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Growth of ordered domains in a highly anisotropic two-dimensional system
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We introduce and study a lattice-gas model characterized by a strong anisotropy of the atomic mobility in
different directions. The kinetics of the model is investigated by two methods, Monte Carlo simulation of the
lattice-gas model and numerical solution of mean-field kinetic equations. The growth kinetics of the
p(2x2) rarefied ordered structure at low temperature is shown to exhibit a hierarchy of growth rates owing to
different evolution of the components of thé2 X 2) phase order parameter. The rate of growth increases when
the concentration is decreased below the stoichiometric value. Specific kinetics of the jump-anisotropic model
and the effective repulsion between ordered domains result in an unusual evolution of the concentration
gradient versus time. The model is applied to describe peculiar experimental results on surface diffusion of Li
atoms adsorbed on furrowed single-crystal-plane (t2). [S0163-18207)04707-3

[. INTRODUCTION order parametegp these statements have been extensively
checked by numerical solution of mean-field kinetic equa-
The growth of ordered domains in a system exhibiting ations for the order parametéf,and by Monte Carlo simula-
phase transition at a temperatuFg for the case of rapid tion of various Ising-like(lattice-gas models with nearest-
quench fromT>T, to T<T,, is a very interesting problem Neighbor(NN) interatomic interactions>’ o
(see Ref. 1 and references thejeirate-stage growth kinet- In real physical systems the interatomic interaction is not
ics was found to exhibit self-similar temporal behavior andréduced to the interaction of NN's only. In particular, in
universality! That is, it is expected that the system has aSubmonolayer adsorbed films the interaction may be aniso-
single characteristic lengtR(t) associated with the average tropic, and it may oscillate with interatomic distarfc8ys-
domain or island size, which grows asymptotically with time t€ms with competing interactions usually have a number of

according to a power law different stable and metastable phases. In addition, the or-
dered structure may bp-fold degenerated witp>2. For
R(t)ot? t— oo (1) example, the O-W110 adsystem, which can be described

by the lattice-gas model with repulsion of the NN’s and nex-

wherez is thegrowth exponentThe pair-correlation function NN'S, has a fourfold-degenerateu(2 1)-ordered phas.
C(r,t)=((r,t)p(01)) of the order parametes(r,t) and Such systems are descrlbeol byextororder parameter. For
the structure factoB(k,t) [S(k,t) is the Fourier transform of instance, the order parameigrof the p(2Xx 1) structure has
C(r,t)] have to follow the scaling forms two componentsh=(¢;,d,), which may be chosen as lin-
C(r,t)=f(r/R(t)), S(k,t)=R%t)g(kR(t)), whered is the  ear combinations of sublattice concentrati8riEhis order
spatial dimensionality of the system, ah@éndg are univer-  parameter is not conserved during system evolution. The
sal scaling functions conservation of the total concentration, nevertheless, im-
The value of the growth exponentiepends, in particular, pedes the growth as was shown by Sadiq and Bihaérp
on the existence of the conservation law for the order paramfound z~ 1/2 for nonconserved concentration, ael1/3 for
eter¢. That is, for the case of a nonconserved order paramthe conserved concentration case. This slowing down of the
eter, the growth is governed by the curvature-driven motiorgrowth may be attributed to an excess of atomic density
of walls between ordered domains, which leads to thecontained in the walls between the domairthat may be
Lifshitz-Allen-Cahn(Refs. 2 and Bgrowth lawR(t)«t? at important for the systems with=3.
t—o. When the order parameter is conserved, it is assumed Further complication arises for tricritical systems, where
that the basic mechanism for growth is the long-range diffu-an ordered structure may coexist with another phase of dif-
sion of the order parameter through ordered regions from théerent density(for instance, with the disordered lattice-gas
interfaces characterized by a higher curvature to those with phase. Conserved concentration in such a system was shown
lower curvature. Such a mechanism impedes the growth sige impede the system dynamics and lead to the Lifshits-
nificantly, and results in the Lifshitz-SlyozdRefs. 4 and 5  Slyozov growth law for the nonconserved parameter of the
growth law R(t)t¥3. For the simplest case of scalar  ordered phas¥
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Another important generalization of the lattice-gas model
involves the system anisotropy. The anisotropy of inter-
atomic interaction results in the anisotropy of shape of grow-
ing domains as was shown by Ala-Nissiaunton, and
Kaskil! Poulsenet all? studied ordering dynamics in the
locally anisotropic two-dimensional lattice-gas modiatro-
duced by Wille, Bevera, and de Fontaiffeto describe
ordering processes in high:  superconductor
YBa,Cuz0,_5. It was found? that, in this model, where
anisotropy of energetic parameters leads to quasi-one-
dimensional effects in the ordering dynamics, two oxygen
structures, the so-called ortho-I and ortho-ll phases, obey
growth laws with different exponents=31 andz=1 corre-
spondingly, in spite of the fact that both phases are charac-
terized by the nonconserved order parameters. The slowing FIG. 1. Four translational types of thE2x 2) domains in the
down of the ortho-Il phase dynamics was explaitfesimi- model under study. The direction of atomic jump$or the jump-
larly to the Sadig-Binder arguments mentioned above. Thanisotropic case is indicated with arrows.
is, the excess or deficit of local oxygen density in domain
walls result in long-range diffusion in the ordering process,

and hence leads to the Lifshits-Slyozov growth law. o/tvl is the number of lattice sites. To obtain a rarefied ordered

However, anisotropic systems may be characterized n ke i h oo i
only by the interaction anisotropy, but also by the anisotropyStrucwr?’ we ta € Into acco“r?t the atomic interactions up to
' third neighbors with the energies ,e,, ande 3 for the near-

of probabilities of atomic jumps in different directions. Such st. next-nearest. and third neiahbors. respectively. and as-
a jump anisotropy does not modify the phase diagram of th&SY L 9 ' pectively,
Sume arepulsionof nearest and next-nearest neighbors and

system, but it might drastically modify the kinetics of a En attraction of third neighbors. For this choice of interac-

coveraged= N/ M, where N is the number of atoms and

phase transition for the complicated lattice-gas model, wher

1
the ordered phase corresponds to a degenerated rarefi ns the low-coverage ordered phase &3 corresponds
structure The aim of the present work is to study the effect 0110 the' fourfold-degeneratepl(2 X 2) stru'ct.ure, qnd with de-
jump anisotropy on the growth of a rarefied phavée in- creasing tempgrature the system exhibits a flrstl-order phase
vestigate the extreme case of the jump-anisotropic mode[ranSItlon to this phase. At higher coveraggs, < ; (reca}ll
namely, the model where atomic jumps are allowed in ah"’.It t.he model has th? atomivacancy symmetry owing to
single direction only. One-dimensional mobility of atoms pairwise character of mteractlo)msth(_a ordered ph‘f"se has
was found to exist in submonolayer films adsorbed on fur-p(ZXl) or ¢(2x2) structure depending on the ratio of en-

rowed crystal surfaces such as thEl?) surface of the ergieseq a_ndsz. In the present Work_, h0\{vever, we restrict
fcc crystal or the110) surface of the bee cryst&f*We use our analysis to the low-coverage reg@aéz only.

two basic approaches to investigate the model kinetics, For thep(2x 2) structure one may _mtroduce four sublat-
Monte Carlo simulatiora part of these results has been pub-tCceS denoted axy, X,, Yy, andYs in Fig. 1. The structures
lished in Ref. 1% and a numerical solution of kinetic equa- Xy andX; (as well asY, _and Y5) can be transformeq into
tions of the corresponding mean-field model. We show thafach other by a translation for one lattice constant inxthe
growth kinetics of a rarefied ordered structure, as well as thdirection. The transformations, <Y, and XY need a

evolution of an initial concentration gradient in the model of ranslation along they direction. The main aspect of the
anisotropic jumps differ drastically from the case of the model under consideration is that the atoms are allowed to

analogous but jump-isotropic model. jump for one lattice constant in the x direction onks a

The paper is organized as follows. The model is describedeSult, X; domains can be transformed inXg domains(the
in Sec. Il. We discuss the phenomenological approach to the@me is valid for thé/; — Y transformations but the trans-
problem in Sec. Ill. The temporal evolution of the homoge-formation of X-type domains intdr-type ones is forbidden.
neous initial state is studied in Sec. IV: in Sec. IV A we Thus the four types of domains are split into two groxps
briefly illustrate the behavior of the jump isotropic variant of andy.
the model, and the simulation results for the stoichiometric [N order to reduce the number of model parameters and to
coverage in the jump anisotropic model are presented in Seémphasize the role of jump anisotropy, we assume below
IV B. The dependence of the growth rate on the atomic ConIhat interatomic interactions are |SOtr0p|C and, moreover, we
centration is investigated in Sec. IV C. Section V is devoted@kee;=&,=—¢3=1 for the sake of concreteness.
to the system evolution in the case of nonhomogeneous ini- In the present work we utilize two approaches for the
tial state. Finally, Sec. VI concludes the paper with a discusinvestigation of model kinetics. The first one is based on
sion of a possible manifestation of the observed peculiar beMonte Carlo (MC) simulation of the lattice-gas model,
havior of the jump-anisotropic model in surface diffusion on where th»e syftem is characterized by the discrete lattice vari-
a macroscopic scale. able C(r) [r=(xy), x=1,... Xnaxx Y=1, ... Ymax

XmaxY max= M, which takes two valuesC(F)=0 for an

empty site andZ(F) =1 if the site is occupied. The system is
We study a two-dimensiona(2D) square lattice-gas then allowed to evolve, starting from an initial disordered
model with a fixed atomic concentration characterized by thestate, according to the standard Metropolis algorithm with

Il. MODEL
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periodic boundary conditions. Time in this case is measuregprs k; =27(%,0) andk]=27(0,%) [the wave vector is de-

in MC steps per atom. - o

The second approach is based on the mean-field) fined ask=2m(X/Xmax.y/Ymai
aﬁalog of the 2D lattlce—gas model, Where instead of the c(F)z9[1+¢Xcoql<_)1f)][1+¢ycos(ﬂF)], (5)
discrete variableC(r) we use the continuous “concentra-
tion” C(F) [0=c(r)=<1] which may be treated as the occu- vyhere¢x and ¢, are two components of the order parameter

pation probability of an atom at the site Such a model was ¢~ (¢x:¢y), so that the completely ordered domains of the
used previously by Chen and Khachatutfao study kinet- X1 X2, Y1, and Y types of the 2x2) phase have the
ics of phase transformation in intermetallics. The kinetics ofl #x:¢y) values equal to (1.1), {1,1), (1-1), and

this model is determined by the “diffusion” of the variable (— Lgtl')’ E[:r(])rrislrlaon_dingly. Substitu;ingﬂl}E@f) into Eq.(3).,
c(F), and the evolution equation takes the Cahn-HiIIiardWe obtain the foflowing expression for the Iree energy.

form’ F(berby:0.T)
. 6F c] 62 _ _
c=VLV ——, 2 = M| = [V(0)+ GV (k) + BV (KD + (bepy)?
where L is the “mobility” (in the general case it is a G ——
d-dimensional tensgr The mobility tensor has to be chosen XV(kytk)]+7[s(0(1+ ) (1+ ¢y)
according to the microscopic properties of the model. We
have L,,=L,,=0 for symmetry reasons because diagonal +s(0(1+ ¢ (1= y))+s(0(1— ) (1+ dy))
jumps are not allowed. For the diagonal elements of the mo-
bility tensor we tookL,,=L,, (chosen equal to 1, which +8(0(1— ¢,) (1= ¢ )], (6)

defines a time scaldor the model of isotropic jumps and
L,,.=1, L,,=0 when only jumps in the direction are al- . . . .
lowed. y Jump whereV(Kk) is the Fourier transform of the interaction energy
Equation (2) can be deduced from Fick's law &(r), ands(y)=yIn(y)+(1-y)In(1—y). For our choice of
j=—LVu, whereu= 571 5¢ is the chemical potential, com- the interactions £,=e,=—e5=1) we have V(0)=4,
bined with the continuity equation+Vj=0. Free energy V(ki)=V(k;)=-8, and V(k,+k;)=—4. BecauseV(k)
functional in the MF approximation takes the following reaches its minima at the poirks, Iz)i andk,=k;+k], the
form: p(2X 2) structure provides the absolute minimum of the free
energy of the system at coverages 1. The equation for the
curve which defines the order-disorder transition can easily
be obtained from Eq6) by zeroing the second derivative of
_ _ _F(q&x ,¢y) over ¢, and ¢, at the point<Z=(0,0). The result
+(@—=c(r")In(d—c(r"))], 3 s

f[c]:%_z s(r=re(Ne(r)+ T2 [e(r)ne(r)

wheree (r—r’) is the interaction energy of atoms at the sites T.=|V(K;)|6(1— 6)=86(1— ). @

r andr’. The evolution equatiof2) now can be rewritten as . .
q ©) Thus, for the coverages of interest in the present work, we

Jac(F 1) haveTCf 1.E_> for 6=0.250 andT9=0.875 for6=0.125.
_’:(LXXV)Z(Jr Lnyf,) Considering the system defined above at a scale of the
ot p(2X 2) unit cell, it is suitable to introduce the order param-

C(;) eterq?(F) =(¢x,¢y) in terms of partial concentrations at the

x| >, e(r—r)e(r’)+Tin = | (4)  sitesXy, X5, Yy, andY, as
7 r

r’

¢x=Cx, ~Cx,tCy,~Cy,,
To study the kinetics of the MF model, we solve E4)

numerically for periodic boundary conditions with the ex- ¢y=Cx,t Cx,~ Cy, ~Cy,. €))
plicit Euler method starting from a disordered initial state
c(r,0)= 6+ 5c(r), where Sc(r) is a random perturbation
with the mean magnitude of (0?1 We performed calcula-
tions for time up tot,,,,=600 (time in MF calculation is
measured in dimensionless upitand averaged over runs S(Iz,t)=< MY [e(r,t)— 0lexp(ik-r)
started with different initial disordered configurations. Notice r

that the MF kinetics is completely deterministic; the tem-

perature variablél in Eq. (3) determines the shape of the

free-energy surface, and the randomness is introduced by tﬁgmble averggeHowevgr_, f(_)r the highly anisotropic model
initial configuration. that we consider here, it is important to study separately the

The structure of thep(2x2) phase can be described as characteristic lenghts for the two componengg(r) and
the product of static concentration walwith wave vec- ¢y(r) of the order parameter. According to E@) we can

The characteristic length for the growth of domains is usu-
ally extracted from the analyses of the structure factor

2>, 9

where( ) stands for the average over independent fiems
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calculate,(r) and ¢y(F) at the scale of th@(2x2) unit ~ Therefore, their grovvth_ shOL_lId follow the “fast” Ia\R_(t)
cell, i.e., in a coarse-grained lattice which has half the initial*t"? up to some transient timg,, and only at later times
number of cells in each direction. Then we calculate thé>tc the “gas” phase becomes exhausted and the system
correlation functionC¢(F,t)=(¢(F,t)¢(0,t)) and its Fou- Passes to the coarsening stage. At this late stagt_e the growth
fier transforms (IZ t) for (1) and (F) separatelv. Th proceeds by the_ exchange of atoms betweghX 2) islands

" P\ bx by ) Separately. 1hese through the lattice-gas phase and, therefore, time evolution
guantities are then used to determine the characterist

lengths of interest as explained below for the jump i:~:otropi(;||;fas to follow the “slow” Lifshits-Slyozov growth law
- 1/3 1 1 ‘. 1
case(Sec. IV A) and the anisotropic cag€ec. IV B3, (t)oct™=. The crossover timé, which separates the “fast

and “slow” growth kinetics, has to depend on the atomic
concentration; that is, it has to vanish at low coverages, and
. PHENOMENOLOGICAL APPROACH has to be infinite for the stoichiometric concentratién
Therefore, in the jump-isotropic model the most effective

Before analyzing simulation results, let us briefly outline growth should be achieved at the stoichiometric concentra-
the predictions expected from a phenomenological approaclion. The MC simulation dafd are in agreement with this

In the model of isotropic jumps none of the componentSstatement.
¢x and ¢, of the p(2X2) phase order parameter is con-  The behavior of the jump-anisotropic model, however,
served[although the total concentratiar(r) is conservefl  has to be more involved. Indeed, for the jump-anisotropic
All types of boundaries between differep(2x 2) domains  model at smalb, < 65, the growing islands are situated far
can be shifted by a jump of a single atom for one latticefrom one another, and grow by an exchange of atoms
constant in any direction. The motion of such walls is to bethrough the lattice gas. Therefore we may expect that the
purely curvature driven, and the growth kinetics at late timesnodel of anisotropic jumps will behave similarly to the iso-
should follow the “fast” Lifshitz-Allen-Cahn growth law tropic model, i.e., the growth rate will increase with coverage
R(t) o<t at < 6. On the other hand, at higher coverages 6s,

By contrast, the model of anisotropic jumps puts an addineighboring islands which belong to the different typés
tional constraint on the componed, of the order param- andY start to overlap. The overlapping should decrease the
eter. Indeed, because transitions betwdemndY sublattices  growth rate, because the diffusion of atoms fromXhisland
are forbidden,¢, must be conserved during system evolu-to another closes( island will proceed now not through the
tion, while ¢, is still a nonconserved quantity. Therefore, “gas” phase, but over a neighboring domain of the “alien”
one may expect that time evolution of thg component will  Y-type structure. Therefore the diffusing atom has to over-
be significantly slower than that of thg, component. come an additional energetic barrier when entering the

The model of anisotropic jumps has two different types of*‘alien” domain, and also the atomic diffusion within the
domain walls(DW's). The first type is theX;|X, or Y;|Y,  alien structure should be much slower. For example, in the
wall which corresponds to the change of the “fast” compo- model under investigation the barrier for penetration is about
nent ¢, from +1 to —1. Such a wall can be shifted by a 2¢, and the difference of activation energies for the atomic
jump of a single atom for one lattice constant in shdirec-  jump in the lattice gas and in the alien structure is about also
tion. The dynamics of these walls has to be described by th2e, so the diffusion is slower by a factor of expRe/T).
“fast” growth law R(t)=t'? similarly to the jump-isotropic ~ This impedes the growth rate at low temperatures signifi-
model. The second type of DW is tb@Y wall, which sepa- cantly. Thus there is a concentratiéh such that the growth
rates domains with opposite values of the “slow” compo- rate increases with at << 6* but it decreases in the interval
nent ¢, of order parameter. In the jump-anisotropic model 0* <0< 6, so that the growth rate has to have a maximum
the X|Y wall cannot be shifted by an ordinary mechanism ofat 6~ 6*. Since the value9* corresponds to the situation
a single-atomic jump. To shift th¥|Y wall, an atom of, say, when islands start to overlap for the first tim#; is to be
the X domain must cross the area occupied byYhdomain, coupled with the percolation threshofa/hich is about 0.5
and then join any otheK domain. Therefore, the growth for square lattices and we obtaing* ~0.50;=0.125. The
mechanism necessarily involves long-range diffusion procesgata of MC simulatiof? showed that the effective growth
through the body of the ordered phase. This has to lead to @te of thep(2X2) domains does exhibit a maximum at
strong slowing down of the growth, and the “slow” Lifshits- 6*.

Slyozov growth law R(t)xt® is expected to apply at In the remainder of the paper we will combine the MC
t—o0. 17 results with those for the MF model to test these predictions.

Thus, the jump-anisotropic model is characterized by a’he MF model provides a good qualitative picture for the
hierarchy of growth rates due to different evolution of two growth mechanisms and exhibits well-defined DW's. The
components of the vector order parameter of the rargfigd MC technique provides a more reliable quantitative descrip-
X 2) phase. tion, and it can be applied at much lower temperatures,

In addition, the dependence of the growth rate of the orwhich are of prime interest in the present work.
dered phase on the atomic concentration has to be different
for isotropic and anisotropic models. First, let us consider the IV. GROWTH KINETICS
model of isotropic jumps. For a concentration below the sto- FOR A HOMOGENEOUS SYSTEM
ichiometric valueds= 3, the domains of the(2x2) struc-
ture coexist with the lattice-gas phase. At early stages of
evolution the p(2X2) domains grow independently from Let us briefly illustrate here the behavior of the jump-
each other, taking atoms from a surrounding “gas” phaseisotropic model at the stoichiometrié;=0.250 and half-

A. Jump-isotropic model
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.,I’ FIG. 3. Jump-isotropic model &=0.250 andT=0.77: (a) fi-
8t . nite time growth exponent v& 1/R; (b) scaling of the normalized
pair-correlation functionC(r,t)=C,(r,t)/C,(0t) for 3<t<300
MCS/atom.
ki
T and the concentratiofi,=0.250, which are plotted in Fig. 2
1 10 100 1000 by open triangles, show that the asymptotic growth with
t (MCS/atom) z~ 3 exponent is indeed achieved in the simulation. The cor-

_ o responding finite time growth exponeny; (see Sec. IVB 4
FIG. 2. Growth lawsR(t) for the model of isotropic jumps at pelow for details ofze determinationis shown in Fig. 8a).

#=0.250 (filled triangles and #=0.125 (filled squares at - . i
T=0.33. TheR(t) dependence fof =0.77 atf=0.250 is shown The structure facto§,(k,t) as well as the correlation func

by open triangles. tion Cd)(F,t) in the jump-isotropic model exhibit scaling, and
have the shape typical of the case of a nonconserved order

stoichiometricf=0.125 concentrations in order to compare parametefsee in Fig. 8)].

it later with the behavior of the jump-anisotropic model. We  Thus in the model of isotropic jumps the growth at half-

made series of 100 MC runs for a 12828 lattice at low stoichiometric coverage is much slower than at stoichio-

temperatureT=0.33 (chosen as in Ref. 35To determine metric one. As we will see below, the behavior of the jump-

the characteristic lengtR(t) of the isotropic model, we used anisotropic model is totally the opposite.

the following procedure. First, we calculated the structure

faCtOFSS¢X(|Z,t) and S¢y(|2.t) separately for both order pa-  B. Jump-anisotropic model at stoichiometric concentration

rameter component, and ¢, . Since we found no differ- We made a series of runs for the 22828 lattice with
ence in their shapes and evolution, we calculs@gtk,t) as  poth MC and MF techniques at the stoichiometric coverage
the average o8, (k,t) andS,, (k,t) over $, and¢,, and  §=0.250 and different temperatures. The results are the fol-
also over thex andy directions. Then we calculated the first lowing.

momentk(® of the averaged structure fact&y(k,t), and

determined the characteristic lengR(t) as R=2m/kD. 1. Sequence of phase transformations in the MF model

Note that the values dR(t) obtained in this way, coincide  First let us describe the sequence of phase transformations
quite well with domain sizes seen in typical pattern picturesn the MF variant of the jump-anisotropic model at tempera-
(see also the discussion of this question for the jumptyre T=0.77 which is below the critical temperature for both
anisotropic model below in Sec. IV B3 coveragesg=0.250 and#=0.125 studied in the present
The log-log plots ofR(t) dependencies are shown in Fig. work. Starting fromt~0.3 we can observe a clear-cut

2 [here and below, in all the figures with growth laws we ; > > :

i : .7 p(2X 1) modulation ofc(r) with 0<c(r)<0.5[Fig. 4@)].
c?r:rs],ldtlartgnly \;?lu?ns d:z(tz ;Nh'(i/h i?jofir:iz[t eﬁgeedﬁ%ng:]hlrd The p(2X 1) modulation is oriented perpendicularly to the
ot the fatlice size in order 1o avo €-siz€ ENectsnNe  irection of atomic jumps, so that the peak of the structure

slope of R(t) at 6,=0.250 (Fig. 2, filled triangley is > — .
b () ° (Fig gles factor S(k) shows up atk;=2(3,0). Two translational

z~0.38, and it is practically independent of time. By con- _ ) X
trast, at a half-stoichiometric coverage=0.125 (Fig. 2, ~ YPeS Of thep(2x1) regions are modulated in antiphase, and

filled squares R(t) tends to grow with the same exponent correspond to the opposite va_lues qf the “fast” component
7~0.38 at early timeg<t.~10 Monte Carlo steps atom, ¢, of the order parameter. During this early stage the system

while at later times the slope &(t) decreases, and growth Was observed to be homogeneous at the scalg>g) cell,
proceeds further with a lower exponent0.23. The mea- and the$,=+1 domains are characterized by an isotropic
sured growth exponents are noticeably lower than the valug"@Pe. To describe an average size of these domains we in-
z=1 expected for the stoichiometric coverage, as well as th&’oduce a “fast” characteristic lengtR(t). _
valuez=1 expected for late times>t in the nonstoichio- At a timet~4 the system starts to decompose into com-
metric coverage case. This points out a limitation of the nuParatively large[several(2x2) cells in sizg regions with
merical method to calculate exponents in a growth law. Ac/educed and increased local coverage. Simultaneously the
curate calculation of growth exponents in the asymptotidormation of thep(2x2) structure is observed, manifesting
regime requires very long times and large systems. HoweveltSelf in the development of a peak of the structure fac@r
higher temperatures allow us to reach the asymptotic regimeear k;=2(0,3). The largep(2x 1)-modulated domains,
faster. the The simulation data for the temperaflire0.77  formed at early stage, are decomposed~a#l into a con-
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(a) t=1.3 (b) t=13.0 (c) t=130.0

FIG. 4. Pattern evolution for the MF model of anisotropic jumps at stoichiometric covéra@e250 andT=0.77. Dark lattice sites
correspond tcm(F):O, bright ones correspond UJ{F)= 1, and the grey scale describes intermediate occupation numbers. In the snapshots
att=13 and 130, in order to distinguish theandY domains, the brightness of ti{eay X sites is artificially reduced by a factor of 2.
Length scalefR andR, are indicated with arrows.

figuration consisting of narrow alternating stripes wkh volves a long-range atomic diffusion through domains of
andY; (or X, andY,) types of thep(2X2) structure, the alien structure, we may expect that the Lifshitz-Slyozov
stripes being oriented perpendicularly to the direction ofgrowth law will operate forR, at t—o. Simulation results
atomic jumpgsee Figs. &) and(c)]. It is natural to associ- indicate, however, that at finite times the growth proceeds
ate the widthR, of these alternating stripes with the “slow” with much lower effective exponent, as will be discussed in
characteristic length scale of the jump-anisotropic modeldetail below in Sec. IV B 4.
connected with evolution of the “slow” order parameter Because loops play the main role in the growth process, it
componenip, . Note that at~30 the system again becomes is important to consider possible sources of their formation.
almost homogeneous at the scale of (B 2) cell. First, some loops exist from the very beginning of the evo-
Thus the typical pattern at a late stage of evolution of thdution owing to the randomness of the initial configuration.
jump-anisotropic MF model consists of large shape-isotropicSecond, loops may emerge at “fastX;|X, (or Y4|Y;)
domains of sizeR which are characterized by a constantboundaries which still exist even at late stages of evolution.
value of the “fast” order parameter Compone‘ﬂ;_ These However, at late times the fraction of “fast” boundaries be-
areas in turn are constructed of narrdvand Y alternating comes negligible compared with the fraction of “slow”
stripes of widthR, with opposite values of the “slow” order X|Y DW's, becauseR,/RxtY¥t¥2=t"—-0 whent—c.
parameter componen, . Notice that such a configuration Third, a loop may emerge inside the stripelike area, as shown
has predominantly domain walls of théY type. schematically in Fig. &). When two neighboring|Y and
Y|X domain walls meet each other at some point owing to a
2. Structure of domain walls

Let us dwell on the “thin” structure of theX|Y domain

walls in a more detail, because their motion determines late- (a)
stage kinetics of the model. Within a givef,=const do- ¥
main the X|Y domain wall must be continuous owing to Xl lx(y |\,

topological constraint; it may be broken at tig|X, (or
Y,|Y,) boundary only. Therefore, all possible structural de- A 7
fects of the network ofX|Y domain walls are reduced to
dislocations which we calloops A loop may either be
closed or it may have two free ends at thg|X, (or
Y1|Y,), wall as is shown schematically in Fig(s. The

loops are the main objects that move at late stages of evolu- (b) U
tion of the jump-anisotropic model, because they have the 4
largest curvature of DW's. The remainder of g domain m
wall network is characterized by an almost zero curvature

and therefore cannot move.

The growth of theR, size of the stripelike structure pro-  FiG. 5. () Sketch of theX|Y domain walls structure in the
ceeds according to the following mechanism: when a loomnodel of anisotropic jumps. Main directions of loops motion are
collapses(annihilate$, the width of the current stripe in- indicated by arrows(b) Sketch of the creation of another pair of
creases with a factor of 3. Since the growth mechanism intoops.
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the peak aroundﬂ=2w(0,%), which corresponds to thé,
component, splits into two subpeaks, and it has a zero inten-

sity at the reference poirﬂ:2w(0,%). The shape of this
peak in thex direction looks similar to the typical shape of
the structure factor in the case of a conserved order param-
eter.

As was shown above in Sec. IV B 1, the study of temporal
evolution leads us to introduce at least two characteristic
length scales for the model of anisotropic jumps. First, this
model exhibits the “fast” lengthR, associated with the iso-
tropic evolution of the nonconserved component of the
order parameter. Second, there exist the “slow” length scale
introduced as the widtR, of the alternating< andY stripes.
This length scale is coupled to the evolution of the conserved
componentg, . In addition, since the shape of the stripelike
domains with¢, = const is strongly anisotropic, one has to
consider their sizdR, separately along thg direction (i.e.,
perpendicularly to the direction of atomic jumpblotice that
on the basis of our data we cannot give a clear answer
whetherR, size evolves independently d,, or whether
their evolution is coupled, and proceed with the same growth

. . ) ) exponentz (although there are some reasons to believe that
large thermal fluctuation, they annihilate in the meeting aregs . g - gee Sec. IVB 4 below
X1 :

':jhus producing af pFa]ir of Iolops. 'I(;he ?ju:)sequent thion and” 16 cyiract all these quantities from the simulation data,
Isappearance of the newly produced loops result In an Iy, sed the following procedure. First, for each run we cal-

crease ofR,. To estimate a rate of loop creation, note that > -
the formation of a pair of loops from the initially linear Dw Cculated the structure facto, (k,t) ands,, (k.t) separately

structure increases the total length of DW's by a value offor ¢x and ¢y, as was described in Sec. Il. Then we aver-
order R, [see Fig. ®0)]. Therefore, the creation of a loop aged the structure facto!?@,,X andS¢y over independent runs.
pair costs Qtnlenetfr?nyRx, \?b\lhte)'rlizj"tiﬂ IiS the DW en;_ The functionsS, (k) and S¢y(IZ) look just like the peaks
ergy per unit length. The probability of the loop-pair creation — — W
is thus expt-2R,/T), and the average time between these "’_‘rOl,J,nd ky=2m(5,0) and k1:27(0,%) of the concentra-
events ist~expER,/T). Inverting this expression, we ob- tion” structure factor(9), respectlvel)(seia Fig. 6. Altbough
tain that this mechanism leads to the slow logarithmic in-‘order-parameter” structure factorS,, (k) andS,, (k) dif-
crease oR, asR,~(T/%)Int. fer qualitatively by their shapegthus reflecting different

A careful examination of typical patterfias in Fig. 4c)]  conservation conditions operating for the corresponding
shows that &|Y domain wall in average has a small deficit order-parameter componentén order to extract and com-
of atomic concentration comparing with the stoichiometricpare different length scaleé, Ry, andR, (as well asR for
p(2Xx2) coverage. As a result, the concentration profile inthe jump-isotropic modgl we have to elaborate a unique
thex direction is slightly modulated with the peri@,. This  procedure for their calculation. This precludes a fitting by a
concentration deficit may be explained in the following way. given function as no predetermined shape would be suitable
The energy oX|Y domain wall with a width=2 (recall that  for all the curves to fit. Instead we have chosen a simple but
the lattice constant is taken as the unity of lengghequal to  reliable and commonly used probe: the calculation of the first
|e5|/2, while a narrower wall of the width of one lattice moment of the structure factor in a given direction. To ex-
constant has a higher energy ©f+ |s3|/2. Therefore, fluc-  tract the “fast” length scaleR, we averaged the structure

tuations of the DW width to higher values will be more Lactorsd, (IZ) over thex andy directions, because its evolu-
probable than to smaller ones, and on average the DW widt X .
will be larger than two lattice constants tion does not show any anisotropy. Then we calculated the

first momentk(® of the averaged structure factor, and ob-
i R= (1 -
3. Structure factor and length scales tained R=2m/k ). fnalogouslly,. theR, value was deter
of the jump-anisotropic model mined asR,=2/k{" wherek{! is the first moment of the

The structure factor9) for the model of anisotropic structure factoS¢y(k) along the x directionlin addition, we

jumps att=130[this time corresponds to the lattice patterndetermined the pelrpendiculﬁl size of thep(2x2) do-
shown in Fig. 4c)], averaged over ten independent runs, ismains 615Ry=27'r/k<y> Wherek<y is the first moment of the

shown in Fig. 6. One can see the difference in the shape aftructure fact0t8¢y(IZ) along the y directionat k=k§(1> It
peaks around, =2m(3,0) andk;=2m(0,3). The peak at should be noted that according to this procedure, there is
ki, which is associated with thé, component of the order some subtle distinction in the interpretation Rfand R,

parameter, reaches its maximum exactly at the doinais it ~ becauseR is related to the “width” of corresponding peak,
is typical for the nonconserved order parameter. By contrastyhile R, contains the information about the “split” of peak

<>

FIG. 6. Averaged structure factcS(IZ) in the MF model of
anisotropic jumps at=130 andT=0.77.
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FIG. 7. Growth Iawsﬁ(t) (circles andR,(t) (triangles for the R

MF anisotropic model ap=0.250 andT=0.77. TheR(t) depen- 10
dence for the model of isotropic jumps is shown by diamonds.

t (MCS/atom)

in the x direction, i.e., its displacement with respect to FIG. 8. Growth lawsR(t) (circles andR,(t) (triangles for the

IZZ=277(0,%). Nevertheless, we believe that all the extractedMeieSr']rg;Iitif: fg: :ﬁ?ﬁ’;:'jggﬁg;cwgigt_ooézssoof'r(;rmhegg)z
length scales can be correctly compared, because they fairgfe replotted with diamonds for comparison. Déta‘ff@rO.?? wi.th
well coincide with real-space sizes estimated directly fromopen symbols, data foF=0.33 are shown with filled symbols. The
the lattice patterns. This can be seen, for instance, by conmy (t) dependence & =0.77 is plotted with crosses.

paring theR andR, values from first moments of the corre- ’
sponding structure facto(fig. 7) with the similar quantities,

indicated with arrows in the snapshdfig. 4. and then extrapolate.#(1/R) dependence to R—~0. Note

that, according to Ref. 5, the simplest finite time corrections
to the growth exponent lead to the linear dependence
_ Zo=2— alR. zo4(1/R) for R(t) at T=0.77 is shown in Fig.
Time dependencie®(t) and R,(t) for #=0.250, ex- 9(a), and thez.4(1/R) dependencies fdR, andR, are plot-
tracted from the series of ten MF runs for the ¥2B28  ted in Figs. 10a) and 1@b). Although our data are still very
lattice atT=0.77, are plotted in Fig. 7. One can see thatnoisy, the extrapolations to R/0 of the late-time part of
R(t) values are higber by an order of magnitude tharthe ze#(1/R) dependence shown in Fig(ed is in agreement
R.(t). Note also thaR is of the same order as the unique With the Lifshitz-Allen-Cahn value=; for the “fast” char-
characteristic scal® of the jump-isotropic modefor the  acteristic scaleR. It is seen also, that the “slow'Ry(t)
same temperaturéshown with diamonds in Fig.)7 How-  dependence clearly exhibit the Lifshitz-Slyozov value of the
ever, it is too difficult to estimate the values of the growthasymptotic growth exponert= 3 [Fig. 103]. At the same
exponents from the dependencies shown in Fig. 7 becaugéme one can observigrig. 10b)], that, for the “slow” Ry
the time intervals are too small. In order to obtain moresize, the finite time growth exponeni;(1/R) also tends to
reliable quantitative data, we made 50 MC runs for the same= 3 value at earlier times, while at later times the increase
model parameters as in the MF ru@®. for 128<128 lat-  of z, with decreasing of R is slower, so on the basis of our
tice, #=0.250, andl =0.77), and also 50 runs at much lower data for the asymptotic exponeatwe cannot exclude a
temperaturel =0.33, used previously in Ref. 15. The time slightly lowered value in the intervaj<<z<3. In order to
dependencies d® andR, for the MC simulation are plotted check if this lowering of the growth exponent is not related
in Fig. 8. to finite-size effects, we made also 50 runs for the 128
First, let us consider the data at highiier 0.77 (indicated
with open symbols on Fig.)8 The values of the “fast”

4. Domain growth in the jump-anisotropic model

length scaleéR again generally resemble ti¢t) dependence 8:2. (a) ] (1):;)_ (b)1
for the model of isotropic jump$Fig. 8, open diamonds 04l g% { _ o6hy
while the “slow” characteristic lengtiR, has much lower 503} oo ® AN

A ; R 5 04F
values. Also, in Fig. 8 we show with crosses Rgt) de- 02 © oal ",
pendence for this temperature. The uprising slope of all these 0.1 0'0_ ""*f«»,-,%mm’
curves indicate that thénite time growth exponentzq is 0.0 . :
increasing with time. But, to find the universality class of the 0.0 oL 02 00 °~5r/R(t)1~0 15

system under study, we have to know the asymptotic
(t—o0) growth exponent. To do this, one can determine the

L. . . FIG. 9. “Fast” length scaleR in the jump-anisotropic model at
finite time exponent using the formula g Jump P

6=0.250 andT=0.77: (& finite time growth exponente; vs
1/R; (b) scaling of the normalized pair correlation function
Ze#=d(INR(1))/d(Int)~log;d R(10t)/R(t)], (10 C(r,t)=C, (r,1)/C, (Ot) for 3<t<700 MCS/atom.
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sical jump-isotropic model the universal power-law growth
R(t)«t”is valid as long as a domain size does not exceed the
size of the system, i.e. for timds<t*, where the “satura-
tion” time t* is determined by the relatioR(t*)~I. At
later timest>t* the system reaches a glasslike state, where
the ordering kinetics follows a logarithmic law(t)«Int.*®

The jump-anisotropic model should exhibit a similar behav-
ior, but due to the hierarchy of growth rates, the saturation
effects become more complicated. In this section we study
the role of a finite size of the lattice.

FIG. 10. “Slow" length scalesR,(t) and Ry(t) in the jump-
anisotropic model a#=0.250 andT'=0.77. Finite time growth ex-
ponentzg; vs 1R for Ry(t) (&) andR,(t) (b). Scaling of the nor-
malized pair-correlation functiorC(r,t)=C¢y(r,t)/C¢y(0,t) for
10°<t<10° MCS/atom in they direction(c) and in thex direction
(d) (the depth of the minimum increases with time

X256 and 128& 32 lattices, and found no difference for

growth law Ry(t) in bo.th these cases comparing with the As explained above in Sec. IV B 2, the power law for the
results for 128128 Iat_t|ce. I.n any case, we note that gener'growth of R, is valid as long as the loops exist in the system.
a!ly.these results are in quite good agreement with the P"%Vhen the number of loops in the finite-size lattice is ex-
dictions of Sec. Hi. _ . . hausted, the power-law growth should stop. Thus the MF

The scaling behavior of the correlation functlonsﬁof themodel, where thermal fluctuations are absent and the only
jump-anisotropic model is shown in Fig(l9 for C, (r.t)  source of loops is the initial random configuration, should
(the correlation function of the “fast” componem,), and  exhibit a “saturation” timet* which has to depend on the
in Figs. 1dc) and 1Gd) for C,, (r,t) (the correlation func- Iattice size.' In order to test.this .assumpt'ion, we studied the
tion of the “slow” componenté) of the order parametgr time evolution for lattices with different size§,,, in they

y direction. That is, we performed a series of ten runs in the

Now let us analyze the low temperatur@<0.33) data o o U 8 e T8 T o e o 64 and 128
(Fig. 8, f|Iqu symbols The evo_lutlon of bothR(t) and X 32 lattices at the stoichiometric concentratigs 0.250 at
Ry(t) curves is much slower at this temperature. One can Set%mperatureTzO.9l, which is still below the critical tem-
that the slope oR(t) is even decreasing with t'”(])g 810 herature at this coverage. The resultsy(t) are presented
MCS/atom.R,(t) stays almost constant up te=10° MCS/ 5 Fig 11. One can see thR(t) exhibits a saturation time

atom, and only later it starts to grow in some power-lawt*, above which the average domain sRg is practically
fashion. Such a slow behavior can be explained, if one take

: ; i Constant and equal to some valRé . Let us estimate the
into account that the typical diffusion rate for an atom at . " . . .

- : . relation betweerY . andR; The timet* at which all the
T=0.33 is about 30 times lower than thatTat 0.77, so the loons disappear within the finite ar v can be de-
activated atomic jumps at low temperatdre-0.33 can pro- terr?ﬂned Ep the condition that the a;rggx’occu ied by a
vide noticeable changes &, at much longer times only. y b y

Therefore, reliable determination of the asymptotic growthStrongly amsotrop!c stripelikp(22) domain is of the same
r]der of magnitude as the area of the system,

exponents at this temperature cannot be done on the basis ) .
b b §mameax~ RYRy . Assuming thaR} =R} at late times, and

our data. We can only conclude, that at low temperatur ) : - J;x jers d
T=0.33 there exist a strong difference in the growth rates of<max IS kept fixed, we obtainiX o 'Y ma, which is in agree-
= ment with the data of Fig. 11.

the "fast” R(t) and "slow” R,(t) length scales. Let us also briefly discuss the system evolutiob=at* in
the presence of thermal noise. In this case Xh¥ DW'’s
motion corresponds to its random walk, owing to thermal
The conclusions presented above are valid for an idedluctuations. A further increase &, may now be governed
infinite system only, while a real physical system always hady the thermal creation of pairs of loops inside the stripelike
a finite sizel. The characteristic lengthis usually deter- structure, as was discussed above in Sec. IVB 2. This
mined by an average distance between defects such as, fiorechanism should lead to the growth [&y~ (T/2)Int. Itis
instance, impurities and steps on crystal surfaces. In the clasemarkable that the parameters of this logarithmic growth for

5. Saturation effects in a finite-size system
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(a) t=3.9 (b) t=39.0 (c) t=130.0

FIG. 12. Pattern evolution in the MF model of anisotropic jumps at half-stoichiometric cov@ra@el25 forT=0.77. The gray scale
is mapped frome(r)=0 (dark) to c(r)=1 (white).

the model of anisotropic jumps are determined only by thearies. The alternatingk andY stripes of thep(2X2) phase
internal energetic parameters of the mo@sf contrast with are formed within rather compact areas, and have a more
the conventional jump-isotropic case, where activation barriisotropic shape than in the stoichiometric cdsee Fig.
ers should also depend on the characteristics of defdtts 12(c)]. In such a configuration the fraction of boundaries
would be interesting in this connection to obtain evidence ofyith high curvature is much larger, than for the stoichio-
such a logarithmic growth using the MC technique for ametric case, which should result in faster growth. “Alien”
rectangular lattice with smalley,,, size. Note that, as was p(2x2) domains ofX and Y types are separated by the
mentioned above in Sec. IVB4, at high temperaturesurrounding disordered lattice-gas phase. This circumstance
T=0.77 the power-law growth operates uptte10° MCS/  tends to increase the domain growth due to the faster diffu-
atom for a 12& 32 lattice. We also made ten MC runs for sjon in the lattice-gas phase, as was suggested in Sec. Il
the 128<32 lattice at lower temperaturé=0.33 up to a To find theR,(t) dependence, we performed ten runs for
much longer timet=10" MCS/atom. In this case we ob- a 128x<128 lattice. The size&R, versus timet for the MF
served that at~2x 10° MCS/atom the system crosses over model atf=0.125 is plotted in Fig. 13a) in comparison
to a slower behavior which is likely to be logarithmic. How- with the R,(t) dependence fof=0.250 case. It is seen that
ever, a very limited number of runs and a quite short availthe R, values for the half-stoichiometric coverage are gener-
able time interval for this slower growth did not allow us to ally noticeably larger then those for the stoichiometric one. It
determine its parameters reliably; that is why we do notfs interesting to note also that the slope of the presented
present the corresponding picture here. R,(t) dependence fof=0.125 is very close ta= 3, unlike
in the #=0.250 case, where this slope is much lower,
z~0.2. This fact also coincides with the predictions of Sec.
[, because asymptotic growth with the Lifshits-Slyozov ex-
The phenomenological approach of Sec. lll, as well as the
MC simulation®® suggest that in the jump-anisotropic model
the most effective growth of the(2x2) domains should 14 ' - - '
take place at a coverage approximately half as low as the 12} (a) £ gt (b)
stoichiometric coverage&=0.250. Here we motivate this ol F [ﬁf
statement with the results of the MF model. ? &
Typical stages of the evolution in the MF model at gl o e ;
0#=0.125 andT=0.77 are shown in Fig. 12. At the begin- % SR s 6f o
ning, when thep(2x1) modulation of the system appears, ] & | e
the behavior is similar for botl#=0.250 and 0.125 concen- ’
trations. However, the decomposition into regions with re-
duced and increased local concentration, and the formation 4 ]
of the p(2x2) domains, starts fop=0.125 at much later 1o 100 D ST S
times(att~30 versug~4 for the stoichiometric coverage t t (MCS/atom)
Alternating X and Y p(2X2) stripes emerge from a
p(2x1)-modulated area within the regions with a higher lo-  FIG. 13. Comparison of growth lawR,(t) in the model of
cal coverage, while the regions with lower coverage lose th@nisotropic jumps at stoichiometrig=0.250 (triangle$ and half-
p(2x1) modulation and become disordered. It is interestingstoichiometric 6=0.125 (squares coverages.(a) MF results at
to note that this disordering starts from the “fast” bound- T=0.77.(b) MC results afT=0.33.

C. Jump-anisotropic model at half-stoichiometric concentration
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FIG. 14. Evolution of the nonuniform initial configuration in the FIG. 15. Evolution of the nonuniform initial configuration in the
framework of the MF model of isotropic jumps. The lattice pattern framework of the MF model of anisotropic jumps. The lattice pat-
and corresponding coverage profile at120 are shown. The initial tern att=120 and coverage profiles at30 (diamond$ and
profile is marked with a dotted line. For a better view, the gray scald = 120 (black circleg are shown. The initial profile is marked with
is mapped fromc(r)=0 (white) to c(r)=1 (blacK, i.e., in the & dotted line.

opposite direction, in Figs. 4 and 12. . . . L .
pposite direction, as in Figs. & an Fig. 14. This configuration is characterized by the mean cov-

N ) eragefmea= 0.135, which is well below the stoichiometric
ponentz= 3 for the §=0.125 case can be achieved at muchcgyerage. Since we were interested in the late-time behavior
earlier times due to faster diffusion of atoms in the lattice-gagy several stripes only, we chose a rather narrow size of the

phase, which occupies a large part of the surface ghtice in they direction. That is, we took the 6432 lattice

§=0.125. ) i . for both jump-isotropic and jump-anisotropic models.
Comparison of the MC simulation data 6t 0.250 and MF simulation results af = 0.83 are presented in Figs. 14
coverages, extracted from the 20 MC runs for X228 lat-  anq 15, One can see that the formation of the ordered phase
tice at much Iovyer temperature= O'.33'[see. Fig. 1], begins in the region with increased concentration, while the
demonstrate a similar behavior, which is opposite to the berast of the surface acquires the disordered homogeneous state

havior of the model of isotropic jumgsf. with Fig. 2. Thus  \yith the concentratior§~0.075 which corresponds to the
we conclude that the decrease of the coverage does lead tQgyjilibrium lattice-gas phase at the chosen temperature. The
fa§ter gro.wt.h of rarefied ordered domains in the system withhahavior of the models of isotropic and anisotropic jumps
anisotropic Jumps. shows a distinct difference. In the jump-isotropic model at
early stage of evolution the continuopé2 X 2) phase occu-
pies a compact area with a well-defined bound@se Fig.
14), and no further evolution of this configuration occurs. On
The aim of this section is to compare the kinetics of thethe other hand, in the model of anisotropic jumps the alter-
jump-isotropic and jump-anisotropic models for the casenating X and Y domains, formed at the beginning rather
when the initial configuration is not uniform, but has an ini- compactly within the center of initial distribution, later start
tial concentration gradient. We simulated the system evoluto move away from each othésee Fig. 15 At the begin-
tion starting with different nonuniform initial configurations, ning of this process th&X|Y DW's are rather narrow and
and using both the MF kinetic equation approach and thexhibit the clear-cup(2x 1) structure. However, later they
MC technique. became wider and more disordered. The local atomic con-
As shown above, the stripelike domains of thE2 X 2) centration within the DW’s decreases, so that the coverage
phase are rather stable well-defined objects at late stages pifofile acquires a nonmonotonic oscillating shdpee Fig.
system evolution. In connection with this, an interesting15). In order to study the character of the domain motion, in
guestion emerges about the character of the interaction b&ig. 16 we plot the time dependencies of the widtk of the
tween the neighborini andY “alien” domains. It is obvi-  region occupied by th@(2x2) phase Ax was determined
ous that “alien” domains should repel each other. To studyas the distance between left and right edges of corresponding
the character of this interaction, one should prepare a corcoverage profiles in Figs. 14 and 15 at an arbitrary chosen
figuration where several stripes are formed compactly ifevel 6=0.16). For the model of isotropic jumps this width
some restricted area of the surface, but are then allowed i8 almost constant for all times=10, i.e., from the early
move to other parts of the surface. To realize such a situatiostage of evolutionFig. 16, triangles A slight decrease of
in the MF case, we started from a sinusoidally shaped conthe widthAx with time is connected with the approaching of
centration in thex direction with 6,,,,=0.27, as shown in the stoichiometric coverag@=0.250 within the ordered

V. EVOLUTION OF A CONCENTRATION GRADIENT
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FIG. 16. The widthAx occupied by the(2Xx 2) phase vs time o 03 : : I
for the model of isotropic jumpériangles and the model of aniso- 0.2 : ' 7
tropic jumps(diamonds. 011 : i 7]
0.0 i i
area. By contrast, in the model of anisotropic jumps, after -160 -80 0 80 160

X

some initial decrease, the widthx (Fig. 16, diamonds
starts to grow with “”.‘e' The growth of thiex is ObserVEd to FIG. 18. Evolution of the coverage stripe in the model of aniso-
_fOIIOW apower law W't_h an EXponent close %OTh'S spread- tropic jumps in the MC simulation. The lattice pattern and the cor-
ing of p(2X2) stripes is accompanied by the decrease of th@esponding coverage profile at9x10° MCS/atom are shown.
mean coverage within the centrak-area owing to the wid-  The initial profile is marked with a dot-dashed line. In order to
ening of the coverage-deficitablY DW's. provide visual contrast betweeéfandY domains, atoms at th&

We made also several MC runs in both models of isotroand Y sublattices are indicated with open and filled symbols, re-
pic and anisotropic jumps for the 32A20 lattice with the  spectively.
random initial distribution of adatoms shaped as a narrow
stripe of 80 lattice constants with the coveragg~0.416 Similarly to the MF results, thesotropic case demon-
(see Figs. 17 and )8so that the mean coverage was strates the existence of a well-defined sharp solid-gas phase
Omearr=0.1. The stripe was oriented perpendicularly to the boundary corresponded to the first-order phase transition.
direction (the direction of atomic jumps in the jump- Large compact domains of th&(2x 2) phase are observed
anisotropic modg! The simulation temperature was chosento form within the initial distribution. The formation of the
asT=0.4 which is well belowT, at 6,e,7~0.1. The results p(2x2) phase manifests itself in the appearance of flat ex-
are shown in Figs. 17 and 18 for both jump-isotropic andtended “shoulders” withd~0.250 on the concentration pro-
jump-anisotropic models, respectively. The coverage profilesile (see Fig. 17. The final configuration corresponds to a
in these figures were calculated by averaging the correspondingle compacp(2 X 2) domain surrounded by atoms in the
ing atomic configurations over two lattice constants in thedisordered lattice-gas phase.
x direction [i.e., over thep(2x2) period, and over the By contrast, the model ofnisotropicjumps exhibits a
wholey size of the lattice. quite unusual behavior. One can observe the peculiar process
of pushing of strongly elongateu( 2 X 2) islands outside the
initial deposit, which then diffuse far away from the bound-
ary into the lattice-gas phagEig. 18. The coverage profile
is more smeared out, and it does not contain clear-cut ter-
races and drops. The escape(® X 2) islands build up an
extended concentration “tail” at the leading edge of the cov-
erage profile. The average concentration in this tail is much
. smaller than the stoichiometrig=0.250 concentration. It is
-160 - remarkable that the effective repulsion of the allerandY
domains leads to the situation when an average distance be-
tween thep(2x2) domains within the tail is much larger
than the radius of the interatomic interaction.

120

0.5

o4 We observed also that the concentration in the “tail” for
s T I the jump-anisotropic model varies nonmonotonically with
021 B distance. At some distance from the initial boundary, where
0.1 . the growth rate of the ordergu(2 X 2) phase is expected to
0.0 lamansamn A be higher than that for the stoichiometric coverage according
-160 -80 0 80 160 to the results of Sec. IV C, one can see regions with local

X

increase of the coverage. Although the averaging over statis-
FIG. 17. Evolution of the coverage stripe in the model of iso- tically independent runs smears these nonmonotonities, we,
tropic jumps in the MC simulation. The lattice pattern and the cor-nevertheless, may speculdsee below Sec. Vlithat such a
responding coverage profile s 10° MCS/atom are shown. The peculiar evolution of the concentration gradient in the jump-
initial profile is marked with a dot-dashed line. anisotropic model may manifest itself atrecroscopicscale
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of time and distance in the formation of ronmonotonic  x<x* to the valuefy at x>x*, where 6, (6,<6s) corre-
effective concentration profile. sponds to the lattice-gas phasee Fig. 18 Notice that the
tail function 6(x) decreasesnonotonicallywith x in this
case.

However, in the experimetita nonmonotonid.i concen-

Thus we have shown that a strong anisotropy of atomidration profile was observed in the course of diffusion out of
jumps in the 2D lattice-gas model, which has a degeneratete initial prepared step witld;;~0.04. The diffusion was
rarefied ordered structure at low temperature, leads to thimvestigated in thé111] direction, i.e., along the furrows of
existence of two different types of domain walls characterthe Ma(112) surface. Two remarkable features were noted in
ized by different mechanisms of motion. In turn, this pro-the diffusion tail 8(x): first, the formation of the extended

vides the existence of two characteristic length scales in thg|ateau aw;~0.015 probably corresponded to some rarefied
model, namely the “fast” and “slow” scales characterized 2p phase of lithium, andecondthe shaping of the clear-cut
by different growth laws. . “hollow” immediately behind the spreading plateau with the
The “slow” domain walls separate the “alien’X and concentrationy’ ~0.56. (for details see Ref. 19
Y types of thep(2><_2) domains, diffe_ring by th? vector Of. Here we suggest Sthat the strong anisotropy of the Li-
Franslatlon perpendicularly to the unique direction of atomic 0(112) system[the ratio of Li diffusivity along and across
jumps and, therefore, these domains cannot be transformq e substrate furrows at low coverages i$/10° (Ref. 14]
into each other. This results in the formation of a speciﬁcplays a crucial role in such an unusual behavior of the Li
stripelike super;tructure of glterpatib@andY.domains, the film. Indeed, because in an anisotropic system the rate of
period FIZX owah|ch Zgroyvrs] with tlme_accordw;]g to the slow growth of a rarefied phase as a function of the atomic con-
plower a‘i’:’ X,(ft);ft ’ ‘?"t asyrr:ptotllc grov;]/t beXPO”fem centration has a maximum @t=0.56,, the growth of islands
close to the Lifs |tz—|S yoz?]v ValuE=3 (°|.” ;[1 Ie laS|s 0 cl)ur _of a rarefied ordered phase should proceed most effectively
data we cannot exclude, however, a slightly lower value i, 1,6 regions where the tail coverage is much lower than the
the _|nterval;1<;< 3). This SlO.W gfo‘.“’th IS prqwded by the stoichiometric one. We demonstrated that, due to the repul-
motion of the highly c_urved dislocatioriops in an almqst sion between the domains of the rarefied phase, an extended
regular network of linearly shaped “slow’X|Y domain  eqion consisting of widely spaced ordered domains does

walls. - 4 : ) . .
. exist at the coverage profil@(x) in the jump-anisotropic
We also demonstrated that decreasing the coverage belag ge p (x) Jump P

odel (Fig. 18. Since on average the growth within this
the stoichiometric value of the rarefied ordered phase lea (Fig. 18 y g

¢ . h. This situat iftors f h gion is faster than at higher coverages, this may result,
to a faster domain growth. This situation differs from the o¢er 5 gufficiently long time of film evolution, i.e., ataac-
conventional jump-isotropic case, where the maximu

) D ; Mroscopictime and space scale, in the increase of the coverage

grov;th ratt;e IS :jeachgbd gt fthe st0|ch|on|2_etr|c_: cov?re;]ge._ at some distance away from the initial boundary. It is evident
The above-described features of kinetics of the Jumpyy; the role of different surface defects should also be taken

anisotropic model reveal itself, in particular, in the character .o 4ccount sincei) they can act as “traps” for moving

of the evolution of the concentration gradient. It was showng|angs  andii) they can change the ratio of atomic mobili-
that the model of anisotropic jumps does not exhibit a Sha”i’lesL /L., for the anisotropic surface
xx! yy :

solid-gas phase boundary typical of the first-order phase | 10 approach developed in the present work could be

transn!on in the c‘?nyen”uonal Isotropic ’T‘Ode'- Instead, theapplied to the experiment, the observed plateau should
repulsion of the “alien” ordered domains leads to their

hing i h h d | h have a structure of); islands separated by the lattice-gas
pushing Into t € gas phase and, consequent Y to the Sme?fﬁase. The ordered phase should correspond to a long-period
ing of the solid-gas boundary and to the formation of a lon

tration tail with tonic “h . Yarefied structure of pixXm’) type, withmm' ~50. Interac-
concentration tait with nonmonotonic - 'numps. tion between adatoms which can provide the formation of

The proposed growth mechanism is quite general in thEuch a rarefied structure does exist on anisotropic surfaces

S‘?tr;fe tﬁ.ath;t ShO.UIC: be_ vahdbf?tr any d251 Iattlc_:et—gas m?de ue to the competition between the dipole-dipole repulsive
with 'a fighly anisotropic mobiiity an € existence of d5ng the long-range oscillating indirect interaction of

rarefied ordered phase with degenerated domains, CharaCt%rdatomsg. Low energy electron diffractiofLEED) experi-

l{.ZEd b]}’ ”t]e “_pr(_)hlbmonl” tht.he translatt_mn Iaiross the q(;rec- ments for the Li-M@112) adsysterr(as well as for a number
lon Of ‘atomic jumps. 1n tis connection 1€t us CoNSINer aqs oy, layers on the anisotropic surfadeshowed that,

possible application of th_e investigated model to the EXper: long the furrows, the interaction is oscillating, and may ex-
mental result on a peculiar character of surface diffusion of .2 |ocal minimum at distances at least up to nine lattice

lithium atogms on the furrowed Mal2) surface at low ;qqqiants. So it is reasonable that a similar oscillating inter-
coverages® If we prepare an initial state, where the adatoms

doml half of th ; forx=<0 action may also exist in the direction across the furrows.
randomly occupy a half of the surface orl.g., forx= )_ Unfortunately, there are no reliable LEED experiments at
with a coverage6,,> 6, the step in the coverage will

h ith ti b h " 4 coverages lower thaé~0.1. However, the rarefied phase in
Smooth out with time, but a phase transition occurn_ng)sat the diffusional tail may in principle be observed by scanning
has to manifest itself in the shape of the coveragesiad) at

x>0. At the first-order phase transition the chemical diffu—tunnel microscope technigue.
sion coefficientD falls to zero®® because at the transition
point the equilibrium state corresponds to the coexistence of
two phases. As a result, at soxie the functioné(x) should We are indebted to T. Soboleva and A. Filippov for an
exhibit a sharp drop from the ordered-phase coveragat illuminating discussion. O. M. B. thanks E. Majékava for

VI. CONCLUSION
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