall effect is linear in t
amplitude of the effective Magnus force, the latter also v
ishes in the classical JJA. This statement directly follo
from the symmetry of the dynamic equations. At the sa
time the superfluid density is finite in the continuum limit
JJA and therefore the superfluid Magnus force does not v
ish. Therefore the theory based on the Berry ph
approach23 predicted a finite effective Magnus force and t
Hall effect for JJA in disagreement with our symmet
analysis. Our result might be interpreted as that the su
fluid Magnus force is compensated by some force exte
for the liquid, like the Kopnin-Kravtsov force in a dirty su
perconductor. But as mentioned above, JJA is a system
a strong violation of Galilean invariance, for which this i
terpretation is purely formal. Only the resultant effecti
Magnus force has a physical meaning.

We start from Sec. II which shows how the Magnus for
appears in the phenomenological theory of neutral
charged superfluids. The force terminology is also int
duced explaining to which term and in which equation a
force under discussion corresponds. Section III is devote
the transverse force between quasiparticles and the vo
~the Iordanskii force! and its connection with the Aharonov
Bohm effect. Section III A recalls connection between t
nonlinear Schro¨dinger equation for the condensate~the
Gross-Pitaevskii theory! and superfluid hydrodynamics an
phonons. Scattering of the sound wave~phonon! by the vor-
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tex in hydrodynamics is analyzed in Sec. III B. It is show
that the standard scattering-theory approach fails to re
the transverse Iordanskii force because of the divergenc
the scattering amplitude at small angles of scattering. T
analysis of the small-angle scattering is presented in Sec
C. It reveals the interference between quasiparticles with
jectories on the left and on the right from the vortex. In S
III D the same results is rederived using the partial-wa
expansion, and the analogy with the Aharonov-Bohm eff
is shown. In the end of this subsection I show how an os
latory motion of a free vortex line induced by the sou
wave must be taken into account by the partial-wave meth
A more general quasiclassical derivation of the transve
force from the quasiparticles with an arbitrary spectrum
presented in Sec. III E. In Sec. IV the transverse force
tween the BCS quasiparticles and the vortex is derived us
the Bogolyubov–de Gennes equations. Section V pres
the symmetry analysis of the classical dynamical equati
for JJA which shows that the total transverse force on
vortex in JJA vanishes and as a result of it the Hall effec
possible only in the quantum theory of JJA which takes in
account charge quantization. The last section VI contains
summary and the discussion of other approaches to the p
lem.

II. WHERE AND HOW THE MAGNUS FORCE APPEARS

A. The Magnus force in classical hydrodynamics

For a better understanding of the origin of the Magn
force it is worth recalling how the Magnus force arises
classical hydrodynamics.

Let us consider an isolated straight vortex line in an
compressible inviscid liquid. The line along the axisz in-
duces the velocity field

vW v~rW !5
kW 3rW

2pr 2
. ~1!

Here rW is the position vector in the planexy, andkW is the
circulation vector directed along the axisz. The circulation,
given by

k5 R vW v•d lW, ~2!

may have arbitrary values in classical hydrodynamics. In
dition, there is a fluid current past the vortex line with
transport velocityvW tr . Then the net velocity field around th
line is

vW ~rW !5vW v~rW !1vW tr . ~3!

The Euler equation for the liquid is

]vW

]t
1~vW •¹W !vW 52

1

r
¹W P1

FW

r
d2~rW !. ~4!
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488 55E. B. SONIN
Herer is the liquid density andP is the pressure. This equa
tion suggests that an externald-function forceFW is applied to
the liquid at the vortex line.

Assuming that the vortex line moves with the consta
velocity vW L , i.e., replacing the position vectorrW by rW2vW Lt,
one obtains that

]vW

]t
52~vW L•¹W !vW . ~5!

Then the Euler equation~4! yields the Bernoulli law for the
pressure:

P5P02
1

2
r@vW ~rW !2vW L#2

5P082
1

2
rvW v~rW !22rvW v~rW !•~vW tr2vW L!. ~6!

HereP0 andP085P02
1
2r(vW tr2vW L)

2 are constants which ar
of no importance for the following derivation.

Next one should consider the momentum balance fo
cylindrical region of a radiusr 0 around the vortex line. The
momentum-flux tensor is given by2

P i j5Pd i j1rv i~rW !v j~rW !, ~7!

or in the reference frame moving with the vortex veloc
vW L :

P i j8 5Pd i j1r~v i2vLi !~v j2vL j !. ~8!

The momentum conservation law requires that the ex
nal forceFW on the vortex line must be equal to the mome
tum flux through the entire cylindrical boundary in the re
erence frame moving with the vortex velocityvW L . The latter
is given by the integral*dSjP i j8 wheredSj are the compo-

nents of the vectordSW directed along the outer normal to th
boundary of the cylindrical region and equal to the elem
tary area of the boundary in magnitude. Then using Eqs.~1!,
~6!, and ~8!, the momentum balance yields the followin
relation:

r@~vW L2vW tr!3kW #5FW . ~9!

On the left-hand side of this equation one can see
Magnus force as it comes in the classical hydrodynamics
half of this force is due to the Bernoulli contribution to th
pressure, Eq.~6!; another half is due to the convection ter
}v iv j in the momentum flux. The Magnus force balances
resultant of all external forces applied to the liquid at t
vortex line ~the forceFW ). In the absence of external force
the vortex moves with the transport velocity of the liqui
vW L5vW tr ~the Helmholtz theorem!.

This derivation demonstrates the classical origin of
Magnus force: quantization of circulation is not necess
for its existence. During the derivation we referred to t
hydrodynamic equations only at large distance from the v
tex line. It might seem as if the fluid in the vortex core d
not matter at all. However, the derivation is based on
assumption that the momentum is a well-definedconserved
t

a

r-
-

-

e
A

e

e
y

r-

e

quantity everywhere even inside the vortex core where
hydrodynamic theory does not hold.

B. The superfluid Magnus force

In the superfluid hydrodynamics one can refer this de
vation to the superfluid component with densityrs . The Eu-
ler equation for the superfluid component2 after adding the
externald-function forceFW applied at the vortex line is

]vW s
]t

1~vW s•¹W !vW s52¹W m1
FW

rs
d2~rW !, ~10!

wherem is the chemical potential.
For charged superfluids~superconductors! the Euler equa-

tion should include also the electromagnetic forces. In p
ticular, the chemical potential must be replaced by the e
trochemical potential. But outside of the vortex core one m
use the quasineutrality condition that the total electr
charge is approximately equal to the background ion cha
Then one may neglect the chemical potential gradient.
nally the Euler equation may be written as

]vW s
]t

1~vW s•¹W !vW s5
e

m SEW 1
1

c
@vW s3HW # D1

FW

rs
d2~rW !, ~11!

whereEW andHW are the electric and the magnetic fields.
Let us consider a vortex line in a neutral superfluid w

the velocity field Eq.~1!. Now circulation is quantized, and
the circulation quantum isk5h/m in a Bose superfluid and
k5h/2m in a Fermi superfluid. In the two-fluid theory th
momentum-flux tensor is

P i j5Pd i j1rsvsivs j1rnvnivn j , ~12!

and the chemical-potential variation is determined from
Gibbs-Duhem relation:28

dP5rdm1SdT1rn~vW n2vW s!•d~vW n2vW s!

5rdm1SdT1
1

2
rnd~vW n2vW s!

2. ~13!

According to the Euler equation~10! dm52 1
2vs

2 , then the
Bernoulli law for the pressure is

P5P02
1

2
rvs~rW !21

1

2
rn@vW s~rW !2vW n#

2

5P02
1

2
rsvs~rW !22rnvW s•vW n1

1

2
rnvn

2 . ~14!

In these expressions only contributions which depend on
superfluid velocityvW s are of importance; those which depen
on the normal velocityvW n are assumed to be incorporated
the forceFW external with respect to the superfluid comp
nent. Comparing Eqs.~14! and~12! with Eqs.~6! and~7! one
can see that in the case of the superfluidrs andvW s replace
r and vW . We repeat the analysis of the momentum balan
for a superfluid component in a cylindrical region around t
vortex line assuming thatvW s(rW)5vW v(rW)1vW str . Then instead
of Eq. ~9! one has
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55 489MAGNUS FORCE IN SUPERFLUIDS AND SUPERCONDUCTORS
rs@~vW L2vW s!3kW #5FW . ~15!

Here and later on we omit the subscript ‘‘tr’’ replacingvW str
by vW s . But one should remember that the superfluid veloc
vW s in the expression for the Magnus force is in fact the
perfluid velocity far from the vortex line.

The force FW , which enters the theory as ad-function
force, is distributed over some vicinity of the vortex line
reality. The dimension of this vicinity may exceed th
vortex-core size, but must be smaller than all relevant hyd
dynamic scales~e.g., the intervortex distance, or the vort
line curvature radius! in order to justify the assumption of
force localized at the vortex line. We suppose that the fo
FW incorporates all interactions with quasiparticles and im
rities.

A similar derivation can be done for a charged superfl
with the electric potential instead of the chemical potent
Bearing in mind Eq.~15!, one can rewrite the Euler equa
tions for the neutral and the charged superfluids:

]vW s
]t

1~vW s•¹W !vW s52¹W m1@~vW L2vW s!3kW #d2~rW !, ~16!

]vW s
]t

1~vW s•¹W !vW s5
e

m SEW 1
1

c
@vW s3BW # D

1@~vW L2vW s!3kW #d2~rW !. ~17!

Further transformation of the Euler equations uses
vector identity:

~vW s•¹W !vW s5¹W
vs
2

2
2vW s3@¹W 3vW s#. ~18!

In a neutral superfluid vorticity is concentrated on the vor
line: @¹W 3vW s#5kW d2(rW). But in a superconducto
¹W 3vW s5kW d2(rW)2(e/mc)HW .

Then the Euler equations are

]vW s
]t

52¹W S m1
vs
2

2 D 1@vW L3kW #d2~rW !, ~19!

]vW s
]t

5
e

m
EW 2¹W S vs22 D 1@vW L3kW #d2~rW !. ~20!

This analysis demonstrates that the total external force
the superfluid in the vicinity of the vortex line isexactly
balanced by the superfluid Magnus forcers@(vW L2vW s)3kW #.
In fact, the term}vW L in the Euler equation may be receive
from a pure kinematics: it presents the flow of the vort
lines across the line between two points which changes
phase difference between them~the phase slip!. After replac-
ing the external force by the Magnus force in the Euler eq
tion, the latter does not contain any information on the nat
and the magnitude of the external force. But the Euler eq
tion is not sufficient for description of superfluid motion: a
additional equation for the vortex velocityvW L is necessary. In
order to derive it, one should specify the forceFW . This may
y
-

-

e
-

d
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e

x
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e
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e
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be done by considering the momentum balance of the wh
liquid, but not only its superfluid component.

C. Equation of vortex motion and effective Magnus force

The momentum balance for the whole liquid in a cyli
drical region around the vortex line yields the equation
vortex motion which is a linear relation imposed on thr
velocitiesvW s , vW n , andvW L . In a Galilean invariant liquid this
equation must depend only on relative velocities. Howev
one can also include into this balance some interactions w
external fields, e.g., with impurities in superconductors. Th
for a medium with axial symmetry in the plane normal to t
vortex line the most general form of the equation of vort
motion is

rs@~vW L2vW s!3k#52D~vW L2vW n!2D8@ ẑ3~vW L2vW n!#2dvW L

2d8@ ẑ3vW L#. ~21!

Comparing it with Eq.~15!, one obtains the expression fo
FW :

FW 52D~vW L2vW n!2D8@ ẑ3~vW L2vW n!#2dvW L2d8@ ẑ3vW L#.
~22!

The forces proportional toD andD8 are due to scattering o
free quasiparticles by the vortex, therefore they are prop
tional to the difference between the drift velocity of qua
particles ~the normal velocityvW n) and the vortex velocity
vW L . The forces proportional tod andd8 are due to interac-
tion between the vortex line and impurities which are froz
into the crystal and therefore do not move if the crystal is
rest. Therefore they are determined by the vortex veloc
vW L in the laboratory reference frame connected with the cr
tal. The case when the crystal is not at rest is discusse
Ref. 27.

According to Kopnin and Kravtsov12 the force from im-
purities}d,d8 originates from interaction of impurities with
the quasiparticles bound in the vortex core, and theref
moving with vW L , but not with vW n . However, in a Fermi
superfluid, like 3He, quasiparticles localized at the boun
states in the vortex core interact also with free quasipartic
drifting with the normal velocityvW n . This interaction con-
tributes to the forces linear invW L2vW n (}D and}D8).25 But
this contribution, however important it is, is not consider
in the present paper. This means that the force}D8 in Eq.
~22! includes only the Iordanskii force from quasiparticl
scattered by the velocity field around the vortex line.

One can rewrite the equation~21! of vortex motion col-
lecting together the terms proportional to the velocityvW L :

rM@vW L3kW #1hvW L5rs@vW s3kW #1DvW n1D8@ ẑ3vW n#. ~23!

The forces on the left-hand side of the equation are theef-
fective Magnus force}rM5rs2(D81d8)/k and the fric-
tion force}h5D1d. The forces on the right-hand side a
driving forces produced by the superfluid and normal flow
In the theory of superconductivity the forc
FW L5rs@vW s3kW #5(1/c)@ jWs3FW 0#, proportional to the super
fluid velocity vW s ~or to the supercurrentjWs5ensvW s), is called
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the Lorentz force. HereF05hc/2e is the magnetic-flux
quantum and the vectorFW 0 is parallel tokW . There are also
forces on the vortex produced by the normal curr
jWn5ennvW n . One can find discussion of the effect of th
normal-current force on electrodynamics of a type II sup
conductors in Ref. 46.

The left-hand side of Eq.~23! presents the response of th
vortex to these driving forces. The factorrM , which deter-
mines the amplitude of the effective Magnus force on
vortex, is not equal to the superfluid densityrs in general: it
may be more or less thanrs . Note that the Hall conductivity
is governed byrM , but not byrs . At low magnetic fields
the normal current is small compared to the supercurr
i.e., the total currentjW' jWs5ensvW s and one may neglect th
terms}vW n on the right-hand side of Eq.~23!. On the other
hand, the electric field is connected with the vortex veloc
by the Josephson relationEW 51/c@HW 3vW L#. Then the equation
of vortex motion is equivalent to the Ohm law connecti
the current and the electric field. One can easily check
the Hall component of the conductivity is linear inrM .

In the superfluidity theory they usually present the eq
tion of vortex motion using the mutual friction paramete
B andB8 introduced by Hall and Vinen.3 Because of Gal-
ilean invarianced5d850 for superfluids, and neglecting th
normal motion (vW n50) the equation is

vW L5S 12
rn
2r

B8D vW s1 rn
2r

B@ ẑ3vW s#

5
rsrMk2

D21~rMk!2
vW s1

rskD

D21~rMk!2
@ ẑ3vW s#. ~24!

In the next section we shall calculate the amplitudeD8 of
the Iordanskii force analyzing the interaction of the vort
with phonons in the long-wavelength limit.

III. IORDANSKII FORCE
AND AHARONOV-BOHM EFFECT

A. Nonlinear Schrödinger equation
and two-fluid hydrodynamics

The Gross-Pitaevskii theory30 has used the nonlinea
Schrödinger equation to describe a weakly nonideal Bo
gas:

i\
]c

]t
52

\2

2m
¹2c1Vucu2c. ~25!

Herec5a exp(if) is the condensate wave function andV is
the amplitude of two-particle interaction. Using the Mad
lung transformation,47 this equation for a complex functio
may be transformed into two real equations for the liqu
densityr5ma2 and the liquid velocityvW 5(k/2p)¹W f where
k5h/m is the circulation quantum. Far from the vortex lin
these equations are hydrodynamic equations for an idea
viscid liquid:

]r

]t
1¹W ~rvW !50, ~26!
t

-

e

t,

y

at

-

e

-

in-

]vW

]t
1~vW •¹W !vW 52¹W m. ~27!

Herem5Va2/m is the chemical potential.
Suppose that a plane sound wave propagates in the li

generating the phase variationf(rW,t)5f0exp(ikW•rW2ivt).
Then the liquid density and velocity are functions of the tim
t and the position vectorrW in the planexy and can be written
in the form

r~rW,t !5r01r~1!~rW,t !, vW ~rW,t !5vW 01vW ~1!~rW,t !, ~28!

where r0 and vW 0 are the average density and the avera
velocity in the liquid, r (1)(rW,t) and vW (1)(rW,t)5(k/2p)¹W f
are periodical variations of the density and the velocity d
to the sound wave (^r (1)&50, ^vW (1)&50). They should be
determined from the hydrodynamic equations~26! and ~27!
after their linearization. In particular, Eq.~27! gives the re-
lation between the density variation and the phasef:

r~1!5
r0
c2

m~1!52
r0
c2

k

2p H ]f

]t
1vW 0•¹W f~rW !J , ~29!

wherec is the sound velocity. Substitution of this expressi
into Eq. ~26! yields the wave equation for a moving liquid
The sound wave has the spectrumv5ck1kW•vW 0. The sound
propagation is accompanied with the transport of mass. T
is an effect of the second order with respect to the wa
amplitude. In the reference frame moving with the avera
velocity vW 0 of the liquid the average mass currentjWph is

jWph~pW !5^r~1!vW ~1!&5r0f0
2 k2k

8p2c
kW5n~pW !pW . ~30!

This expression supposes that the plane sound wave c
sponds to a numbern(pW ) of phonons with the momentum
pW 5\kW and the energyE5«(pW )1pW •vW 0 where«(pW )5cp is
the energy in the reference frame moving with the liqu
velocity vW 0. Then the total mass current in the laborato
reference frame is

gW 5r0vW 01
1

h3E d3 jW
ph~pW !5r0vW 01

1

h3E d3pWn~pW !pW . ~31!

In the thermal equilibrium atT.0, the phonon numbers
are given by the Planck distributionn(pW )5n0(E,vW n) with
the drift velocityvW n of quasiparticles:

n0~E,vW n!5
1

exp
E~pW !2pW •vW n

T
21

5
1

exp
«~pW !1pW •~vW 02vW n!

T
21

. ~32!

Linearizing Eq. ~32! with respect to the relative velocity

vW 02vW n , one obtains from Eq.~31! that
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gW 5r0vW 01rn~vW n2vW 0!. ~33!

This expression is equivalent to the two-fluid express
gW 5rvW s1rn(vW n2vW s)5rsvW s1rnvW n assuming that r5r0
5rs1rn , vW 05vW s , and the normal density is given by th
usual two-fluid-theory expression:

rn52
1

3h3E ]n0~«,0!

]E
p2d3pW . ~34!

It is important to emphasize a difference between so
waves in a liquid and in an elastic solid. The sound wave
the elastic solid is not accompanied by real mass transpo
the laboratory reference frame: all atoms oscillate near t
equilibrium positions in the crystal lattice. Within ou
present formalism this means that the second-order contr
tion ^r (1)vW (1)& to the mass flow is compensated byr0^vW (2)&
where ^vW (2)& the second-order contribution to the avera
velocity vW 0. But in the case of the liquid the latter contribu
tion is not essential since one assumes that the fixed
average velocityvW 0 incorporatesall contributions to it. Thus
when we say about the mass transport by phonons we m
the transport in the reference frame moving with the aver
velocity vW 0. In the presence of phonons the latter is differe
from the center-of-mass velocitygW /r0. This difference is
possible because of using Euler variables: the average ve
ity vW 0 relates to agivenpoint in the space, whereas the a
x
o
en

ic
a
. A
x

in
n

d
n
in
ir

u-

al

an
e
t

c-

erage velocity related to agiven particle ~a Lagrange vari-
able! coincides with the center-of-mass velocity.

In the same manner one may derive the two-fluid expr
sion Eq.~12! for the momentum flux tensor. Expanding th
momentum-tensor up to the terms of the second-order w
respect to the sound wave amplitude one obtains

P i j5P0d i j1r0v0iv0 j1P i j
ph, ~35!

where the second-order phonon contribution is

P i j
ph5^P~2!&d i j1^r~1!~v ~1!! i&v0 j1^r~1!~v ~1!! j&v0i

1r0^~v ~1!! i~v ~1!! j&. ~36!

The second-order contributionP(2) to the pressure can b
obtained from the Gibbs-Duhem relationdP5rdm for an
ideal fluid at T50 using expansionsr5r01r (1) and
m5m01m (1)1m (2) , where m0 is the chemical potentia
without the sound wave. This yields the second-order p
non contribution P(2)5r0m (2)1(]m/]r)(r (1)

2 /2) to the
pressure, where]r/]m5r0 /c

2. According to the Euler
equation~4! the second-order contribution to the chemic
potential ism (2)52(v (1)

2 /2). Then

^P~2!&5
c2

r0

^r~1!
2 &

2
2r0

^v ~1!
2 &

2
. ~37!

The last term in Eq.~36! may be transformed as follows:
r0^~v ~1!! i~v ~1!! j&5
1

h3E d3pWn0~E,vW n!
c

p
pipj'

1

h3E d3pWn0~«,0!
c

p
pipj1

1

2h3E d3pW
]2n0~«,0!

]«2
@pW •~vW n2vW 0!#

2
]«

]pi
pj

5
1

3h3E d3pWn0~«,0!cpd i j2
1

2h3E d3pW
]n0~«,0!

]«
@pW •~vW n2vW 0!#

2d i j

2
1

h3E d3pW
]n0~«,0!

]«
@pW •~vW n2vW 0!#~vni2v0i !pj

5F 1

3h3E d3pWn0~«,0!cp1
1

2
rn~vW n2vW 0!

2Gd i j1rn~vni2v0i !~vn j2v0 j ! ~38!
ion
y
ns
Bearing in mind that̂ r (1)vW (1)&5rn(vW n2vW 0), Eq. ~35! at
r05r, vW 05vW s coincides with the two-fluid momentum-flu
tensor Eq.~12! where the pressure incorporates a phon
contribution for a liquid at rest and the Bernoulli terms giv
by Eq. ~14!.

This analysis demonstrates that two-fluid hydrodynam
with phonon quasiparticles is identical to the nonline
Schrödinger equation with thermally excited sound waves
next step is to analyze scattering of phonons by the vorte
hydrodynamics of an ideal liquid.

B. Scattering of phonons by the vortex in hydrodynamics

The phonon scattering by a vortex line was studied beg
ning from the works by Pitaevskii48 and Fetter.49 Let us con-
n

s
r

in

-

sider a sound wavef(rW,t)5f0exp(ikW•rW2ivt) propagating in
the planexy normal to a vortex line~the axisz). Then in
linearized hydrodynamic equations of the previous sect
the fluid velocity vW 0 should be replaced by the velocit
vW v(rW) around the vortex line. The hydrodynamic equatio
linearized with respect to the wave amplitude are

]r~1!

]t
1r0¹W •vW ~1!52vW v•¹W r~1! , ~39!

]vW ~1!

]t
1
c2

r0
¹W r~1!52¹W •@~vW v•¹W !vW ~1!1~vW ~1!•¹W !vW v#. ~40!
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Using the vector identity Eq.~18! for the velocity

vW 5vW v1vW (1) , Eq. ~40! can be rewritten as

]vW ~1!

]t
1
c2

r0
¹W r~1!52¹W ~vW v•vW ~1!!1@vW ~1!3kW #d2~rW !.

~41!

One can see from this equation that the perturbation from
vortex ~the right-hand side! contains strong singularities re
lated to the fact that the vortex line is not at rest when
sound wave propagates past the vortex. In order to wea
these singularities in Ref. 7 the time-dependent vortex ve
ity vW v(rW,t) was introduced as a zero-order approximation
the velocity field. This means thatrW in Eq. ~1! must be re-
placed by rW2vW Lt and ]vW v /]t52(vW L•¹W )vW v52¹W (vW L•vW v)
1@vW L3kW #d2(rW). HerevW L is the velocity of the singular vor
tex line. Since there is no external force on the liquid,
vortex moves with the velocity in the sound wav

vW L5vW (1)(0,t). Now in the linearization procedure the flui
acceleration in Eq. ~27! must be presented a
]vW /]t5]vW v /]t1]vW (1) /]t. As a result Eq.~41! is replaced
by

]vW ~1!

]t
1
c2

r0
¹W r~1!5¹W @vW v•vW ~1!~r !#2¹W @vW v•vW ~1!~0!#. ~42!

Now the perturbation from the vortex line on the right-ha
side is free from singularities of Eq.~41!. Equation ~42!
yields

r~1!52
r0
c2

k

2p H ]f

]t
1vW v•@¹W f~rW !2¹W f~0!#J . ~43!

Substitution ofr (1) in Eq. ~39! yields the linear equation fo
the phonon-induced phase:

]2f

]t2
2c2¹W 2f522vW v~rW !•¹W

]

]t Ff~rW !2
1

2
f~0!G . ~44!

In the long-wavelength limitk→0 one may treat interac
tion with the vortex velocity field@the right-hand side of Eq
~44!# as a small perturbation. It is equivalent to the Bo
approximation. The small perturbation parameterkk/c is on
the order of the ratio of the wavelength 2p/k to the vortex
core radiusr c;k/c. Then after substituting the plane wav
into the right-hand side of Eq.~44! the solution of this equa
tion is

f5f0exp~2 ivt !H exp~ ikW•rW !1
ik

4cE d2rW1

3H0
~1!~kurW2rW1u!kW•vW v~rW1!@2 exp~ ikW•rW1!21#J .

~45!

HereH0
(1)(z) is the zero-order Hankel function of the fir

kind, and (i /4)H0
(1)(kurW2rW1u) is the Green function for the

two-dimensional wave equation, i.e., satisfies to the equa

~k22¹W 2!f~rW !5d2~rW2rW1!. ~46!
e

e
en
c-
r

e

n

The standard procedure in the scattering theory is the
lowing. One uses the asymptotic expression for the Han
function at large values of the argument:

lim
z→`

H0
~1!~z!5A2/pzei ~z2p/4!. ~47!

Then it is assumed that the perturbation is confined to a fi
vicinity of the line, wherer 1!r , and

urW2rW1u'r2
~rW1•rW !

r
. ~48!

Finally integration in Eq.~45! yields the phase field at larg
values ofkr in a form of a superposition of the plane wav
}exp(ikW•rW) and the scattered wave}exp(ikr):

f5f0exp~2 ivt !Fexp~ ikW•rW !1
ia~w!

Ar
exp~ ikr !G . ~49!

Herea(w) is the scattering amplitude which is a function
the anglew between the initial wave vectorkW and the wave
vectorkW85krW/r after scattering:

a~w!52Ak/2p
1

c
ei ~p/4!@kW 3kW8#•kW

1

q2 S 12
q2

2k2D
5
1

2
Ak/2p

k

c
ei ~p/4!

sinw cosw

12cosw
, ~50!

whereqW 5kW2kW8 is the momentum transferred by the sca
tered phonon to the vortex, andq52k sin(w/2).

This scattering amplitude is the same as obtained
Pitaevskii.48 In the expressions for the scattering amplitu
by Fetter49 and Demircan et al.33 the factor
(12q2/2k2)5cosw is absent. This disagreement was e
plained either by using the Born approximation in the theo
of Pitaevskii,49 or by algebra mistakes in his paper.33 Indeed,
there is some confusion with numerical factors and signs
the original paper by Pitaevskii.50 But the factor cosw is not
a result of wrong algebra. As was shown in Ref. 7, the fac
arises from vortex oscillatory motion ignored by Fetter49 and
by Demircanet al.33 Therefore their result is correct only fo
a fixed vortex line which is kept at rest by some extern
forces, e.g., by strong pinning. If the vortex-line singular
were at rest, in Eq.~50! the second termq2/2k2 in parenthe-
ses would be absent and Eq.~50! would agree with Fetter.49

Fetter used the method of partial waves. In order to take
account vortex motion within this method, one shou
modify Fetter’s analysis for the partial waves withl561 as
shown in the end of Sec. III D.51 Pitaevskii48 did not discuss
the effect of vortex line motion in his paper. He started fro
Eqs.~39! and~40! which correspond to a fixed vortex line a
a zero-order approximation. But transformation of Eq.~40!
to Eq. ~41! shows that thed-function perturbation from the
vortex motion is present in these equations. Due to this te
the scattering amplitude by Pitaevskii coincides with E
~50! and with results of the partial-wave analysis for a fr
vortex line in the long-wavelength limit.

Thus the vortex plays a role of a line defect which scatt
the sound wave. Scattering results in the momentum tran
from the sound wave to the line defect, i.e., the sound w
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produces a force on the defect. In order to find this force,
must determine the phonon contributionFi

ph5*dSjP i j
ph to

the total momentum flux through the cylindrical surfa
around the line defect. If the perturbation by the line defec
confined to a finite vicinity of the line, the phonon contrib
tion to the momentum-flux tensor is

P i j
ph5

1

2 S c2r0
^r~1!

2 &2r0^v ~1!
2 & D d i j1r0^~v ~1!! i~v ~1!! j&.

~51!

In Appendix A it is shown that in this case the force on t
line from the sound wave,

FW ph5s ic jW
ph2s'c@ ẑ3 jWph#, ~52!

is determined by two effective cross sections: the trans
cross section for the dissipative force component,

s i5E s~w!~12cosw!dw, ~53!

and the transverse cross section for the transverse force
ponent,

s'5E s~w!sinwdw. ~54!

The differential cross sections(w)5ua(w)u2 in these ex-
pressions is known due to Eq.~50! for the scattering ampli-
tudea(w). It is quite natural that in the Born approximatio
the transverse cross section vanishes since the differe
cross section is quadratic in the circulationk.

However, the standard scattering-theory approach fail
describe the phonon scattering at small anglesw. Indeed, the
velocity vv induced around the vortex is decreasing ve
slowly, as 1/r . Therefore the terms}vv in the phonon mo-
mentum flux are important in the momentum balance. T
total momentum-flux tensor can be obtained from Eqs.~35!
and~36! assumingvW 0(rW)5vW v(rW)1vW s neglecting some unim
portant terms:

P i j52r0~vW s2vW L!•vW vd i j1r0v0iv0 j1^r~1!~v ~1!! i&vv j

1^r~1!~v ~1!! j&vv i1r0^~v ~1!! i~v ~1!! j&. ~55!

In addition, the scattering amplitude is divergent atw→0:

lim
w→0

a~w!5Ak/2p
k

c
ei ~p/4!

1

w
. ~56!

This divergence is integrable in the integral for the transp
cross section, Eq.~53!. So the calculation of the transpo
cross section is reliable. Contrary to it, the integrand in E
~54! for the transverse cross-section has a pole atw50, and
the contribution of this pole requires an additional analys
A proper analysis of the phonon small-angle scattering w
fulfilled in Refs. 6 and 7. However, in a recent publicatio
Demircan, Ao, and Niu33 considered the phonon scatterin
e

s

rt

m-

ial

to

e

rt

.

.
s

by the vortex ignoring special features of the small-an
scattering. This is the reason why they could not find
transverse force from phonons on the vortex.

C. Small-angle phonon scattering and the Iordanskii force

At small scattering anglesw&1/Akr the asymptotic ex-
pansion given by Eq.~49! does not hold. The accurate ca
culation of the integral in Eq.~45! for small angles was done
in Ref. 7. A simplified version of this calculation is present
in Appendix B. It yields that atw!1

f5f0exp~2 ivt1 ikW•rW !F11
ikk

2c
F~wAkr/2i !G . ~57!

Using an asymptotic expression for the error integral

F~z!5
2

Ap
E
0

z

e2t2dt→
z

uzu
1A2/pzexp~2z2! ~58!

at uzu→`, one obtains for angles 1@w@1/Akr:

f5f0exp~2 ivt !Fexp~ ikW•rW !S 11
ikk

2c

w

uwu D
1
ik

c
Ak/2pr

1

w
expS ikr1 i

p

4 D G . ~59!

The second term in square brackets coincides with scatte
wave at small anglesw!1 when the scattering amplitude
given by Eq.~56!. But now one can see that the standa
scattering theory misses to reveal a very important nona
lytical correction to the incidental plane wave. We shall s
in Sec. III E that the factor6kk/c which determines this
correction is exactly the phase shift of the sound wave al
the quasiclassical trajectories past the vortex on the right
left sides. This is a manifestation of the Aharonov-Boh
effect:8 the sound wave after its interaction with the vort
velocity field has different phases on the left and on the ri
of the vortex line, and this phase difference results in
interference.

In the interference region the velocity induced by t
sound wave is obtained by taking the gradient of the ph
given by Eq.~57!. The velocity component normal to th
wave vectorkW ,

v ~1!'5
k

2pr

]f

]w
5f0exp~2 ivt1 ikr !

ik2k

2pc
Ak/2pr

3expF i S 12 krw22
p

4 D G , ~60!
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determines the interference contribution to the transve
force:

E dSjr0^~v ~1!!'~v ~1!! j&

5E r0^~v ~1!!'~v ~1!!r&rdw

5
1

16p2Ap
r0f0

2k3k2

c
AkrE dw cosS 12 krw2D

5
1

16p2 r0f0
2k3k2

c
5

k

2
j ph. ~61!

Note, that this force contribution arises from the interferen
region with the transverse dimensiondint;Ar 0 /k. Herer 0 is
the large distance from the vortex line where the momen
balance is considered. But the interference region co
sponds to very small scattering angles;dint /r 051/Akr0.
Thus an infinitesimally small angle interval yields a fini
contribution to the transverse force. One could not rev
such a contribution from the standard scattering theory us
the differential cross section.

Exactly the same contribution to the transverse force
in Eq. ~61!, arises from the termvv i^r (1)(v (1)) j& in the
momentum-flux tensor, Eq.~55!. In this term the mass flow
^r (1)(v (1)) j& for the plane wave may be used@see Eq.~30!#,
since we take into account only terms which are of the fi
order in the small parameterkk/c. Finally the momentum
balance*dSjP i j50 yields the relation

r0@~vW L2vW s!3kW #2@ jWph~pW !3kW #50. ~62!

The second vector product on the left-hand side is a tra
verse force given by the transverse cross sections'5k/c.
It is linear in the circulation quantumk and therefore canno
be obtained from the differential cross section quadratic
k. If there is the Planck distribution of phonons,jWph must
be replaced by (1/h3)*d3pWn0(«,vW n2vW L)pW '2(1/h3)*d3pW
]n0(«,0)/]«@pW •(vW n2vW L)#pW 5rn(vW n2vW L). Then themomen-
tum balance equation is

rs@~vW L2vW s!3kW #1rn@~vW L2vW n!3kW #50. ~63!

The force}(vW L2vW n) is the Iordanskii force which corre
sponds toD852krn in Eq. ~21!. The longitudinal force
}D is not present in Eq.~63! since we ignored terms of th
second order ink in order to simplify our derivation. Ac-
cording to Eq.~63! the vortex moves with the center-of-ma
velocity vW 5(rs /r)vW s1(rn /r)vW n . But one should remem
ber that the normal velocityvW n in this expression may diffe
from the normal velocity far from the vortex line because
the effect ofviscous dragknown from the first works on
superfluid vortex dynamics3 ~see also Ref. 28!.

D. Partial-wave analysis and the Aharonov-Bohm effect

In this subsection we shall rederive the Iordanskii for
using expansion in partial waves in order to demonstrate
analogy with the Aharonov-Bohm effect.
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Let us consider the equation which describes interac
of an electron with the magnetic fluxF confined to a thin
tube ~the Aharonov-Bohm effect!:8

Ec~rW !5
1

2m S 2 i\¹W 2
e

c
AW D 2c~rW !. ~64!

Herec is the electron wave function with energyE and the
electromagnetic vector is connected with the magnetic fl
F by the relation similar to that for the velocityvW v around
the vortex line@Eq. ~1!#:

AW 5F
@ ẑ3rW#

2pr 2
. ~65!

An analogous equation for the sound wave with frequen
v5ck,

k2f2S 2 i¹W 1
k

c
vW vD 2f50, ~66!

differs from the equation~44! for phonon-vortex interaction
by the term of the second order invv}k and by absence o
the contribution from the vortex-line motion@the term
}f(0) on the right-hand side of Eq.~44!#. This difference is
unimportant for the calculation of the transverse force wh
is linear ink.

Let us look for a solution of Eq.~64! as a superposition o
the partial cylindrical waves using the cylindrical system
coordinates (r ,w):

c5(
l

c l~r !exp~ i l w!. ~67!

The partial-wave amplitudes should satisfy equations

d2c l

dr2
1
1

r

dc l

dr
2

~ l2g!2

r 2
c l1k2c l50. ~68!

Herek is the wave number of the electron far from the vo
tex so thatE5\2k2/2m andg5F/F1 whereF15hc/e is
the magnetic-flux quantum for one electron~two times larger
than the magnetic-flux quantumF05hc/2e for a Cooper
pair!. A solution of this equation, which has no singularity
small r→0, is the Bessel functionJu l2gu(kr) with the fol-
lowing asymptotics at large arguments:

Ju l2gu~kr !→A2/pkrcosS kr2 p

2
u l2gu2

p

4 D . ~69!

On the other hand, the expansion of the plane wave in
partial cylindrical waves is

exp~ ikW•rW !5exp~ ikr cosw!5(
l
Jl~kr !exp@ i l ~w1p/2!#,

~70!

or at largekr:
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exp~ ikW•rW !5A2/pkr(
l
cosS kr2 p

2
l2

p

4 D
3exp@ i l ~w1p/2!#. ~71!

In order to obtain the solution ‘‘the incoming plane wave1
the scattered cylindrical wave’’ like Eq.~49!, one should
determine the partial wavesc l from the condition that the
incoming components}exp(2ikr) in the plane wave and in
the solution Eq.~67! coincide. This yields that

c l5A2/pkrexpF i p

2
~ l2u l2gu!GcosS kr2 p

2
u l2gu2

p

4 D .
~72!

Then the solution of the Aharonov-Bohm problem takes
form of Eq. ~49! with the scattering amplitude

a~w!5A1/2pkexpS i p

4 D(
l

@12exp~2id l !#exp~ i l w!,

~73!

where

d l5~ l2u l2gu!p/2 ~74!

is the partial-wave phase shift atlÞ0. TheS-wave phase
shift is d056gp/2, but no physical effect depends on th
choice of the sign in this expression.

Equation~54! for the transverse cross section may be
written as an expansion in partial waves:52

s'5E ua~w!u2sinwdw5
1

k(l sin2~d l2d l11!. ~75!

Using the phase shift values for the Aharonov-Bohm effe
Eq. ~74!, the transverse cross section is

s'52
1

k
sin2pg. ~76!

One can obtain the cross section for phonon scattering f
this expression assuming thatg52kk/2pc and expanding
the sine function in smallg.

The cross section for the Aharonov-Bohm effect is pe
odical in the magnetic flux with the period equal to the on
electron flux quantumF1. If the electron is scattered by th
Cooper-pair flux quantumF05F1/2 the transverse cros
section vanishes. But presented analysis of the Aharon
Bohm effect is based on the assumption that the total m
netic flux is concentrated in a very thin tube. Namely, t
radius of the tube must be much less than the electron w
length. This condition certainly does not hold in superco
ductors, where the electron wavelength is on the order of
interatomic distance and the effective radius of the magne
flux tube is the London penetration depth. Therefore o
should consider scattering of electrons by a thick magne
flux tube.52 Recently scattering of electrons by magne
fluxons was analyzed by Nielsen and Hedega˚rd.53 They also
confirmed the existence of the transverse force similar to
Iordanskii force. Scattering of the BCS quasiparticles by
magnetic field of the vortex also contributes to the transve
force on the vortex, but this contribution cancels with t
bulk electromagnetic force.10
e
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In their original paper8 Aharonov and Bohm considere
only the effect of the magnetic-flux tube on the electr
wave. The force from the electrons on the fluxon was c
sidered later by Aharonov and Casher54 and therefore is
called the Aharonov-Casher effect. So for our problem
interaction between quasiparticles and the vortex both
fects, Aharonov-Bohm and Aharonov-Casher, are importa
But these effects are so close one to another that throug
the paper we use only the name ‘‘Aharonov-Bohm effect

In conclusion of this section let us consider how moti
of a free vortex line must be incorporated into the parti
wave analysis of phonon scattering performed by Fette49

He assumed that all partial waves were regular at smar ,
i.e., proportional to the Bessel function in Eq.~69! where
g52kk/2pc for phonons is small andu l2gu'u l u2g l /u l u.
It yielded for lÞ0 the phase shifts given by Eq.~74!. But if
the vortex line is free to move, the velocity field is singular
r→0 where it is given byvW (rW)5vW L1vW sing. The vortex ve-
locity vW L5duW /dt is equal to the average liquid velocity~ the
Helmholtz theorem!. HereuW is the vortex-line displacement
The second contribution vW sing52(uW •¹W )vW v(rW)
'2¹W @uW •vW v(rW)#5(1/iv)¹W @(vW L•vW v(rW)# arises from motion
of the vortex line. This contribution is of the first order i
k, but strongly singular (}1/r 2). The phase which deter
mines the velocityvW (rW)5(k/2p)¹W f(rW) at smallr in cylin-
drical coordinates is

f~r ,w!'
2p

k
vLr cosw2

1

iv

vL
r
sinw5f1e

iw1f21e
2 iw,

~77!

where

f615
p

k
vLr6

1

2v

vL
r
. ~78!

This assumes that the direction ofvW L corresponds tow50.
So the phase field~77! is a superposition of the partial wave
l561 which are singular atr→0. One must look for them
in a form, more general than in Eq.~69!:

f61;J16g~kr !1a61N16g~kr !. ~79!

Determininga6 one may neglect smallg in the orders of the
Bessel functions. Then J16g(kr)'J1(kr)'kr/2,
N16g(kr)'N1(kr)'2/pkr, and Eq.~79! agrees with Eq.
~78! if a656(kk/8c).

The parametersa6 are additional phase shifts due to vo
tex motion which must be added to the shiftsd61 given by
Eq. ~74!. Performing summation in Eq.~73! Fetter obtained

(
l

@12exp~2id l !#exp~ i l w!'2i(
l

d lexp~ i l w!

5
kk

2c

sinw

12cosw
. ~80!

The shiftsa6 contribute the term2(kk/2c)sinw to this ex-
pression, and this yields an additional factor cosw. After it
the scattering amplitude obtained from partial waves d
not differ from that in Refs. 48 and 7.
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496 55E. B. SONIN
E. The transverse force in the quasiclassical theory

Now we shall show that the Iordanskii force follows al
from the quasiclassical theory of scattering by the vort
despite one cannot use the quasiclassical theory for phon
But the quasiclassical theory is valid to describe the ro
contribution to the transverse force.

Let us consider a quasiparticle with an arbitrary spectr
«(p). If the quasiparticle moves in the velocity field induce
by the vortex, its energy isE(pW )5«(p)1pW •vW v which may
be treated as a Hamiltonian for the classic equations of
tion:

drW

dt
5

]E

]pW
5vG

pW

p
1vW v ,

dpW

dt
52

]E

]rW
52

]

]rW
~pW •vW v!, ~81!

wherevG(p)5d«/dp is the quasiparticle group velocity. A
before, we assume that the quasiparticle moves in the p
xy normal to the vortex. From this equations one can find
classical trajectory of the quasiparticle moving past the v
tex line. Usually it is close to a straight line, and a distance
the straight trajectory from the vortex line is the impact p
rameterb. We are looking for the transverse force, then
need only the variationdp' of the momentum componen
normal to the initial momentumpW which results from quasi-
particle motion past the vortex. The momentum of the q
siparticle is connected to the classical action:pW 5]S/]rW.
Then dp'(b)5]dS(b)/]b where the total variation of the
classical actiondS(b) along the trajectory is a function o
the impact parameterb. Solution of Eqs.~81! in the first
order with respect tovW v yields that

dS~b!52E
2`

`

dl
p

2pvG~ l !

kb

b21 l 2
, ~82!

wherel is the coordinate along the trajectory. The scatter
angle of the quasiparticle isw'2dp'(b)/p and the trans-
verse cross section is

s'5E
2`

`

db sinw

'E
2`

`

dbw~b!

5
dS~2`!2dS~1`!

p

5
1

2pvG
E

2`

`

db
]

]bE2`

`

dl
kb

b21 l 2
5

k

vG
. ~83!

For phonons the group velocityvG is equal to the sound
velocity c and does not depend onl . Therefore the action
variationdS given by Eq.~82! does not depend on the im
pact parameterb atbÞ0. This means that there is no phono
scattering in the quasiclassical approximation:w
}]dS(b)/db50. A nonzero transverse cross sections' for
,
ns.
n

o-

ne
e
r-
f
-

-

g

phonons arises from a finite jump ofdS at b50. In fact, one
may not use the quasiclassical theory to calculate this c
tribution. Nevertheless, Eq.~83! yields the correct value o
s'5k/c for phonons.

In the case of rotonsdS(b) is a continuous function of
b and the quasiclassical theory is reliable for the calculat
of the Iordanskii~Lifshitz-Pitaevskii! force. But it is impor-
tant to note that the double integral of Eq.~83! is improper:
its value depends on what integration is done first. The c
rect procedure which was justified in Ref. 7 is to integra
along the trajectory first, and to integrate over the imp
parameters afterwards. A way to check it is the followin
We choose some finite limits in the double integral of E
~83! which means that the integration is restricted by so
area around the vortex line. The integral depends on
shape of this area. For example, a circular border of the a
yieldss' by a factor 2 less than that of Eq.~83!. But the full
solution of the collisionless kinetic equation for the quasip
ticles made in Ref. 7 showed that the slow decrease of
velocity field produces other contributions to the moment
balance. Taking into account all of them, we arrive again
the expression for the force via the cross section given by
~83!. The order of integrations in Eq.~83! assumes that the
integration area has a shape of a rectangular elongated a
the quasiparticle trajectory. For such a shape all other c
tributions to the transverse force exactly cancel.

A rather simple and universal expressionD852krn for
the Iordanskii force amplitude tempts to claim its univers
topological origin, sincek in this expression is a topologica
charge. However, in the next section we shall see that
expression is not universal, in fact. For quasiparticles in
BCS superconductor with energy much exceeding the ga
additional small factor should be put into this expression

IV. IORDANSKII FORCE FOR QUASIPARTICLES
IN BCS SUPERCONDUCTORS

The wave function of quasiparticles in the BCS theory h
two components,

c~rW !5S u~rW !

v~rW !
D , ~84!

which are determined from the Bogolyubov–de Genn
equations:

2
\2

2m
~¹W 21kF

2 !u~rW !1D exp@ iu~rW !#v~rW !5Eu~rW !,

~85!

\2

2m
~¹W 21kF

2 !v~rW !1D exp@2 iu~rW !#u~rW !5Ev~rW !.

~86!

HerekF is the Fermi wave number. We neglect the magne
field effect which is not essential for the transfer of mome
tum from quasiparticles to the vortex if the London penet
tion depth is large compared to other relevant scales. Th
fore only the canonical phaseu of the order parameter, bu
not the electromagnetic vectorAW , is present in the phas
factor of the gapD. Without the vortex the order paramete



w

r-

io
o
u

n
r-

th
n
lt
t
in

a

d

ua
g
n

on

f

e

ve
e
e

r-

ity

ove
nd
n
ex
t
s a
nt
re
tex
ory
he

s

ic
e

t
t-

e
s

e
ec-

e
etic

es
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phaseu is a constant and the equations yield the well-kno
BCS quasiparticle spectrum E5Aj21D2, where
j5(\2/2m)(k22kF

2) is the quasiparticle energy in the no
mal Fermi liquid.

In Refs. 10 and 11 the Bogolyubov–de Gennes equat
for a quasiparticle passing a vortex were solved with help
the partial-wave expansion, earlier used also in Ref. 52. Q
siparticles with the energy close to the gap (j!D) behave as
rotons and the transverse cross section for them is give
Eq. ~83! in which the group velocity for the BCS quasipa
ticles isvG5vFj/E. HerevF5\kF /m is the Fermi velocity.
In the case when the quasiparticle energy is much more
the superconducting gap, the theory yielded that the tra
verse cross section different from the quasiclassical resu
Eq. ~83! by the factorD2/2j2. Now we rederive this resul
using the Born approximation similar to that for phonons
Secs. III B and III C.

We use the perturbation theory with respect to the g
D and the gradient of the order parameter phase¹W u. Then in
the zero-order approximationu5u0exp(ikW•rW) and v50. In
the first-order approximation the second Bogolyubov–
Gennes equation~86! yields

v5H D exp~2 iu!

j~k!1E~k!
1

D exp~2 iu!

@j~k!1E~k!#2
\2

m
~kW•¹W u!J

3u0exp~ ikW•rW !. ~87!

The first term in curly braces yields a correction to the q
siparticle energy}D2, but does not contribute to scatterin
which is determined by the order-parameter phase gradie
So we keep only the second term proportional to¹W u. Insert-
ing it to the first Bogolyubov–de Gennes equation~85! one
obtains the following equation for the first-order correcti
to the plane wave:

~¹22k2!u~1!5~kW•¹W u!
D2

2j2
u0exp~ ikW•rW !. ~88!

This equation is similar to equation~44! for the sound wave
and using this analogy one easily obtains the expression
the transverse cross section:

s'5
D2

2j2
p

kF
5

D2

2j2
k

vF
. ~89!

Since the group velocity of quasiparticles withE@D is about
the Fermi velocityvF , this expression differs from Eq.~83!
by the factorD2/2j2. After integration over the quasiparticl
distribution one obtains that D8'2(D/2Tc)krn
'2(D/4Tc)hn close toTc ~see Refs. 10 and 11!. Heren is
the total electron density. One should remember, howe
that the coefficientD8 may be modified by the effect of th
bound states in the core13,14which is beyond the scope of th
present paper.

V. MAGNUS FORCE IN THE JOSEPHSON
JUNCTION ARRAY

In the continuum limit, the equation of motion for a vo
tex has been derived by Eckern and Schmid.37 This deriva-
tion has not revealed any force normal to the vortex veloc
n
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Absence of the Magnus force suggests that the vortices m
parallel to the driving force, i.e., normal to the current, a
there is no Hall effect. Then in the limit of weak dissipatio
the ballistic vortex motion is possible, which is a free vort
motion without friction and the driving force. The Hall effec
and the ballistic motion are incompatible, since the latter i
regime with a finite electrical field and no external curre
which is impossible for a finite Hall resistance. Though the
have been experimental evidences of the ballistic vor
motion,35 one may suspect that a more sophisticated the
would reveal the Hall resistance, however small. In t
present section it will be shown that the Hall effect isexactly
absent in the classical limit for the JJA. It directly follow
from the symmetry of the dynamic equations.

Let us consider a conductor in a magnetic fieldHW . When
its symmetry is not less than the threefold~which includes a
triangular and square lattices!, the Ohm law is

EW 5rLIW1rHnW 3 IW, ~90!

wherenW 5HW /H, EW is the electrical field,rL is the longitudi-
nal resistance, andrH is the Hall resistance in the magnet
field HW . Now let us consider the transformation in which th
directions of the fieldsEW andHW and the currentIW are re-
versed:

EW→2EW , nW→2nW ~HW→2HW !, IW→2 IW. ~91!

The Ohm law Eq.~90! is invariant with respect to thisfield-
current inversiononly for a system without the Hall effec
(rH50). On the microscopical level the field-curren
inversion invariance is a direct result of theparticle-hole
symmetrywhich was shown to forbid the Hall effect in th
Ginzburg-Landau theory~see Ref. 29 and the reference
therein!.

Next we consider the JJA with the energy

E5
1

2(lW,kW
@QlWClW,kW

21
QkW2EJsin~f lW2fkW !#, ~92!

and the equations of motion

VlW5
\

2e

df lW

dt
, ~93!

(
mW

ClW, lW1mW
dVlW1mW

dt
2I C(

mW
sin~f lW2f lW1mW !1(

mW
s lW, lW1mWVlW1mW

50. ~94!

HereVlW is the electric potential,QlW5(mWClW, lW1mWVlW1mW is the
electric charge,f lW(t) is the gauge invariant phase at th
node specified by the discrete two-dimensional position v
tor lW, EJ is the Josephson coupling energy,I C52eEJ /\ is
the critical current, andClW,nW ands lW,nW are the capacity and th
conductance matrices, respectively. In the external magn
field HW 5¹W 3AW , the gauge invariant phasef lW is not single
valued; in fact only its difference between neighboring nod
is well defined:
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f lW1mW 2f lW5w lW1mW 2w lW2
2p

F0
E

~ lW!

~ lW1mW !
1AW •d lW. ~95!

Herew lW is the canonical phase at the nodelW, and the integral
overAW is taken between the centers of the two neighbor
nodes. The canonical phase is not single valued too, bu
circulation along any closed path through the nodes of JJ
always an integer number of 2p, while the circulation of the
gauge invariant phase may be any number depending on
magnetic field.

When both the external currentIW and the magnetic field
HW are applied to the JJA, the gauge-invariant phase ca
presented asf lW5f lW

H
1f lW

I . Heref lW
H is the time-independen

phase in the equilibrium state without an external curre
andf lW

I is the time-dependent contribution to the phase fr

the external currentIW. The multivaluedness of the phase r
lated to the magnetic field is present only in the static ph
f lW
H : the time-dependent dynamical contributionf lW

I to the
phase is single valued. One sees then that the field-cu
inversion @Eq. ~91!# simply corresponds to the change
signs of all phases, and the equations of motion, Eqs.~93!
and~94!, are invariant with respect to this transformation.
proves that the Hall effect does not exist in the JJA, i.e.,
effective Magnus force vanishes.

The crucial point of this simple derivation is that we us
the static vortex solutionf lW

H for the dynamical problem
This assumes that singularities of the phase distribution
lated to the presence of vortices are kept at rest despite
vortices themselves are driven by the Lorentz force. For c
tinuous superconductors this approach is invalid and
derivation does not work~cf. the effect of vortex-line motion
in Sec. III B!. So there is a fundamental difference betwe
vortices in a lattice and vortices in a continuous superc
ductor. Indeed, in the lattice there are no singular vor
lines. They appear only in the continuum limit. At best, o
can define the lattice cell containing the vortex center. T
definition has been borrowed from the continuous theory
is the cell, around which the circulation of the phasew is
equal to 2p. However, in the lattice the circulation around
closed path is not well defined. Let us consider some clo
path through a discrete number of nodes with the phase
culation 2p. One may change the phase difference
22p between any two neighboring nodes on the path w
out any effect on observed physical parameters~currents,
voltages and so on!. Then the circulation vanishes along th
path considered, but must appear along a path over o
nodes. Thus one cannot locate the position of the phase
gularity. In order to avoid this ambiguity in the JJA model
special rule has been formulated: the phase difference
tween two neighboring nodes must not exceedp. When for
some bond the phase difference achieves the valuep, one
must redefine the phases; as a result, the vortex center i
into another cell. This procedure is usual for numerical st
ies of the vortex motion in JJA.40 However, this rule is not
obligatory for the dynamic theory of JJA. Instead, one m
keep 2p circulations of the phasew at fixed cells during the
dynamic process without worrying where the vortex cen
~defined according to the aforementioned rule! is really lo-
cated.
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Because of this difference between vortices in a latt
and vortices in a continuous medium any derivation of
effective Magnus force in JJA using the continuous appro
is not reliable. Let us discuss this in more details. In t
continuum limit the set of discrete vectorslW is replaced with
the continuum space oflW. One can define the field of th
canonical~but not gauge invariant! phasew( lW) in this space
everywhere except for the singular points which are the c
ters of the vortices with the phase circulation 2p around
them. It is assumed that the spatial variation of the phase
small and the phase differences can be replaced by the p
gradients according to

w lW1mW 2w lW'~mW •¹W !w~ lW !!1. ~96!

Then one can derive the partial differential equations fo
continuous field of the canonical phasew( lW,t) which corre-
spond to some LagrangianL$w( lW,t)% ~the dissipation is ne-
glected now!. The Lagrangian may include the term propo
tional to the time derivative ofw( lW,t) which is called the
Wess-Zumino term:21

L$w~ lW,t !%5
1

2
q

]w

]t
1L0$w~ lW,t !%. ~97!

It is possible to derive the equation of vortex motion fro
this Lagrangian following Refs. 37 and 38. One must use
phase field for a slowly moving vortex:

wV~ lW,t !5arctan
l y2y~ t !

l x2x~ t !
, ~98!

where rW(t)5@x(t),y(t)# is the two-dimensional position
vector of the vortex center. Substituting the vortex soluti
into the Lagrangian density given by Eq.~97! and integrating
over the xy plane, one obtains the effective Lagrangi
which is now a functional of the trajectory for a movin
vortex:

LV$rW~ t !%52pqrẆ@ ẑ3rW#1L0V$rW~ t !%. ~99!

Varying this Lagrangian with respect torW(t), one obtains the
equation of vortex motion with the effective Magnus for
}q:

2pq@rẆ3 ẑ5FW S . ~100!

HereFW S includes all other forces~the Lorentz force and the
inertia force! obtained from the LagrangianL0V$rW(t)% without
the Wess-Zumino term. However, the factorq is not defined.
If q is constant, it has no effect on the field equation
w( lW,t) since the Wess-Zumino term is a full time derivativ
in the field Lagrangian, Eq.~97!. The unknown factorq
should be proportional to some electric charge, since
charge is a variable conjugate to the canonical phasew. But
it remains unclear what is this charge: either the backgro
charge determined by the whole Fermi sea of the superc
ducting island, or an external charge induced outside as
gested in Ref. 44. Thus in the continuum limit the problem
the effective Magnus force and the Hall effect in the J
remains unresolved. It must not be a surprise since in
continuum limit the JJA model becomes Galilean invaria
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and ‘‘forgets’’ that originally it had been a lattice mod
without translational invariance. Meanwhile, the latter is c
cial for the amplitude of the effective Magnus force. A
additional physical principle beyond the continuum theo
should be involved to obtain the equation for the vortex
locity. This principle is provided by our symmetry analys
According to itq50 and one should not include the Wes
Zumino term into the field Lagrangian.

The presence of the external charge has no effect on
symmetry analysis. In order to take into account the exte
charge, one should use the Gibbs poten
G5E2Vex( lWQlW , whereE is given by Eq.~92! andVex is the
electric potential which creates the external cha
Qex5Vex(mWClW1mW . Then introducing the charge deviatio
Q
lW
85QlW2Qex, one returns back to the energyE with Q

lW
8

instead ofQlW . These arguments show that the exter
charge cannot lead to the Hall effect: its effect is restric
with the shift of the Fermi level, but the particle-hole sym
metry is restored with respect to the new Fermi level. Ho
ever, the external electric charge may produce the Mag
force in the quantum theory of JJA which takes into acco
the electron charge quantization.45 Then the Magnus force
and the Hall conductivity are periodic in the electron char

VI. SUMMARY AND DISCUSSION

We have shown how the Magnus force appears in
equation of motion for a superfluid component~the super-
fluid Magnus force! and the equation of motion for a vorte
~the effective Magnus force!. Whereas the superfluid Magnu
force proportional to the superfluid density is known exac
~from classical hydrodynamics, or from the Berry phase
proach!, there is no general expression for the effective Ma
nus force: it depends on interaction of the vortex with qu
siparticles and with the external fields, like those fro
impurities in a dirty superconductor. Meanwhile, it is mos
the effective Magnus force which determines the observa
effects: the mutual friction in superfluids, the Hall effect a
the acoustic Faraday effect in superconductors, vortex qu
tum tunnelling.

We have presented the contribution of quasiparticles
the effective Magnus force for phonons in a superfluid a
for BCS quasiparticles in a superconductor using the B
approximation. The transverse force from quasiparticles
the vortex~the Iordanskii force! originates from interference
between quasiparticles passing on different sides of the
tex ~the Aharonov-Bohm effect!.

Our symmetry analysis of the Josephson junction ar
has demonstrated that the effective Magnus force exa
vanishes in the classical limit which means that there is
Hall effect despite the finite superfluid density. One m
formally interpret this result that the force from extern
fields breaking Galilean invariance exactly compensates
superfluid Magnus force, though the analysis is not able
reveal these two forces separately.

The Ao-Thouless approach yields only the superfl
Magnus force which appears in the momentum balance
the superfluid component~the condensate!. Indeed, Gaitan21

derived the Ao-Thouless result for a charged superfluid, a
lyzing the momentum balance for the condensate. In orde
derive the effective Magnus force~the total transverse forc
-
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on the vortex!, one must consider the momentum balance
the whole system.

Ao, Niu, and Thouless55 stated that the Iordanskii forc
did not appear in their Berry phase approach. Demircan,
and Niu33 tried to justify it by the analysis of the Born qua
siparticle scattering. They concluded that scattering did
produce a transverse force on a vortex. This conclusion
based on a wrong analysis of the Born phonon scatte
missing the contribution from the Aharonov-Bohm interfe
ence. Thus the source of controversy is not in a difference
approaches, but in the problem how to calculate integrals
the Born phonon scattering.

The Ao-Thouless theory rejects also any force on the v
tex from the external fields, like the Kopnin-Kravtsov forc
in a dirty superconductor. Using a similar approach based
the Berry phase Gaitan and Shenoy23 predicted the finite ef-
fective Magnus force and the Hall effect for the Josephs
junction array. This prediction contradicts to our symme
analysis and to the experiment. Gaitan and Shenoy23 used in
their analysis the Wess-Zumino term in the Lagrangian
the continuum limit of JJA. We have shown in Sec. V wh
this approach is not reliable.

Makhlin and Volovik56 suggested that the superfluid Ma
nus force in JJA is nearly compensated by the force from
bound states in the junctions~the spectral flow of bound
states!. But they did not conclude that the compensation
complete, and assumed the Fermi superfluid in islands
the superconductor–normal-metal–superconductor Jos
son junctions. Our analysis shows that the Magnus forceex-
actly vanishes in the classical limit of the usual JJA mod
independently on microscopic nature of the superconduc
islands and the junctions. This shows that the bound st
and the spectral flow are not the only explanation for co
pensation of the Magnus force in the systems without G
ilean invariance.
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APPENDIX A: THE FORCE ON THE LINE SCATTERING
THE SOUND WAVE

First we derive the analogue of the optical theorem for
sound wave. For the latter we use the asymptotic repre
tation, Eq.~49!, in which the scattering amplitudea(w) is
not necessarily obtained in the Born approximation. But
generala(w) should satisfy the condition that the total ma
flow through the cylindrical surface surrounding the scatt
ing line vanishes.

An asymptotic expression for the average mass flow fr
the sound wave is
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jWph5^r~1!vW ~1!&5r0f0
2 k2k

8p2cH kW1
uau2

r
kW82~kW1kW8!

1

Ar
@ Im$a%cos~kr2kW•rW !1Re$a%sin~kr2kW•rW !#J . ~A1!

The condition that the total flow through the cylindrical surface around the scattering line vanishes is

E j i
phdSi5E ^r~1!vW ~1!i&dSi5r0f0

2 k2k2

8p2cE H cosw1
ua~w!u2

r
2
Im$a~w!%

Ar
~11cosw!cos@kr~12cosw!#J dw. ~A2!

The integral over the term}Im$a(w)% expands only over the region of small angles sincekr@1. Finally this condition yields

22Ap/kIm$a~0!%1E ua~w!u2dw50. ~A3!

Next let us consider the momentum balance which determines the force on the scattering line from the soun
Fi
ph52*dSjP i j

ph where

P i j
ph5S c2r0

^r~1!
2 &

2
2r0

^v ~1!
2 &

2 D d i j1r0^~v ~1!! i~v ~1!! j&. ~A4!

The pressure term vanishes after averaging, but the convection term is essential and yields for the force on the vor

FW ph52r0f0
2 k2k

8p2E H kW cosw1
ua~w!u2

r 2
krW2

Im$a~w!%

Ar
cos@kr~12cosw!#S kW1k

rW

r D J rdw

'2r0f0
2 k2k

8p2E FkW cosw1
ua~w!u2

r
krW2

Im$a~0!%

Ar 2
cosS 12 krw2D 2kW G rdw

52r0f0
2 k2k

8p2F E ua~w!u2

r
krWdw22Ap/kIm$a~0!%kW G . ~A5!

With help of the optical theorem Eq.~A3! one obtains the expression Eq.~52! with the effective cross sections determined
Eqs.~53! and ~54!.

APPENDIX B: SMALL-ANGLE SCATTERED SOUND WAVE

Using the asymptotics of the Hankel function, Eq.~45! can be rewritten as

f5f0exp~2 ivt !H exp~ ikW•rW !1
kk

c
Ai /2pr E d2rW1exp~ ikW•rW11 ikurW2rW1u!

kW•@ ẑ3rW1#

r 1
2 J . ~B1!

Here the effect of the vortex-line motion was neglected as irrelevant for small-angle scattering. Expansion Eq.~48! is not
accurate enough and next terms of the expansion must be kept:

urW2rW1u'r2
~rW1•rW !

r
1
r 1
2

2r
2

~rW1•rW !2

2r 3
. ~B2!

The terms of the second order inr 1 are important since the perturbation is not well localized near the vortex line,
decreasing slowly whenr 1 is increasing. Using the Cartesian coordinates of the position vectorrW1(x,y) and the inequality
w!1, one obtains

f5f0exp~2 ivt !H exp~ ikW•rW !1
kk2

c
Ai /2pr E E dx dy expF ikS r2yw1

y2

2r D G y

x21y2 J . ~B3!

The double integral in this expression may be transformed into the error integral:

E
2`

`

dxE
2`

`

dy expF ikS r2yw1
y2

2r D G y

x21y2
5expF ikr S 12

w2

2 D G E
2`

`

dyp
y

uyu
expF ik2r ~rw2y!2G

52pA2p ir /kexpF ikr S 12
w2

2 D GF~wAkr/2i !.

Then Eq.~B3! coincides with Eq.~57!.



M.

in
ou

g

s.

d

m-

s.
,

ev
.

oij,

oij,

s
-

. B

.J.

.

o,

u-
m

Ior-

nto
ef.
odi-

55 501MAGNUS FORCE IN SUPERFLUIDS AND SUPERCONDUCTORS
1H. Lamb, Hydrodynamics~Cambridge University Press, New
York, 1975!.

2L.D. Landau and E.M. Lifshitz,Fluid Hydrodynamics~Pergamon
Press, Oxford, 1987!.

3H.E. Hall and W.F. Vinen, Proc. R. Soc. London Ser. A238, 204
~1956!.

4H.E. Hall, Adv. Phys.9, 89 ~1960!.
5E.M. Lifshitz and L.P. Pitaevskii, Zh. E´ksp. Teor. Fiz.33, 535

~1957! @Sov. Phys. JETP6, 418 ~1958!#.
6S.V. Iordanskii, Zh. E´ksp. Teor. Fiz.49, 225 ~1965! @Sov. Phys.
JETP22, 160 ~1966!#.

7E.B. Sonin, Zh. E´ksp. Teor. Fiz.69, 921~1975! @Sov. Phys. JETP
42, 469 ~1976!#.

8Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
9P. Nozières and W.F. Vinen, Philos. Mag.14, 667 ~1966!.
10Yu.M. Gal’perin and E.B. Sonin, Fiz. Tverd. Tela~Leningrad! 18,

3034 ~1976! @Sov. Phys. Solid State18, 1768~1976!#.
11N.B. Kopnin and V.E. Kravtsov, Zh. E´ksp. Teor. Fiz.71, 1664

~1976! @Sov. Phys. JETP44, 861 ~1976!#.
12N.B. Kopnin and V.E. Kravtsov, Pis’ma Zh. E´ksp. Teor. Fiz.23,

631 ~1976! @JETP Lett.23, 578 ~1976!#.
13N.B. Kopnin and A.V. Lopatin, Phys. Rev.51, 15291~1995!.
14N.B. Kopnin, G.E. Volovik, and U¨ . Parts, Europhys. Lett.32, 651

~1995!.
15Y. Matsuda, T. Nagaoka, G. Suzuki, K. Kumagai, M. Suzuki,

Machida, M. Sera, M. Hiroi, and N. Kobayashi, Phys. Rev.52,
R15 749~1995!. The Hall anomaly has been already known
low-temperature superconductivity, but did not attract a seri
attention.

16J.M. Harris, Y.F. Yan, O.K.C. Tsui, Y. Matsuda, and N.P. On
Phys. Rev. Lett.73, 1711~1994!.

17N.B. Kopnin, A.V. Lopatin, E.B. Sonin, and K.B. Traito, Phy
Rev. Lett.74, 4527~1995!.

18G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, an
V.M. Vinokur, Rev. Mod. Phys.66, 1125~1994!.

19E.B. Sonin, Physica B210, 234 ~1995!.
20P. Ao and D.J. Thouless, Phys. Rev. Lett.70, 2158~1993!.
21F. Gaitan, Phys. Rev. B51, 9061~1995!.
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