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Adatom-step interactions: Atomistic simulations and elastic models

L. E. Shilkrot and D. J. Srolovitz
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

~Received 6 June 1996!

We derive an analytical expression for the interaction energy between an adatom and a step within the
framework of linear elasticity. There are two unknowns in this theory: the strength of the elastic fields
associated with the adatoms and the strength of the fields associated with the steps. In order to determine these
parameters independently, we perform a series of atomistic simulations of a square lattice of Ni adatoms and
a regular array of steps on the nominal~001! Ni surface using embedded-atom method potentials. The results
are shown to yield good agreement with elastic theory. Fitting these simulations to the theory allows us to
determine the adatom and step strengths. These results are then used to predict the step-adatom interaction
energy. Atomistic simulations of a surface with a periodic array of steps interacting with an adatom are
performed and compared with the predictions of the elastic theory with no adjustable parameters. A compari-
son of simulation and theory shows that the step-adatom interactions are dominated by dipole-dipole interac-
tions, but that higher-order terms can also be significant. However, the absolute magnitude of the step-adatom
interaction energy show significant errors. We believe that these errors are associated with the neglect of
anisotropic effects in the elastic analysis used to extract that adatom dipole strength.@S0163-1829~97!05607-5#
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I. INTRODUCTION

Interactions between adsorbed atoms as well as inte
tions with other types of defects on metallic surfaces h
been widely studied1 because of the importance of this pro
lem for the understanding of epitaxial crystal growth a
surface morphology evolution processes.2 Recently devel-
oped microscopy techniques have made it possible to m
direct observations of interacting adatoms and surface ste3

However, despite this prolonged interest, the fundame
nature of these interactions is still not fully understood.
the present paper, we examine the long-range interact
between adatoms and between adatoms and steps on a
face using both atomistic computer simulation and ela
theory. Such a two-pronged approach is necessary to e
date these long-range interactions since they are, in p
elastically mediated by the substrate and because the det
interactions between an adatom and the substrate are no
scribed by the elastic theory.

It is possible to distinguish between two regimes of t
interaction between surface steps and adatoms. The first
which is observed when the distance between an adatom
a step is of the order of a few atomic diameters, has b
studied both theoretically4 and experimentally.5 It has long
been known that the presence of a step creates a diffu
barrier ~so-called Shwoebel barrier! that prevents adatom
from migrating from an upper terrace to a lower terra
across a step.6 This phenomenon, as well as adatom diffusi
along the step, has been studied using atomistic s
relaxation7 and molecular-dynamics8 simulation methods, as
well as by analyzing experimentally observed distribution
adatoms near the edge of an individual step.9

The second regime can be described as an interaction
tween defects that are far~many atomic diameters! apart
from each other. These interactions are mediated by the
derlying substrate. There are two distinct origins of this lon
range interaction.1 Perturbations of electronic structure in th
550163-1829/97/55~7!/4737~8!/$10.00
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vicinity of defects give rise to charge redistribution an
therefore electrostatic forces between the defects.10 Both
adatoms and surface steps distort the underlying subst
thereby setting up long-range elastic fields. The interact
between the elastic fields of these defects cause long-ra
defect-defect interactions. Although it is generally not po
sible to separate these two mechanisms from each other
derstanding each of these individually will help clarify th
nature of defect-defect interactions on surfaces. In
present paper, we focus on the elastic interactions.

Although the detailed elastic fields associated with s
face defects may be very complex and are spread ov
finite area of the surface~e.g., an adatom!, at distances much
greater than the spatial extent of the defect the elastic dis
tions of the underlying solid can be thought of as if crea
by a point source of tractions on the flat surface~linear trac-
tions in the case of a linear defect!. Therefore, it is possible
to replace the actual defect by point or line tractions on
free surface and study the interactions between these de
by means of continuum elastic theory. In the present pa
we explicitly consider the case of a semi-infinite solid, whi
we model as an elastic half space occupying the regionz.0,
such that steps or adatoms on a surface are atz50. Without
loss of generality, we will assume that steps run in they
direction and an individual adatom is at the origin of t
coordinate system.

A model of surface steps in terms of surface tractions w
proposed by Marchenko and Parshin.11 They suggested tha
the elastic field of a step is the same as that of an arra
force dipoles uniformly distributed on the surface along t
step line or, alternatively, a linear force dipole. The tractio
T, therefore, are independent of the coordinatey on the sur-
face

Tstep~r!5Dd8~y!, ~1!

wherer is the shortest vector that connects a point on
surface to the step andd8(y) is the derivative of the delta
4737 © 1997 The American Physical Society
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4738 55L. E. SHILKROT AND D. J. SROLOVITZ
function with respect to its argument. The direction and m
nitude of the dipole vectorD depend on the surface orient
tion and the material under investigation. The validity
Marchenko and Parshin’s hypothesis was verified in a nu
ber of papers via the analysis of the interaction energy
similar parallel steps12,13 and the actual step displaceme
field.14

Surface tractions simulating an adatom were conside
in Refs. 15–17 as a sum of forces the adatom exerts o
neighboring atoms in the underlying solid. Since each co
ponent of the force must, on average, be zero and bec
they are central forces, they can be replaced by a force
pole. These tractions can, in general, be described by a s
metric dipole force tensorAmn ,

Tadatom~r!5Amn

]

]xn
d~r!, m,n5x,y, ~2!

which is isotropic on a high-symmetry surfac
Amn5Admn .

11,18The component of the traction perpendicu
to the surface was neglected since it results in terms tha
higher order than dipole.

Modeling the elastic deformation of the material in term
of a dipole surface traction is an approximation since high
order terms in the expansion of the elastic field in terms
multipoles may be important. This line or point dipole a
proximation for the field of surface defects also neglects
finite extent of the true surface defect ‘‘core’’~i.e., the region
in which the deformation cannot be described solely by
ear elasticity!. This nonlocality of the source of traction
may also result in the appearance of higher-order ‘‘mu
poles,’’ which may be important. Nonelastic interactio
may also be important at small defect separation~e.g., direct
bonding interactions!. Nonetheless, this line dipole approx
mation has proven to be adequate for modeling the ela
interactions between parallel surface steps for step sep
tions larger than three atomic spacings in Ni.14

In the present paper, we examine the elastic interactio
a Ni adatom with â 001& step on a$100% Ni surface, de-
scribed using an empirical interatomic potential. Our obj
tive is to determine the appropriateness of the dipole ela
model for describing the adatom-step interaction at la
separation and to parametrize the elastic model using re
from the atomistic simulation. We begin by performing at
mistic simulations of a square lattice of adatoms. The res
of these simulations are analyzed in terms of continuum e
ticity so that we may extract the magnitude of the force
poleA of an adatom.A serves as an input into the continuu
elastic description of the interaction between an adatom
a ^001& step. The magnitude of the linear force dipoleD
associated with a step was obtained in an earlier study.14 We
then perform a series of atomistic simulations in which
vary the adatom-step separation in order to determine
adatom-step interaction energy. Combining the results
these studies, we make a critical comparison of the atom
and continuum elastic results.

II. ELASTIC ANALYSIS

The energy associated with the interaction of any t
surface defects can readily be obtained once their co
sponding surface traction distribution is determined. T
-
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elastic field associated with any distribution of surface tr
tions may be found by convoluting the tractions with t
elastic surface Green’s tensorG appropriate to the underly
ing medium:

u~r,z!5E dr8T~r8!G~r2r8,z!, ~3!

wherez is the coordinate normal to the surface. The ene
of interaction between two defectsEint may be determined
by a simple virtual work argument: i.e., it equals the for
~traction! due to one defect times the displacement field
the other

Eint5
1
2 ~T1u21T2u1!, ~4!

whereT iuj is the product of the surface displacement due
defect j evaluated at the position of defecti and the traction
due to defecti . Using Eq.~3! and the reciprocal theoremuT
T25u2T1, Eq. ~4! may be rewritten as

Eint5E E dr dr8T~r!T~r8!G~r2r8,z50!, ~5!

where the double integral is evaluated over the entire surf
For an isotropic medium, the surface elastic Green’s fu

tion G is known in closed form.19 If we model the traction
distribution of an adatom as two perpendicular, in-plane s
face force dipoles, the elastic interaction between adatom
a function of their separationd0 may be obtained directly
from Eq. ~5!:11

Eint
ad5

~12n2!

pE

A2

d0
3 , ~6!

whereE andn are Young’s modulus and Poisson’s ratio
the medium andA is the strength of the force dipole. Th
interaction between like adatoms is isotropic, repulsive, a
decays as the cube of the reciprocal separation.

The energy associated with the interactions between
adatom and a surface step can be obtained from Eq.~4!. In
this case, it is convenient to rewrite Eq.~4! using the recip-
rocal theorem as

Eint5Tadatomustep. ~7!

The elastic field of a step on the surface of an isotro
medium is well known and is described in detail in Ref. 2
The displacements decay away from the step as 1/r. In
isotropic case, the in-plane and out-of-plane component
the displacement vector are decoupled at the surface, i.e.
out-of-plane component of the force dipoleD creates no in-
plane component of the vectorustepand vice versa. Since th
out-of-plane component of the surface tractions associa
with the adatom are higher order than dipole, we negl
them. Therefore, we only need to consider the in-plane co
ponent of the displacement field of the step in Eq.~7!. The
dependence ofEint on the distance between a step and
adatomd0 is obtained by replacing the dipole tractions ass
ciated with the adatom with its representation as a deriva
of a d function @see Eq.~2!#:

Eint
ad st5

2~12n2!

pE

DxA

d0
2 . ~8!
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55 4739ADATOM-STEP INTERACTIONS: ATOMISTIC . . .
Whether this interaction is repulsive or attractive is det
mined by the signs of bothA andDx . Both these quantities
can only be determined microscopically, i.e., in terms of
local atomic interactions in the core of each defect. The
teraction energy within the linear elastic and dipole appro
mations is symmetric with respect to whether the adatom
on the upper or the lower terrace~to the left or right of the
step! in Fig. 1~b!. This is because the in- and out-of-plan
components of the step force dipole and its displacem
field are decoupled in this approximation.

The interaction energy between surface defects, which
each described in terms of a multipole~derivatives of ad
function!, is inversely proportional to some power of the
separationd0.

21 Increasing the number of terms one uses
the multipole expansion of the defect surface traction a
additional terms in the defect interaction energy that are
higher order~i.e., higher powers of the inverse defect sep
ration 1/d0! to the lowest-order description of the defec
defect interaction energy@e.g., Eqs.~6! and~8!#. In the cases
of step-adatom and adatom-adatom interactions consid
here, the leading-order term in the expansion of the surf
tractions is of second order~i.e., dipole!. Therefore, the
leading-order term~i.e., smallest power of 1/d0! in the sur-
face defect-defect interactions will always be a associa
with dipole-dipole interactions. This effectively prohibits th
appearance of a term linear in 1/d0 in Eq. ~8! and terms
linear or quadratic in 1/d0 in Eq. ~6!. This same conclusion
holds in the anisotropic elasticity case as well, since the s

FIG. 1. Geometry of the simulation cells used to determine
~a! adatom-adatom interaction strength and the~b! step-adatom in-
teraction strength. In both cases, periodic boundary conditions
imposed in thex andy directions.
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similarity of the displacement field created by a surface m
tipole is a consequence of the homogeneity of the underly
elastic equation of equilibrium.16

III. SIMULATION METHOD

In the present study, two independent series of atomi
simulations were conducted. In order to determine the m
nitude of the elastic force dipoleA of an adatom on the$001%
Ni surface, we performed a series of simulations of a regu
~square! lattice of adatoms on the otherwise flat$001% surface
of Ni at several nearest-neighbor adatom separationsS. The
geometry of the computational cell used in these simulati
is shown in Fig. 1~a!. The periodically repeated simulatio
cell consists of a square unit cell on the~001! surface, with
one adatom placed at its center. The adatom nearest-neig
separationSwas varied in the range 5a0–22a0 , wherea0 is
the equilibrium face-centered-cubic Ni lattice constant.h
denotes the depth of the computational cell in thez direction.
At distances belowz5h, all atoms were fixed in their perfec
crystal lattice positions.

Next, we performed a series of atomistic simulations o
periodic array of adatoms on a vicinal surface consisting
@001# monoatomic height steps and~001! terraces. Severa
simulations were performed as a function of step–near
adatom spacingsd0 for the geometry shown in Fig. 1~b!. In
particular, we examined 4a0<d0<9.5a0 for adatom separa
tions of 15a0 in the direction parallel to the steps andb in the
direction perpendicular to the steps. The interstep separa
was also fixed atb550a0 . In all cases, the separation b
tween adatoms and between adatoms and non-nearest
are assumed to be sufficiently large such that their mu
interactions are predominantly elastic in nature. In pract
all of the periodicities are imposed by the application
periodic boundary conditions in the 0X and 0Y directions.

The interatomic interactions were modeled by t
embedded-atom method~EAM! potentials proposed by Daw
and Baskes in Ref. 22. In this approach, the total energy
the system may be written in terms of two distinct terms:
first is a pairwise interactionw ~which is mainly repulsive!
and the second is an on-site ‘‘embedding’’ energyF, which
is a function of pairwise contributionsr from other atomic
sites:

Etotal5
1
2(
i , j

N

w~r i j !1(
i

N

FS (
jÞ i

r~r i j ! D . ~9!

Here r i j is the distance between atomsi and j andN is the
total number of particles in the system.F, w, andr are em-
pirical functions chosen to fit certain thermodynamic para
eter of a perfect Ni crystal~lattice constant, vacancy forma
tion energy, universal binding energy curve, and elastic b
modulus!. Analytical expressions for these functions can
found in Ref. 23.

The equilibrium configuration of the system was det
mined by minimizing the total energy@Eq. ~9!# with respect
to the positions of all of the atoms. This minimization w
performed using the conjugate gradient method.24 This mini-
mization procedure was stopped when the residual force
all atoms was less than or equal to 1025 eV/a0. This corre-
sponds to a relative error in the determination of the to
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4740 55L. E. SHILKROT AND D. J. SROLOVITZ
energy of 1027 for a lattice of adatoms and 1025 in the step-
adatom simulations. In order to ensure that the perfect cry
to which the finite-size simulation cell was matched atz5h
had no influence on the adatom-adatom interaction energ
h was increased until the interaction energies did not cha
to the desired precision. In the step-adatom interaction si
lations,h was fixed at 12.5a0. This depth is greater than th
largest step-adatom spacing examined.

IV. RESULTS AND DISCUSSION

A. Interactions between adatoms

In the present study, we perform atomistic simulations
adatom-adatom interactions in order to determine the ma
tude of the adatom force dipoleA, which sets the magnitud
of the adatom-adatom interactions energy within the ela
theory @Eq. ~6!#. The present simulations were perform
using a square lattice of adatoms on the~001! surface of Ni.
In order to analyze these simulation results, we must fi
extend Eq.~6! in order to determine an expression for t
interaction energy associated with a square lattice of a
toms. The interaction energy per adatom in the square la
of adatoms is

Eint
ad5 1

2(
i
Ei5

1
2(

i

~12n2!

pE

A2

di
3 , ~10!

whereEi is the energy of the interaction of an adatom at
origin with the i th adatom@Eq. ~6!# and di is the adatom
separation. The factor of one-half in Eq.~10! may be traced
to Eq. ~4! and the reciprocal theorem. Rewriting Eq.~10! in
terms of the indices (m,n) associated with each adatom
the square lattice yields

Eint
ad5

1

2

~12n2!

pE

A2

S3 (
m,n

1

~m21n2!3/2
5
K

2

~12n2!

pE

A2

S3
,

~11!

whereS is the period of the nearest-neighbor adatom spac
in the lattice and the summation is over all adatoms~exclud-
ing the origin!. We denote the summation in Eq.~11! asK
and find thatK'9.03. Equation~11! provides an analytica
basis that we can use to extract the magnitude of the ada
force dipoleA from the simulation results.

In the atomistic simulations of adatom-adatom inter
tions, we determine the total energy for one unit cell of t
square lattice of adatoms as a function of the adatom spa
S. The total energy per cell consists of four terms

Etot5Ebulk1Esurf1Ead1Eint
ad. ~12!

The first termEbulk corresponds to the bulk energy, which
the product of the energy of an atom in a perfect crystal
the number of atoms in the computational cell. The surf
energyEsurf is the energy per unit area of the surface tim
S2. The third termEad is the difference in energy between a
infinite surface with and without a single adatom. Finally, t
adatom interaction energyE int

ad corresponds to the interactio
between one adatom and all other adatoms in the ada
lattice, as per Eq.~11!. Ebulk is simply the sublimation energ
of Ni, which is an input parameter used to determine
EAM potential used in these studies. The surface energy
tal
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determined using the same interatomic potential, as
scribed in Ref. 25.Ead was determined by extrapolating
plot of Etot2Ebulk2Esurf versus the cube of the inverse ad
tom spacing to 1/S350, sinceE int

ad must go to zero as 1/S3.
Using these parameters, we plotE int

ad5Etot2Ebulk2Esurf2Ead
versusS21 andS23 in Figs. 2~a! and 2~b!, respectively, for
8a0<S<23a0 .

In order to evaluate the accuracy of the elastic force
pole model for adatom interaction, we fit the data presen
in Fig. 2~a! to the functional form

Eint
ad5 (

n53

nmax An

Sn
, ~13!

where theAn are fitting constants. This functional form wa
chosen because it represents a multipole expansion of
adatom interaction energy. This sum starts atn53 because
n53 corresponds to the lowest-order adatom interaction,
dipole-dipole interactions as discussed above. The hig
order terms in Eq. ~13! represent dipole-quadropole
quadropole-quadropole, etc., terms in the expansion. Tab
shows the results of this fit for the casesnmax53 and 4. The
data were not sufficiently precise to allow the meaning
extraction of higher-order multipoles. Table I shows that t
third-order ~dipole-dipole! term is dominant for
S.A4/A3510.3 Å; nonetheless, the fourth-order~dipole-
quadropole! term is very significant for the range ofS exam-

FIG. 2. Adatom-adatom interaction energies for adatoms on
~001! surface of EAM Ni versus~a! the inverse nearest-neighbo
adatom separationsS21 and ~b! the inverse cube of the neares
neighbor adatom separationsS23. The dashed line in~a! corre-
sponds to Eq.~13! with nmax54 the data in Table I. The dashed lin
in ~b! corresponds to Eq.~13!, where we have used only theA3 term
in thenmax54 fit in Table I.
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55 4741ADATOM-STEP INTERACTIONS: ATOMISTIC . . .
ined here~8a0<S<22a0 , a053.52 Å!. The dominance of
the dipole-dipole term may also be seen by fitting the ada
interaction energy data to the general form

Eint
ad5

Aa

Sa . ~14!

The resulting fit yieldsa53.3460.01, which again shows
that while the leading-order interaction is dipole-dipole, t
higher-order terms are significant and cannot be omitted

Although the present results represent a strong argum
in favor of the dipole model@Eq. ~11!#, a non-negligible
deviation exists. This deviation may be traced to several
tors. First, the present surface force description of the ela
field of an adatom ignores the fact that the adatom can in
act directly with some of the atoms below the surface. In
present EAM simulations, atomic interactions extends
third-nearest-neighbor shells. Incorporating these fin
extent interactions into the continuum theory would lead i
higher-order terms in the multipole expansion.

Another possible explanation of the deviation of the a
tom interaction results from the predictions of the dipo
model is associated with neglecting out-of-plane compone
of the surface force. Such out-of-plane forces must, by s
metry, be represented only by even functions. Hence
lowest-order term in the out-of-plane surface force must c
respond to the second derivative, ad function, which corre-
sponds to a quadropole surface force. This justifies the
pearance of a fourth-~and higher-! order term in the
multipole expansion described by Eq.~14!.

We can use the results of the dipole model and the at
istic simulations to determine the magnitude of the atom
force dipoleA. Comparing Eqs.~11! and ~13! in the dipole
limit @i.e., nmax53 in Eq. ~13!#, we obtain the following re-
lationship betweenA3 and the atomic force dipoleA:

A5S 2pE

~12n2!K
A3D 1/2. ~15!

Using the data in Table I fornmax54, we obtain an estimate
for the numerical value ofA: A50.62 eV. In this calculation,
we used the isotropic elastic constantsE and n appropriate
for the EAM potential for Ni used in the present simulation
These elastic constants represent the Voigt average of t
anisotropic cubic elastic constants.

Equation~15! gives only the absolute value of the forc
dipoleA. Its sign~i.e., whether the dipole exerts a compre
sive or a tensile stress on the surface! was determined by
analyzing surface atomic displacements in the vicinity of
adatom. Displacements of atoms closest to the center o

TABLE I. Parameters describing adatom-adatom interactions
a ~100! surface of EAM Ni, obtained by fitting the data in Fig. 2~a!
to the functional form in Eq.~13!. The series expansion describin
these interactions was terminated after one term~nmax53! and after
two terms~nmax54!.

nmax A3 ~eV Å3! A4 ~eV Å4!

nmax53 0.53
nmax54 0.34 3.4
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defect are directed outward~corresponding to compression
the surface!, leading us to assign a negative value to the fo
dipole strength.

The value of the adatom, surface force dipole strength
now be used to evaluate the continuum elastic results for
interaction energy of adatoms and other types of surface
fects with a known surface displacement field. In the n
subsection, we analyze the elastic interactions between
adatoms and̂100& steps on the$001% nickel surface.

B. Step-adatom interactions

The elastic interaction energy between a nickel adat
and a^100& step on the$001% surface can be estimated wit
the aid of Eq.~8!. However, before proceeding with thi
analysis, we first investigate the effects of the significa
elastic anisotropy of Ni.

An anisotropic elastic analysis of the displacement field
a ^100& step on the$001% surface was carried out in Ref. 14
The in-plane component of the displacement field of a ste
the dipole approximation was shown to be

ux
step52Dx /pLd0 , ~16!

whereDx is the magnitude of the in-plane component of t
step force dipole,d0 is the distance from the step, andL is
the anisotropic version of the factorE/@2~12n2!# that appears
in the isotropic expression, Eq.~8!. The expression for
L involves a combination of all three elastic constant o
cubic crystalC11, C12, and C44, and its numerical value
for the ^100& step on the$001% surface of EAM nickel is
0.627 eV/Å3.14 For a step of this orientation, the anisotrop
elastic correction to the adatom/step interaction@Eq. ~8!# be-
comes

Eint
ad-st5

1

pL

DxA

d0
2 , ~17a!

where

L5
C44~C112C12!

AS 4 C11C44

C111C12
1H D S C11C44

C111C12
D

~17b!

and H is the elastic anisotropy of the cubi
crystal: H5C112C1222C44.

In an earlier atomistic simulation study,14 we found that
the magnitude of the in-plane component of the step fo
dipoleDx is equal to20.15 eV/Å. ~There is a difference in
sign with Ref. 14 associated with the handedness of the
ordinate system.! Combining this result, the magnitude of th
surface dipole strength associated with the adatom, and
~17! yields the adatom-step interaction energy with no a
justable parameters. Therefore, we can use this result to
rectly analyze the adatom/step interactions found in the
mistic computer simulations. Using the independen
determined defect strengths~A,0 and Dx,0!, the step/
adatom interactions@Eq. ~17!# are repulsive and are symme
ric with respect to the position of an adatom about the st
This same conclusion was found in the isotropic limit@Eq.
~8!# as well. Corrections to Eq.~17! may result from terms
higher than dipole in the expansion of the surface tracti

n
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simulating either and/or both of the defects. These corr
tions will be terms including cubic and higher powers of t
reciprocal distanced0 between a step and an adatom.

The presence of the periodic boundary conditions in
atomistic simulations prevents us from directly applying E
~17! to the simulation data. Fortunately, we can rederive
~17! for the case of an adatom interacting with a perio
array of steps results:

Eint
ad-st5

p2

b2sin2S pd0
b D

DxA

pL
, ~18!

whereb is the interstep spacing in the computational ce
The next-higher-order term in the expansion of t
step/adatom interaction will transform into a term prop
tional to

p3cosS pd0
b D

b3sin3S pd0
b D .

The results of the simulations for both the upper and
lower terraces of the step were fitted to the functional fo

Eint
ad-st5B1

p2

b2sin2S pd0
b D 1B2

p3cosS pd0
b D

b3sin3S pd0
b D , ~19!

whereB1 and B2 are fitting constants. There is an unce
tainty, of order of the size of the core of the step, as to wh
point corresponds to the appropriate origin of the coordin
system. For the sake of simplicity, we measuredd0 from the
adatom position to the step along the terrace. In other wo
for adatoms on the upper terrace,d is measured to the top o
the step, and on the lower terrace,d is measured to the bot
tom of the step.

The dependence of the step-adatom interaction energ
step-adatom separationd0 for adatoms on both the upper an
lower terraces, obtained from the atomistic simulations
shown in Fig. 3. Over the range of step-adatom separat
considered here (4a0<d0<9.5a0) with an interstep separa
tion fixed at b550a0 , the step-adatom interaction energ
decays monotonically. This figure also shows that there
difference between the step-adatom interaction energies
adatoms on the upper and lower terraces. This differenc
largest at small separations and becomes negligible~within
the numerical error! at large separations. At small separ
tions, the adatom-step repulsion is larger on the upper
race.

Table II shows the results of the determination of t
parametersB1 andB2 in Eq. ~17! by fitting to the simulation
data in Fig. 3. The values of the dipole-dipole coefficientB1,
determined from the simulation data for the upper and low
terraces, are in good agreement~i.e.,B15112613%!. On the
other hand, the values corresponding to the dipo
quadropole coefficient.B2 differ by approximately 300% and
are both attractive~negative!. This deviation can also be see
in Fig. 3, where the two curves representing the upper
c-
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lower terraces deviate from each other in regions of sm
step-adatom separation. The large differences in the th
order term in the expansion of the step-adatom interac
@Eq. ~19!# are due, in part, to the antisymmetry of the ou
of-plane ~vertical! component of the displacement field o
the step. This antisymmetry only enters the dipo
quadropole and higher-order terms since the leading-o
term in the out-of-plane surface force of the adatom is q
dropolar, while that of the step is dipolar. Normally, w
would expect that these terms would lead to opposite si
of B2 on the upper and lower terraces. However, there
also other dipole-quadropole terms present associated
higher moments of the in-plane force distribution and t
non-point-like spatial distribution of those force distrib
tions. In the range of separations presented in Fig. 3,
contribution to the interaction energy of these third-ord
terms is approximately 5% for the upper terrace and 20%
the lower terrace.

Figure 3 also shows a comparison of the step-adatom
teraction energies determined from the simulations w
those predicted by the elastic theory~where we have inde-
pendently determined all of the parameters!. The predicted
step-adatom interaction energy and those from the sim
tions show very nearly the same separation~d0! dependence.
This suggests that the dipole surface force model for s
adatom interactions is valid. However, the simulation resu
are shifted to higher step-adatom interaction energies

FIG. 3. Step-adatom interaction energy for the case of a~001!
surface with@100# steps in EAM Ni. The data indicated by th
squares and triangles correspond to adatoms on the terraces i
diately above and below the step, respectively. The dashed lin
calculated according to Eq.~18! with no adjustable parameters. Th
solid lines correspond to the best fit of the data to Eq.~19!.

TABLE II. Parameters describing the interactions between
@100# step on a~100! surface and an adatom. These parameters w
obtained by fitting the data in Fig. 3 to the functional form in E
~19!. The data point labeled ‘‘elastic theory’’ was obtained from E
~18! using the dipole strengths determined from simulations ba
on isolated defects.

B1 ~meV Å2! B2 ~meV Å3! x2

elastic theory 46.9
upper 99.3 2109.9 3.6531025

lower 124.5 2837.4 5.8931025
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compared to the theoretical predictions by approximatel
factor of 2.5. We believe that the error here is primar
associated with the neglect of the elastic anisotropy in tr
ing the elastic field of the adatom. Inclusion of this anis
ropy is expected to significantly increase the value of
adatom dipole strengthA.

In the dipole approximation to the elastic field of an ad
tom, the isotropic elastic theory predicts that an adatom p
duces an elastic displacement field that is independent o
angle in the plane of the surface and decays away fro
dipole as the square of the reciprocal distanced0. In this
approach, the adatom-adatom interaction energy is isotr
and the adatoms repel each other. The presence of el
anisotropy significantly modifies these results. While thed0

23

self-similarity of the interaction energy@Eq. ~6!# is pre-
served, the magnitude of the energy itself and even its s
may show a pronounced dependence on the orientation o
vector connecting an adatom to another adatom with res
to the crystallographic axis of the material.26

Dobrzynski and Maradudin16 obtained an expression fo
the Fourier transform of the anisotropic elastic surfa
Green’s function and derived the Green’s function itself
the case of the free surface parallel to the basal plan
hexagonal crystal. No similar closed-form expression w
found for the case of a crystal with cubic symmetry.17 Using
the approach followed in Ref. 16 and numerical evaluat
of the necessary integrals, Lau27 computed the angular de
pendence of the interaction energy of a pair of Xe adato
on the ~001! faces of a number of fcc metals, includin
nickel. His results show that the interaction energy ha
fourfold symmetry: It is large and repulsive for^110& ori-
ented adatom pairs and weak and attractive for^100& ori-
ented adatom pairs. Kappus used an eigenfunc
approach28 to determine the interaction energy associa
with a pair of adatoms in the form of a rapidly convergin
sum. He also found that the interaction energy of adatom
a ~001! surface of an anisotropic material may be attract
along certain crystallographic directions. Inclusion of the
anisotropy effects would substantially increase the mag
tude of the adatom dipole strength, which we determined
making a comparison with adatom-adatom interaction sim
lations.
c
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V. CONCLUSION

We derived an analytical expression for the interact
energy in the framework of linear elasticity. There are tw
unknowns in this theory: the strength of the elastic fie
associated with the adatoms and with the steps. In orde
determine these parameters independently, we perform
series of atomistic simulations of a square lattice of Ni a
atoms on the~001! Ni surface using EAM potentials. The
results were analyzed in terms of a dipole model for an a
tom and were shown to be in good agreement with the ela
theory. By fitting these simulations to the theory we we
able to extract the magnitude of the force dipole of an
atom. In a separate study, we used the same general app
to determine the magnitude of the surface force dipole as
ciated with a surface step. These defect strengths were
to predict the elastic interaction energy between a Ni ada
and a^001& step on the same surface. Atomistic simulatio
of a surface with a periodic array of steps interacting with
adatom were performed and compared with the predicti
of the elastic theory with no adjustable parameters. A
tailed comparison of the simulation and theoretical res
showed that the step-adatom interactions were dominate
dipole-dipole interactions, but that higher-order terms c
also be significant in the range of adatom-step separa
studied here. However, the absolute magnitude of the s
adatom interaction energy showed that there were signific
errors. We believe that these errors are associated with
neglect of anisotropic effects in the elastic analysis used
extract that adatom dipole strength.
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