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Adatom-step interactions: Atomistic simulations and elastic models
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We derive an analytical expression for the interaction energy between an adatom and a step within the
framework of linear elasticity. There are two unknowns in this theory: the strength of the elastic fields
associated with the adatoms and the strength of the fields associated with the steps. In order to determine these
parameters independently, we perform a series of atomistic simulations of a square lattice of Ni adatoms and
a regular array of steps on the nomii@01) Ni surface using embedded-atom method potentials. The results
are shown to yield good agreement with elastic theory. Fitting these simulations to the theory allows us to
determine the adatom and step strengths. These results are then used to predict the step-adatom interaction
energy. Atomistic simulations of a surface with a periodic array of steps interacting with an adatom are
performed and compared with the predictions of the elastic theory with no adjustable parameters. A compari-
son of simulation and theory shows that the step-adatom interactions are dominated by dipole-dipole interac-
tions, but that higher-order terms can also be significant. However, the absolute magnitude of the step-adatom
interaction energy show significant errors. We believe that these errors are associated with the neglect of
anisotropic effects in the elastic analysis used to extract that adatom dipole stf&@Ji63-182@07)05607-5

[. INTRODUCTION vicinity of defects give rise to charge redistribution and
therefore electrostatic forces between the deffc®oth
Interactions between adsorbed atoms as well as intera@datoms and surface steps distort the underlying substrate,
tions with other types of defects on metallic surfaces havéhereby setting up long-range elastic fields. The interaction
been widely studietlbecause of the importance of this prob- between the elastic fields of these defects cause long-range
lem for the understanding of epitaxial crystal growth anddefect-defect interactions. Although it is generally not pos-
surface morphology evolution proceséeRecently devel- Sible to separate these two mechanisms from each other, un-
oped microscopy techniques have made it possible to makéerstanding each of these individually will help clarify the
direct observations of interacting adatoms and surface tepdlature of defect-defect interactions on surfaces. In the
However, despite this prolonged interest, the fundamentaresent paper, we focus on the elastic interactions.
nature of these interactions is still not fully understood. In  Although the detailed elastic fields associated with sur-
the present paper, we examine the long-range interactioridce defects may be very complex and are spread over a
between adatoms and between adatoms and steps on a sfifite area of the surface.g., an adatoiat distances much
face using both atomistic computer simulation and elasti@reater than the spatial extent of the defect the elastic distor-
theory_ Such a two_pronged approach is necessary to e|u&i.0ns of the Underlying solid can be thought of as if created
date these long-range interactions since they are, in pay @ point source of tractions on the flat surfélieear trac-
elastically mediated by the substrate and because the detail@ns in the case of a linear defecTherefore, it is possible
interactions between an adatom and the substrate are not dé-replace the actual defect by point or line tractions on the
scribed by the elastic theory. free surface and study the interactions between these defects
It is possible to distinguish between two regimes of theDy means of continuum elastic theory. In the present paper,
interaction between surface steps and adatoms. The first on&€ explicitly consider the case of a semi-infinite solid, which
which is observed when the distance between an adatom aM¢ model as an elastic half space occupying the regied,
a step is of the order of a few atomic diameters, has beefuch that steps or adatoms on a surface are=8t Without
studied both theoreticalfyand experimentally.It has long  l0ss of generality, we will assume that steps run in yhe
been known that the presence of a step creates a diffusighrection and an individual adatom is at the origin of the
barrier (so-called Shwoebel barrijethat prevents adatoms coordinate system.
from migrating from an upper terrace to a lower terrace, A model of surface steps in terms of surface tractions was
across a stepThis phenomenon, as well as adatom diffusionProposed by Marchenko and ParshinThey suggested that
along the step, has been studied using atomistic statife elastic field of a step is the same as that of an array of
relaxatiod and molecular-dynami€simulation methods, as force dipoles uniformly distributed on the surface along the
well as by analyzing experimentally observed distribution ofStep line or, alternatively, a linear force dipole. The tractions
adatoms near the edge of an individual ﬁep T, tnerEfore, are independent of the Coordir}am the sur-
The second regime can be described as an interaction pace
tween defects that are fdmany atomic diametersapart T —-Ds' 1
from each other. These interactions are mediated by the un- sied P) = ), @
derlying substrate. There are two distinct origins of this long-where p is the shortest vector that connects a point on the
range interaction.Perturbations of electronic structure in the surface to the step andl(y) is the derivative of the delta
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function with respect to its argument. The direction and magelastic field associated with any distribution of surface trac-
nitude of the dipole vectob depend on the surface orienta- tions may be found by convoluting the tractions with the
tion and the material under investigation. The validity of elastic surface Green’s tens@rappropriate to the underly-
Marchenko and Parshin’s hypothesis was verified in a numing medium:

ber of papers via thel?nalysis of the interaction energy of

fsilar?d"_?“r parallel stepg!® and the actual step displacement U(p,Z):j dp'T(p")G(p—p',2), 3)

. Su;faCfStrailgtlons S|mulatf|r]1(g an e}[gato:jn ;/vere Corls'der?g/herez is the coordinate normal to the surface. The energy
In Refs. 15-17 as a sum of forces the adatom exerts on It inieraction between two defecE,,; may be determined
neighboring atoms in the underlying solid. Since each com%g a simple virtual work argument: i.e., it equals the force

ponent of the force must, on average, be zero and becau action) due to one defect times the displacement field of
they are central forces, they can be replaced by a force dlthe other

pole. These tractions can, in general, be described by a sym-
metric dipole force tensoh ,,, Eine=5(T1uy+Touy), (4

whereT;u; is the product of the surface displacement due to
o(p), m,v=XY, (2 defectj evaluated at the position of defdcand the traction
due to defect. Using Eq.(3) and the reciprocal theorem;
which is isotropic on a high-symmetry surface: T,=u,T,, Eq. (4) may be rewritten as
A,,=As,, *®The component of the traction perpendicular

to the surface was neglected since it results in terms that are o , / I
higher order than dipole. Emt‘f f dp dp'T(p)T(p")G(p—p',z=0), (5

of gﬂgidilllggs;rr]f?aciatfggt%ﬁ?srr;zt:n ?;;:;ﬁa?;t]e;ig] g?rgésryvhere the double integral is evaluated over the entire surface.
P PP 9 For an isotropic medium, the surface elastic Green’s func-

order terms in the expansion of the elastic field in terms oftion G is known in closed fornt® If we model the traction

n:‘;'“.'?%f.znn}?r/ tgi ]'c.rgr:jogfagt'rf;::f (;Zlf?ec(:; Zggtnc:pggtsaﬁ; distribution of an adatom as two perpendicular, in-plane sur-
proximat : u 9 Face force dipoles, the elastic interaction between adatoms as

finite extent of the true surface defect “coréie., the region . . : : :
in which the deformation cannot be described solely by lin-2 function of their separatiod, may be obtained directly

A1
ear elasticity. This nonlocality of the source of tractions from Eq. (5):
may also result in the appearance of higher-order “multi- (1—v?) A?

ad__ o
mE dy’

T adatork P) =A,uv ﬁ

poles,” which may be important. Nonelastic interactions Eint= (6)
may also be important at small defect separatmg., direct
bonding interactions Nonetheless, this line dipole approxi- whereE and v are Young’s modulus and Poisson’s ratio of
mation has proven to be adequate for modeling the elastithe medium andA is the strength of the force dipole. The
interactions between parallel surface steps for step separimteraction between like adatoms is isotropic, repulsive, and
tions larger than three atomic spacings in'fi. decays as the cube of the reciprocal separation.

In the present paper, we examine the elastic interaction of The energy associated with the interactions between an
a Ni adatom with &001) step on a{100; Ni surface, de- adatom and a surface step can be obtained from&qln
scribed using an empirical interatomic potential. Our objec+this case, it is convenient to rewrite E@) using the recip-
tive is to determine the appropriateness of the dipole elastimcal theorem as
model for describing the adatom-step interaction at large
separation and to parametrize the elastic model using results Eint= T adatorMstep- (7)
from the atomistic simulation. We begin by performing ato-

L . i The elastic field of a step on the surface of an isotropic
mistic simulations of a square lattice of adatoms. The resultﬁ1edium is well known and is described in detail in Ref. 20
of these simulations are analyzed in terms of continuum ela T o

- ) Sthe displacements decay away from the step as 1/r. In the
ticity so that we may extract the magnitude of the force dl'isotropic case, the in-plane and out-of-plane components of

ploletA ?jf an *’?‘dt"?‘tom*;\;]ef‘.’ef as ?n mtg)utt into the c%ntlnuum the displacement vector are decoupled at the surface, i.e., the
elastic description of the intéraction between an adatom an ut-of-plane component of the force dipdlecreates no in-

a <OO]?> tstgp._;he Tagn|tudebtof thg:_lmear fol'rces%pcibe plane component of the vectag,,and vice versa. Since the
associated with a step was obtained in an earlier sttiyje out-of-plane component of the surface tractions associated

then perform a series of atomistic simulations in which We,ith the adatom are higher order than dipole, we neglect

vary the adatpm-step separation in ord_e_r to determine th em. Therefore, we only need to consider the in-plane com-
adatom-stgp Interaction energy. Combmmg the resultg %onent of the displacement field of the step in EQ. The
these stqd|es, we mgke a critical comparison of the atomisti ependence oF,, on the distance between a step and an
and continuum elastic results. adatomd, is obtained by replacing the dipole tractions asso-
ciated with the adatom with its representation as a derivative

Il. ELASTIC ANALYSIS of a & function[see Eq(2)]:
The energy associated with the interaction of any two 2(1— %) DA
surface defects can readily be obtained once their corre- padst X (8)

. R . . . K X int 7E d2 .
sponding surface traction distribution is determined. The 0
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(a) similarity of the displacement field created by a surface mul-
tipole is a consequence of the homogeneity of the underlying
S elastic equation of equilibriurtf
o S
X / I1l. SIMULATION METHOD

In the present study, two independent series of atomistic
simulations were conducted. In order to determine the mag-
nitude of the elastic force dipok of an adatom on th€001}

Ni surface, we performed a series of simulations of a regular
(square lattice of adatoms on the otherwise fl@01} surface
of Ni at several nearest-neighbor adatom separatriche
(b) geometry of the computational cell used in these simulations
is shown in Fig. 1a). The periodically repeated simulation
cell consists of a square unit cell on tf@&01) surface, with
one adatom placed at its center. The adatom nearest-neighbor
separatiorS was varied in the rangeay—22a,, wherea, is
15a the equilibrium face-centered-cubic Ni lattice constartt.
denotes the depth of the computational cell inzhdrection.
At distances below= h, all atoms were fixed in their perfect
crystal lattice positions.

Next, we performed a series of atomistic simulations of a
b periodic array of adatoms on a vicinal surface consisting of
[001] monoatomic height steps an@0l) terraces. Several
J simulations were performed as a function of step—nearest-

[ g

adatom spacingd, for the geometry shown in Fig.(d). In
] particular, we examineday=<d,=<9.5a, for adatom separa-
tions of 198, in the direction parallel to the steps alndh the
direction perpendicular to the steps. The interstep separation
FIG. 1. Geometry of the simulation cells used to determine tthaS also fixed ab= 50a0 In all cases, the Separa’uon be-

(a) adatom-adatom interaction strength and (jestep-adatom in-  yyeen adatoms and between adatoms and non-nearest steps

teraction strength. In both cases, periodic boundary conditions argye assumed to be sufficiently large such that their mutual

imposed in thex andy directions. interactions are predominantly elastic in nature. In practice,

all of the periodicities are imposed by the application of

periodic boundary conditions in thex0and 0Y directions.

The interatomic interactions were modeled by the
embedded-atom meth@g@AM) potentials proposed by Daw
and Baskes in Ref. 22. In this approach, the total energy of
he system may be written in terms of two distinct terms: the
irst is a pairwise interactiop (which is mainly repulsive
and the second is an on-site “embedding” eneFgywhich
? a functlon of pairwise contributions from other atomic

Whether this interaction is repulsive or attractive is deter-
mined by the signs of botA andD, . Both these quantities
can only be determined microscopically, i.e., in terms of the
local atomic interactions in the core of each defect. The inS
teraction energy within the linear elastic and dipole apprOX|-
mations is symmetric with respect to whether the adatom i
on the upper or the lower terra¢m the left or right of the
step in Fig. 1(b). This is because the in- and out-of-plane ;
components of the step force dipole and its dlsplacemer{
field are decoupled in this approximation.

The interaction energy between surface defects, which are
each described in terms of a multipalderivatives of as
function), is inversely proportional to some power of their
separatiord,.?! Increasing the number of terms one uses in
the multipole expansion of the defect surface traction addsierer;; is the distance between atomandj andN is the
additional terms in the defect interaction energy that are ofotal number of particles in the systef, ¢, andp are em-
higher order(i.e., higher powers of the inverse defect sepa-pirical functions chosen to fit certain thermodynamic param-
ration 1H,) to the lowest-order description of the defect- eter of a perfect Ni crystdllattice constant, vacancy forma-
defect interaction enerde.g., Eqs(6) and(8)]. In the cases tion energy, universal binding energy curve, and elastic bulk
of step-adatom and adatom-adatom interactions consideredodulusg. Analytical expressions for these functions can be
here, the leading-order term in the expansion of the surfacound in Ref. 23.
tractions is of second ordei.e., dipolg. Therefore, the The equilibrium configuration of the system was deter-
leading-order termi.e., smallest power of @) in the sur- mined by minimizing the total enerdy¥eq. (9)] with respect
face defect-defect interactions will always be a associatetb the positions of all of the atoms. This minimization was
with dipole-dipole interactions. This effectively prohibits the performed using the conjugate gradient metfib@his mini-
appearance of a term linear ind}/in Eq. (8) and terms mization procedure was stopped when the residual force on
linear or quadratic in B, in Eq. (6). This same conclusion all atoms was less than or equal to 2@&V/a,. This corre-
holds in the anisotropic elasticity case as well, since the selfsponds to a relative error in the determination of the total

N N
Emta—%Ej ¢<rij>+2i F ; p(rij)]. (9)
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energy of 107 for a lattice of adatoms and 18in the step-
adatom simulations. In order to ensure that the perfect crystal
to which the finite-size simulation cell was matchedzath

had no influence on the adatom-adatom interaction energies,
h was increased until the interaction energies did not change
to the desired precision. In the step-adatom interaction simu-
lations, h was fixed at 12.&,. This depth is greater than the
largest step-adatom spacing examined.

IV. RESULTS AND DISCUSSION

A. Interactions between adatoms

L. E. SHILKROT AND D. J. SROLOVITZ
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In the present study, we perform atomistic simulations of (@
adatom-adatom interactions in order to determine the magni- 35
tude of the adatom force dipoke, which sets the magnitude o« .~
of the adatom-adatom interactions energy within the elastic 28 |- - -
theory [Eqg. (6)]. The present simulations were performed e
using a square lattice of adatoms on {A61) surface of Ni.

In order to analyze these simulation results, we must first
extend Eq.(6) in order to determine an expression for the = _,, | v _
interaction energy associated with a square lattice of ada- X -
toms. The interaction energy per adatom in the square lattice ;L >

of adatoms is e

o (BEV)
4

(1— %) A?
7E d_f”

1.00x10°

(10) (b)
whereE; is the energy of the interaction of an adatom at the FIG. 2. Adatom-adatom interaction energies for adatoms on the
origin with the ith adatom[Eq. (6)] and d; is the adatom (001) surface of EAM Ni versuga) the inverse nearest-neighbor
separation. The factor of one-half in EG.0) may be traced ~adatom separation§™* and (b) 3the inverse cube of the nearest-
to Eq. (4) and the reciprocal theorem. Rewriting E@0) in neighbor adatom separatioi® °. The dashed line ira) corre-

the square lattice yields in (b) corresponds to Eq13), where we have used only tiAg term

in the n,,,=4 fit in Table 1.

m,n

pad_ 1(1- v?)
i =

int— 2

1 K (1—v?) A? _ _ _ _ .
(m2+n2)3’2:§ L determined using the same interatomic potential, as de-

scribed in Ref. 25E,4 was determined by extrapolating a
plot of E;—Epux—Esui Versus the cube of the inverse ada-

(11)
whereS is the period of the nearest-neighbor adatom spacing®m spacing to B°=0, sinceEf must go to zero as $/.

in the lattice and the summation is over all adatgmeclud-  Using these parameters, we pBfi=E o~ Epyk—Esur—Ead

ing the origin. We denote the summation in Eq.1) asK  VersusS * andS™* in Figs. 2a) and 2b), respectively, for
and find thatk ~9.03. Equation11) provides an analytical 88p=S<23a,.

basis that we can use to extract the magnitude of the adatom In order to evaluate the accuracy of the elastic force di-
force dipoleA from the simulation results. pole model for adatom interaction, we fit the data presented

In the atomistic simulations of adatom-adatom interacdn Fig. 2@) to the functional form

tions, we determine the total energy for one unit cell of the N
square lattice of adatoms as a function of the adatom spacing gad— 3
S. The total energy per cell consists of four terms it =

A2
s

An
=k (13
where theA, are fitting constants. This functional form was
chosen because it represents a multipole expansion of the
The first termE,,. corresponds to the bulk energy, which is adatom interaction energy. This sum start1at3 because
the product of the energy of an atom in a perfect crystal aneh=3 corresponds to the lowest-order adatom interaction, i.e.,
the number of atoms in the computational cell. The surfacalipole-dipole interactions as discussed above. The higher-
energyE,, is the energy per unit area of the surface timesorder terms in Eg.(13) represent dipole-quadropole,
S2. The third termE 4 is the difference in energy between an quadropole-quadropole, etc., terms in the expansion. Table |
infinite surface with and without a single adatom. Finally, theshows the results of this fit for the casgs, =3 and 4. The
adatom interaction enerdy29 corresponds to the interaction data were not sufficiently precise to allow the meaningful
between one adatom and all other adatoms in the adatoextraction of higher-order multipoles. Table | shows that the
lattice, as per Eq11). Ey, is simply the sublimation energy third-order (dipole-dipolg term is dominant for

of Ni, which is an input parameter used to determine theS>A,/A;=10.3 A; nonetheless, the fourth-ordédipole-
EAM potential used in these studies. The surface energy waguadropol@term is very significant for the range 8fexam-

Etot= Epuikt Esurrt Eagt Eia;g' (12
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TABLE I. Parameters describing adatom-adatom interactions omlefect are directed outwatdorresponding to compression at
a (100 surface of EAM Ni, obtained by fitting the data in Figa2  the surfacg leading us to assign a negative value to the force
to the functional form in Eq(13). The series expansion describing dipole strength.
these interactions was terminated after one térp,=3) and after The value of the adatom, surface force dipole strength can
two terms(Nya=4). now be used to evaluate the continuum elastic results for the
interaction energy of adatoms and other types of surface de-

3 4
Nimax As (eV A% As (eV AY) fects with a known surface displacement field. In the next
Ninen=3 0.53 subsection, we analyze the elastic interactions between Ni
Moo= 0.34 3.4 adatoms and100 steps on th¢001} nickel surface.

B. Step-adatom interactions

ined here(8ay=<S<22a,, 8,=3.52 A). The dominance of The elastic interaction energy between a nickel adatom

fche dipo_le-dipole term may also be seen by fitting the adaton&nd a(100) step on thg00L surface can be estimated with
interaction energy data to the general form the aid of Eq.(8). However, before proceeding with this
analysis, we first investigate the effects of the significant
pad_ & (14) elastic anisotropy of Ni.
it g« An anisotropic elastic analysis of the displacement field of
a (100 step on thg001} surface was carried out in Ref. 14.

The resulting fit yieldsa=3.34+0.01, which again shows The in-plane component of the displacement field of a step in
that while the leading-order interaction is dipole-dipole, theihe dipole approximation was shown to be

higher-order terms are significant and cannot be omitted.
Although the present results represent a strong argument us®=—D,/7Ld,, (16)

in favor of the dipole mode[Eg. (11)], a non-negligible ] ) .

deviation exists. This deviation may be traced to several facvhereDy is the magnitude of the in-plane component of the

tors. First, the present surface force description of the elastigtep force dipoled, is the distance from the step, ahdis

field of an adatom ignores the fact that the adatom can intethe anisotropic version of the fact&/[2(1—+?)] that appears

act directly with some of the atoms below the surface. In thdn the isotropic expression, Eq8). The expression for

present EAM simulations, atomic interactions extends td- involves a combination of all three elastic constant of a

third-nearest-neighbor shells. Incorporating these finite€ubic crystalCy;, Cyp, and Cyy, and its numerical value

extent interactions into the continuum theory would lead intofor the <100>14step on the{OO]}' surface Qf EAM mc;kel is

higher-order terms in the multipole expansion. 0.627 eVIR. For a step of this orientation, the anisotropic
Another possible explanation of the deviation of the ada-£lastic correction to the adatom/step interacfigg. (8)] be-

tom interaction results from the predictions of the dipoleCOMes

model is associated with neglecting out-of-plane components 1 DA

of the surface force. Such out-of-plane forces must, by sym- S S (173

metry, be represented only by even functions. Hence the "oowl o dy

lowest-order term in the out-of-plane surface force must cor

respond to the second derivativegsdunction, which corre-

sponds to a quadropole surface force. This justifies the ap-

where

C44( Cll_ Clz)

pearance of a fourth{and higher} order term in the L= (17b)
multipole expansion described by E4d4). C11Cus C11Cus
We can use the results of the dipole model and the atom- +
Cut+Co C1t+Co

istic simulations to determine the magnitude of the atomic

force dipoleA. Comparing Egs(11) and(13) in the dipole and H is the elastic anisotropy of the cubic
limit [i.e., Npa=3 in Eq. (13)], we obtain the following re-  crystal: H=C;;— C;,—2Cy,.

lationship betweer\; and the atomic force dipolA: In an earlier atomistic simulation stud§we found that
the magnitude of the in-plane component of the step force

27E 12 dipole D, is equal to—0.15 eV/A.(There is a difference in
= (1-9K As (15 sign with Ref. 14 associated with the handedness of the co-

ordinate system.Combining this result, the magnitude of the

Using the data in Table | fon,,,,=4, we obtain an estimate surface dipole strength associated with the adatom, and Eq.
for the numerical value oA: A=0.62 eV. In this calculation, (17) yields the adatom-step interaction energy with no ad-
we used the isotropic elastic constaitsand » appropriate  justable parameters. Therefore, we can use this result to di-
for the EAM potential for Ni used in the present simulations.rectly analyze the adatom/step interactions found in the ato-
These elastic constants represent the Voigt average of thremistic computer simulations. Using the independently
anisotropic cubic elastic constants. determined defect strength#A<0 and D,<0), the step/

Equation(15) gives only the absolute value of the force adatom interactiongEq. (17)] are repulsive and are symmet-
dipole A. Its sign(i.e., whether the dipole exerts a compres-ric with respect to the position of an adatom about the step.
sive or a tensile stress on the surfages determined by This same conclusion was found in the isotropic lifitg.
analyzing surface atomic displacements in the vicinity of the(8)] as well. Corrections to Eq17) may result from terms
adatom. Displacements of atoms closest to the center of tHagher than dipole in the expansion of the surface tractions
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simulating either and/or both of the defects. These correc-

tions will be terms including cubic and higher powers of the
reciprocal distancé, between a step and an adatom.

The presence of the periodic boundary conditions in the
atomistic simulations prevents us from directly applying Eq.

(17) to the simulation data. Fortunately, we can rederive Eq

(17) for the case of an adatom interacting with a periodic

array of steps results:

71_2

b2sir?

ad-st_
Eint -

DA
p— (18)

al’
b

whereb is the interstep spacing in the computational cell.
The next-higher-order term
step/adatom interaction will transform into a term propor-

tional to
7r3cos< —)

b
—
b3sirf| = °)

b

’ﬂ'do

The results of the simulations for both the upper and th

lower terraces of the step were fitted to the functional form

d
o med
E3dst, 4B T (19
bzsinz(% b%i@(%)

where B; and B, are fitting constants. There is an uncer-
tainty, of order of the size of the core of the step, as to whic

point corresponds to the appropriate origin of the coordinat?.'

system. For the sake of simplicity, we measudgdrom the
adatom position to the step along the terrace. In other word
for adatoms on the upper terrackis measured to the top of
the step, and on the lower terrackis measured to the bot-
tom of the step.

The dependence of the step-adatom interaction energy qa,

step-adatom separatialy for adatoms on both the upper and

shown in Fig. 3. Over the range of step-adatom separatio
considered here @,<d,<9.5a,) with an interstep separa-

tion fixed atb=50a,, the step-adatom interaction energy
decays monotonically. This figure also shows that there is

lower terraces, obtained from the atomistic simulations, irsgt

adatoms on the upper and lower terraces. This difference is

largest at small separations and becomes negligibithin
the numerical errgrat large separations. At small separa-

in the expansion of the
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FIG. 3. Step-adatom interaction energy for the case (fF0d)
surface with[100] steps in EAM Ni. The data indicated by the
squares and triangles correspond to adatoms on the terraces imme-
diately above and below the step, respectively. The dashed line is
calculated according to E¢18) with no adjustable parameters. The
solid lines correspond to the best fit of the data to @§).

lower terraces deviate from each other in regions of small
step-adatom separation. The large differences in the third-
order term in the expansion of the step-adatom interaction

?Eq. (19)] are due, in part, to the antisymmetry of the out-

of-plane (vertica) component of the displacement field of
the step. This antisymmetry only enters the dipole-
quadropole and higher-order terms since the leading-order
term in the out-of-plane surface force of the adatom is qua-
dropolar, while that of the step is dipolar. Normally, we
would expect that these terms would lead to opposite signs
of B, on the upper and lower terraces. However, there are
also other dipole-quadropole terms present associated with
igher moments of the in-plane force distribution and the
on-point-like spatial distribution of those force distribu-
tions. In the range of separations presented in Fig. 3, the

Tontribution to the interaction energy of these third-order

terms is approximately 5% for the upper terrace and 20% for
the lower terrace.

Figure 3 also shows a comparison of the step-adatom in-
action energies determined from the simulations with
those predicted by the elastic theawhere we have inde-
endently determined all of the paramejeiBhe predicted
ep-adatom interaction energy and those from the simula-
tions show very nearly the same separatidg) dependence.
This suggests that the dipole surface force model for step-

) . ) : Adatom interactions is valid. However, the simulation results
difference between the step-adatom interaction energies f%[

re shifted to higher step-adatom interaction energies as

TABLE II. Parameters describing the interactions between a

tions, the adatom-step repulsion is larger on the upper tef100] step on 100 surface and an adatom. These parameters were

race.

Table Il shows the results of the determination of the
parameter8, andB, in Eq. (17) by fitting to the simulation
data in Fig. 3. The values of the dipole-dipole coefficiBit

obtained by fitting the data in Fig. 3 to the functional form in Eq.
(19). The data point labeled “elastic theory” was obtained from Eq.
(18) using the dipole strengths determined from simulations based
on isolated defects.

determined from the simulation data for the upper and lower

terraces, are in good agreeméirg., B;=112+13%). On the

other hand, the values corresponding to the dipoleelastic theory

guadropole coefficienB, differ by approximately 300% and
are both attractivénegative. This deviation can also be seen

B; (meVA?) B, (meVAd) ¥
46.9
upper 99.3 —-109.9 3.6510°°
lower 124.5 —837.4 5.8%10°°

in Fig. 3, where the two curves representing the upper and
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compared to the theoretical predictions by approximately a V. CONCLUSION
factor of 2.5. We believe that the error here is primarily
associated with the neglect of the elastic anisotropy in treat- We derived an analytical expression for the interaction
ing the elastic field of the adatom. Inclusion of this anisot-energy in the framework of linear elasticity. There are two
ropy is expected to significantly increase the value of theunknowns in this theory: the strength of the elastic fields
adatom dipole strength. associated with the adatoms and with the steps. In order to
In the dipole approximation to the elastic field of an ada-getermine these parameters independently, we performed a
tom, the isotropic elastic theory predicts that an adatom progeries of atomistic simulations of a square lattice of Ni ad-
duces an elastic displacement field that is independent of thﬁoms on the(001) Ni surface using EAM potentials. The
angle in the plane of the surface and decays away from g,q it were analyzed in terms of a dipole model for an ada-
dipole as the square of the reciprocal distaige In this tom and were shown to be in good agreement with the elastic

approach, the adatom-adatom interaction energy is isotrop L X .
and the adatoms repel each other. The presence of eIasIE%eory' By fitting these simulations to the theory we were

anisotropy significantly modifies these results. Whiledfé able to extract the magnitude of the force dipole of an ad-
self-similarity of the interaction energ{Eq. (6)] is pre- atom. In a_separate study, we used the same gene.ral approach
served, the magnitude of the energy itself and even its sigH? determme the magnitude of the surface force dipole asso-
may show a pronounced dependence on the orientation of itrdated with a surface step. These defect strengths were used

vector connecting an adatom to another adatom with respeE? predict the elastic interaction energy between a Ni adatom
to the crystallographic axis of the materfl. and a(001) step on the same surface. Atomistic simulations

Dobrzynski and Maradudiﬁ obtained an expression for of a surface with a peI’iOdiC al’ray of Steps interacting with an
the Fourier transform of the anisotropic elastic surfaceadatom were performed and compared with the predictions
Green’s function and derived the Green’s function itself forof the elastic theory with no adjustable parameters. A de-
the case of the free surface parallel to the basal plane itRiled comparison of the simulation and theoretical result
hexagonal crystal. No similar closed-form expression washowed that the step-adatom interactions were dominated by
found for the case of a crystal with cubic symmelthyJsing  dipole-dipole interactions, but that higher-order terms can
the approach followed in Ref. 16 and numerical evaluatioralso be significant in the range of adatom-step separation
of the necessary integrals, L8womputed the angular de- studied here. However, the absolute magnitude of the step-
pendence of the interaction energy of a pair of Xe adatomadatom interaction energy showed that there were significant
on the (001) faces of a number of fcc metals, including errors. We believe that these errors are associated with the
nickel. His results show that the interaction energy has geglect of anisotropic effects in the elastic analysis used to

fourfold symmetry: It is large and repulsive f¢t10) ori-
ented adatom pairs and weak and attractive (k@¥0) ori-
ented adatom pairs.

with a pair of adatoms in the form of a rapidly converging

extract that adatom dipole strength.

Kappus used an eigenfunction
approach® to determine the interaction energy associated
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