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Growth of ordered domains in a highly anisotropic two-dimensional system
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We introduce and study a lattice-gas model characterized by a strong anisotropy of the atomic mobility in
different directions. The kinetics of the model is investigated by two methods, Monte Carlo simulation of the
lattice-gas model and numerical solution of mean-field kinetic equations. The growth kinetics of the
p(232! rarefied ordered structure at low temperature is shown to exhibit a hierarchy of growth rates owing to
different evolution of the components of thep(232! phase order parameter. The rate of growth increases when
the concentration is decreased below the stoichiometric value. Specific kinetics of the jump-anisotropic model
and the effective repulsion between ordered domains result in an unusual evolution of the concentration
gradient versus time. The model is applied to describe peculiar experimental results on surface diffusion of Li
atoms adsorbed on furrowed single-crystal-plane Mo~112!. @S0163-1829~97!04707-3#
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I. INTRODUCTION

The growth of ordered domains in a system exhibiting
phase transition at a temperatureTc for the case of rapid
quench fromT.Tc to T,Tc , is a very interesting problem
~see Ref. 1 and references therein!. Late-stage growth kinet
ics was found to exhibit self-similar temporal behavior a
universality.1 That is, it is expected that the system has
single characteristic lengthR(t) associated with the averag
domain or island size, which grows asymptotically with tim
according to a power law

R~ t !}tz,t→`, ~1!

wherez is thegrowth exponent. The pair-correlation function
C(r ,t)5^f(r ,t)f(0,t)& of the order parameterf(r ,t) and
the structure factorS(k,t) @S(k,t) is the Fourier transform o
C(r ,t)# have to follow the scaling forms
C(r ,t)5 f „r /R(t)…, S(k,t)5Rd(t)g„kR(t)…, whered is the
spatial dimensionality of the system, andf andg are univer-
sal scaling functions.

The value of the growth exponentz depends, in particular
on the existence of the conservation law for the order par
eterf. That is, for the case of a nonconserved order par
eter, the growth is governed by the curvature-driven mot
of walls between ordered domains, which leads to
Lifshitz-Allen-Cahn~Refs. 2 and 3! growth lawR(t)}t1/2 at
t→`. When the order parameter is conserved, it is assu
that the basic mechanism for growth is the long-range di
sion of the order parameter through ordered regions from
interfaces characterized by a higher curvature to those w
lower curvature. Such a mechanism impedes the growth
nificantly, and results in the Lifshitz-Slyozov~Refs. 4 and 5!
growth law R(t)}t1/3. For the simplest case of ascalar
550163-1829/97/55~7!/4797~14!/$10.00
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order parameterf these statements have been extensiv
checked by numerical solution of mean-field kinetic equ
tions for the order parameter,1,6 and by Monte Carlo simula-
tion of various Ising-like~lattice-gas! models with nearest-
neighbor~NN! interatomic interactions.1,5,7

In real physical systems the interatomic interaction is
reduced to the interaction of NN’s only. In particular,
submonolayer adsorbed films the interaction may be an
tropic, and it may oscillate with interatomic distance.8 Sys-
tems with competing interactions usually have a number
different stable and metastable phases. In addition, the
dered structure may bep-fold degenerated withp.2. For
example, the O-W~110! adsystem, which can be describe
by the lattice-gas model with repulsion of the NN’s and ne
NN’s, has a fourfold-degeneratedp(231!-ordered phase.9

Such systems are described by avectororder parameter. Fo
instance, the order parameterfW of thep(231) structure has
two componentsfW [(f1 ,f2), which may be chosen as lin
ear combinations of sublattice concentrations.9 This order
parameter is not conserved during system evolution. T
conservation of the total concentration, nevertheless,
pedes the growth as was shown by Sadiq and Binder,9 who
foundz'1/2 for nonconserved concentration, andz'1/3 for
the conserved concentration case. This slowing down of
growth may be attributed to an excess of atomic den
contained in the walls between the domains,9 that may be
important for the systems withp>3.

Further complication arises for tricritical systems, whe
an ordered structure may coexist with another phase of
ferent density~for instance, with the disordered lattice-ga
phase!. Conserved concentration in such a system was sh
to impede the system dynamics and lead to the Lifsh
Slyozov growth law for the nonconserved parameter of
ordered phase.10
4797 © 1997 The American Physical Society
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Another important generalization of the lattice-gas mo
involves the system anisotropy. The anisotropy of int
atomic interaction results in the anisotropy of shape of gro
ing domains as was shown by Ala-Nissila¨ Gunton, and
Kaski.11 Poulsenet al.12 studied ordering dynamics in th
locally anisotropic two-dimensional lattice-gas modelintro-
duced by Wille, Bevera, and de Fontaine,13 to describe
ordering processes in high-Tc superconductor
YBa2Cu3O72d . It was found12 that, in this model, where
anisotropy of energetic parameters leads to quasi-o
dimensional effects in the ordering dynamics, two oxyg
structures, the so-called ortho-I and ortho-II phases, o
growth laws with different exponentsz5 1

2 and z5 1
3 corre-

spondingly, in spite of the fact that both phases are cha
terized by the nonconserved order parameters. The slow
down of the ortho-II phase dynamics was explained12 simi-
larly to the Sadiq-Binder arguments mentioned above. T
is, the excess or deficit of local oxygen density in dom
walls result in long-range diffusion in the ordering proce
and hence leads to the Lifshits-Slyozov growth law.

However, anisotropic systems may be characterized
only by the interaction anisotropy, but also by the anisotro
of probabilities of atomic jumps in different directions. Su
a jump anisotropy does not modify the phase diagram of
system, but it might drastically modify the kinetics of
phase transition for the complicated lattice-gas model, wh
the ordered phase corresponds to a degenerated rar
structure.The aim of the present work is to study the effec
jump anisotropy on the growth of a rarefied phase.We in-
vestigate the extreme case of the jump-anisotropic mo
namely, the model where atomic jumps are allowed in
single direction only. One-dimensional mobility of atom
was found to exist in submonolayer films adsorbed on f
rowed crystal surfaces such as the~112! surface of the
fcc crystal or the~110! surface of the bcc crystal.8,14We use
two basic approaches to investigate the model kinet
Monte Carlo simulation~a part of these results has been pu
lished in Ref. 15! and a numerical solution of kinetic equa
tions of the corresponding mean-field model. We show t
growth kinetics of a rarefied ordered structure, as well as
evolution of an initial concentration gradient in the model
anisotropic jumps differ drastically from the case of t
analogous but jump-isotropic model.

The paper is organized as follows. The model is descri
in Sec. II. We discuss the phenomenological approach to
problem in Sec. III. The temporal evolution of the homog
neous initial state is studied in Sec. IV: in Sec. IV A w
briefly illustrate the behavior of the jump isotropic variant
the model, and the simulation results for the stoichiome
coverage in the jump anisotropic model are presented in
IV B. The dependence of the growth rate on the atomic c
centration is investigated in Sec. IV C. Section V is devo
to the system evolution in the case of nonhomogeneous
tial state. Finally, Sec. VI concludes the paper with a disc
sion of a possible manifestation of the observed peculiar
havior of the jump-anisotropic model in surface diffusion
a macroscopic scale.

II. MODEL

We study a two-dimensional~2D! square lattice-gas
model with a fixed atomic concentration characterized by
l
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coverageu5N/M, whereN is the number of atoms an
M is the number of lattice sites. To obtain a rarefied orde
structure, we take into account the atomic interactions up
third neighbors with the energies«1 ,«2, and«3 for the near-
est, next-nearest, and third neighbors, respectively, and
sume arepulsionof nearest and next-nearest neighbors a
an attraction of third neighbors. For this choice of interac
tions the low-coverage ordered phase foru< 1

4 corresponds
to the fourfold-degeneratedp(232! structure, and with de-
creasing temperature the system exhibits a first-order ph
transition to this phase. At higher coverages,1

4,u, 1
2 ~recall

that the model has the atom-vacancy symmetry owing
pairwise character of interactions!, the ordered phase ha
p(231! or c(232! structure depending on the ratio of e
ergies«1 and«2. In the present work, however, we restri
our analysis to the low-coverage regionu< 1

4 only.
For thep(232! structure one may introduce four subla

tices denoted asX1, X2, Y1, andY2 in Fig. 1. The structures
X1 andX2 ~as well asY1 andY2) can be transformed into
each other by a translation for one lattice constant in thx
direction. The transformationsX1↔Y1 andX2↔Y2 need a
translation along they direction. The main aspect of the
model under consideration is that the atoms are allowed
jump for one lattice constant in the x direction only. As a
result,X1 domains can be transformed intoX2 domains~the
same is valid for theY1↔Y2 transformations!, but the trans-
formation ofX-type domains intoY-type ones is forbidden
Thus the four types of domains are split into two groupsX
andY.

In order to reduce the number of model parameters an
emphasize the role of jump anisotropy, we assume be
that interatomic interactions are isotropic and, moreover,
take«15«252«351 for the sake of concreteness.

In the present work we utilize two approaches for t
investigation of model kinetics. The first one is based
Monte Carlo ~MC! simulation of the lattice-gas mode
where the system is characterized by the discrete lattice v
able C(rW) @rW5(x,y), x51, . . . ,Xmax, y51, . . . ,Ymax,
XmaxYmax5M#, which takes two values,C(rW)50 for an
empty site andC(rW)51 if the site is occupied. The system
then allowed to evolve, starting from an initial disorder
state, according to the standard Metropolis algorithm w

FIG. 1. Four translational types of thep(232! domains in the
model under study. The direction of atomic jumpsx for the jump-
anisotropic case is indicated with arrows.
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periodic boundary conditions. Time in this case is measu
in MC steps per atom.

The second approach is based on the mean-field~MF!
analog of the 2D lattice-gas model, where instead of
discrete variableC(rW) we use the continuous ‘‘concentra
tion’’ c(rW) @0<c(rW)<1# which may be treated as the occ
pation probability of an atom at the siterW. Such a model was
used previously by Chen and Khachaturian16 to study kinet-
ics of phase transformation in intermetallics. The kinetics
this model is determined by the ‘‘diffusion’’ of the variabl
c(rW), and the evolution equation takes the Cahn-Hillia
form1

ċ5¹L¹
dF@c#

dc
, ~2!

where L is the ‘‘mobility’’ ~in the general case it is
d-dimensional tensor!. The mobility tensor has to be chose
according to the microscopic properties of the model. W
have Lxy5Lyx50 for symmetry reasons because diago
jumps are not allowed. For the diagonal elements of the m
bility tensor we tookLxx5Lyy ~chosen equal to 1, which
defines a time scale! for the model of isotropic jumps an
Lxx51, Lyy50 when only jumps in thex direction are al-
lowed.

Equation ~2! can be deduced from Fick’s law
j52L¹m, wherem5dF/dc is the chemical potential, com
bined with the continuity equationċ1¹ j50. Free energy
functional in the MF approximation takes the followin
form:

F@c#5
1

2(
rW,r 8W

«~rW2r 8W !c~rW !c~r 8W !1T(
r 8W

@c~r 8W !lnc~r 8W !

1„12c~r 8W !…ln„12c~r 8W !…#, ~3!

where«(rW2r 8W ) is the interaction energy of atoms at the sit
rW andr 8W . The evolution equation~2! now can be rewritten as

]c~rW,t !

]t
5~Lxx¹x

21Lyy¹y
2!

3F(
r 8W

«~rW2r 8W !c~r 8W !1Tln
c~rW !

12c~rW !G . ~4!

To study the kinetics of the MF model, we solve Eq.~4!
numerically for periodic boundary conditions with the e
plicit Euler method starting from a disordered initial sta
c(rW,0)5u1dc(rW), where dc(rW) is a random perturbation
with the mean magnitude of 0.1u. We performed calcula-
tions for time up totmax5600 ~time in MF calculation is
measured in dimensionless units! and averaged over run
started with different initial disordered configurations. Noti
that the MF kinetics is completely deterministic; the te
perature variableT in Eq. ~3! determines the shape of th
free-energy surface, and the randomness is introduced b
initial configuration.

The structure of thep(232! phase can be described
the product of static concentration waves16 with wave vec-
d

e

f

e
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tors k1W52p( 12,0) andk18W52p(0,12) @the wave vector is de-

fined askW52p(x/Xmax,y/Ymax)#,

c~rW !5u@11fxcos~k1W rW !#@11fycos~k18W rW !#, ~5!

wherefx andfy are two components of the order parame
fW 5(fx ,fy), so that the completely ordered domains of t
X1, X2, Y1, and Y2 types of the p~232! phase have the
(fx ,fy) values equal to (1,1), (21,1), (1,21), and
(21,21), correspondingly. Substituting Eq.~5! into Eq.~3!,
we obtain the following expression for the free energy:

F~fx ,fy ;u,T!

5MH u2

2
@V~0!1fx

2V~k1W !1fy
2V~k18W !1~fxfy!

2

3V~k1W1k18W !#1
T

4
@s„u~11fx!~11fy!…

1s„u~11fx!~12fy!…1s„u~12fx!~11fy!…

1s„u~12fx!~12fy!…#J , ~6!

whereV(kW ) is the Fourier transform of the interaction ener
«(rW), and s(y)5yln(y)1(12y)ln(12y). For our choice of
the interactions («15«252«351) we have V(0)54,
V(k1W )5V(k18W )528, and V(k1W1k18W )524. BecauseV(kW )

reaches its minima at the pointsk1W , k18W , andk2W5k1W1k18W , the
p~232! structure provides the absolute minimum of the fr
energy of the system at coveragesu< 1

4. The equation for the
curve which defines the order-disorder transition can ea
be obtained from Eq.~6! by zeroing the second derivative o
F(fx ,fy) overfx andfy at the pointfW 5(0,0). The result
is

Tc5uV~k1W !uu~12u!58u~12u!. ~7!

Thus, for the coverages of interest in the present work,
haveTc51.5 for u50.250 andTc50.875 foru50.125.

Considering the system defined above at a scale of
p~232! unit cell, it is suitable to introduce the order param
eterfW (rW)5(fx ,fy) in terms of partial concentrations at th
sitesX1, X2, Y1, andY2 as

fx5cX12cX21cY12cY2,

fy5cX11cX22cY12cY2. ~8!

The characteristic length for the growth of domains is u
ally extracted from the analyses of the structure factor

S~kW ,t !5K UM21(
rW

@c~rW,t !2u#exp~ ikW•rW !U2L , ~9!

where^ & stands for the average over independent runs~en-
semble average!. However, for the highly anisotropic mode
that we consider here, it is important to study separately
characteristic lenghts for the two componentsfx(rW) and
fy(rW) of the order parameter. According to Eq.~8! we can
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calculatefx(rW) andfy(rW) at the scale of thep(232! unit
cell, i.e., in a coarse-grained lattice which has half the ini
number of cells in each direction. Then we calculate
correlation functionCf(rW,t)5^f(rW,t)f(0,t)& and its Fou-
rier transformSf(kW ,t) for fx(rW) andfy(rW) separately. These
quantities are then used to determine the character
lengths of interest as explained below for the jump-isotro
case~Sec. IV A! and the anisotropic case~Sec. IVB3!.

III. PHENOMENOLOGICAL APPROACH

Before analyzing simulation results, let us briefly outli
the predictions expected from a phenomenological appro

In the model of isotropic jumps none of the compone
fx and fy of the p(232! phase order parameter is co
served@although the total concentrationc(rW) is conserved#.
All types of boundaries between differentp(232! domains
can be shifted by a jump of a single atom for one latt
constant in any direction. The motion of such walls is to
purely curvature driven, and the growth kinetics at late tim
should follow the ‘‘fast’’ Lifshitz-Allen-Cahn growth law
R(t)}t1/2.

By contrast, the model of anisotropic jumps puts an ad
tional constraint on the componentfy of the order param-
eter. Indeed, because transitions betweenX andY sublattices
are forbidden,fy must be conserved during system evo
tion, while fx is still a nonconserved quantity. Therefor
one may expect that time evolution of thefy component will
be significantly slower than that of thefx component.

The model of anisotropic jumps has two different types
domain walls~DW’s!. The first type is theX1uX2 or Y1uY2
wall which corresponds to the change of the ‘‘fast’’ comp
nentfx from 11 to 21. Such a wall can be shifted by
jump of a single atom for one lattice constant in thex direc-
tion. The dynamics of these walls has to be described by
‘‘fast’’ growth law R(t)}t1/2, similarly to the jump-isotropic
model. The second type of DW is theXuY wall, which sepa-
rates domains with opposite values of the ‘‘slow’’ comp
nentfy of order parameter. In the jump-anisotropic mod
theXuY wall cannot be shifted by an ordinary mechanism
a single-atomic jump. To shift theXuY wall, an atom of, say,
theX domain must cross the area occupied by theY domain,
and then join any otherX domain. Therefore, the growt
mechanism necessarily involves long-range diffusion proc
through the body of the ordered phase. This has to lead
strong slowing down of the growth, and the ‘‘slow’’ Lifshits
Slyozov growth lawR(t)}t1/3 is expected to apply a
t→`.17

Thus, the jump-anisotropic model is characterized b
hierarchy of growth rates due to different evolution of tw
components of the vector order parameter of the rarefiedp~2
32! phase.

In addition, the dependence of the growth rate of the
dered phase on the atomic concentration has to be diffe
for isotropic and anisotropic models. First, let us consider
model of isotropic jumps. For a concentration below the s
ichiometric valueus5

1
4, the domains of thep(232! struc-

ture coexist with the lattice-gas phase. At early stages
evolution thep(232! domains grow independently from
each other, taking atoms from a surrounding ‘‘gas’’ pha
l
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Therefore, their growth should follow the ‘‘fast’’ lawR(t)
}t1/2 up to some transient timetc , and only at later times
t.tc the ‘‘gas’’ phase becomes exhausted and the sys
passes to the coarsening stage. At this late stage the gr
proceeds by the exchange of atoms betweenp(232! islands
through the lattice-gas phase and, therefore, time evolu
has to follow the ‘‘slow’’ Lifshits-Slyozov growth law
R(t)}t1/3. The crossover timetc which separates the ‘‘fast’’
and ‘‘slow’’ growth kinetics, has to depend on the atom
concentration; that is, it has to vanish at low coverages,
has to be infinite for the stoichiometric concentrationus .
Therefore, in the jump-isotropic model the most effecti
growth should be achieved at the stoichiometric concen
tion. The MC simulation data15 are in agreement with this
statement.

The behavior of the jump-anisotropic model, howev
has to be more involved. Indeed, for the jump-anisotro
model at smallu, u!us , the growing islands are situated fa
from one another, and grow by an exchange of ato
through the lattice gas. Therefore we may expect that
model of anisotropic jumps will behave similarly to the is
tropic model, i.e., the growth rate will increase with covera
at u!us . On the other hand, at higher coveragesu;us ,
neighboring islands which belong to the different typesX
andY start to overlap. The overlapping should decrease
growth rate, because the diffusion of atoms from theX island
to another closestX island will proceed now not through th
‘‘gas’’ phase, but over a neighboring domain of the ‘‘alien
Y-type structure. Therefore the diffusing atom has to ov
come an additional energetic barrier when entering
‘‘alien’’ domain, and also the atomic diffusion within th
alien structure should be much slower. For example, in
model under investigation the barrier for penetration is ab
2«, and the difference of activation energies for the atom
jump in the lattice gas and in the alien structure is about a
2«, so the diffusion is slower by a factor of exp(22«/T).
This impedes the growth rate at low temperatures sign
cantly. Thus there is a concentrationu* such that the growth
rate increases withu at u,u* but it decreases in the interva
u*,u,us , so that the growth rate has to have a maximu
at u;u* . Since the valueu* corresponds to the situatio
when islands start to overlap for the first time,u* is to be
coupled with the percolation threshold~which is about 0.5
for square lattices!, and we obtainu*'0.5us50.125. The
data of MC simulation15 showed that the effective growt
rate of thep(232! domains does exhibit a maximum a
u* .

In the remainder of the paper we will combine the M
results with those for the MF model to test these predictio
The MF model provides a good qualitative picture for t
growth mechanisms and exhibits well-defined DW’s. T
MC technique provides a more reliable quantitative desc
tion, and it can be applied at much lower temperatur
which are of prime interest in the present work.

IV. GROWTH KINETICS
FOR A HOMOGENEOUS SYSTEM

A. Jump-isotropic model

Let us briefly illustrate here the behavior of the jum
isotropic model at the stoichiometricus50.250 and half-
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stoichiometricu50.125 concentrations in order to compa
it later with the behavior of the jump-anisotropic model. W
made series of 100 MC runs for a 1283128 lattice at low
temperatureT50.33 ~chosen as in Ref. 15!. To determine
the characteristic lengthR(t) of the isotropic model, we use
the following procedure. First, we calculated the struct
factorsSfx

(kW ,t) andSfy
(kW ,t) separately for both order pa

rameter componentsfx andfy . Since we found no differ-
ence in their shapes and evolution, we calculatedSf(k,t) as
the average ofSfx

(kW ,t) andSfy
(kW ,t) overfx andfy , and

also over thex andy directions. Then we calculated the fir
momentk^1& of the averaged structure factorSf(k,t), and
determined the characteristic lengthR(t) as R52p/k^1&.
Note that the values ofR(t) obtained in this way, coincide
quite well with domain sizes seen in typical pattern pictu
~see also the discussion of this question for the jum
anisotropic model below in Sec. IV B 3!.

The log-log plots ofR(t) dependencies are shown in Fi
2 @here and below, in all the figures with growth laws w
consider only values ofR(t) which do not exceed one-thir
of the lattice size in order to avoid finite-size effects#. The
slope of R(t) at us50.250 ~Fig. 2, filled triangles! is
z'0.38, and it is practically independent of time. By co
trast, at a half-stoichiometric coverageu50.125 ~Fig. 2,
filled squares! R(t) tends to grow with the same expone
z'0.38 at early timest,tc;10 Monte Carlo steps atom
while at later times the slope ofR(t) decreases, and growt
proceeds further with a lower exponentz'0.23. The mea-
sured growth exponents are noticeably lower than the va
z5 1

2 expected for the stoichiometric coverage, as well as
valuez5 1

3 expected for late timest.tc in the nonstoichio-
metric coverage case. This points out a limitation of the
merical method to calculate exponents in a growth law. A
curate calculation of growth exponents in the asympto
regime requires very long times and large systems. Howe
higher temperatures allow us to reach the asymptotic reg
faster. the The simulation data for the temperatureT50.77

FIG. 2. Growth lawsR(t) for the model of isotropic jumps a
u50.250 ~filled triangles! and u50.125 ~filled squares! at
T50.33. TheR(t) dependence forT50.77 atu50.250 is shown
by open triangles.
e

s
-

e
e

-
-
c
r,
e

and the concentrationus50.250, which are plotted in Fig. 2
by open triangles, show that the asymptotic growth w
z' 1

2 exponent is indeed achieved in the simulation. The c
responding finite time growth exponentzeff ~see Sec. IV B 4
below for details ofzeff determination! is shown in Fig. 3~a!.
The structure factorSf(kW ,t) as well as the correlation func
tionCf(rW,t) in the jump-isotropic model exhibit scaling, an
have the shape typical of the case of a nonconserved o
parameter@see in Fig. 3~b!#.

Thus in the model of isotropic jumps the growth at ha
stoichiometric coverage is much slower than at stoich
metric one. As we will see below, the behavior of the jum
anisotropic model is totally the opposite.

B. Jump-anisotropic model at stoichiometric concentration

We made a series of runs for the 1283128 lattice with
both MC and MF techniques at the stoichiometric covera
u50.250 and different temperatures. The results are the
lowing.

1. Sequence of phase transformations in the MF model

First let us describe the sequence of phase transforma
in the MF variant of the jump-anisotropic model at tempe
tureT50.77 which is below the critical temperature for bo
coveragesu50.250 andu50.125 studied in the presen
work. Starting from t'0.3 we can observe a clear-cu
p~231! modulation ofc(rW) with 0,c(rW),0.5 @Fig. 4~a!#.
The p(231! modulation is oriented perpendicularly to th
direction of atomic jumps, so that the peak of the struct
factor S(kW ) shows up atk1W52p( 12,0). Two translational
types of thep(231! regions are modulated in antiphase, a
correspond to the opposite values of the ‘‘fast’’ compone
fx of the order parameter. During this early stage the sys
was observed to be homogeneous at the scale of~232! cell,
and thefx561 domains are characterized by an isotrop
shape. To describe an average size of these domains w
troduce a ‘‘fast’’ characteristic lengthR̃(t).

At a time t'4 the system starts to decompose into co
paratively large@several~232! cells in size# regions with
reduced and increased local coverage. Simultaneously
formation of thep(232! structure is observed, manifestin
itself in the development of a peak of the structure factor~9!

near k18W52p(0,12). The largep(231!-modulated domains
formed at early stage, are decomposed att'4 into a con-

FIG. 3. Jump-isotropic model atu50.250 andT50.77: ~a! fi-
nite time growth exponent vszeff 1/R; ~b! scaling of the normalized
pair-correlation functionC(r ,t)5Cf(r ,t)/Cf(0,t) for 3,t,300
MCS/atom.
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FIG. 4. Pattern evolution for the MF model of anisotropic jumps at stoichiometric coverageu50.250 andT50.77. Dark lattice sites

correspond toc(rW)50, bright ones correspond toc(rW)51, and the grey scale describes intermediate occupation numbers. In the sna
at t513 and 130, in order to distinguish theX andY domains, the brightness of the~say! X sites is artificially reduced by a factor of 2
Length scalesR̃ andRx are indicated with arrows.
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figuration consisting of narrow alternating stripes withX1
andY1 ~or X2 andY2) types of thep~232! structure, the
stripes being oriented perpendicularly to the direction
atomic jumps@see Figs. 4~b! and~c!#. It is natural to associ-
ate the widthRx of these alternating stripes with the ‘‘slow
characteristic length scale of the jump-anisotropic mod
connected with evolution of the ‘‘slow’’ order paramet
componentfy . Note that att'30 the system again become
almost homogeneous at the scale of the~232! cell.

Thus the typical pattern at a late stage of evolution of
jump-anisotropic MF model consists of large shape-isotro
domains of sizeR̃ which are characterized by a consta
value of the ‘‘fast’’ order parameter componentfx . These
areas in turn are constructed of narrowX andY alternating
stripes of widthRx with opposite values of the ‘‘slow’’ order
parameter componentfy . Notice that such a configuratio
has predominantly domain walls of theXuY type.

2. Structure of domain walls

Let us dwell on the ‘‘thin’’ structure of theXuY domain
walls in a more detail, because their motion determines l
stage kinetics of the model. Within a givenfx5const do-
main theXuY domain wall must be continuous owing t
topological constraint; it may be broken at theX1uX2 ~or
Y1uY2) boundary only. Therefore, all possible structural d
fects of the network ofXuY domain walls are reduced t
dislocations which we callloops. A loop may either be
closed or it may have two free ends at theX1uX2 ~or
Y1uY2), wall as is shown schematically in Fig. 5~a!. The
loops are the main objects that move at late stages of ev
tion of the jump-anisotropic model, because they have
largest curvature of DW’s. The remainder of theXuY domain
wall network is characterized by an almost zero curvat
and therefore cannot move.

The growth of theRx size of the stripelike structure pro
ceeds according to the following mechanism: when a lo
collapses~annihilates!, the width of the current stripe in
creases with a factor of 3. Since the growth mechanism
f
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e
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volves a long-range atomic diffusion through domains
alien structure, we may expect that the Lifshitz-Slyoz
growth law will operate forRx at t→`. Simulation results
indicate, however, that at finite times the growth procee
with much lower effective exponent, as will be discussed
detail below in Sec. IV B 4.

Because loops play the main role in the growth proces
is important to consider possible sources of their formati
First, some loops exist from the very beginning of the ev
lution owing to the randomness of the initial configuratio
Second, loops may emerge at ‘‘fast’’X1uX2 ~or Y1uY2)
boundaries which still exist even at late stages of evoluti
However, at late times the fraction of ‘‘fast’’ boundaries b
comes negligible compared with the fraction of ‘‘slow
XuY DW’s, becauseRx /R̃}t1/3/t1/25t21/6→0 when t→`.
Third, a loop may emerge inside the stripelike area, as sh
schematically in Fig. 5~b!. When two neighboringXuY and
YuX domain walls meet each other at some point owing t

FIG. 5. ~a! Sketch of theXuY domain walls structure in the
model of anisotropic jumps. Main directions of loops motion a
indicated by arrows.~b! Sketch of the creation of another pair o
loops.
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large thermal fluctuation, they annihilate in the meeting a
thus producing a pair of loops. The subsequent motion
disappearance of the newly produced loops result in an
crease ofRx . To estimate a rate of loop creation, note th
the formation of a pair of loops from the initially linear DW
structure increases the total length of DW’s by a value
orderRx @see Fig. 5~b!#. Therefore, the creation of a loo
pair costs an energy ofSRx , whereS;u«3u is the DW en-
ergy per unit length. The probability of the loop-pair creati
is thus exp(2SRx /T), and the average timet between these
events ist;exp(SRx /T). Inverting this expression, we ob
tain that this mechanism leads to the slow logarithmic
crease ofRx asRx;(T/S)lnt.

A careful examination of typical patterns@as in Fig. 4~c!#
shows that aXuY domain wall in average has a small defic
of atomic concentration comparing with the stoichiomet
p(232! coverage. As a result, the concentration profile
thex direction is slightly modulated with the periodRx . This
concentration deficit may be explained in the following wa
The energy ofXuY domain wall with a width>2 ~recall that
the lattice constant is taken as the unity of length! is equal to
u«3u/2, while a narrower wall of the width of one lattic
constant has a higher energy of«21u«3u/2. Therefore, fluc-
tuations of the DW width to higher values will be mo
probable than to smaller ones, and on average the DW w
will be larger than two lattice constants.

3. Structure factor and length scales
of the jump-anisotropic model

The structure factor~9! for the model of anisotropic
jumps att5130 @this time corresponds to the lattice patte
shown in Fig. 4~c!#, averaged over ten independent runs,
shown in Fig. 6. One can see the difference in the shap
peaks aroundk1W52p( 12,0) and k18W52p(0,12). The peak at

k1W , which is associated with thefx component of the orde
parameter, reaches its maximum exactly at the pointk1W , as it
is typical for the nonconserved order parameter. By contr

FIG. 6. Averaged structure factorS(kW ) in the MF model of
anisotropic jumps att5130 andT50.77.
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the peak aroundk18W52p(0,12), which corresponds to thefy

component, splits into two subpeaks, and it has a zero in

sity at the reference pointk18W52p(0,12). The shape of this
peak in thex direction looks similar to the typical shape o
the structure factor in the case of a conserved order par
eter.

As was shown above in Sec. IV B 1, the study of tempo
evolution leads us to introduce at least two characteri
length scales for the model of anisotropic jumps. First, t
model exhibits the ‘‘fast’’ lengthR̃, associated with the iso
tropic evolution of the nonconserved componentfx of the
order parameter. Second, there exist the ‘‘slow’’ length sc
introduced as the widthRx of the alternatingX andY stripes.
This length scale is coupled to the evolution of the conser
componentfy . In addition, since the shape of the stripelik
domains withfy5const is strongly anisotropic, one has
consider their sizeRy separately along they direction ~i.e.,
perpendicularly to the direction of atomic jumps!. Notice that
on the basis of our data we cannot give a clear ans
whetherRy size evolves independently onRx , or whether
their evolution is coupled, and proceed with the same gro
exponentz ~although there are some reasons to believe
Ry}Rx ; see Sec. IV B 4 below!.

To extract all these quantities from the simulation da
we used the following procedure. First, for each run we c
culated the structure factorsSfx

(kW ,t) andSfy
(kW ,t) separately

for fx andfy , as was described in Sec. II. Then we ave
aged the structure factorsSfx

andSfy
over independent runs

The functionsSfx
(kW ) and Sfy

(kW ) look just like the peaks

around k1W52p( 12,0) and k18W52p(0,12) of the ‘‘concentra-
tion’’ structure factor~9!, respectively~see Fig. 6!. Although
‘‘order-parameter’’ structure factorsSfx

(kW ) andSfy
(kW ) dif-

fer qualitatively by their shapes~thus reflecting different
conservation conditions operating for the correspond
order-parameter components!, in order to extract and com
pare different length scalesR̃, Rx , andRy ~as well asR for
the jump-isotropic model!, we have to elaborate a uniqu
procedure for their calculation. This precludes a fitting by
given function as no predetermined shape would be suita
for all the curves to fit. Instead we have chosen a simple
reliable and commonly used probe: the calculation of the fi
moment of the structure factor in a given direction. To e
tract the ‘‘fast’’ length scaleR̃, we averaged the structur
factorSfx

(kW ) over thex andy directions, because its evolu
tion does not show any anisotropy. Then we calculated
first momentk^1& of the averaged structure factor, and o
tained R̃52p/k^1&. Analogously, theRx value was deter-
mined asRx52p/kx

^1& wherekx
^1& is the first moment of the

structure factorSfy
(kW ) along the x direction. In addition, we

determined the perpendicularRy size of thep(232! do-
mains asRy52p/ky

^1& whereky
^1& is the first moment of the

structure factorSfy
(kW ) along the y directionat k5kx

^1& It
should be noted that according to this procedure, ther
some subtle distinction in the interpretation ofR̃ and Rx ,
becauseR̃ is related to the ‘‘width’’ of corresponding peak
while Rx contains the information about the ‘‘split’’ of pea
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4804 55O. M. BRAUN, M. V. PALIY, AND M. PEYRARD
in the x direction, i.e., its displacement with respect
k18W52p(0,12). Nevertheless, we believe that all the extrac
length scales can be correctly compared, because they f
well coincide with real-space sizes estimated directly fr
the lattice patterns. This can be seen, for instance, by c
paring theR̃ andRx values from first moments of the corre
sponding structure factors~Fig. 7! with the similar quantities,
indicated with arrows in the snapshots~Fig. 4!.

4. Domain growth in the jump-anisotropic model

Time dependenciesR̃(t) and Rx(t) for u50.250, ex-
tracted from the series of ten MF runs for the 1283128
lattice atT50.77, are plotted in Fig. 7. One can see th
R̃(t) values are higher by an order of magnitude th
Rx(t). Note also thatR̃ is of the same order as the uniqu
characteristic scaleR of the jump-isotropic modelfor the
same temperature~shown with diamonds in Fig. 7!. How-
ever, it is too difficult to estimate the values of the grow
exponents from the dependencies shown in Fig. 7 beca
the time intervals are too small. In order to obtain mo
reliable quantitative data, we made 50 MC runs for the sa
model parameters as in the MF runs~i.e. for 1283128 lat-
tice,u50.250, andT50.77), and also 50 runs at much low
temperatureT50.33, used previously in Ref. 15. The tim
dependencies ofR̃ andRx for the MC simulation are plotted
in Fig. 8.

First, let us consider the data at higherT50.77~indicated
with open symbols on Fig. 8!. The values of the ‘‘fast’’
length scaleR̃ again generally resemble theR(t) dependence
for the model of isotropic jumps~Fig. 8, open diamonds!,
while the ‘‘slow’’ characteristic lengthRx has much lower
values. Also, in Fig. 8 we show with crosses theRy(t) de-
pendence for this temperature. The uprising slope of all th
curves indicate that thefinite timegrowth exponentzeff is
increasing with time. But, to find the universality class of t
system under study, we have to know the asympto
(t→`) growth exponentz. To do this, one can determine th
finite time exponentzeff using the formula

zeff5d„lnR~ t !…/d~ lnt !' log10@R~10t !/R~ t !#, ~10!

FIG. 7. Growth lawsR̃(t) ~circles! andRx(t) ~triangles! for the
MF anisotropic model atu50.250 andT50.77. TheR(t) depen-
dence for the model of isotropic jumps is shown by diamonds.
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and then extrapolatezeff(1/R) dependence to 1/R→0. Note
that, according to Ref. 5, the simplest finite time correctio
to the growth exponent lead to the linear depende
zeff5z2a/R. zeff(1/R) for R̃(t) at T50.77 is shown in Fig.
9~a!, and thezeff(1/R) dependencies forRy andRx are plot-
ted in Figs. 10~a! and 10~b!. Although our data are still very
noisy, the extrapolations to 1/R→0 of the late-time part of
the zeff(1/R) dependence shown in Fig. 9~a! is in agreement
with the Lifshitz-Allen-Cahn valuez5 1

2 for the ‘‘fast’’ char-
acteristic scaleR̃. It is seen also, that the ‘‘slow’’Ry(t)
dependence clearly exhibit the Lifshitz-Slyozov value of t
asymptotic growth exponentz5 1

3 @Fig. 10a!#. At the same
time one can observe@Fig. 10~b!#, that, for the ‘‘slow’’ Rx
size, the finite time growth exponentzeff(1/R) also tends to
z5 1

3 value at earlier times, while at later times the increa
of zeff with decreasing of 1/R is slower, so on the basis of ou
data for the asymptotic exponentz we cannot exclude a
slightly lowered value in the interval14,z, 1

3. In order to
check if this lowering of the growth exponent is not relat
to finite-size effects, we made also 50 runs for the 1

FIG. 8. Growth lawsR̃(t) ~circles! andRx(t) ~triangles! for the
MC simulation of jump-anisotropic model atu50.250. TheR(t)
dependencies for the jump-isotropic model atu50.250 from Fig. 2
are replotted with diamonds for comparison. Data forT50.77 with
open symbols, data forT50.33 are shown with filled symbols. Th
Ry(t) dependence atT50.77 is plotted with crosses.

FIG. 9. ‘‘Fast’’ length scaleR̃ in the jump-anisotropic model a
u50.250 andT50.77: ~a! finite time growth exponentzeff vs
1/R̃; ~b! scaling of the normalized pair correlation functio
C(r ,t)5Cfx

(r ,t)/Cfx
(0,t) for 3,t,700 MCS/atom.
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3256 and 128332 lattices, and found no difference fo
growth law Rx(t) in both these cases comparing with t
results for 1283128 lattice. In any case, we note that gen
ally these results are in quite good agreement with the
dictions of Sec. III.

The scaling behavior of the correlation functions of t
jump-anisotropic model is shown in Fig. 9~b! for Cfx

(rW,t)

~the correlation function of the ‘‘fast’’ componentfx), and
in Figs. 10~c! and 10~d! for Cfy

(rW,t) ~the correlation func-

tion of the ‘‘slow’’ componentfy of the order parameter!.
Now let us analyze the low temperature (T50.33) data

~Fig. 8, filled symbols!. The evolution of bothR̃(t) and
Rx(t) curves is much slower at this temperature. One can
that the slope ofR̃(t) is even decreasing with time att.10
MCS/atom.Rx(t) stays almost constant up tot'103 MCS/
atom, and only later it starts to grow in some power-la
fashion. Such a slow behavior can be explained, if one ta
into account that the typical diffusion rate for an atom
T50.33 is about 30 times lower than that atT50.77, so the
activated atomic jumps at low temperatureT50.33 can pro-
vide noticeable changes ofRx at much longer times only
Therefore, reliable determination of the asymptotic grow
exponents at this temperature cannot be done on the bas
our data. We can only conclude, that at low temperat
T50.33 there exist a strong difference in the growth rates
the ‘‘fast’’ R̃(t) and ‘‘slow’’ Rx(t) length scales.

5. Saturation effects in a finite-size system

The conclusions presented above are valid for an id
infinite system only, while a real physical system always h
a finite sizel . The characteristic lengthl is usually deter-
mined by an average distance between defects such as
instance, impurities and steps on crystal surfaces. In the c

FIG. 10. ‘‘Slow’’ length scalesRx(t) andRy(t) in the jump-
anisotropic model atu50.250 andT50.77. Finite time growth ex-
ponentzeff vs 1/R for Ry(t) ~a! andRx(t) ~b!. Scaling of the nor-
malized pair-correlation functionC(r ,t)5Cfy

(r ,t)/Cfy
(0,t) for

102,t,105 MCS/atom in they direction~c! and in thex direction
~d! ~the depth of the minimum increases with time!.
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sical jump-isotropic model the universal power-law grow
R(t)}tz is valid as long as a domain size does not exceed
size of the system, i.e. for timest,t* , where the ‘‘satura-
tion’’ time t* is determined by the relationR(t* ); l . At
later timest.t* the system reaches a glasslike state, wh
the ordering kinetics follows a logarithmic law,R(t)} lnt.18

The jump-anisotropic model should exhibit a similar beha
ior, but due to the hierarchy of growth rates, the saturat
effects become more complicated. In this section we st
the role of a finite size of the lattice.

As explained above in Sec. IV B 2, the power law for t
growth ofRx is valid as long as the loops exist in the syste
When the number of loops in the finite-size lattice is e
hausted, the power-law growth should stop. Thus the
model, where thermal fluctuations are absent and the o
source of loops is the initial random configuration, shou
exhibit a ‘‘saturation’’ timet* which has to depend on th
lattice size. In order to test this assumption, we studied
time evolution for lattices with different sizesYmax in the y
direction. That is, we performed a series of ten runs in
framework of the MF model for 1283128, 128364 and 128
332 lattices at the stoichiometric concentrationu50.250 at
temperatureT50.91, which is still below the critical tem
perature at this coverage. The results forRx(t) are presented
in Fig. 11. One can see thatRx(t) exhibits a saturation time
t* , above which the average domain sizeRx is practically
constant and equal to some valueRx* . Let us estimate the
relation betweenYmax andRx* The timet* at which all the
loops disappear within the finite areaXmaxYmax, can be de-
termined by the condition that the area occupied by
strongly anisotropic stripelikep(232! domain is of the same
order of magnitude as the area of the syste
XmaxYmax;Rx*Ry* . Assuming thatRy*}Rx* at late times, and
Xmax is kept fixed, we obtain,Rx*}AYmax, which is in agree-
ment with the data of Fig. 11.

Let us also briefly discuss the system evolution att.t* in
the presence of thermal noise. In this case theXuY DW’s
motion corresponds to its random walk, owing to therm
fluctuations. A further increase ofRx may now be governed
by the thermal creation of pairs of loops inside the stripel
structure, as was discussed above in Sec. IV B 2. T
mechanism should lead to the growth lawRx;(T/S)lnt. It is
remarkable that the parameters of this logarithmic growth

FIG. 11. Comparison of growth lawsRx(t) for the MF aniso-
tropic model at differentYmax sizes of the lattice atu50.250.
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FIG. 12. Pattern evolution in the MF model of anisotropic jumps at half-stoichiometric coverageu50.125 forT50.77. The gray scale

is mapped fromc(rW)50 ~dark! to c(rW)51 ~white!.
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the model of anisotropic jumps are determined only by
internal energetic parameters of the model~by contrast with
the conventional jump-isotropic case, where activation ba
ers should also depend on the characteristics of defects!. It
would be interesting in this connection to obtain evidence
such a logarithmic growth using the MC technique for
rectangular lattice with smallerYmax size. Note that, as wa
mentioned above in Sec. IV B 4, at high temperatu
T50.77 the power-law growth operates up tot5105 MCS/
atom for a 128332 lattice. We also made ten MC runs fo
the 128332 lattice at lower temperatureT50.33 up to a
much longer timet5107 MCS/atom. In this case we ob
served that att'23106 MCS/atom the system crosses ov
to a slower behavior which is likely to be logarithmic. How
ever, a very limited number of runs and a quite short av
able time interval for this slower growth did not allow us
determine its parameters reliably; that is why we do
present the corresponding picture here.

C. Jump-anisotropic model at half-stoichiometric concentration

The phenomenological approach of Sec. III, as well as
MC simulation,15 suggest that in the jump-anisotropic mod
the most effective growth of thep(232! domains should
take place at a coverage approximately half as low as
stoichiometric coverageu50.250. Here we motivate thi
statement with the results of the MF model.

Typical stages of the evolution in the MF model
u50.125 andT50.77 are shown in Fig. 12. At the begin
ning, when thep(231! modulation of the system appear
the behavior is similar for bothu50.250 and 0.125 concen
trations. However, the decomposition into regions with
duced and increased local concentration, and the forma
of the p(232! domains, starts foru50.125 at much later
times~at t'30 versust'4 for the stoichiometric coverage!.
Alternating X and Y p(232! stripes emerge from a
p(231!-modulated area within the regions with a higher
cal coverage, while the regions with lower coverage lose
p(231! modulation and become disordered. It is interest
to note that this disordering starts from the ‘‘fast’’ boun
e
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f

e

l-
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e
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-
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e
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aries. The alternatingX andY stripes of thep(232! phase
are formed within rather compact areas, and have a m
isotropic shape than in the stoichiometric case@see Fig.
12~c!#. In such a configuration the fraction of boundari
with high curvature is much larger, than for the stoichi
metric case, which should result in faster growth. ‘‘Alien
p(232! domains ofX and Y types are separated by th
surrounding disordered lattice-gas phase. This circumsta
tends to increase the domain growth due to the faster di
sion in the lattice-gas phase, as was suggested in Sec. I

To find theRx(t) dependence, we performed ten runs f
a 1283128 lattice. The sizeRx versus timet for the MF
model atu50.125 is plotted in Fig. 13~a! in comparison
with theRx(t) dependence foru50.250 case. It is seen tha
theRx values for the half-stoichiometric coverage are gen
ally noticeably larger then those for the stoichiometric one
is interesting to note also that the slope of the presen
Rx(t) dependence foru50.125 is very close toz5 1

3, unlike
in the u50.250 case, where this slope is much low
z'0.2. This fact also coincides with the predictions of Se
III, because asymptotic growth with the Lifshits-Slyozov e

FIG. 13. Comparison of growth lawsRx(t) in the model of
anisotropic jumps at stoichiometricu50.250 ~triangles! and half-
stoichiometric u50.125 ~squares! coverages.~a! MF results at
T50.77. ~b! MC results atT50.33.
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ponentz5 1
3 for the u50.125 case can be achieved at mu

earlier times due to faster diffusion of atoms in the lattice-g
phase, which occupies a large part of the surface
u50.125.

Comparison of the MC simulation data atu50.250 and
coverages, extracted from the 20 MC runs for 1283128 lat-
tice at much lower temperatureT50.33 @see. Fig. 13~b!#,
demonstrate a similar behavior, which is opposite to the
havior of the model of isotropic jumps~cf. with Fig. 2!. Thus
we conclude that the decrease of the coverage does lead
faster growth of rarefied ordered domains in the system w
anisotropic jumps.

V. EVOLUTION OF A CONCENTRATION GRADIENT

The aim of this section is to compare the kinetics of t
jump-isotropic and jump-anisotropic models for the ca
when the initial configuration is not uniform, but has an in
tial concentration gradient. We simulated the system evo
tion starting with different nonuniform initial configurations
and using both the MF kinetic equation approach and
MC technique.

As shown above, the stripelike domains of thep(232!
phase are rather stable well-defined objects at late stag
system evolution. In connection with this, an interesti
question emerges about the character of the interaction
tween the neighboringX andY ‘‘alien’’ domains. It is obvi-
ous that ‘‘alien’’ domains should repel each other. To stu
the character of this interaction, one should prepare a c
figuration where several stripes are formed compactly
some restricted area of the surface, but are then allowe
move to other parts of the surface. To realize such a situa
in the MF case, we started from a sinusoidally shaped c
centration in thex direction with umax50.27, as shown in

FIG. 14. Evolution of the nonuniform initial configuration in th
framework of the MF model of isotropic jumps. The lattice patte
and corresponding coverage profile att5120 are shown. The initia
profile is marked with a dotted line. For a better view, the gray sc

is mapped fromc(rW)50 ~white! to c(rW)51 ~black!, i.e., in the
opposite direction, as in Figs. 4 and 12.
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Fig. 14. This configuration is characterized by the mean c
erageumean50.135, which is well below the stoichiometri
coverage. Since we were interested in the late-time beha
of several stripes only, we chose a rather narrow size of
lattice in they direction. That is, we took the 64332 lattice
for both jump-isotropic and jump-anisotropic models.

MF simulation results atT50.83 are presented in Figs. 1
and 15. One can see that the formation of the ordered ph
begins in the region with increased concentration, while
rest of the surface acquires the disordered homogeneous
with the concentrationu'0.075 which corresponds to th
equilibrium lattice-gas phase at the chosen temperature.
behavior of the models of isotropic and anisotropic jum
shows a distinct difference. In the jump-isotropic model
early stage of evolution the continuousp(232! phase occu-
pies a compact area with a well-defined boundary~see Fig.
14!, and no further evolution of this configuration occurs. O
the other hand, in the model of anisotropic jumps the alt
nating X and Y domains, formed at the beginning rath
compactly within the center of initial distribution, later sta
to move away from each other~see Fig. 15!. At the begin-
ning of this process theXuY DW’s are rather narrow and
exhibit the clear-cutp~231! structure. However, later the
became wider and more disordered. The local atomic c
centration within the DW’s decreases, so that the cover
profile acquires a nonmonotonic oscillating shape~see Fig.
15!. In order to study the character of the domain motion,
Fig. 16 we plot the time dependencies of the widthDx of the
region occupied by thep(232! phase (Dx was determined
as the distance between left and right edges of correspon
coverage profiles in Figs. 14 and 15 at an arbitrary cho
level u50.16). For the model of isotropic jumps this widt
is almost constant for all timest*10, i.e., from the early
stage of evolution~Fig. 16, triangles!. A slight decrease of
the widthDx with time is connected with the approaching
the stoichiometric coverageu50.250 within the ordered

le

FIG. 15. Evolution of the nonuniform initial configuration in th
framework of the MF model of anisotropic jumps. The lattice p
tern at t5120 and coverage profiles att530 ~diamonds! and
t5120 ~black circles! are shown. The initial profile is marked with
a dotted line.
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area. By contrast, in the model of anisotropic jumps, a
some initial decrease, the widthDx ~Fig. 16, diamonds!
starts to grow with time. The growth of theDx is observed to
follow a power law with an exponent close to13. This spread-
ing of p(232! stripes is accompanied by the decrease of
mean coverage within the centralDx-area owing to the wid-
ening of the coverage-deficitableXuY DW’s.

We made also several MC runs in both models of isot
pic and anisotropic jumps for the 3203120 lattice with the
random initial distribution of adatoms shaped as a narr
stripe of 80 lattice constants with the coverageu ini'0.416
~see Figs. 17 and 18!, so that the mean coverage w
umean'0.1. The stripe was oriented perpendicularly to thex
direction ~the direction of atomic jumps in the jump
anisotropic model!. The simulation temperature was chos
asT50.4 which is well belowTc at umean'0.1. The results
are shown in Figs. 17 and 18 for both jump-isotropic a
jump-anisotropic models, respectively. The coverage profi
in these figures were calculated by averaging the corresp
ing atomic configurations over two lattice constants in
x direction @i.e., over thep(232! period#, and over the
whole y size of the lattice.

FIG. 16. The widthDx occupied by thep(232! phase vs time
for the model of isotropic jumps~triangles! and the model of aniso
tropic jumps~diamonds!.

FIG. 17. Evolution of the coverage stripe in the model of is
tropic jumps in the MC simulation. The lattice pattern and the c
responding coverage profile att5105 MCS/atom are shown. The
initial profile is marked with a dot-dashed line.
r

e

-

w

d
s
d-
e

Similarly to the MF results, theisotropic case demon-
strates the existence of a well-defined sharp solid-gas p
boundary corresponded to the first-order phase transit
Large compact domains of thep(232! phase are observe
to form within the initial distribution. The formation of the
p(232! phase manifests itself in the appearance of flat
tended ‘‘shoulders’’ withu'0.250 on the concentration pro
file ~see Fig. 17!. The final configuration corresponds to
single compactp(232! domain surrounded by atoms in th
disordered lattice-gas phase.

By contrast, the model ofanisotropic jumps exhibits a
quite unusual behavior. One can observe the peculiar pro
of pushing of strongly elongatedp(232! islands outside the
initial deposit, which then diffuse far away from the boun
ary into the lattice-gas phase~Fig. 18!. The coverage profile
is more smeared out, and it does not contain clear-cut
races and drops. The escapedp(232! islands build up an
extended concentration ‘‘tail’’ at the leading edge of the co
erage profile. The average concentration in this tail is mu
smaller than the stoichiometricu50.250 concentration. It is
remarkable that the effective repulsion of the alienX andY
domains leads to the situation when an average distance
tween thep(232! domains within the tail is much large
than the radius of the interatomic interaction.

We observed also that the concentration in the ‘‘tail’’ f
the jump-anisotropic model varies nonmonotonically w
distance. At some distance from the initial boundary, wh
the growth rate of the orderedp(232! phase is expected to
be higher than that for the stoichiometric coverage accord
to the results of Sec. IV C, one can see regions with lo
increase of the coverage. Although the averaging over sta
tically independent runs smears these nonmonotonities,
nevertheless, may speculate~see below Sec. VI! that such a
peculiar evolution of the concentration gradient in the jum
anisotropic model may manifest itself at amacroscopicscale

-
-

FIG. 18. Evolution of the coverage stripe in the model of anis
tropic jumps in the MC simulation. The lattice pattern and the c
responding coverage profile att593105 MCS/atom are shown.
The initial profile is marked with a dot-dashed line. In order
provide visual contrast betweenX andY domains, atoms at theX
andY sublattices are indicated with open and filled symbols,
spectively.
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of time and distance in the formation of anonmonotonic
effective concentration profile.

VI. CONCLUSION

Thus we have shown that a strong anisotropy of ato
jumps in the 2D lattice-gas model, which has a degenera
rarefied ordered structure at low temperature, leads to
existence of two different types of domain walls charact
ized by different mechanisms of motion. In turn, this pr
vides the existence of two characteristic length scales in
model, namely the ‘‘fast’’ and ‘‘slow’’ scales characterize
by different growth laws.

The ‘‘slow’’ domain walls separate the ‘‘alien’’X and
Y types of thep(232! domains, differing by the vector o
translation perpendicularly to the unique direction of atom
jumps and, therefore, these domains cannot be transfor
into each other. This results in the formation of a spec
stripelike superstructure of alternatingX andY domains, the
periodRx of which grows with time according to the slow
power law Rx(t)}t

z, with asymptotic growth exponentz
close to the Lifshitz-Slyozov valuez5 1

3 ~on the basis of our
data we cannot exclude, however, a slightly lower value
the interval 14,z, 1

3!. This slow growth is provided by the
motion of the highly curved dislocations~loops! in an almost
regular network of linearly shaped ‘‘slow’’XuY domain
walls.

We also demonstrated that decreasing the coverage b
the stoichiometric value of the rarefied ordered phase le
to a faster domain growth. This situation differs from t
conventional jump-isotropic case, where the maxim
growth rate is reached at the stoichiometric coverage.

The above-described features of kinetics of the jum
anisotropic model reveal itself, in particular, in the charac
of the evolution of the concentration gradient. It was sho
that the model of anisotropic jumps does not exhibit a sh
solid-gas phase boundary typical of the first-order ph
transition in the conventional isotropic model. Instead,
repulsion of the ‘‘alien’’ ordered domains leads to the
pushing into the gas phase and, consequently, to the sm
ing of the solid-gas boundary and to the formation of a lo
concentration tail with nonmonotonic ‘‘humps.’’

The proposed growth mechanism is quite general in
sense that it should be valid for any 2D lattice-gas mo
with a highly anisotropic mobility and the existence of
rarefied ordered phase with degenerated domains, chara
ized by the ‘‘prohibition’’ of the translation across the dire
tion of atomic jumps. In this connection let us consider
possible application of the investigated model to the exp
mental result on a peculiar character of surface diffusion
lithium atoms on the furrowed Mo~112! surface at low
coverages.19 If we prepare an initial state, where the adato
randomly occupy a half of the surface only~e.g., forx<0)
with a coverageu ini.us , the step in the coverage wi
smooth out with time, but a phase transition occurring atus
has to manifest itself in the shape of the coverage tailu(x) at
x.0. At the first-order phase transition the chemical diff
sion coefficientD falls to zero,20 because at the transitio
point the equilibrium state corresponds to the coexistenc
two phases. As a result, at somex* the functionu(x) should
exhibit a sharp drop from the ordered-phase coverageus at
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x,x* to the valueug at x.x* , whereug (ug,us) corre-
sponds to the lattice-gas phase~see Fig. 18!. Notice that the
tail function u(x) decreasesmonotonicallywith x in this
case.

However, in the experiment19 a nonmonotonicLi concen-
tration profile was observed in the course of diffusion out
the initial prepared step withu ini'0.04. The diffusion was
investigated in the@ 1̄1̄1# direction, i.e., along the furrows o
the Mo~112! surface. Two remarkable features were noted
the diffusion tailu(x): first, the formation of the extended
plateau atus8'0.015 probably corresponded to some rarefi
2D phase of lithium, andsecond, the shaping of the clear-cu
‘‘hollow’’ immediately behind the spreading plateau with th
concentrationu8;0.5us8 ~for details see Ref. 19!.

Here we suggest that the strong anisotropy of the
Mo~112! system@the ratio of Li diffusivity along and across
the substrate furrows at low coverages is 103/104 ~Ref. 14!#
plays a crucial role in such an unusual behavior of the
film. Indeed, because in an anisotropic system the rate
growth of a rarefied phase as a function of the atomic c
centration has a maximum atu'0.5us , the growth of islands
of a rarefied ordered phase should proceed most effecti
in the regions where the tail coverage is much lower than
stoichiometric one. We demonstrated that, due to the re
sion between the domains of the rarefied phase, an exte
region consisting of widely spaced ordered domains d
exist at the coverage profileu(x) in the jump-anisotropic
model ~Fig. 18!. Since on average the growth within th
region is faster than at higher coverages, this may res
after a sufficiently long time of film evolution, i.e., at amac-
roscopictime and space scale, in the increase of the cover
at some distance away from the initial boundary. It is evid
that the role of different surface defects should also be ta
into account since~i! they can act as ‘‘traps’’ for moving
islands, and~ii ! they can change the ratio of atomic mobi
tiesLxx /Lyy for the anisotropic surface.

If the approach developed in the present work could
applied to the experiment,19 the observed plateau shou
have a structure ofus islands separated by the lattice-g
phase. The ordered phase should correspond to a long-p
rarefied structure of p(m3m8) type, withmm8;50. Interac-
tion between adatoms which can provide the formation
such a rarefied structure does exist on anisotropic surfa
due to the competition between the dipole-dipole repuls
and the long-range oscillating indirect interaction
adatoms.8 Low energy electron diffraction~LEED! experi-
ments for the Li-Mo~112! adsystem~as well as for a numbe
of other layers on the anisotropic surfaces8! showed that,
along the furrows, the interaction is oscillating, and may e
hibit a local minimum at distances at least up to nine latt
constants. So it is reasonable that a similar oscillating in
action may also exist in the direction across the furrow
Unfortunately, there are no reliable LEED experiments
coverages lower thanu'0.1. However, the rarefied phase
the diffusional tail may in principle be observed by scanni
tunnel microscope technique.
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