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The forces on the vortex, transverse to its velocity, are considered. In addition to the superfluid Magnus
force from the condensatsuperfluid componejtthere are transverse forces from thermal quasiparticles and
external fields violating the Galilean invariance. The forces between quasiparticles and the vortex originate
from interference of quasiparticles with trajectories on the left and on the right from the vortex like similar
forces for electrons interacting with the thin magnetic-flux tiihe Aharonov-Bohm effett These forces are
derived for phonons from the equations of superfluid hydrodynamics, and for BCS quasiparticles from the
Bogolyubov—de Gennes equations. The effect of external fields breaking Galilean invariance is analyzed for
vortices in the two-dimensional Josephson junction array. The symmetry analysis of the classical equations for
the array shows that the total transverse force on the vortex vanishes. Therefore the Hall effect which is linear
in the transverse force is absent also. This means that the Magnus force from the superfluid coayzmtignt
cancels with the transverse force from the external fields. The results of other approaches are also brought
together for discussionS0163-18207)04502-3

[. INTRODUCTION pointed out that the lordanskii force for phonons and rotons
results from interference between quasiparticles which move
The Magnus force on a vortex has long been known inpast the vortex on the left and on the right sides with differ-
classical hydrodynamicsThis force appears if the vortex ent phase shifts, like in the Aharanov-Bohm efféct.
moves with respect to a liquid. The force is normal to the In the theory of superconductivity the Magnus force ap-
relative vortex velocity and therefore is reactive and does nopeared first in the paper by Norés and Vineri. In clean
produce a work. In general, such a force arises always whesuperconductors the BCS quasiparticles produce an addi-
a body with a flow circulation around it moves through ational transverse force on the vorté! analogous to the
liquid or a gas(the Kutta-Joukowski theoremThe most |ordanskii force in superfluids. The total transverse force is
important example is the lift force on a wing of an aeroplaneresponsible for the Hall effect in the mixed state of a super-
which keeps the aeroplane in the &ir. _ conductor. But the Hall effect was rather weak in classical
The key role of the Magnus force in vortex dynamics hasgherconductors. An explanation of it was suggested by Kop-

become clear from the very beginning of studying superfluidyiy ang Kravtsol? (see also Ref. 13 impurities interact
hydrodynamics:* The superfluid Magnus force was defined ;¢ quasiparticles bound in the vortex core and this interac-

as a force petween a vortex anq a supgrflwd anq thereforﬁaon produces an additional transverse force on the vortex. In
was proportional to the superfluid densijpy. But in the

two-fluid hydrodynamics the superfluid Magnus force is notcontrast with the quasiparticle transverse force which in-

the only force on the vortex transverse to its velocity: there ©2S€S the total transverse force, the impurity force de-

ingreases it and in a dirty superconductor the Magnus force is

ticles moving with respect to the vortex. The transverse forcd€"Y Small. As a result, the strong Hall effect is possible only
from rotons was found by Lifshitz and PitaevSkiiom the N superclean_superconductors. The transverse force from the
quasiclassical scattering theory. Later lordariskiivealed bound states in the core has been regently rephrased in terms
the transverse force from phonons which was equal in magof the spectral ﬂow.through the quasiparticle bound sﬂﬁ‘te_s.
nitude and opposite in sign with the quasiclassical force of A new wave of interest to the Magnus force came with
Lifshitz and Pitaevskii. From the very beginning the lordan-discovery of hight, superconductivity. A few reasons of
skii force was a controversial matter. lordanskii suggestedhis interest might be mentionedi) The so-called Hall

that his force and the Lifshitz-Pitaevskii force were of dif- anomaly was observeédnearT, the sign of the Hall voltage
ferent origins and for rotons they should be summed. As d@s opposite to that expected from the standard vortex dynam-
result, he concluded that the transverse force from rotonies. (ii) It has become possible to obtain superclean single
vanished. But the analysis done in Ref. 7 demonstrated tharystals with large Hall angté as predicted in the superclean
the lordanskii force for rotons is identical to the Lifshitz- limit of the theory of Kopnin and Kravtsov. This made pos-
Pitaevskii force and they must not be added. In addition, theible to observe magnetoresonances in the ac response of the
Lifshitz-Pitaevskii force from rotons was calculated in the superconducting single crystals connected with waves propa-
original papet with a wrong sign. After its correction the gating along vorticed’ (iii) The effective Magnus force gov-
transverse force on the vortex had a same sign and a valens quantum vortex nucleation in clean highsupercon-

both for rotons (the Lifshitz-Pitaevskii force and for  ductors intensively discussed ndfi!®

phonons(the lordanskii forcg In the same papérit was Despite a lot of work done to understand and calculate the
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Magnus force, it still remains to be a matter of controversytransverse ta, is the Kopnin-Kravtsov force

with a number of conflicting points of view on it. A new (iv) The momentum balance for the whole liquid around
discussion has been launched by the paper of Ao anghe vortex is at the same time an equation from which one
Thouless’’ The main claim of Ao and Thouless is that there must find the vortex velocity, . Therefore it is useful to
is an universaexactexpression for the total transverse force collect all the terms proportional #, together. After it the
on the vortex(the effective Magnus forgewhich does not  term uniting all contributions transverse & is the total
depend on the presence of quasiparticles or impurities. Thigansverse force on the vortex, or tefective Magnus force
force derived from the concept of the geometrical pHase Thus in general three forces contribute to the effective
Berry phasgcoincides with the superfluid Magnus force and Magnus force: the superfluid Magnus force, the force from
therefore is proportional to the superfluid density. Accordingquasiparticlegthe lordanskii forcg and the force from im-
to Ao and Thouless, there is no transverse force on the vortepurities, or other external fields breaking the Galilean invari-
from quasiparticles and impurities, though they might influ-ance (the Kopnin-Kravtsov force Usually in experiment
ence the value of the superfluid density and thereby influencghey can determine the effective Magnus force, but not the
the amplitude of the Magnus force. “bare” superfluid Magnus force. In rotating superfluids the
The Ao-Thouless theory is in an evident disagreemenkffective Magnus force determines the mutual friction. One
with the previous calculations of the transverse force on thean find the latest reviews of the experiment and the theory
vortex (the effective Magnus forgen superfluids and super- on mutual friction in3He in Refs. 24 and 25. In supercon-
conductors reviewed above. It attracted a great attention anlictors the Hall conductivify'?® and the acoustic Faraday
has been supported in a number of recent publications afffect for the transverse ultrasound wave propagating along
other theoristsee, e.g., Refs. 21-R3f the Ao-Thouless vortice$’ are linear in the effective Magnus force. The pro-
theory were true, it would be necessary to revise the wholeess of vortex quantum tunnelling is also influenced by the
basis of the vortex dynamics. For example, on the basis offfective, but not the superfluid Magnus force. So the final
the Ao-Thouless theoryi®anek? suggested that quantum outcome of the theory must be the amplitude of the effective
vortex tunnelling is governed by the Magnus force obtainedMlagnus force. Its presentation as a combination of three
from the Berry phase approach, i.e., proportional to the suforces is an intermediate stage of the theory. In fact, this
perfluid density, in contradiction to the previous thetty® presentation is valid only ifi) the number of quasiparticles
Therefore it is important to understand what the Magnuss not too large and their mutual interaction is wed#ik)
force is and whether the Ao-Thouless theory is true or not.external fields breaking Galilean invariance are not too
The present paper is to analyze this controversy. Amongtrong. The first condition is violated close T, where
the sources of controversy there is semantics. Therefore it isther approaches based on the Ginzburg-Landau th@ory
important to define force terminology from the very begin-its analogue for superfluids, the Ginzburg-Pitaevskii theory
ning. The wordforceitself is only a label to describe a trans- must be used*?° The second condition does not hold in the
fer of momentum between two objects. Before using thesgosephson junction array considered in the present gaper
labels one must analyze the momentum balance for any olipelow). In these cases the theory deals directly with the ef-
ject and only then to label various contributions to thesefective Magnus force in the equation of vortex motion: its
balances as forces. Keeping this in mind, the forces undedecomposition on the “bare” superfluid Magnus force and
discussion may be defined as the following: the forces from quasiparticles or impurities becomes conven-
(i) There is a momentum transfer between a vortex andional and of a little physical sense.
the rest part of a superfluid. One reveals it analyzing the Whereas there is a consensus among theorists on the su-
momentum balance for the superfluid moving with the ve-perfluid Magnus force, the Ao-Thoules theory rejects the lor-
locity v whereas the vortex moves through the superfluiddanskii force from quasiparticles and the Kopnin-Kravtsov
with a different velocitys . This momentum transfer is the force from impurities claiming that amplitudes of the effec-
superfluid Magnus forcdt is proportional to the superfluid tive and the superfluid Magnus forces are exactly equal.
densityps and transverse to the relative velocity—vs. Therefore the present paper considers the effect on the force
(i) Analyzing the momentum balance for thehole balance(i) from quasiparticles, andi) from external fields
Galilean-invariant liquid(including the superfluid and nor- breaking the Galilean invariance of the superfluid.
mal parts of i around the vortex one may reveal a contri- In my analysis of the quasiparticle effect | chose the
bution presenting the momentum transfer between the vortephonon-vortex interaction which may be described by the
moving with the velocityy, and the normal fluidthe gas of nonlinear Schrdinger equation long ago suggested for a
quasiparticles moving with the velocitys,. This force is  weakly nonideal Bose gafthe Gross-Pitaevskii theoty.
proportional to the relative velocity, — v, and has the com- The nonlinear Schidinger equation yields the usual super-
ponents longitudinal and transversedp—uv,. The trans- fluid hydrodynamics. It is a good starting point for further
verse component of this force includes tloedanskii force  discussion, which one may expect a consensus of all parties
(i) If there is no Galilean invariance, as in a dirty super-on (see discussion in Ref. B1The next step is to analyze
conductor, the momentum balance for the whole liquid musscattering of the sound wavghonon by the vortex in hy-
include also forces external for the liquid, namely, the mo-drodynamics. Just at this stage a disagreement appears. Ao
mentum transfer to the impurities rigidly connected with theand Thouless believe that this scattering can produce only a
crystal lattice. When the latter is at rest, this momentumdissipative force on the vortex, but not a transverse %ne.
transfer, or the force from impurities, is proportional to the Recently Demircan, Ao, and Nititried to prove it using the
vortex velocity v, in the laboratory reference framghe  Born approximation. But they ignored peculiarities of the
frame connected with the crystal at feslts component phonon Born scattering at small angles which resulted in the



55 MAGNUS FORCE IN SUPERFLUIDS AND SUPERCONDUCTORS 487

lordanskii force. It is important to note that the controversytex in hydrodynamics is analyzed in Sec. Il B. It is shown

arises not from a difference in ideology; anyone is free tothat the standard scattering-theory approach fails to reveal
choose a language to derive the Magnus force=a0: either  the transverse lordanskii force because of the divergence of
the standard hydrodynamics, or newest topological concept§e scattering amplitude at small angles of scattering. The
of the geometrical phase. But there is a disagreement in ca@nalysis of the small-angle scattering is presented in Sec. Il
culation of integrals describing the phonon scattering in theC- It reveals the interference between quasiparticles with tra-
first order of the perturbation theory. We hope to show inj€ctories on the left and on the right from the vortex. In Sec.

this paper at which point Demircan, Ao, and Rimnissed to Il D the same results is rederived using the partial-wave
take into account the Aharonov-Bohm interference ofS*Pansion, and the analogy with the Aharonov-Bohm effect

phonons which was ignored by the Ao-Thouless theory. 'S shown. In the end of this subsection | show how an oscil-
Now discussions around the transverse force on the vortel>‘?‘t0ry mottl(z)n :)fka ffete vortex Ln;)e tlrr:duce? Fy the SOltjr?d d
in the presence of impurities concentrate mostly on the conl/ave must be taken nto account by the partial-wave method.

tribution of the core bound states in Fermi superfluids. Thig\ more general quqsmlgssmal _derlvatlon. of the transverse
requires a rather sophisticated analysise Ref. 14 and ref- force from _the quasiparticles with an arbitrary spectrum is
erences therejn In the present paper | chose another ex-presented in Sec. Ill E. In Sec. IV the transverse force be-

ample when the Galilean invariance is absent: the twotween the BCS quasiparticles and the vortex is derived using

dimensional Josephson junction arfdyA). This is a regular e Bogolyubov—de Gennes equations. Section V presents

lattice of nodes with the Josephson coupling between the he symmetry analysis of the classical dynamical equations
Experimentally, any node corresponds to a superconductin r JJA which shows that the total transverse force on the

island in an artificially prepared JJA, or to a grain in a granu- orte'x in JIA yanishes and as a result of it the. Hall effegt s
lar superconducting film. The behavior of the JJA in an exPossible only in the quantum theory of JJA which takes into

ternal magnetic field is usually described in the picture ofccount charge quantization. The last section VI contains the
moving vortices similar to the mixed state of type Il super-Summary and the discussion of other approaches to the prob-

conductors. The dynamics of vortices in JJA attracts a greel?m'

interest of experimentalists®and theorist$®~*°There is an

intrinsic pinning of vortices at the JJA cells, and vortices can |, \wHERE AND HOW THE MAGNUS FORCE APPEARS
move only if the driving supercurrent is more than the criti-

cal value. But when they start to move, in many cases a good A. The Magnus force in classical hydrodynamics

approximation is to replace the lattice by a continuous super- £qr g petter understanding of the origin of the Magnus
conducting film. However, the hydrodynamic derivation of force it is worth recalling how the Magnus force arises in
the Magnus force is not valid since it assumes the momeng|assical hydrodynamics.

tum conservation law and the Galilean invariance. In the | et ys consider an isolated straight vortex line in an in-

present paper it will be shown that the Hall effeceiactly  compressible inviscid liquid. The line along the axisn-

absent in the_ classu:al_ theory of JJA Wh|c_:h neglec_ts th§juces the velocity field

charge quantization. Since the Hall effect is linear in the

amplitude of the effective Magnus force, the latter also van-

ishes in the classical JJA. This statement directly follows . . KXr

from the symmetry of the dynamic equations. At the same vy(N=5-3. ey

time the superfluid density is finite in the continuum limit of

JJA and therefore the superfluid Magnus force does not van- R .

ish. Therefore the theory based on the Berry phasélerer is the position vector in the planey, and « is the

approacﬁ3 predicted a finite effective Magnus force and theC!fCU'&tion vector directed anng the axds The circulation,

Hall effect for JJA in disagreement with our symmetry given by

analysis. Our result might be interpreted as that the super-

fluid Magnus force is compensated by some force external fﬁ
K=

>

for the liquid, like the Kopnin-Kravtsov force in a dirty su- v,-dl, 2

perconductor. But as mentioned above, JJA is a system with

a strong violation of Galilean invariance, for which this in-

terpretation is purely formal. Only the resultant effective may have arbitrary values in classical hydrodynamics. In ad-

Magnus force has a physica| meaning_ dition, there is a fluid current past the vortex line with a
We start from Sec. Il which shows how the Magnus forcetransport velocitys, . Then the net velocity field around the

appears in the phenomenological theory of neutral andine is

charged superfluids. The force terminology is also intro-

duced explaining to which term and in which equation any

force under discussion corresponds. Section Il is devoted to

the transverse force between quasiparticles and the vortex

(the lordanskii forcgand its connection with the Aharonov- The Euler equation for the liquid is

Bohm effect. Section Il A recalls connection between the

v(N)=v,(r)+uvy. ©)

nonlinear Schrdinger equation for the condensatéhe 2 1 2
Gross-Pitaevskii theojyand superfluid hydrodynamics and U e\ _ e P
phonons. Scattering of the sound wapéonor) by the vor- at - Vv pVP+ p O2(1)- @
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Herep is the liquid density andP is the pressure. This equa- quantity everywhere even inside the vortex core where the

tion suggests that an externgfunction forceF is applied to hydrodynamic theory does not hold.
the liquid at the vortex line.

Assuming that the vortex line moves with the constant B. The superfluid Magnus force
velocity v, , i.e., replacing the position vectorby r—uv\t,

, In the superfluid hydrodynamics one can refer this deri-
one obtains that

vation to the superfluid component with density. The Eu-

- ler equation for the superfluid compongafter adding the
v . e s . > . L
= —(v.-V)v. (5)  externals-function forceF applied at the vortex line is
Then the Euler equatiof) yields the Bernoulli law for the ‘5’l;sJr V= -V gyt E >
pressure: ot (vs-V)ug Vu Ps Sy(r), (10

L where u is the chemical potential.
P=Po— Ep[v(l’)—v,_]z For charged superfluidsuperconductojghe Euler equa-

tion should include also the electromagnetic forces. In par-

1 . . N, ticular, the chemical potential must be replaced by the elec-

=Py— Epvu(r)z— pU,(r)-(vy—vL). (6)  trochemical potential. But outside of the vortex core one may

use the quasineutrality condition that the total electron

Here Py and Py =Py — p(v,—v,)? are constants which are charge is approximately equal to the background ion charge.

of no importance for the following derivation. Then one may neglect the chemical potential gradient. Fi-
Next one should consider the momentum balance for #2lly the Euler equation may be written as
cylindrical region of a radius, around the vortex line. The - -

momentum-flux tensor is given by s - ST = 1 > E >
m +(vs V)vs E+ C[vs><H] +P352(r)' (11

e
m
IL;j= P&+ pvi(r)v(r), (7) . . _ o
. _ _ ~ whereE andH are the electric and the magnetic fields.
or in the reference frame moving with the vortex velocity  Let us consider a vortex line in a neutral superfluid with
UL: the velocity field Eq(1). Now circulation is quantized, and
, the circulation quantum i&=h/m in a Bose superfluid and
I =P&ij+p(vi—vLi)(vj—vy)). (8 k=h/2m in a Fermi superfluid. In the two-fluid theory the

_ i momentum-flux tensor is
The momentum conservation law requires that the exter-

nal forceF on the vortex line must be equal to the momen- ITj;=P&jj+ psvsivsjt pnUniUnj» (12
tum flux through the entire cylindrical boundary in the ref-
erence frame moving with the vortex velocity . The latter

is given by the integral dSTIj; wheredS are the compo-
nents of the vectod S directed along the outer normal to the SP=08u+SST+0-(0-—0)-8(b-—0
boundary of the cylindrical region and equal to the elemen- PoR prln=vs)- 8ua=uvs)

and the chemical-potential variation is determined from the
Gibbs-Duhem relatioR®

tary area of the boundary in magnitude. Then using EDs. 1 .
(6), and (8), the momentum balance yields the following =pOutSET+ 5pad(vn=uvs)™. (13
relation:

According to the Euler equatiotl0) su=—3v2, then the
pl(v —vy) X k]=F. (9)  Bernoulli law for the pressure is

On the left-hand side of this equation one can see the _ - N,
Magnus force as it comes in the classical hydrodynamics. A P=Po=5pvs(r)"+ 5 pnlvs(r) —vn]
half of this force is due to the Bernoulli contribution to the
pressure, Eq(6); another half is due to the convection term _p._= PV fp = 2
<p;v; in the momentum flux. The Magnus force balances the =Po= 5p0s(N) = prvs vnt 500y
resultant of all external forces applied to the liquid at the

vortex line (the forceF). In the absence of external forces

(14

In these expressions only contributions which depend on the

the vortex moves with the transport velocity of the liquid: ?ﬂiglﬁgr\ﬂ?\sgﬁéiﬁ? g]crén;gs)ﬁ?nnec;;t(;ht?:?n\ggrlczrifgjgd
U, =0y (the Helmholtz theorein Yn P y

This derivation demonstrates the classical origin of thehe forceF external with respect to the superfluid compo-
Magnus force: quantization of circulation is not necessaryle€nt. Comparing Eqg14) and(12) with Egs.(6) and(7) one
for its existence. During the derivation we referred to thecan see that in the case of the superflpidand s replace
hydrodynamic equations only at large distance from the vorp andu. We repeat the analysis of the momentum balance
tex line. It might seem as if the fluid in the vortex core did for @ superfluid component in a cylindrical region around the
not matter at all. However, the derivation is based on thevortex line assuming thais(r)=v,(r) +vg . Then instead
assumption that the momentum is a well-defimemserved of Eq. (9) one has
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ps[(JL_Js) X k]=F. (15) pe (_jone by conS|de_r|ng the momentum balance of the whole
liquid, but not only its superfluid component.

Here and later on we omit the subscript “tr” replacing,
by vs. But one should remember that the superfluid velocity C. Equation of vortex motion and effective Magnus force

Us in the expression for the Magnus force is in fact the su- The momentum balance for the whole liquid in a cylin-

perfluid veIocEy far _from the vortex line. i drical region around the vortex line yields the equation of
The force F, which enters the theory as &function  yortex motion which is a linear relation imposed on three
force, is distributed over some vicinity of the vortex line in velocitiesis, 4, andd, . In a Galilean invariant liquid this
reality. The dimension of this vicinity may exceed the gquation must depend only on relative velocities. However,
vortex-core size, but must be smaller than all relevant hydrogne can also include into this balance some interactions with
dynamic scalege.g., the intervortex distance, or the vortex gyterna fields, e.g., with impurities in superconductors. Then
line curvature radiusin order to justify the assumption of a o; 3 medium with axial symmetry in the plane normal to the
force localized at the vortex line. We suppose that the forcgortex line the most general form of the equation of vortex
F incorporates all interactions with quasiparticles and impu-motion is
rities.
A similar derivation can be done for a charged superfluid ps[(JL_Js)X K]=— D(JL_Jn) —D'[2X (JL_Jn)]_dJL
with the electric potential instead of the chemical potential.
Bearing in mind Eq.(15), one can rewrite the Euler equa- —d'[zx JL]_ (21)
tions for the neutral and the charged superfluids:
Comparing it with Eq.(15), one obtains the expression for

Ws - = - B, L
— T Ws V)os=—Vut[(v —v) Xx]&(r), (16)
F=—D(v ~vn)~D'[2X (v ~vp)]—dv —d'[2Xv].

(22

>

dug - L o
—i Ts Vvs=

-1 . .
E+E[vs>< B]

e
m The forces proportional t& andD’ are due to scattering of
. e - free quasiparticles by the vortex, therefore they are propor-
H(vL—veg) X K] p(r). (17 tional to the difference between the drift velocity of quasi-
) ) particles (the normal velocitys,,) and the vortex velocity
Further transformatlon of the Euler equations uses th%l- The forces proportional td andd’ are due to interac-
vector identity: tion between the vortex line and impurities which are frozen
into the crystal and therefore do not move if the crystal is at
rest. Therefore they are determined by the vortex velocity
v, in the laboratory reference frame connected with the crys-
tal. The case when the crystal is not at rest is discussed in
In a neutral superfluid vorticity is concentrated on the vortexgef. 27.
line: [VXuvs]=xd,(r). But in a superconductor  According to Kopnin and Kravtsd¥ the force from im-
VX vs= k(1) —(e/ma)H. puritiesed,d’ originates from interaction of impurities with
Then the Euler equations are the quasiparticles bound in the vortex core, and therefore
moving with o, but not witho,,. However, in a Fermi

2
Us_

(vs-V)vg=V > 0 X[V XD (18)

90 . v2 oL superfluid, like ®*He, quasiparticles localized at the bound
o -V ,u-l—? +v X k]8,(r), (19 states in the vortex core interact also with free quasiparticles
drifting with the normal velocityo,,. This interaction con-
. 5 tributes to the forces linear ifi, — o, (<D and><D’).?° But
dvs €. [Us - - - this contribution, however important it is, is not considered
Tt - mE V|7 Tluex]aa(r). 20 in the present paper. This means that the ford®' in Eq.

(22) includes only the lordanskii force from quasiparticles

This analysis demonstrates that the total external force ofcattered by the velocity field around the vortex line.
the superfluid in the vicinity of the vortex line isxactly One can rewrite the equatid@l) of vortex motion col-
balanced by the superfluid Magnus fored (7, — 5 <) X ;]_ lecting together the terms proportional to the velogity.
In fact, the termeg in the Euler equation may be received . . . . R
from a pure kinematics: it presents the flow of the vortexpu[v, X ]+ nv| =pvsX k]+Dv,+D'[ZX0v,]. (23
lines across the line between two points which changes the ] )
phase difference between théthe phase slip After replac- The. forces on the left-hand side of the equation aree_tlhe
ing the external force by the Magnus force in the Euler equafective Magnus force<py =ps— (D' +d")/« and the fric-
tion, the latter does not contain any information on the naturdion force= =D +d. The forces on the right-hand side are
and the magnitude of the external force. But the Euler equadriving forces produced by the superfluid and normal flows.
tion is not sufficient for description of superfluid motion: an In~ the  theory  of  superconductivity ~the  force
additional equation for the vortex velocify is necessary. In  F| =pJvsX k]=(1/c)[jsX Py], proportional to the super-

order to derive it, one should specify the fofée This may  fluid velocity v (or to the supercurrerfjt=enyy), is called
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the Lorentz force. Hereby=hc/2e is the magnetic-flux a0

1% S o > >
quantum and the vectab,, is parallel tox. There are also St T Vu=—Vpu. (27)
forces on the vortex produced by the normal current
j-=enuv,. One can find discussion of the effect of the Here u=Va*m is the chemical potential.
normal-current force on electrodynamics of a type Il super- Suppose that a plane sound wave propagates in the liquid
conductors in Ref. 46. generating the phase variatiof(r,t) = ¢oexp(k-r—iowt).
The left-hand side of Eq23) presents the response of the Then the liquid density and velocity are functions of the time

vortex to these driving forces. The factpy; , which deter-  t and the position vectarin the planexy and can be written
mines the amplitude of the effective Magnus force on thgp the form
vortex, is not equal to the superfluid densityin general: it
may be more or less than,. Note that the Hall conductivity p(F,)=po+p)(Ft), v(Ft)=vetv)(rt), (28
is governed bypy,, but not byps. At low magnetic fields
the normal current js fmall cgmpared to the supercurrentwhere p, and v, are the average density and the average
i.e., the total currenf~J=enw, and one may neglect the velocity in the liquid, py)(r,t) and o 1(f,t)=(x/2m)V ¢
termsov, on the right-hand side of Eq23). On the other are periodical variations of the density and the velocity due
hand, the electric field is connected with the vortex velocityto the sound wave(@(l)>=0, (5(1)):0). They should be
by the Josephson relatidh= 1/c[H X v, ]. Then the equation determined from the hydrodynamic equatid@§) and (27)
of vortex motion is equivalent to the Ohm law connectingafter their linearization. In particular, E7) gives the re-
the current and the electric field. One can easily check thdation between the density variation and the phase
the Hall component of the conductivity is linear gy, .

In the superfluidity theory they usually present the equa- __Po _ po K |dp - Y o(r 29
tion of vortex motion using the mutual friction parameters PO= 2RO " 25, | g TP Ve, 29
B and B’ introduced by Hall and Vinef.Because of Gal- ) ) o ] )
ilean invariancal=d’ =0 for superfluids, and neglecting the yvherec is the _sound velocity. Subst_ltutlon of this expression

e L into Eq. (26) yields the wave equation for a moving liquid.
normal motion {,,=0) the equation is Lol
The sound wave has the spectrursck+k-vy. The sound
R on - P - _propagation is accompanied with th(_a transport of mass. This
sz(l— 2—B’)vs+ 2—B[z><vs] is an effect of the second order with respect to the wave
p p amplitude. In the reference frame moving with the average

velocity v, of the liquid the average mass currght is

_ pspuK® - pskD
D7+ (pur)?" s D2 (pn

K)Z[ZXUS]. (24) 5

P(B)=(p 0 (1) = Podm—zK=N(P)P. (30
In the next section we shall calculate the amplitieof IPP=(para) po¢087‘f c (P)P (30
the lordanskii force analyzing the interaction of the vortex

with phonons in the long-wavelength limit. This expression supposes that the plane sound wave corre-

sponds to a numben(p) of phonons with the momentum
p=#k and the energE=¢(p)+p-v, Wheree(p)=cp is
the energy in the reference frame moving with the liquid

) velocity 50. Then the total mass current in the laboratory
A. Nonlinear Schrodinger equation reference frame is

and two-fluid hydrodynamics

Ill. IORDANSKII FORCE
AND AHARONOV-BOHM EFFECT

The Gross-Pitaevskii theoiy has used the nonlinear

- - 1 oo -1 IR
= . iPhp) = =
Schradinger equation to describe a weakly nonideal Bose’ Povo™ h3f da}™AP)=povot 3 | dspn(plp. (3D

gas:
In the thermal equilibrium at>0, the phonon numbers
d h? are given by the Planck distribution(p) =nq(E,v,,) with
ih—wz——V2¢+V|¢|2¢. (25) o y e - _(p) o(E.0n)
at 2m the drift velocitywv, of quasiparticles:
Herey=a exp(¢) is the condensate wave function avids R 1
the amplitude of two-particle interaction. Using the Made- No(E,vn)= ———
lung transformatiod’ this equation for a complex function ox E(p)—p-vn 1
may be transformed into two real equations for the liquid I T
densityp=ma? and the liquid velocity = («/27)V ¢ where
«=h/m is the circulation quantum. Far from the vortex line _ 1 (32)
these equations are hydrodynamic equations for an ideal in- e(p)+p-(vo—vn) ’
viscid liquid: exp T -1
p - - Linearizing Eg.(32) with respect to the relative velocity
ot TV (P0)=0, (26) vo—Up, One obtains from Eq(31) that
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1=t 0-(0e—10). 33 erage v_elo.city re!ated to given particle (a Lagrange vari-
9=povot pr(vn=vo) 33 able coincides with the center-of-mass velocity.

This expression is equivalent to the two-fluid expression |n the same manner one may derive the two-fluid expres-
g=pUstpn(Un—0s)=psUstpaUn assuming thatp=po  sion Eq.(12) for the momentum flux tensor. Expanding the
=pstpn, Vo=Us, and the normal density is given by the momentum-tensor up to the terms of the second-order with

usual two-fluid-theory expression: respect to the sound wave amplitude one obtains
1 [ dng(e,0) . I =Pyd; + povoivo + 1P, (35)
pr‘:_WJ’ Tp2d3p' (34) i 0¢ij oY oivoj 1j

where the second-order phonon contribution is

It is important to emphasize a difference between sound Hip,-h:<|:’(z>>5ij +(p1)(v)idvoi+{pw)(v(w);)voi
waves in a liquid and in an elastic solid. The sound wave in
the elastic solid is not accompanied by real mass transport in +po((v(1)i(v(1);)- (36)
the laboratory reference frame: all atoms oscillate near the
equilibrium positions in the crystal lattice. Within our
o (o 1o he ase o s compensaen gy 028 M &L T=0 sy expansions- oy and
wherg((lvl (1)) the second-order contribution to the af\zl)erageﬂ-:MOJrM(l)Jr“(Z)’ where po is the chemical potential
- \7(2) . I " “I=without the sound wave. This yields the second-order pho-
velocity v. But in the case of the liquid the latter contribu- " B 2
o o ' . non contribution P 5y=pou oyt (duldp)(p(1y/2) to the
tion is not essential since one assumes that the fixed fmé\ressure wherelol o /Cg Accordin (t)o the Euler
average velocity, incorporatesall contributions to it. Thus P Lation(4) the sgcoﬁd_-gfder 'contributio%  the chemical
when we say about the mass transport by phonons we me&iUaHe i - 2 15 Th
the transport in the reference frame moving with the averagBPtential isu(z=—(v(y)/2). Then
velocity vg. In the presence of phonons the latter is different 2,2 2
o . ) X c <P(1)> <U(1)>
from the center-of-mass velocit§/py. This difference is (Pe)=—=—"5—"—po .
possible because of using Euler variables: the average veloc- po 2 2
ity U relates to agivenpoint in the space, whereas the av- The last term in Eq(36) may be transformed as follows:

¥he second-order contributioR , to the pressure can be
obtained from the Gibbs-Duhem relatiagiP=pSu for an

(37

.9%ng(e,0) .

1 N . C 1 - c 1 I 2(98
p0<(U(1))i(U(l))j>:Ff dspno(E,Un)Bpipj”FJ dgpno(s,O)Epipﬁ-Wf dng[p-(vn—vo)] an

Pj
1 - 1 *anO(S,O) > -> - 2
:3_h5f d3pn°(8'O)Cp5ii_E§f dsp———[p-(va=v0)]°4;

10 ong(e0) - . -
_ﬁf dSPT[p‘(Un_vo)](vni_UOi)pj

1 N 1 . .
:{Wf d3pno(e,0)cp+ E/On(vn—vo)2 Sij+ pn(vni—voi)(Unj~ Vo)) (38

Bearing in mind tha(p(1yv (1)) =pn(vn—v0o). EQ. (35) at  sider a sound wave(r,t) = ¢oexp(k-r—iwt) propagating in
po=p, Uo=Us coincides with the two-fluid momentum-flux the planexy normal to a vortex lingthe axisz). Then in
tensor Eq.(12) where the pressure incorporates a phonoriinearized hydrodynamic equations of the previous section
contribution for a liquid at rest and the Bernoulli terms giventhe fluid velocity 7, should be replaced by the velocity
by Eq. (14). v,(F) around the vortex line. The hydrodynamic equations

This analysis demonstrates that two-fluid hydrodynamicsinearized with respect to the wave amplitude are
with phonon quasiparticles is identical to the nonlinear

Schralinger equation with thermally excited sound waves. A
next step is to analyze scattering of phonons by the vortex in p() . - =
hydrodynamics of an ideal liquid. o TPV um= vy Ve, (39

B. Scattering of phonons by the vortex in hydrodynamics

: , , - dvqy 2. N -
The phonon scattering by a vortex line was studied begin="1 | ¢, . — _V.[(;. . V)01, +(0.1,-V)0,].  (40)
ning from the works by Pitaevskiiand Fettef® Letus con- 9t po ) [, Vvt lva 2



492 E. B. SONIN 55

Using the vector identity Eqg.(18) for the velocity The standard procedure in the scattering theory is the fol-
J:,jvﬂ}(l), Eq. (40) can be rewritten as lowing. One uses the asymptotic expression for the Hankel
function at large values of the argument:
W e -] R RSPV i H @) — j(z—
— ng(1)=—V(vu'v(l))+[v(l)><K]52(r). ZIT:CHE))(Z)—\/Z/wzé(Z 4, (47)

(41 . o , -
] ) . ‘ Then it is assumed that the perturbation is confined to a finite
One can see from this equation that the perturbation from thgicinity of the line, wherer;<r, and

vortex (the right-hand sidecontains strong singularities re-

lated to the fact that the vortex line is not at rest when the .. (ry-1)

sound wave propagates past the vortex. In order to weaken [r—rq|~r— P (48)
these singularities in Ref. 7 the time-dependent vortex veloc-

ity v,(r,t) was introduced as a zero-order approximation forFinally integration in Eq(45) yields the phase field at large
the velocity field. This means thatin Eq. (1) must be re- values ofkr in a form of a superposition of the plane wave

placed byr—o,t and (950/ﬁt: _(JL'ﬁ)l;v: —ﬁ(JL'JU) «exp(k-r) and the scattered waweexp(kr):
+[v X k]8,(r). HereJL is the velocity of the singular vor- ia(e)
tex line. Since there is no external force on the liquid, the b= doexp(—iwt)

vortex moves with the velocity in the sound wave: \/F
v =v(1y(0t). Now in the linearization procedure the fluid Herea() is the scattering amplitude which is a function of

acceleration in Eq. (27) must be presented as yhe anglep between the initial wave vectdr and the wave
vldt=av,/dt+dv(qy/dt. As a result Eq(41) is replaced vectork’ =kr/r after scattering:

exp(ik-r)+ exp(ikr)|. (49)

by
R 1. T | 9
v 2 L. L a(cp):—\/k/271-€e'("’4)[;<><k’]-k?<1—W)
ot %Vp(l)zv[vv'v(l)(r)]_v[vv‘v(l)(o)]- (42)
1 K i Sing cosp
Now the perturbation from the vortex line on the right-hand =3 kIZWEe'(” )m, (50
side is free from singularities of Eq41). Equation (42)
yields whereq=k—k’ is the momentum transferred by the scat-
oo x [ tered phonon to the vortex, amg= 2k sin(¢/2).
— 0 C Y AL —© This scattering amplitude is the same as obtained b
PW=" @25, ot TU0 VA V¢(O)]}' “3 Pitaevskii*® In th(gaJ explroessions for the scattering amplitudey

by Fettef® and Demircan etal®® the factor
(1—g?%/2k?)=cosp is absent. This disagreement was ex-
plained either by using the Born approximation in the theory
of Pitaevskii?® or by algebra mistakes in his pap&indeed,
. (44)  there is some confusion with humerical factors and signs in
the original paper by Pitaevski.But the factor cog is not
a result of wrong algebra. As was shown in Ref. 7, the factor
arises from vortex oscillatory motion ignored by Fettemd
by Demircanet al 3 Therefore their result is correct only for
a fixed vortex line which is kept at rest by some external
forces, e.g., by strong pinning. If the vortex-line singularity
were at rest, in Eq50) the second termg?/2k? in parenthe-
ses would be absent and E§0) would agree with Fettef®
Fetter used the method of partial waves. In order to take into
account vortex motion within this method, one should
ik modify Fetter’'s analysis for the partial waves with +1 as
b= boexp(—i wt)[ exp(ik 1)+ —f dory shown in the end of Sec. Ill B Pitaevskif® did not discuss
4c the effect of vortex line motion in his paper. He started from
Egs.(39) and(40) which correspond to a fixed vortex line as
XHP(KF—r1)Kk-v,(r)[2 exgik-rq)— 1]]. a zero-order approximation. But transformation of E40)
to Eqg. (41) shows that theS-function perturbation from the
(45  vortex motion is present in these equations. Due to this term
1) . . . the scattering amplitude by Pitaevskii coincides with Eq.
Here Hg'(2) is the zero-order Hankel function of the first (50, and with results of the partial-wave analysis for a free
kind, and {(/4)H{M(k|r—r,|) is the Green function for the vortex line in the long-wavelength limit.
two-dimensional wave equation, i.e., satisfies to the equation Thus the vortex plays a role of a line defect which scatters
the sound wave. Scattering results in the momentum transfer
(K2=V2) (r)=8x(r—r1). (46)  from the sound wave to the line defect, i.e., the sound wave

Substitution ofp (4 in Eq. (39) yields the linear equation for
the phonon-induced phase:

P d

- . s = -1
W—CZV%:—ZUU(IF)-VE[(MU—5(25(0)

In the long-wavelength limik— 0 one may treat interac-
tion with the vortex velocity fieldthe right-hand side of Eq.
(44)] as a small perturbation. It is equivalent to the Born
approximation. The small perturbation paramet&fc is on
the order of the ratio of the wavelengthrZk to the vortex
core radiug .~ «/c. Then after substituting the plane wave
into the right-hand side of Eq44) the solution of this equa-
tion is



55 MAGNUS FORCE IN SUPERFLUIDS AND SUPERCONDUCTORS 493
produces a force on the defect. In order to find this force, ondy the vortex ignoring special features of the small-angle
must determine the phonon contnbunﬁ#’h fd%H”h to  scattering. This is the reason why they could not find the
the total momentum flux through the cyl|ndr|cal surfacetransverse force from phonons on the vortex.

around the line defect. If the perturbation by the line defect is

confined to a finite vicinity of the line, the phonon contribu-

tion to the momentum-flux tensor is C. Small-angle phonon scattering and the lordanskii force

At small scattering angleg=<1/\kr the asymptotic ex-
pansion given by Eq49) does not hold. The accurate cal-
culation of the integral in Eq45) for small angles was done

(51 in Ref. 7. A simplified version of this calculation is presented
in Appendix B. It yields that atp<<1

In Appendix A it is shown that in this case the force on the

line from the sound wave,

1
th <P(1)> P0<0(1)> Sij+po{(v(1))i(v (1))

ik
b= oexp( —iwt+iKk-1)| 1+ 2K—C<I>(cp\/kr/2i)

prh: O'”Cj?ph— (o) C[%X j_)ph], (52)

is determined by two effective cross sections: the transport/sing an asymptotic expression for the error integral
cross section for the dissipative force component,

2
UH:J o(¢@)(1—cosp)de, (53 d)(z)z\/—_f dt—> +\/2/ zexp(—7%) (59
au
and the transverse cross section for the transverse force com-
ponent, at|z|—, one obtains for anglessi¢> 1/\kr:
O'J_:f o(p)sinpde. (54 . . ik o
o= poexp(—iwt)| explik-r) 1+2——
The differential cross sectionr(@)=|a(¢)|? in these ex- c el

pressions is known due to E(O0) for the scattering ampli- i 1 -
tudea(¢). It is quite natural that in the Born approximation +— k/27-rr—ex;( ikr+i—
the transverse cross section vanishes since the differential ¢ ¢ 4
cross section is quadratic in the circulatien

Hoyvever, the standard sc_attenng-theory approach fails tqhe second term in square brackets coincides with scattering
describe the phonon scattering at small anglebdeed, the . . .
wave at small angleg<<1 when the scattering amplitude is

velocity v, induced around the vortex is decreasing very .
slowly asv 1/. Therefore the termswv, in the phonon mo- given by Eq.(56). But now one can see that the standard
’ y cattering theory misses to reveal a very important nonana-

mentum flux are important in the momentum balance. The’™ . oo
total momentum-flux tensor can be obtained from H&§) ytical correction to the incidental plane wave. We shall see
in Sec. Il E that the factort kk/c which determines this

n mingo(r) =v,(r) +vs neglectin me unim- L .
So(rjt;i?tzfrius' @o(r)=v,(r) +vs neglecting some u correction is exactly the phase shift of the sound wave along
' the quasiclassical trajectories past the vortex on the right and

-

_ SN left sides. This is a manifestation of the Aharonov-Bohm

L= = po(vs=v) vy 8+ povoivo; +{pen (v w)i)vy effect® the sound wave after its interaction with the vortex
+{py(v )it pol(v)i(v);)- (55  velocity field has different phases on the left and on the right

In addition, the scattering amplitude is divergenias 0: _of the vortex line, and this phase difference results in an

interference.

In the interference region the velocity induced by the
lima(¢)=Vki27— '(”’4 (56) sound wave is obtained by taking the gradient of the phase

¢—0 given by Eq.(57). The velocity component normal to the

This divergence is integrable in the integral for the transporvave vectork,
cross section, Eq53). So the calculation of the transport

cross section is reliable. Contrary to it, the integrand in Eq. ” 2
(54) for the transverse cross-section has a polea0, and K oo KK e
the contribution of this pole requires an additional analysis. YOLT o0y de G PoXA~ |wt+|kr)2—7TC kl2mt
A proper analysis of the phonon small-angle scattering was

fulfilled in Refs. 6 and 7. However, in a recent publication xex;{(lkr@z— 77)

; : s : —11, 60
Demircan, Ao, and Nit? considered the phonon scattering (60

4
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determines the interference contribution to the transverse Let us consider the equation which describes interaction
force: of an electron with the magnetic flul confined to a thin
tube (the Aharonov-Bohm effegf

Jd%po<(v<1>h(v<1>)i> .oe.\? .
—ihV——A) W(r). (64)
C

. 1
Elﬂ(r)Zﬁ
= f pol(v(1)) L (v(g))rde

Here ¢ is the electron wave function with ener@yand the
1 3K2 1 electromagnetic vector is connected with the magnetic flux
- 2 . o o
16 2\/—Po¢o p \/WJ' de COE(g'“‘Pz) ® by the relation similar to that for the velocity, around
TN the vortex ling[Eq. (1)]:

1 2K3k2_K_ph
_1&72p0¢0 c _El . (61) R [ixf)]

Note, that this force contribution arises from the interference

region with the transverse dimensidp~\ro/k. Hererois  nn anajogous equation for the sound wave with frequency
the large distance from the vortex line where the momentum '_
balance is considered. But the interference region corre-
sponds to very small scattering anglesd;,/ro=1/\kro. K \2
Thus an infinitesimally small angle interval yields a finite k2¢—(—iﬁ+ —JU) =0, (66)
contribution to the transverse force. One could not reveal c

such a contribution from the standard scattering theory usin%_ ) ) _
the differential cross section. iffers from the equatiort44) for phonon-vortex interaction

Exactly the same contribution to the transverse force, a8y the term of the second order in =« and by absence of
in Eq. (61), arises from the termv, (p(1y(v(y);) in the the contribution from the vortex-line motiofithe term
" . « (0) on the right-hand side of E¢44)]. This difference is

unimportant for the calculation of the transverse force which
{'s linear ink.

Let us look for a solution of Eq64) as a superposition of
the partial cylindrical waves using the cylindrical system of
coordinates I(, ):

momentum-flux tensor, E455). In this term the mass flow
(py(v(1));) for the plane wave may be usgske Eq(30)],
since we take into account only terms which are of the firs
order in the small parametetk/c. Finally the momentum
balancefdS1I;;=0 yields the relation

pol (v —v) X k][ [P(p) X k]=0. (62)

The second vector product on the left-hand side is a trans- zﬁ:Z i(r)exp(il ¢). (67)
verse force given by the transverse cross seatior «/c.

Itis linear in the circulation quanturk and therefore cannot The partial-wave amplitudes should satisfy equations
be obtained from the differential cross section quadratic in

«. If there is the Planck distribution of phononj?i'@,h must d?y,  1dy,  (1—y)?
be replaced by (1°)[dspng(e,v,—0.)p~—(1/h%) fd;p FJrFW—r—zz//kaqu:O. (68)
dng(e,0)/9e[p- (0,—0)]1p=pn(0,—70L). Thenthe momen-
tum balance equation is Herek is the wave number of the electron far from the vor-
I I, tex so thatE=7%2k?/2m and y=®/®,; where®,;=hcl/e is
psl (v —vg) X k]+pp[(vL—vn) Xk]=0. (63  the magnetic-flux quantum for one electr@wo times larger

- - . . than the magnetic-flux quantudy,=hc/2e for a Cooper
The forceoc(,vL—vn) IS the lordanskii forcg Wh'Ch COITe- " hair). A solution of this equation, which has no singularity at
sponds toD'=—kp, in Eq. (21). The longitudinal force gy 0, is the Bessel functiod;_,(kr) with the fol-
«D is not present in Eq.63) since we ignored terms of the lowing asymptotics at large arguments:

second order ink in order to simplify our derivation. Ac-

cording to Eq{(63) the vortex moves with the center-of-mass

BN - N T T
velocity v=(ps/p)vst+(pn/p)v,. But one should remem- Jji—y(kr)— \/2/7rkrcos( kr— E“ — |- 7l (69
ber that the normal velocity, in this expression may differ

from the normal velocity far from the vortex line because of 5, the other hand. the expansion of the plane wave in the
the effect ofviscous dragknown from the first works on partial cylindrical w’aves is

superfluid vortex dynamicgsee also Ref. 28

D. Partial-wave analysis and the Aharonov-Bohm effect exp(ik - r)=exp(ikr cosp)= §|: Ji(krexdil (¢+m/2)],

In this subsection we shall rederive the lordanskii force (70)
using expansion in partial waves in order to demonstrate the
analogy with the Aharonov-Bohm effect. or at largekr:
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4

exp(iIZ' r= \/2/7-rkr2 cos( kr— gl — z)
[

X exfil (¢+m/2)]. (71)

In order to obtain the solution “the incoming plane wave
the scattered cylindrical wave” like Eq49), one should
determine the partial waveg, from the condition that the

In their original papét Aharonov and Bohm considered
only the effect of the magnetic-flux tube on the electron
wave. The force from the electrons on the fluxon was con-
sidered later by Aharonov and CasWeand therefore is
called the Aharonov-Casher effect. So for our problem of
interaction between quasiparticles and the vortex both ef-
fects, Aharonov-Bohm and Aharonov-Casher, are important.
But these effects are so close one to another that throughout

incoming componentsexp(—ikr) in the plane wave and in  the paper we use only the name “Aharonov-Bohm effect.”

the solution Eq(67) coincide. This yields that In conclusion of this section let us consider how motion
o - o of a free vortex line must be incorporated into the partial-
¢|:V2/7kaex+ (== COS< kr—=|1—y|—=]|. wave analysis of phonon scattering performed by Fétter.
2 2 4 He assumed that all partial waves were regular at small
(72 i.e., proportional to the Bessel function in E§9) where
Then the solution of the Aharonov-Bohm problem takes they= — xk/27c for phonons is small anfl — y|~|I|—yI/|l|.
form of Eq. (49) with the scattering amplitude It yielded forl+#0 the phase shifts given by E(/4). But if
the vortex line is free to move, the velocity field is singular at
a(p)= 1/277kexr<ig)2 [1—exp(2i 8)]expil ¢), r—o0 vﬁvhereﬂit is given by (r)=v|+vgng. The vortex ve-
! locity v, =du/dt is equal to the average liquid velocityhe
73 Helmholtz theorem Hereu is the vortex-line displacement.
where The  second contribution  vgng=—(U-V)v,(r)
s=(1=|l=y|)ml2 (74) ~=V[u-v,(r)]=(Lhw)V[(v, -v,(r)] arises from motion

of the vortex line. This contribution is of the first order in
is the partial-wave phase shift &#0. The Swave phase «, but strongly singular €1/r?). The phase which deter-

shift is 6o=*ym/2, but no physical effect depends on the mines the velocity (r)= («/27)V ¢(r) at smallr in cylin-

choice of the sign in this expression. drical coordinates is
Equation(54) for the transverse cross section may be re-
written as an expansion in partial wav&s: 2 1 v, _ _
G(r,@)=——uvr cosp— i ~=sinp=h1e'*+ $_,e7'%,
1
aff |a(e)|?sinedp=1 2% sin2(6-0i.1). (79 (77)
) _ where
Using the phase shift values for the Aharonov-Bohm effect,
Eq. (74), the transverse cross section is T 1 v,
qbil:—eri——. (78)
1 K 2w T
o, =——=sin2wy. (76) , .
K This assumes that the direction of corresponds ta=0.

One can obtain the cross section for phonon scattering fro
this expression assuming that= — kk/27c and expanding
the sine function in smaly.

The cross section for the Aharonov-Bohm effect is peri- _
odical in the magnetic flux with the period equal to the one- P21 J1a 5 (KD F @ Ny (kD). (79)
electron flux quantun®,. If the electron is scattered by the Determininga. one may neglect smajt in the orders of the
Cooper-pair flux quantumiby=® /2 the transverse cross Bessel functions. Then J;.(kr)~J;(kr)~kr/2,
section vanishes. But presented analysis of the AharOﬂO\Nliy(kr)~Nl(kr)~2/q-rkr, and Eq.(79) agrees with Eq.
Bohm effect is based on the assumption that the total mag7g) if a. = + («xk/8c).
netic flux is concentrated in a very thin tube. Namely, the The parameters.. are additional phase shifts due to vor-
radius of the tube must be much less than the electron wavgex motion which must be added to the shifis; given by
length. This condition certainly does not hold in Supercon-gq. (74). Performing summation in Eq73) Fetter obtained
ductors, where the electron wavelength is on the order of the
interatomic distance and the effective radius of the magnetic- ) ) ) )
flux tube is the London penetration depth. Therefore one zl [1_9)‘[3(2'5!)]9)(‘3(”99)%2'2' siexplil ¢)
should consider scattering of electrons by a thick magnetic-
flux tube®® Recently scattering of electrons by magnetic kk  sing
fluxons was analyzed by Nielsen and Hedega They also = 2¢1-cosp’ (80)
confirmed the existence of the transverse force similar to the
lordanskii force. Scattering of the BCS quasiparticles by theThe shiftsa. contribute the term- («k/2c)sing to this ex-
magnetic field of the vortex also contributes to the transverspression, and this yields an additional factor go#fter it
force on the vortex, but this contribution cancels with thethe scattering amplitude obtained from partial waves does
bulk electromagnetic forc¥. not differ from that in Refs. 48 and 7.

rﬁo the phase fiel@77) is a superposition of the partial waves
= =*1 which are singular at—0. One must look for them
in a form, more general than in E9):
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E. The transverse force in the quasiclassical theory

Now we shall show that the lordanskii force follows also
from the quasiclassical theory of scattering by the vortex

E. B. SONIN
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phonons arises from a finite jump 66 atb=0. In fact, one
may not use the quasiclassical theory to calculate this con-
tribution. Nevertheless, Eq83) yields the correct value of

)

despite one cannot use the quasiclassical theory for phonorf&. = #/¢ for phonons.

But the quasiclassical theory is valid to describe the roton

contribution to the transverse force.

In the case of rotongS(b) is a continuous function of
b and the quasiclassical theory is reliable for the calculation

Let us consider a quasiparticle with an arbitrary spectrurrPf the lordanskii(Lifshitz-Pitaevski) force. But it is impor-

e(p). If the quasiparticle moves in the velocity field induced
by the vortex, its energy i€(p)=e(p)+p-v, which may
be treated as a Hamiltonian for the classic equations of m
tion:

dr 6E_ p .
a—&—ﬁ—veﬁ-f—vv,
dp JE a . .
Gt e =Py, (81)
ar or

wherev g(p) =de/dp is the quasiparticle group velocity. As
before, we assume that the quasiparticle moves in the pla
Xy normal to the vortex. From this equations one can find th
classical trajectory of the quasiparticle moving past the vor
tex line. Usually it is close to a straight line, and a distance o
the straight trajectory from the vortex line is the impact pa-
rameterb. We are looking for the transverse force, then we
need only the variatiodp, of the momentum component
normal to the initial momenturp which results from quasi-
particle motion past the vortex. The momentum of the qua
siparticle is connected to the classical actiq 9S/ar.
Then ép, (b)=d6S(b)/ob where the total variation of the
classical actionsS(b) along the trajectory is a function of
the impact parameteb. Solution of Egs.(81) in the first

order with respect te, yields that

oo

5S(b)=—f dl

— o0

p

2moo(l) DEHIZ -

o

tant to note that the double integral of E§3) is improper:
its value depends on what integration is done first. The cor-
rect procedure which was justified in Ref. 7 is to integrate
along the trajectory first, and to integrate over the impact
parameters afterwards. A way to check it is the following.
We choose some finite limits in the double integral of Eq.
(83) which means that the integration is restricted by some
area around the vortex line. The integral depends on the
shape of this area. For example, a circular border of the area
yields o, by a factor 2 less than that of E@3). But the full
solution of the collisionless kinetic equation for the quasipar-
ticles made in Ref. 7 showed that the slow decrease of the
velocity field produces other contributions to the momentum
lance. Taking into account all of them, we arrive again to

dhe expression for the force via the cross section given by Eq.

(83). The order of integrations in E¢83) assumes that the

]jntegration area has a shape of a rectangular elongated along

the quasiparticle trajectory. For such a shape all other con-
tributions to the transverse force exactly cancel.

A rather simple and universal expressibri= — kp,, for
the lordanskii force amplitude tempts to claim its universal
topological origin, sincex in this expression is a topological
charge. However, in the next section we shall see that the
expression is not universal, in fact. For quasiparticles in a
BCS superconductor with energy much exceeding the gap an
additional small factor should be put into this expression.

IV. IORDANSKII FORCE FOR QUASIPARTICLES
IN BCS SUPERCONDUCTORS

wherel is the coordinate along the trajectory. The scattering

angle of the quasiparticle ig~ — ép, (b)/p and the trans-
verse cross section is

%J dbe(b)

| 85(—)— 65(+)

a p

_ 1 mdbajmdl—Kb - 83
T 2mvg) e ob) . D12 ug (83

For phonons the group velocityg is equal to the sound
velocity ¢ and does not depend dn Therefore the action
variation 8S given by Eq.(82) does not depend on the im-
pact parametds atb+ 0. This means that there is no phonon
scattering in the quasiclassical approximationy
«ddéS(b)/db=0. A nonzero transverse cross section for

The wave function of quasiparticles in the BCS theory has
two components,

. [u)
P(r)= )

which are determined from the Bogolyubov—de Gennes
equations:

(84)

>

v(r

h? . . . .
—ﬁ(V2+k§)u(r)+A exdi6(r)Ju(r)=Eu(r),

(85

h? . . .
ﬁ(V2+ k2)v(r)+A exd —i6(r)Ju(r)=Eu(r).
(86)

Herekg is the Fermi wave number. We neglect the magnetic
field effect which is not essential for the transfer of momen-
tum from quasiparticles to the vortex if the London penetra-
tion depth is large compared to other relevant scales. There-
fore only the canonical phase of the order parameter, but

not the electromagnetic vectd, is present in the phase
factor of the gapA. Without the vortex the order parameter
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phased is a constant and the equations yield the well-knownAbsence of the Magnus force suggests that the vortices move
BCS quasiparticle  spectrum E=\£Z+A?  where parallel to the driving force, i.e., normal to the current, and
é=(h%12m)(k>—k2) is the quasiparticle energy in the nor- there is no Hall effect. Then in the limit of weak dissipation
mal Fermi liquid. the ballistic vortex motion is possible, which is a free vortex
In Refs. 10 and 11 the Bogolyubov—de Gennes equation&otion without friction and the driving force. The Hall effect
for a quasiparticle passing a vortex were solved with help ofind the ballistic motion are incompatible, since the latter is a
the partial-wave expansion, earlier used also in Ref. 52. Qud€gime with a finite electrical field and no external current
siparticles with the energy close to the ga@p<(A) behave as Which is impossible for a finite Hall resistance. Though there
rotons and the transverse cross section for them is given byave been experimental evidences of the ballistic vortex
Eq. (83) in which the group velocity for the BCS quasipar- motion;’ one may suspect that a more sophisticated theory
ticles isvg=v&/E. Herevg=7%kg /m is the Fermi velocity. Wwould reveal the Hall resistance, however small. In the
In the case when the quasiparticle energy is much more thapfesent section it will be shown that the Hall effeceiactly
the Superconducting gap, the theory y|e|ded that the tran@.bsent in the classical limit for the JJA. It direCtly follows
verse cross section different from the quasiclassical result gfom the symmetry of the dynamic equations.
Eq. (83) by the factorA?/2¢2. Now we rederive this result Let us consider a conductor in a magnetic fieldWhen
using the Born approximation similar to that for phonons inits symmetry is not less than the threefgWhich includes a

Secs. Il B and Il C. triangular and square latticgeghe Ohm law is
We use the perturbation theory with respect to the gap
A and the gradient of the order parameter pHaseThen in E=p I +pynxI, (90)

the zero-order approximatiou=u0eprIZ~F) andv=0. In .. . _ _ _ o
the first-order approximation the second Bogolyubov—davheren=H/H, E is the electrical fieldp,_ is the longitudi-

Gennes equatio(86) yields nal resistance, angy is the Hall resistance in the magnetic
A ) i ) field H. Now let us consider the transformation in which the
,_|Aexe-ie) A exp(—|¢9)2 ﬁ_(ﬁ.v*g) directions of the field€€ and H and the current are re-
E+E()  [&(k)+E(K)]® m versed:
X UpeXp(ik-T). (87)

E--E, no-nH->-H), I—-1. (9)
The first term in curly braces yields a correction to the qua-

siparticle energy<A?, but does not contribute to scattering The Ohm law Eq(90) is invariant with respect to thifield-
which is determined by the order-parameter phase gradientsurrent inversiononly for a system without the Hall effect
So we keep only the second term proportionaVte Insert-  (p1=0). On the microscopical level the field-current-
ing it to the first Bogolyubov—de Gennes equati@B) one  inversion invariance is a direct result of tiparticle-hole
obtains the following equation for the first-order correctionSymmetrywhich was shown to forbid the Hall effect in the

to the plane wave: Ginzburg-Landau theorysee Ref. 29 and the references
therein.
L. A2 R Next we consider the JJA with the energy
(Vz—kz)u(l)z(kVB)z—gzuoexp(lk-r). (89)
1 _
This equation is similar to equatigd4) for the sound wave E= EZ [Qrcmzl Qi—Ejsin(pi— dp) ], (92
I,k

and using this analogy one easily obtains the expression for

the transverse cross section: . .
and the equations of motion

A? A?
UL:EZ%:EZULI (89) Ve fi d(ﬁf 93
i i 2e dt &3

Since the group velocity of quasiparticles wigk> A is about

the Fermi velozcitygp, this expression differs from E¢83) vy, -

by the fgctorA 12¢°. After |_ntegrat|on over the quasiparticle 2 Cf,f+ﬁTﬂ_|Cz sin( ¢ — ¢F+;Z)+Z o i Vivs

distribution one obtains that D'~ —(A/2T.)xp, “ “ “

~—(A/4T,)hn close toT, (see Refs. 10 and L1Heren is

the total electron density. One should remember, however,

B e e g HereVr s th clectic poentald/ 3Gy V. s the

electric charge¢i(t) is the gauge invariant phase at the

present paper. node specified by the discrete two-dimensional position vec-

tor I, E; is the Josephson coupling enerdy=2eE;/# is

the critical current, an€; ; andoy ; are the capacity and the

conductance matrices, respectively. In the external magnetic
In the continuum limit, the equation of motion for a vor- field H=V XA, the gauge invariant phasgy is not single

tex has been derived by Eckern and Schiithis deriva-  valued; in fact only its difference between neighboring nodes

tion has not revealed any force normal to the vortex velocityis well defined:

(94)

V. MAGNUS FORCE IN THE JOSEPHSON
JUNCTION ARRAY
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27 (e - - Because of this difference between vortices in a lattice
e i . A-dl. (95  and vortices in a continuous medium any derivation of the
0/ effective Magnus force in JJA using the continuous approach

Here 1 is the canonical phase at the nddeand the integral is not reliable. Let us discuss this in more details. In the
over A is taken between the centers of the two neighboringcontinuum limit the set (zf discrete vectdrss replaced with
nodes. The canonical phase is not single valued too, but if§ie continuum space df. One can define the field of the
circulation along any closed path through the nodes of JJA isanonical(but not gauge invarianphasee(l) in this space
always an integer number ofi2 while the circulation of the everywhere except for the singular points which are the cen-
gauge invariant phase may be any number depending on thers of the vortices with the phase circulationr Zaround
magnetic field. them. It is assumed that the spatial variation of the phases is

When both the external currefitand the magnetic field small and the phase differences can be replaced by the phase
H are applied to the JJA, the gauge-invariant phase can gdadients according to
present.ed ag= qb.:j.+-d>'|». Here¢:j.is the time-independent @i ¢rm(ﬁ.€)¢(r)<1. (96)
phase in the equilibrium state without an external current ' ) ) ) )

Then one can derive the partial differential equations for a

and qs} is the time-dependent contribution to the phase from ™~ i ) . g
continuous field of the canonical phagél ,t) which corre-

gpond to some Lagrangidr{ (I ,t)} (the dissipation is ne-

glected now. The Lagrangian may include the term propor-

'Pnal to the time derivative oto(r,t) which is called the
ess-Zumino terni!

the external current. The multivaluedness of the phase re-
lated to the magnetic field is present only in the static phas

¢F': the time-dependent dynamical contributidr'; to the

phase is single valued. One sees then that the field-curre
inversion [Eg. (91)] simply corresponds to the change of

signs of all phases, and the equations of motion, E8R. . 1 do .

and(94), are invariant with respect to this transformation. It L{e(l,0)}= Eqﬁﬁt Lofe(1,1)}. (97)
proves that the Hall effect does not exist in the JJA, i.e., the

effective Magnus force vanishes. It is possible to derive the equation of vortex motion from

The crucial point of this simple derivation is that we usedthis Lagrangian following Refs. 37 and 38. One must use the
the static vortex solution ! for the dynamical problem. Phase field for a slowly moving vortex:

This assumes that singularities of the phase distribution re- 1, —y(t)
lated to the presence of vortices are kept at rest despite the V(T',t) = arctan’ , 98
p p p e'(1,1) W (98)

vortices themselves are driven by the Lorentz force. For con-

tinuous superconductors this approach is invalid and oUjyhere r(t)=[x(t),y(t)] is the two-dimensional position
derivation does not worlcf. the effect of vortex-line motion  yecior of the vortex center. Substituting the vortex solution
in S_ec. II_I B). So_there is a fqndamental dlf_ference betweennto the Lagrangian density given by E§7) and integrating
vortices in a lattice and vortices in a continuous SUPErcoNyyer the xy plane, one obtains the effective Lagrangian

ductor. Indeed, in the lattice there are no singular vorteXyhich is now a functional of the trajectory for a moving
lines. They appear only in the continuum limit. At best, one,gtex:

can define the lattice cell containing the vortex center. This

definition has been borrowed from the continuous theory: it LY{F ()} = — mqr[zxr]+ LT (D} (99)

is the cell, around which the circulation of the phasés K

equal to 2r. However, in the lattice the circulation around a Varying this Lagrangian with respect tdt), one obtains the
closed path is not well defined. Let us consider some closedquation of vortex motion with the effective Magnus force
path through a discrete number of nodes with the phase cirQ:

culation 27. One may change the phase difference by . .

— 27 between any two neighboring nodes on the path with- 2mq[rxz=Fs. (100

out any effect on observed physical paramet@nsrrents, -
voltages and so 9nThen the circulation vanishes along the Herng includes all other forcethe Lorentz force and the

path considered, but must appear along a path over othé&pertia forcg obtained from the Lagrangia®y{r ()} without
nodes. Thus one cannot locate the position of the phase sif?€ Wess-Zumino term. However, the factpis not defined.
gularity. In order to avoid this ambiguity in the JJA model, alf g is constant, it has no effect on the field equation for
special rule has been formulated: the phase difference bep(l,t) since the Wess-Zumino term is a full time derivative
tween two neighboring nodes must not exceedVhen for  in the field Lagrangian, Eq(97). The unknown factom
some bond the phase difference achieves the valuene  should be proportional to some electric charge, since the
must redefine the phases; as a result, the vortex center is peitarge is a variable conjugate to the canonical pasgut

into another cell. This procedure is usual for numerical studit remains unclear what is this charge: either the background
ies of the vortex motion in JJA However, this rule is not charge determined by the whole Fermi sea of the supercon-
obligatory for the dynamic theory of JJA. Instead, one mayducting island, or an external charge induced outside as sug-
keep 2r circulations of the phase at fixed cells during the gested in Ref. 44. Thus in the continuum limit the problem of
dynamic process without worrying where the vortex centeithe effective Magnus force and the Hall effect in the JJA
(defined according to the aforementioned yutereally lo-  remains unresolved. It must not be a surprise since in the
cated. continuum limit the JJA model becomes Galilean invariant
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and “forgets” that originally it had been a lattice model on the vortex, one must consider the momentum balance for
without translational invariance. Meanwhile, the latter is cru-the whole system.
cial for the amplitude of the effective Magnus force. An Ao, Niu, and Thouless stated that the lordanskii force
additional physical principle beyond the continuum theorydid not appear in their Berry phase approach. Demircan, Ao,
should be involved to obtain the equation for the vortex ve-and Nit* tried to justify it by the analysis of the Born qua-
locity. This principle is provided by our symmetry analysis. siparticle scattering. They concluded that scattering did not
According to itq=0 and one should not include the Wess- produce a transverse force on a vortex. This conclusion was
Zumino term into the field Lagrangian. based on a wrong analysis of the Born phonon scattering
The presence of the external charge has no effect on oumissing the contribution from the Aharonov-Bohm interfer-
symmetry analysis. In order to take into account the externatnce. Thus the source of controversy is not in a difference of
charge, one should wuse the Gibbs potentialapproaches, butin the problem how to calculate integrals for
G=£-V®ZQy, wheref is given by Eq(92) andV®*isthe the Born phonon scattering.
electric potential which creates the external charge The Ao-Thouless theory rejects also any force on the vor-
Q¥*=V®3:Cyj, . Then introducing the charge deviation tex from the external fields, like the Kopnin-Kravtsov force

Q{ =Qi— Q% one returns back to the energywith QT, in a dirty superconductor. Using a similar approach based on

instead of Q;. These arguments show that the externalthe Berry phase Gaitan and Shefibgredicted the finite ef-

charge cannot lead to the Hall effect: its effect is restricted©Ctive Magnus force and the Hall effect for the Josephson-
with the shift of the Fermi level, but the particle-hole Sym_Junctlon array. This prediction contradicts to our symmetry

metry is restored with respect to the new Fermi level. How-"’m""lys‘IS and to the experiment. Gaitan and Shehaged in

; i lysis the Wess-Zumino term in the Lagrangian for
ever, the external electric charge may produce the Ma nu%le'r ana S .
g y b g e continuum limit of JJA. We have shown in Sec. V why

force in the quantum theory of JJA which takes into accoun{ ) . :
his approach is not reliable.

the electron charge quantizatiéhThen the Magnus force Makhlin and Volovik® suggested that the superfluid Mag-

and the Hall conductivity are periodic in the electron charge. . .
y P g nus force in JJA is nearly compensated by the force from the

bound states in the junctionghe spectral flow of bound
VI. SUMMARY AND DISCUSSION state$. But they did not conclude that the compensation is
We have shown how the Magnus force appears in th omplete, and assumed the Fermi superfluid in islands and
he superconductor—normal-metal—superconductor Joseph-

equation of motion for a superfluid componéditie super- ncti 0 vsis sh that the M ¢
fluid Magnus forcg and the equation of motion for a vortex son junctions. Lur analysis shows that the Magnus ferce
actly vanishes in the classical limit of the usual JJA model

(the effective Magnus forgeWhereas the superfluid Magnus .

force proportional to the superfluid density is known exactly!ndependently on microscopic nature of the superconducting

(from classical hydrodynamics, or from the Berry phase ap_lslands and the junctions. This shows that the bound states

proach, there is no general expression for the effective Mag-and the spectral flow are not the only explanation for com-

nus force: it depends on interaction of the vortex with qua_pensatlon of the Magnus force in the systems without Gal-
siparticles and with the external fields, like those from
impurities in a dirty superconductor. Meanwhile, it is mostly
the effective Magnus force which determines the observable ACKNOWLEDGMENTS
effects: the mutual friction in superfluids, the Hall effect and appreciate very much discussions with A. F. Andreev,
the acoustic Faraday effect in superconductors, vortex quars Blatter, U. Eckern, V. B. Geshkenbein, B. Horovitz, N. B.
tum tunnelling. o o Kopnin, L. P. Pitaevskii, G. S¢m A. L. Shelankov, S. R.
We have presented the contribution of quasiparticles tOShenoy, M. Stone, A. van Otterlo, W. F. Vinen, and G. E.
the effective Magnus force for phonons in a superfluid andg|ovik. Interesting discussions with D. J. Thouless and P.
for BCS quasiparticles in a superconductor using the Bormg were very useful for better understanding of their point of

approximation. The transverse force from quasiparticles oRiew on the problem. The work was partially supported by
the vortex(the lordanskii forcgoriginates from interference he Russian Fund of Basic Researcl{@ant No. 96-02-

between quasiparticles passing on different sides of the VO§943-3. | am thankful to Low Temperature Laboratory of

tex (the Aharonov-Bohm effegt o the Helsinki University of Technology for hospitality and
Our symmetry analysis of the Josephson junction araynnort of this work.

has demonstrated that the effective Magnus force exactly

vanishes in the c.:lassmal'll'mlt which means that there is N0y pENDIX A THE FORCE ON THE LINE SCATTERING

Hall effect despite the finite superfluid density. One may THE SOUND WAVE

formally interpret this result that the force from external

fields breaking Galilean invariance exactly compensates the First we derive the analogue of the optical theorem for the

superfluid Magnus force, though the analysis is not able t@ound wave. For the latter we use the asymptotic represen-

reveal these two forces separately. tation, Eq.(49), in which the scattering amplituda(¢) is
The Ao-Thouless approach yields only the superfluidnot necessarily obtained in the Born approximation. But in

Magnus force which appears in the momentum balance afenerala(¢) should satisfy the condition that the total mass

the superfluid componerithe condensajelndeed, Gaitaft  flow through the cylindrical surface surrounding the scatter-

derived the Ao-Thouless result for a charged superfluid, anang line vanishes.

lyzing the momentum balance for the condensate. In order to  An asymptotic expression for the average mass flow from

derive the effective Magnus fordghe total transverse force the sound wave is

ilean invariance.
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- - 2K 2
PP (pwyd )= podi 2 [k+ e k) [[lm{a}coskr—k )+ Re{a}sin(kr — k- r>]] (A1)

The condition that the total flow through the cylindrical surface around the scattering line vanishes is

. - S la(e)|>  Im{a(e)}
Jliphdszf<P(1)U(1)i>dszpo¢(2)mf[COSP"' . N (1+cosp)cogkr(1—cosp)] de. (A2)

The integral over the termIim{a(¢)} expands only over the region of small angles sikce 1. Finally this condition yields

—2\/m/kim{a(0)}+ f la(¢)|2de=0. (A3)

Next let us consider the momentum balance which determines the force on the scattering line from the sound wave
FP'=— [dSTIE" where

C_2<P(21)>_ <U(21)>
Po 2 Po 2

The pressure term vanishes after averaging, but the convection term is essential and yields for the force on the vortex

ph_

8ij+ pol(v(1)i(v(1));)- (A4)

R k(). la(e)* . Im{a(e)} ..
pho _, 525 "° _ - _ r
F p0¢08ﬂ_2f{kCO&p+ 2 kr G cogkr(1l—cosp)] k+kr rde
k(|- la( )|2 . Im{a(O)} 1 R
o2 L4
~ p0¢087rzf {k Cosp+ ; N quo 2k rdg

2
fla(zp)l krde—2/m/kim{a(0)}K|. -~

With help of the optical theorem E@A3) one obtains the expression E§2) with the effective cross sections determined by
Egs.(53) and(54).

=~ Po 08

APPENDIX B: SMALL-ANGLE SCATTERED SOUND WAVE

Using the asymptotics of the Hankel function, E45) can be rewritten as

K- [z><r1]

b= d)oexp(—lwt)[expmk r +—\/|/2 fdzrlexp(lk rl+|k|r r1|) . (B1)

Here the effect of the vortex-line motion was neglected as irrelevant for small-angle scattering. Expan<sié®) Bqnot
accurate enough and next terms of the expansion must be kept:

- - (ryr) i (ryn)?
|r—r1|~r—T+E—?. (BZ)

The terms of the second order i are important since the perturbation is not well localized near the vortex line, but

decreasing slowly when; is increasing. Using the Cartesian coordinates of the position vegtgry) and the inequality
¢<<1, one obtains

2
¢:¢Oexq—iwt)[exp(i|Z-F)+ %\/iIZWrJ fdx dyexp[ik

The double integral in this expression may be transformed into the error integral:

= (" . yiaAl v T e*\] [~ y ik )
f_mdxf_xdy exp{lk(r—ycerE m—ex+kr(1—7”]_mdywmex%5(rgp—y)

2
_ m/zmr/kexp[ikr( 1- %) }(D((px/krIZi).

2
y
r—ygo+E

Xty B3)

Then Eq.(B3) coincides with Eq(57).
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