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van der Waals interaction between a molecule and a spherical cavity in a metal:
Nonlocality and anisotropy effects

B. Labani, M. Boustimi, and J. Baudon*
Laboratorie de Physique de La Matie`re Condense´e, Départment de Physique, Universite´ Chouaib Doukkali, Faculte´ des Sciences,

Boı̂te Postale 20, El Jadida-Maroc, France
~Received 30 July 1996!

The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating
dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field
gradient between the two points inside the metallic cavity is formulated by a general expression of the van der
Waals energy between the two partners. The induction contribution is introduced by using the field gradient
susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the
importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present
numerical results for typical systems~HF, HCl on Ag, Al, and Cu!. @S0163-1829~97!03407-3#
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I. INTRODUCTION

Intrinsic dynamical properties of microscopic systems
significantly altered by the proximity of a surface.1–9 The
theory of atom- or molecule-surface interactions and ph
isorption mechanisms has already received a great dea
attention, allowing the interpretation of various experimen
such as the measurement of desorption heats, work-func
changes, and alteration of spectroscopic properties.10–12 All
these alterations of atomic or molecular properties at the
cinity of a surface are of special importance when the surf
presents a positive or negative radius of curvature at amm or
nm scale. For such confined systems as atoms
microcavities,13–15molecule in porous materials,16 or carbon
nanotubes,17 or at the tip of a near-field microscope, spectr
scopic properties are dramatically changed~spontaneous
emission and level shift of atoms,18 enhancement of molecu
lar Raman scattering,19 and molecular fluorescence20!.

In spite of the great complexity of the problem, most
the dispersion and induction effects which occur when a
croscopic system interacts with a solid limited by a surfa
can be calculated by means of a very concise formalism
ing the generalized susceptibilities of both partners.9,21,22The
main advantage of such a treatment comes from the fact
the calculation of van der Waals energy reduces to that of
susceptibility tensor(n)S(m)(r1 ,r2 ,v) of the field gradient
associated with the surface. This latter quantity, also ca
the ‘‘propagator,’’ connects two different pointsr1 and r2
outside of the surface. In recent publications22,23the response
field of a small metallic sphere to fluctuating dipolar a
quadrupolar moments has been constructed using sphe
tensor theory.

The main goal of the present study is to apply this the
to determine the van der Waals interaction between a ho
spherical cavity in a metal and an anisotropic molec
placed inside the cavity. In order to give a treatment beyo
the local approximation,24 spatial dispersion effects are d
duced from the diagonal dielectric function«(k,v), assum-
ing a homogeneous response of the metal electrons.25 This
latter approximation is sufficient to obtain a good estimat
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of the van der Waals energy. Indeed, in this case, this ene
is calculated by integrating the dielectric function with a
imaginary argumenti j, over the rangej50 to infinity. This
makes an average of the electronic response, and doe
imply any detailed knowledge of the response, especi
knowledge of possible resonance effects which have b
taken into account in previous works.26 In Sec. II, expres-
sions for the dispersion and induction energies of the sys
~molecule-spherical cavity! are given. In Secs. III and IV the
dispersion coefficientsCn

i , Cn
' ~respectively parallel and per

pendicular to the principal symmetry axis of the molecu!
are calculated. In this section the dependences of the lo
range interaction on the molecular orientation and on
radius of the metallic cavity~Al, Cu, Ag! are also given, for
molecules with a permanent dipolar moment~HF, HCl!.

II. van der WAALS ENERGY

At large distances, the van der Waals energy is a sum
the dispersive and inductive contributions21

V~R!5Vi~R!1Vd~R! ~1!

where

Vi~R!52 1
2m• ~1!S~1!~R,R,0!•m1 1

3m~1!S~2!~R,R,0!:Q

1 1
3 Q: ~2!S~1!~R,R,0!•m1••• ~2!

and

Vd~R!5
\

2p (
m,m8

1

~2m21!!! ~2m821!!! E0
1`

dj~m!a~m8!

3~ i j!@m1m8#~m!S~m8!R,R,~ i j! ~3!

(m)a(m8)( i j) and (n)S(m)(R,R,v), respectively, are the mul
tipolar polarizability of the molecule at frequencyv5 i j,
and the susceptibility tensor of the field gradient of t
spherical cavity. The symbol@m1m8# stands for the con-
traction of these two tensors, the order of which is (m
1m8). In the inductive contribution,m andQ, respectively,
4745 © 1997 The American Physical Society
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are the permanent dipolar and quadrupolar moments of
molecule, the center of which is located at the position vec
R(0,0,R) ~Fig. 1!.

III. DIPOLAR CONTRIBUTION

Using previous results dealing with the dynamical
sponse of a metallic spherical cavity27 ~cf. the Appendix!, the
dipolar contribution to the van der Waals energy takes
following form:

V~1!~R!5Vi
~1!~R!1Vd

~1!~R!, ~4!

where

Vi
~1!~R!5 1

2m2
1

a3(n51

`

Dn~a,0!SRa D 2n22

3H n~n11!

2
sin2u1n2cos2uJ ~5!

and

Vd
~1!~R!5

1

a3(n51

` SRa D 2n22HCn
i S n~n11!

2
sin2u1n2cos2u D

1Cn
'S n~n11!

2
~11cos2u!1n2sin2u D J . ~6!

a is the radius of the cavity;u, w, x are Euler angles of the
molecular frame~Xm , Ym , and Zm! in the fixed frame
~ XYZ) ~Fig. 1! ~u andw are the polar angles of theZm axis,
andx is a rotation angle around this axis!. While expressions
~5! and~6! can be generalized to polyatomic molecules, o
molecules with axial symmetry will be considered further.
this instance, the molecule-cavity interaction presents a
lindrical symmetry and is onlyu dependent. The dispersio
coefficientsCn

i andCn
' , which include the nonlocal behavio

of the metal and the anisotropy of molecule, parallel a
perpendicular to the internuclear axis, can be written as:

Cn
i /'5

\

2pE0
1`

dj Dn~a,i j!a i /'~ i j!, ~7!

where a i /'( i j) are the parallel and perpendicular polar
abilities of the molecule,

FIG. 1. A linear molecular interacts with a hollow cavity in
metal. (X,Y,Z) is the fixed frame, (Xm ,Ym ,Zm) is the body-fixed
frame.
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a i~ i j!5 ~1!a~1!
zz~ i j!, a'~ i j!5 ~1!a~1!

xx~ i j!. ~8!

The quantitiesDn(a,i j) are the reflection coefficients of the
cavity walls. Their expressions are given in the Appendix.
is worthwhile noting that if the discrete aspect of the metall
surface is taken into account, then the axis symmetry is b
ken and the propagator(n)S(m)(R,R,i j) no longer hasC`v
symmetry.

III. METHOD OF CALCULATION

In order to show the influence of the surface curvature
the physisorption energy of linear molecules, numerical c
culations have been performed for the systems HF, HCl/A
Ag, and Cu. To carry out these calculations, several fun
tions involved in the molecular-cavity interaction need to b
known.

A. Characterization of the physisorbed molecule

The model of the tridimensional harmonic oscillator a
lows us to obtain the parallel and perpendicular dynam
polarizabilities of the physisorbed molecule:28

a i /'~ i j!5
a i /'~0!v i /'

2

j21v i /'
2 , ~9!

where v i /' are the effective frequencies of the harmon
oscillator for the parallel and perpendicular directions.

B. Hollow cavity in a metal

If the off-diagonal elements of the dielectric matrix
En(k,k8,v) are neglected in the analytical expression
termsDn(a,v) @cf. the Appendix, Eq.~A7!#, then a relation-
ship between the diagonal terms of this matrix and t
Lindhard dielectric function«(k,v) can be derived:28

En~k,k8,v!5k2«~k,v!dk,k8 ~10!

By replacing the discrete sum in Eq.~A7! by an integral over
the wave numberk, one obtains

Dn~a,i j!5

n

a
Fn~a,i j!21

n11

a
Fn~a,i j!11

, ~11!

where

Fn~a,i j!5
2~2n11!

np E
0

1`

dk
j n
2~ka!

«~k,i j!
. ~12!

j n is a spherical Bessel function.
The dispersive spatial effect can be described by expre

ing the Lindhard function in the hydrodynamical model,29,30

using the following expressions for the functionsFn(a,i j):

Fn~a,i j!5
a

n F 1

«~ i j!
1S ~2n11!S avp

du~ i j! D
2

3I n1~1/2!„u~ i j!…Kn1~1/2)„u~ i j!…D G ~13!
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where

«~ i j!511
vp
2

j2
~14!

and

u~ i j!5a~vp
21j2!1/2/d. ~15!

vp is the metal plasmon frequency in a free-electron mod
and d is a parameter the value of which is very close
~35!

1/2vF , where vF is the Fermi velocity; I n11/2 and
Kn11/2 are the modified Bessel functions.

The zero-frequency contribution to the inductive p
Vi
(1) of the energy@Eq. ~5!# must coincide with the electro

static energy of a permanent dipole inside the cavity. T
point is easily verified in the special case where the dista
of approachd5a2R is finite, whereasa tends to infinity.
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Indeed under such conditions u«u21→0 and
I n11/2„u(0)…Kn11/2„u(0)… behaves like a21. Therefore
Fn(a,0) @Eq. ~13!# takes a finite value, and thenDn(a,0)→
21 as a→`. For sake of simplicity let us assume th
u5p/2. The electrostatic limit of the inductive energy is the

@Vi
~1!#stat5 lim

a→`
F m2

4a3(1
`

n~n11!SRa D 2n22G5
1

2

m2

~2d!3
,

which is the electrostatic energy of the dipole in front of
image.

IV. DISPERSION COEFFICIENTS:
NUMERICAL CALCULATIONS

By substituting Eqs.~11! and ~13! into Eq. ~7!, one ob-
tains the following expression for the dispersion coefficien
Cn
i /'5

n\

2p
a i /'~0!v i /'

2E
0

1`

dj

1

«~ i j!
1 f n~a,i j!21

~j21v i /'
2!F ~n11!H 1

«~ i j!
1 f n~a,i j!J 1nG , ~16!
d. In
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/Ag,
where the functions

f n~a,i j!5~2n11!S avp

du~ i j! D
2

I n1~1/2!„u~ i j!…Kn1~1/2!„u~ i j!…

~17!

are related to the nonlocal behavior of the metal.
Using these expressions and the numerical data show

Tables I and II, it is now possible to evaluate the dispers
coefficients and the corresponding physisorption energy.
results are presented in Figs. 2~a!–2~c! and 3–5. Several re
marks are worth noting about these results.

~a! For all the systems investigated here, the dispers
coefficients depend on the radiusa of the cavity, which is a
signature of the nonlocality of the electronic response@Eq.
~16!#. This dependence on the radius becomes more
more visible with increasing values ofn @Figs. 2~a!–2~c!#. In
a local description the functionsf n(a,i j) are equal to zero
and the dispersion coefficients take the simpler form

Cn
i /'~local!5

2\

4 S n

2n11D
1/2

a i /'~0!v i /'vp

TABLE I. Molecular patterns used in the calculation of dispe
sive and inductive energies.

m ~D! a i(0) ~a.u.! a'(0) ~a.u.! v i(0) ~a.u.! v'(0) ~a.u.!

HFa 1.736 5.20 3.84 1.561 0.375
HCla 1.08 14.08 4.27 0.737 0.898

aReference 23.
in
n
e

n

nd

Y H v i /'1S n

2n11D
1/2

vpJ , ~18!

where any dependence on the radius has disappeare
Figs. 3~a! and 3~b! the van der Waals energies are shown
functions of the radiusa, at a fixed value ofd ~56 a.u.!, the
molecule being oriented parallel to the surface~u5p/2!.

~b! The anisotropy of the molecule makes the van d
Waals energyu-dependent. It is seen in Figs. 4~a! and 4~b!
that uV(1)u is maximum atu50, p, i.e., when the molecule is
perpendicular to the surface. The general behavior of
anisotropy effect is similar to that obtained in the elect
static approximation. It is, however, quantitatively differen
At higher multipolar orders the symmetry with respect
u5p/2 disappears.

~c! The behavior ofV(1) as a function of the distance o
approachd5a2R is similar for the three metals~Ag, Al,
and Cu! and the two molecules~HF and HCl!. Only the
magnitude ofuV(1)u depends on the system. In order to em
phasize the comparison with a pure van der Waals inte
tion with a planar surface, in Figs. 5~a! and 5~b! we plotted
V(1)(d)d3 as a function ofd, for a fixed value ofa ~560
a.u.!. By an extrapolation of these results atd50, one can
estimate the van der Waals constants for the systems HF

TABLE II. Parametersvp ,d of the metals~see text!.

Ala Cua Aga

vp ~a.u.! 0.562 0.735 0.845
d ~a.u.! 0.697 0.911 1.031

aReference 28.
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Al, and Cu to be 0.126, 0.105, and 0.120 a.u., respectiv
and, for the systems HCl/Ag, Al, and Cu, 0.208, 0.166, a
0.193 a.u., respectively. It may be also observed that
deviation from a simpled23 dependence becomes very im
portant whend is comparable to radius of the sphere.

V. CONCLUSION

A general method to calculate long-range van der Wa
energies for a diatomic molecule inside a hollow cavity in

FIG. 2. Dispersion coefficientsCn
i /' as functions of the radius

a of the cavity. The calculation is made for the system HF/Al.~a!
n51. ~b! n52. ~c! n53.
ly
d
e

ls

metal has been presented. The spatial dispersive effect h
been introduced by means of the hydrodynamical model fo
the metal electrons, and treated within a nonlocal approxima
tion. Evidence of the influence of the surface curvature an
of the molecular anisotropy has been shown. The prese
method can be extended to the case of low-symmetry poly
atomic molecules physisorbed on substrates of various g
ometries, by introducing higher-order multipolar effects.

APPENDIX: SUSCEPTIBILITY TENSOR „1…S„1…„r,r 1 ,v…

The susceptibility tensor(1)S(1)(r ,r1 ,v) of the dipolar
field can be derived from the linear response of a sma
spherical cavity to a fluctuating dipolem~v!,

E~rI ,v!51S1~r ,r1,v!m~v!, ~A1!

whereE(r ,v) is the response field of the cavity.
Using the boundary conditions at the surface and th

spherical tensor formalism, one obtains the susceptibility
tensor in the form

FIG. 3. van der Waals energy as a function of the radiusa, for
d56 a.u. andu5p/2. ~a! HF/Ag ~full line!, Al ~dotted line!, and Cu
~dashed line!. ~b! HCl/Ag ~full line!, Al ~dotted line!, and Cu
~dashed line!.
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1S1~r ,r1,v!5M ~u,w!(
n,m

@Dn~a,v!r n11#/a2n11O~1!Yn
m~u,w!Td

n,m~r1!, ~A2!
to

g

whereYn
m(u,w) is a spherical harmonic, andM ~u,w! is the

matrix of the transformation of spherical coordinates in
Cartesian coordinates:

M ~u,w!5S sinu cosw cosu cosw 2sinw

sinu sinw cosu sinw cosw

cosu sinw 0
D . ~A3!

The tensorsO(1) andTnm
d (r 1) in Eq. ~A2! are given by

O~1!5S n11,
]

]u
,2

im

sinu D , ~A4!

~Td
n,m!x5

bn

21/2
$C~1,n,n11,1,12m!Yn

m21~u1 ,w1!

2C~1,n,n11,21,212m!Yn
m11~u1 ,w1!%,

FIG. 4. van der Waals energy as a function of the polar an
U, for d56 a.u. anda560 a.u.~a! HF/Ag ~full line!, Al ~dotted
line!, and Cu~dashed line!. ~b! HCl/Ag ~full line!, Al ~dotted line!,
and Cu~dashed line!.
~Tn,m
d !y5

ibn

21/2
$C~1,n,n11,1,12m!Yn

m21~u1 ,w1!

1C~1,n,n11,21,212m!Yn
m11~u1 ,w1!%,

~A5!

~Tn,m
d !z5bn$C~1,n,n11,0,2m!Yn

m~u1 ,w1!%,

where

bn54pS n11

2n13D
1/2

r 1
2~n12!. ~A6!

SymbolsC are Clebsh-Gordan coefficients.
The reflection factorsDn(a,v), which contain the dy-

namical properties of the metallic cavity are given by

FIG. 5. Product of the van der Waals energy byd3, as a function
of the distance of approachd5a2R, for u5p/2 anda560 a.u.~a!
HF/Ag ~full line!, Al ~dotted line!, and Cu ~dashed line!. ~b!
HCl/Ag ~full line!, Al ~dotted line!, and Cu~dashed line!.
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Dn~a,v!5

na(
k,k8

Bk,nBk8,nJn~ka!Jn~k8a!En
21~k,k8,v!21

~n11!a(
k,k8

Bk,nBk8,nJn~ka!Jn~k8a!En
21~k,k8,v!11

, ~A7!

where

Bk,n5A2$@ j n~ka!2 j n21~ka! j n11~ka!#a3%21/2. ~A8!
G

oc

e

s-
E:

ys.

pt.
*Laboratoire de Physique des Lasers, Universite´ Paris Nord~Labo-
ratorie associe´ au CNRS, URA 282!, Av. J. B. Clement, 93430
Villetaneuse, France.

1E. Zaremba and W. Kohn, Phys. Rev. B13, 2270 ~1976!; 15,
1769 ~1977!.

2G. G. Kleiman and U. Landman, Phys. Rev. B8, 5484~1973!.
3G. Vidali and M. W. Cole, Surf. Sci.110, 10 ~1981!.
4I. Derycke, J. P. Vigneron, Ph. Lambin, A. A. Lucas, and E.
Derouane, J. Chem. Phys.94, 4620~1991!.

5C. Girard, B. Labani, and J. M. Vigoureux, Surf. Sci.222, 259
~1989!.

6B. Labani, C. Girard, D. Courjon, and D. van Labeke, J. Opt. S
Am. B 7, 936 ~1990!.

7X. Bouju, C. Girard, and B. Labani, Ultramicroscopy42, 430
~1992!.

8C. Girard, O. J. F. Martin, and X. Dereux, Phys. Rev. Lett.75,
3098 ~1995!.

9B. Labani, Ph.D. thesis, El Jadida~Maroc!, 1992.
10C. Girard and L. Galatry, Surf. Sci.141, L338 ~1984!.
11X. P. Jiang, F. Toigo, and W. M. Cole, Surf. Sci.145, 281~1984!.
12C. Girard and C. Girardet, Chem. Phys. Lett.138, 83 ~1987!.
13M. Goy, J. M. Raimond, J. M. Gross, and S. Haroche, Phys. R

Lett. 50, 1953~1983!.
14G. Gabrielse and H. Dehmelt, Phys. Rev. Lett.55, 67 ~1985!.
15S. I. Kanorsky and A. Weis, inQuantum Optics of Confined Sy

tems, Vol. 314 of NATO Advanced Study Institute, Series
.

.

v.

Applied Sciences, edited by M. Ducloy and D. Bloch~Kluwer,
Dordrecht, 1995!, p. 367.

16S. Berthier, inOptique des Milieu Composites~Edition Polytech-
nica, Paris, 1993!, p. 78.

17T. W. Ebbessen and T. Takada, Carbon33, 973 ~1995!, and ref-
erences therein.

18V. V. Klimov, M. Ducloy, and V. S. Letokov, J. Mod. Opt.43,
549 ~1996!.

19M. Fleischman, P. J. Hendra, and A. J. McQuillan, Chem. Ph
Lett. 26, 123 ~1974!.

20A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, O
Lett. 5, 368 ~1980!.

21C. Girard and C. Girardet, J. Chem. Phys.86, 6531~1987!.
22C. Girard, S. Maghezzi, and F. Hache, J. Chem. Phys.91, 5509

~1989!.
23B. Labani, C. Girard, and S. Maghezi, Mol. Phys.69, 85 ~1990!.
24A. M. Marvin and F. T. Toigo, Phys. Rev. A25, 782 ~1984!.
25D. M. News, Phys. Rev. B1, 3304~1970!.
26W. Ekardt, Surf. Sci.152, 180 ~1985!; Phys. Rev. B29, 1558

~1984!.
27C. Girard and F. Hache, Chem. Phys.118, 249 ~1987!.
28C. Girard, C. Girardet, and B. Silvi, Chem. Phys.125, 261

~1988!.
29R. Fuchs and F. Claro, Phys. Rev. B35, 3722~1987!.
30R. Rojas, F. Claro, and R. Fuchs, Phys. Rev. B37, 6799~1988!.


