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Deviations from the Gaussian distribution of mesoscopic conductance fluctuations
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The conductance distribution of metallic mesoscopic systems is considered. The variance of this distribution
describes the universal conductance fluctuations, yielding a Gaussian distribution of the conductance. We
calculate diagrammatically the third cumulant of this distribution, the leading deviation from the Gaussian. We
confirm random matrix theory calculations that the leading contribution in quasi-one-dimension vanishes.
However, in quasi-two-dimensions the third cumulant is negative, whereas in three dimensions it is positive.
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I. INTRODUCTION

About ten years ago the universal conductance fluc
tions ~UCF! were discovered in mesoscopic, metal
samples.1–3 The electronic conductance of these samp
shows reproducible sample-to-sample fluctuations. The fl
tuations are called universal because their magnitude is i
pendent of the sample parameters such as the mean free
l , and the average conductance^g&. The dependence o
sample dimension is weak. Studies have mainly focused
the variance of the fluctuations, which is the leading and
universal part of the fluctuations.

The conductance being a random variable showing s
large fluctuations, one realized that one should conside
full distribution. It was soon clear that the first higher cum
lants of the conductance are proportional to4

^gn&c}^g&22n, n,g0 , ^g&@1. ~1!

Here the conductance is measured in units ofe2/\, g0 is the
mean conductance at the scalel , ^ & denotes the ensembl
averaging, and the subscriptc indicates cumulants. In the
metallic regime far from localization, wherêg&@1, the
higher cumulants are thus small, and the distribution of
conductance is therefore roughly Gaussian. However,
n*g0 the decrease in magnitude of cumulants as descr
by Eq. ~1! is changed into a very rapid increas
(}exp@g0

21n2#). This leads to the log-normal tails of th
distribution.4 With increasing disorder, the log-normal tai
become more important. Although the calculation of the f
conductance distribution on the threshold of localizat
(^g&;1) is today out of reach, it is quite plausible that t
whole distribution crosses over to a log-normal shape in
strongly localized regime~see Refs. 5 and 6 for a discu
sion!. Indeed, it is well known that in the strongly localize
550163-1829/97/55~7!/4710~7!/$10.00
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regime in one dimension the conductance is given by
product of transmission amplitudes, yielding a log-norm
distribution.7–10

Although high order cumulants govern the tails of t
distribution, they do not affect it near the center. A deviati
from the Gaussian distribution near the center should be
vealed, first of all, in the lowest nontrivial cumulants. A
important step in this direction was the recent calculation
the third cumulant of the distribution using random mat
theory by Maceˆdo.11 He found for the orthogonal (b51)
and symplectic ensemble (b54) that the third cumulant of
the conductance is proportional to 1/g2, thus the leading term
given by Eq.~1! vanishes~see, for instance, Ref. 12 for th
definitions of the ensembles!. For the unitary ensemble
(b52) even this subleading term vanishes. The phys
reason behind this is not clear.~We recently learned that th
same result in quasi-one-dimension was found
Tartakovski13 by the scaling method described in Ref. 14!
However, random matrix theory is only valid in quasi-on
dimensional systems. Therefore, it was not known whet
this cancelation is unique to one dimension, or holds also
higher dimensions, which might indicate an overlooked sy
metry of the system. That such a possibility exists was a
suggested by the fact that the leading-order contribution
the third cumulant of the density of states vanishes in t
dimensions.4 The question whether or not the cancelati
holds in two and three dimensions was a major motivat
for this work.

Let us finally mention that related to the conductance d
tribution, recently third cumulants15 and the full distribution
functions16 of two related transmission quantities were c
culated. These quantities, the speckle transmission and
total transmission, were measured in scattering experim
with electromagnetic waves~light and microwaves!.17,18 In
the regime considered, these distributions are independe
4710 © 1997 The American Physical Society
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55 4711DEVIATIONS FROM THE GAUSSIAN DISTRIBUTION . . .
dimension. On a diagrammatic level this can be understo
The diagrams for the cumulants of the speckle and the t
transmission are loopless diagrams.16 The diagrams for the
cumulants of the conductance, however, contain loops,
will therefore be,a priori, dimension dependent. For th
electro-magnetic waves the Landauer approach was u
however, for conductance properties this yields the same
sults as the Kubo approach.19,20 Therefore, the calculation
presented below are also valid for classical waves.

In the present paper we will calculate the third cumula
of the conductance for any rectangular geometry in the
tallic regime in quasi-one-, quasi-two-, and three dimensio
In Sec. II we review the formalism for calculating condu
tance fluctuations. In Sec. III we first describe how the le
ing diagrams can be found. In Sec. III A we calculate t
third cumulant and discuss its dimension dependence. A
considering the effects of inelastic scattering, we end wit
conclusion.

II. CONDUCTANCE FLUCTUATIONS

In this section we introduce our diagrammatic approa
to a large extent following the detailed paper of Lee, Sto
and Fukuyama.21 We consider a sample with a rectangu
geometry with sizesLx3Ly3Lz ; the conductance is mea
sured across thez direction. The scatterers are isotropic po
scatterers. The scattering is calculated in second order B
approximation, which assumes weak scattering.~The present
calculation can be easily extended beyond second o
Born, this will yield the same results provided the corre
mean free path is taken.22,23! We consider the metallic, me
soscopic regime, which is characterized by the inequali
1/k! l!Lz , wherek denotes the Fermi wavenumber;l is the
mean free path, related to the scatterer densityn and scatterer
strengthv as l54p/nuvu2. The relaxation time is given by
t5 l /(2k). Incoherent scattering is first neglected, that is,
incoherence length is much larger than any system s
L in@Lx ,Ly ,Lz .

The conductance and its cumulants are calculated with
Kubo formula. The transport through the sample is given
the so called ladder diagrams or diffusons, describing
multiple scattering of the electrons on the scatterers. In
conductance diagram the field creates an electron-hole pa
a current vertex somewhere in the sample, after some dif
propagation this pair annihilates. This diagram thus conta
a bubble, the corresponding propagatorL obeys the diffusion
equation:

2¹1
2L~r1 ,r2!5

1

2pnt2D
d~r12r2!, ~2!

where D is the diffusion constant.@Correspondence with
units often used with classical waves is found by identifyi
\51,m51/2, n5k/(4p2), D52kl/3.#

As mentioned we restrict ourselves to the conductanc
thez direction. The current is restricted to thez direction by
imposing fully reflecting boundaries in thex andy direction,
and fully conducting boundaries in thez direction:

L~r1 ,r2!uz150,z15Lz
50,
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]L~r1 ,r2!

]x1
U
x150,x15Lx

5
]L~r1 ,r2!

]y1
U
y150,y15Ly

50, ~3!

and similarly for ther2 dependence. For rectangular geom
etries it is useful to write the solution of the diffuson prop
gator in ~discrete! momentum space. Following Ref. 21@in
present work there is an extra factor 1/(2pnt) in the diffu-
son#, we write the diffuson as

L~r1 ,r2!5
1

2pnt2D (
i z51

`

(
i x50

`

(
i y50

`
Qi~r1!Qi~r2!

l i
, ~4!

wherei is the momentum vector (i x ,i y ,i z). TheQi ’s are the
normalized, orthogonal eigenfunctions

Qi~r !5A 2

Lx

2

Ly

2

Lz
sinS pziz

Lz
D cosS pxix

Lx
D cosS pyiy

Ly
D .

~5!

Note that these eigenfunctions are not properly normalize
i x50 or i y50, in which case one has to replac
cos(pxix /Lx) or cos(pyiy /Ly) by 1/A2. The eigenvaluesl i in
Eq. ~4! are

l i5
p2

Lz
2 F i z21 i x

2S LzLxD
2

1 i y
2S LzLyD

2G . ~6!

The longitudinal momentumi z takes positive integer values
the transverse momentai x and i y can, in addition, also be
zero. In quasi-two-dimensional~2D! geometries one ha
Lx!Lz and only the terms withi x50 contribute in the ei-
genvalues. In quasi-one-dimensional~1D! samples also
Ly!Lz , andi y is essentially restricted to zero. On the oth
hand, for very wide geometriesi x

2(Lz /Lx)
2 becomes a con-

tinuous variable and the sum over thex variable~or y vari-
able! becomes an integral. The average value of the dim
sionless conductancêg& is

^g&52pnD
LxLy
Lz

. ~7!

The inverse of this, 1/^g&, will be a small parameter in ou
diagrammatic expansion.

A. Hikami boxes

For the calculation of the second and higher order cum
lants ofg, we need the vertices describing the interferen
between two diffusons. These vertices are known as Hik
boxes.24,25 Formally they arise from the spatial derivative
]/]ra and]/]r 8b in the Kubo formula forsa,b(r ,r 8), where
the indicesa,b5x,y,z label the directions of the incoming
and outgoing current. We have drawn the boxes in Fig. 1,
corresponding expressions are labeledHa to Hf , respec-
tively:

Ha54pnt3
da,b

3
, ~8a!

Hb52pnt3
da,b

3
, ~8b!
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FIG. 1. The Hikami four-point and six-point vertices that were used. The wavy lines denote diffusons or cooperons. The current
are at the unoccupied corners of the polygons and are labeled bya andb.
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3
, ~8c!

Hc252Hc1 , ~8d!

Hd52pnt4D@22q1•q322q2•q42~q11q3!•~q21q4!#,
~8e!

He54pnt3
da,b

3
, ~8f!

Hf522pnt5
da,b

3
. ~8g!

Theq’s are the momenta of the diffusons~the wavy lines!, as
numbered according Fig. 1. As the conductance is calcul
in the z direction,a andb are takenz. Likewise, only the
z component of the momentum inHc will be taken into
account.Hc comes in two flavors:Hc1 andHc2. Hc2 has an
additional minus sign due to the reversed orientation of
advanced and retarded propagators of the current vertex
used that the diffusons vary slowly on length scales of
mean free path, i.e.,ql!1. Finally, other boxes are sublea
ing.

B. UCF calculation

For clarity we briefly present the UCF calculation usi
this formalism. The UCF diagrams are connected diagra
containing two conductivity bubbles and thus four curre
vertices. Its diagrams are shown in Fig. 2. The UCF d
grams contain two four boxes (Ha orHb) and two diffusons.
For the orthogonal ensemble the combinatorial factor for

FIG. 2. The UCF or̂ g2&c diagrams.
ed
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upper diagram is 4. The lower diagram has a combinato
factor 2, and the two Hikami vertices bring, comparing E
~8a! to Eq. ~8b!, an additional factor of 22. Thus one finds a
prefactor 12 for the sum of all diagrams with respect to
single diagram of the upper topology.~In the unitary en-
semble cooperons do not contribute and this would be a
tor 6.! For each incoming or outgoing current vertex there
a factor 2k/Lz . It arises from the expression 1/(mLz)
→2/Lz , that can be read off from Eq.~2.5! in Ref. 21, and
the wave numberk that originates from each derivative i
the Kubo formula. Next, we use the Fourier decomposit
of the diffusons Eq.~4! and interchange the sum over th
eigenvalues with the spatial integrals. The two diffusons
terfering at the Hikami box yield the orthogonality relation
*dr Qi(r )Qj (r )5d i , j

(3) . One finds

^g2&c512S 2kLzD
4S 1

2pnt2D D 2S 2pnt3

3 D 2
3E dr1E dr2L~r1 ,r2!

2

5
12

Lz
4 (

i , j

1

l il j
E dr1Qi~r1!Qj~r1!E dr2Qi~r2!Qj~r2!

5
12

Lz
4(
i , j

1

l il j
~d i z , j zd i x , j xd i y , j y!

2

5
12

p4 (
i z51,i x50,i y50

` S i z21 i x
Lz
2

Lx
2 1 i y

Lz
2

Ly
2D 24

. ~9!

In quasi-one-dimension this yields 12/p4( i z51
` i z

245 2
15 ,

which is the well-known result for the UCF in quas
one-dimension.21

III. THE THIRD CUMULANT

We now study the third cumulant. First, we rewrite E
~1! into a relation for the relative cumulants: (^gn&c /^g&n)
}^g&222n. The inverse power of̂g& on the right hand side
can be interpreted as the number of Hikami four boxes in
diagrams. Thus the third cumulant diagram contains f
Hikami four boxes. Indeed, it proves impossible to cre
^g3&c diagrams with less boxes. Diagrams with more box
are subleading as they are of higher power of 1/^g&, which is
a small parameter. In diagrammatic approaches it is o
tricky to find all the relevant diagrams; already for the mu
simpler set of UCF diagrams there was considerable dis
sion in the literature. We used the following consideratio
to find the set of diagrams for the third cumulant. The d
grams have six current vertices: three incoming ones
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55 4713DEVIATIONS FROM THE GAUSSIAN DISTRIBUTION . . .
three outgoing ones. The diagrams contain four four-po
vertices and each vertex has at least two diffusons attache
it, see Fig. 1. This leaves two possibilities: there are th
boxes with each two diffusons and one box with four diff
sons; or, there are two boxes with two diffusons and t
boxes with three diffusons each. It is now an easy exercis
see that there are only four possible basic topologies. T
are drawn in Fig. 3. The dots represent the four-point ve
ces; the lines represent diffusons. The next step is to in
the Hikami boxes and connect them in all possible ways
the diffusons. This yields many diagrams, yet not in all d
grams the outgoing electron-hole pair is the same as the
coming electron-hole pairing. Such diagrams are not
product of three conductance bubbles; they do not contrib
to the ^g3&c process and are left out. We end up with t
diagrams represented in Fig. 4. In the figure there are
diagrams of the same order with one six box and two f
boxes. They can be obtained by contracting one diffuson
the diagrams with four boxes. In physical terms the six-b
diagrams correspond to processes where after an interfer
process, the amplitudes do not combine into a diffuson.
stead, the amplitudes interact again directly without be
scattered.

A. Evaluation of the diagrams

We calculate the diagrams for quasi-one-dimension
quasi-two-dimensional, and three-dimensional geometr

FIG. 3. All basic topologies for the third cumulant diagram
The wavy lines are diffusons or cooperons. The dots repre
Hikami four-point vertices. Detailed inspection of these diagra
will yield the diagrams of Fig. 4.

FIG. 4. The calculated set of leading diagrams for the th
cumulant of the conductance. The diagrams are derived from Fi
one sees that structure is similar. The diagrams~e! are obtained by
contraction of diffusons in the diagrams~a!, ~b!, ~c!, and~d!.
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The calculation goes similar to the UCF calculation, that
the sums over the momenta are taken outside the spatia
tegrals. If two internal diffusons interfere, the spatial int
grals bring the orthogonality relations as used for the U
calculation. However, two complications arise. First, at t
Hikami vertices not only two, also three, or four diffuson
interfere ~as is seen from Figs. 3 and 4!, this gives more
complicated structures. Second, Hikami boxesHc andHd are
q dependent, corresponding to spatial derivatives of the
fusons. We therefore introduce the matricesR, S, and T,
which describe the interaction of the diffusons at the vertic

In the diagrams e.i, e.ii, e.v, and e.vi of Fig. 4 four diffu
sons, two with momentumi , and two with momentumj
interfere. Thex components of the diffusons couple as

Rix , j x
5S 2LxD

2E
0

Lx
dxcos2S i xxp

Lx
D cos2S j xxp

Lx
D

5
1

Lx
F11

1

2
~12d i x,0!d i x , j xG . ~10!

The y components yield exactly the same integral, see
~5!, and also thez components yield the same expressio
These diagrams will thus be proportional
Riz , j z

Ri x , j x
Ri y , j y

.
In most other diagrams three diffusons interfere at

Hikami boxHc1, this box brings a derivative]/]z . The ma-
trix S describes the effect of this derivative on thez compo-
nent, theT describes the integrals overx andy components.

Siz , j z ,kz5S 2LzD
3/2E

0

Lz
dzS i zpLz D cosS i zzpLz D

3sinS j zzpLz D sinS kzzpLz D
5

i zp

LzA2Lz
~2d i z , j z1kz

1d j z ,i z1kz
1dkz ,i z1 j z

!,

~11!

Tix , j x ,kx5S 2LxD
3/2E

0

Lx
dxcosS i zzpLz D cosS j zzpLz D cosS kzzpLz D

5
1

ALx
~d i x,0d j x ,kx

1d j x,0
d i x ,kx1dkx,0d i x , j x

22d i x,0d j x,0
dkx,0! ~ if i x , j x , or kx50! ~12!

5
1

A2Lx
~d i x , j x1kx

1d j x ,i x1kx
1dkx ,i x1 j x

! ~else!.

~13!

The box Hc2 has a minus sign resulting in
2Siz , j z ,kzTi x , j x ,kxTi y , j y ,ky.

The diagrams can now be written in terms of theR,S,T.
The prefactors, the combinatorial factors, and the sum o
the momenta are included. The third cumulant is given
the sum of diagramŝg3&c5(F, where theF ’s are

nt
s

3;
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Fa.i1Fa.i i52144r(
i , j ,k

1

l i
3l jlk

Si z , j z ,kz
2 Tix , j x ,kx

2 Tiy , j y ,ky
2 ,

~14a!

Fb.i1Fb.i i1Fe.i i i 1Fe.iv

572r(
i , j

1

l i
3l j

2 Fp2

Lz
3 S 32 i z2d i z , j z1 i z

2DRix , j x
Ri y , j y

1
p2

Lx
3 S 32 i x2d i x , j x1 i x

2DRiz , j z
Ri y , j y

1
p2

Ly
3 S 32 i y2d i y , j y1 i y

2DRix , j x
Ri z , j zG , ~14b!

Fc.i5248r(
i , j ,k

1

l i
2l j

2lk
Si z , j z ,kz
2 Tix , j x ,kx

2 Tiy , j y ,ky
2 ,

~14c!

Fc.i i1Fc.i i i 52120r(
i , j ,k

1

l i
2l j

2lk
Skz ,i z , j z
2 Tix , j x ,kx

2 Tiy , j y ,ky
2 ,

~14d!

Fc.iv596r(
i , j ,k

1

l i
2l j

2lk
Si z , j z ,kzSj z ,i z ,kzTi x , j x ,kx

2 Tiy , j y ,ky
2 ,

~14e!

Fd.i1Fd.i i1Fd.i i i 1Fd.iv

5864r(
i , j ,k

1

l i
2l j

2lk
Si z ,i z ,kzSj z , j z ,kzTi x ,i x ,kxTj x , j x ,kx

3Tiy ,i y ,kyTj y , j y ,ky
, ~14f!

Fe.i1Fe.i i1Fe.v1Fe.v i536r(
i , j

1

l i
2l j

2Riz , j z
Ri x , j x

Ri y , j y
.

~14g!

The sums runs over all allowed momenta indices. The fa
r contains the prefactors of the diffusons and boxes an
factor (2k/Lz)

6 for the incoming and outgoing current vert
ces,

r5
1

2pnDLz
6 . ~15!

Finally, the sums still contain a factorLz
7/(LxLy), yielding

multiplied by r a prefactor̂ g&21. So indeed the third cumu
lant is proportional to the inverse dimensionless conducta
as predicted. The choice of ensemble is reflected in the c
binatorial factor. For simplicity the combinatorial facto
were calculated for the unitary ensemble, finally, for the
thogonal ensemble all prefactors will be four times larg
The e.iii and e.iv diagrams are divergent in two and th
dimensions, as the sum( j z , j x , j y

l j
21 is logarithmically diver-

gent in 2D and linearly divergent in 3D. This divergence
or
a

ce
-

-
.
e

,

however, exactly canceled by a similar divergence in the
and b.ii diagrams. Equation~14b! presents the combined
finite expression.

It is interesting that due to the finite system size mom
tum conservation apparently does not hold, for example,
momentum of the middle diffuson in the~d! diagrams of Fig.
4 need not be zero. This is a result of the mirror terms in
diffusons, which are present to fulfill to the boundary con
tions. Though such terms would be absent in the bulk, t
never vanish in our geometry.

In the quasi-one-dimensional case the diffusons
simple linear functions of thez coordinate

L~z1 ,z2!5
1

2pnt2D

min~z1 ,z2!@Lz2max~z1 ,z2!#

Lz
,

~16!

allowing an analytically treatment. The diagrams can n
even be calculated directly without introducing the mome
tum representation at all. As a check we also calculated
diagrams using this representation. We find, using eit
method, for the sum of the diagrams

^g3&c50 ~quasi-one-dimensional!. ~17!

Thus the leading contribution to the third cumulant in o
dimension vanishes. This confirms the random matrix the
result11 diagrammatically.

In higher dimensions the sums were performed num
cally. In the numerical evaluation the sums over three set
momenta are implicitly reduced to sums over two sets. T
is a direct consequence of the fact that there are only
independent momenta present. The numerical evaluation
mains, however, quite involved as in three dimensions
still has to sum over six variables and the convergence
quite slow. We find in the orthogonal ensemble for squa
and cubic samples, respectively,

^g3&c520.0020̂g&21 ~quasi-two-dimensional!,

^g3&c510.0076̂g&21 ~3D!. ~18!

The results for rectangular samples are given in the Fig
and 6, where we multiplied the third cumulant by the avera
of the dimension-less conductance. The third cumulant
wide slabs (Lx@Lz ,Ly@Lz) is proportional to (LxLy /^g&).
In the figures due to the multiplication bŷg& there is pro-
portionality to (LxLy)

2/Lz
4 for wide slabs. For very narrow

slabs one sees that the correct quasi-two-dimensional
quasi-one-dimensional limits are recovered. Note that th
cumulant passes through zero when going from 2D to 3
this happens if the sample has the size 0.46Lz3Lz3Lz .

B. Inelastic scattering

Incoherent scattering was neglected in the above calc
tions. In realistic system, however, incoherent scattering
be present. This is especially true at nonzero temperat
where electron-phonon interactions will occur. This mech
nism was included in the description of Lee, Stone, a
Fukuyama.21 The inverse inelastic scattering time induces
positive shift of the diffuson eigenvalues,
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l i5
p2

Lz
2 F i z21 i x

2S LzLxD 1 i y
2S LzLyD 1

Lz
2

p2L in
G . ~19!

The case that the incoherence length is much smaller
the system sizes is of particular interest. The effect on
third cumulant can now be estimated simply by consider
the sample as being made up of small samples of dimen
L in
d with independent conductance distributions. The cond

tance of such a sample is in 3D,

g5 (
i x

Lx /L in

(
i y

Ly /L in F (
i z

Lz /L in

~g0!
21G21

5
LxLy
LzL in

g01
L in
2

LxLy
(
i

dg0 ,

~20!

whereg0 denotes the conductance of an individual coher
cube. The relative cumulants thus scale as

^gn&c
^g&n

5S L in
3

LxLyLz
D n^g0n&c^g0&

n . ~21!

The relative third cumulant is reduced by a fact
L in
6 /(LxLyLz)

2. As a result the combination

^g3&c^g&

^g2&c
2 ~22!

is independent ofL in , so that this quantity is universal. A
the incoherence length is the same in all directions, the
herent parts are essentially cubic. Therefore, the quantity
roughly tend to its value forcoherent, cubicsamples. The
precise value can be obtained by properly including the
coherence effects in the calculation as indicated above.
cause of this universality, the quantity is useful experim
tally. We even expect the full conductance distribution to
universal in this regime, that is, independent of geometry
incoherence length.

FIG. 5. The third cumulant of the conductance multiplied by t
average as a function of the transversal size in a 2D sample.
though the leading term vanishes in quasi-one-dimension, it is n
trivial in 2D geometries.
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IV. CONCLUSION

We have considered a mesoscopic sample in the meta
regime and we calculated the third cumulant of the condu
tance distribution. Naive scaling predicts that the third cum
lant should be proportional to 1/^g&. In quasi-one-dimension
we confirm the absence of this leading contribution, as w
found by Maceˆdo.11 In two and three dimensions, however
this cancelation is not present; the leading contribution to t
third cumulant is negative in two dimensions and positive
three dimensions. The fact that the third cumulant chang
sign is surprising. The third cumulant is also known as th
skewness of a distribution. In analogy with the third cumu
lant of the total transmission16 or if the distribution would be
tending to log-normal, one would have expected a positiv
third cumulant of the conductance. Instead, we find that a
possible values occur: negative, positive, and zero. We ha
no explanation for this.

To the best of our knowledge there exists no experimen
work where the conductance distribution is discussed. E
periments, either electronical, or using classical waves,
numerical simulations, could enlighten present results. P
dicted values are small, but should be detectable in electro
systems with moderate values of^g&. Also observation of the
conductivity distribution as a whole would be very interes
ing.
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FIG. 6. The third cumulant multiplied by the average conduc
tance in a 3D sample plotted against the transversal sizeLx . The
geometry isLx3Lz3Lz for the solid line. Note that, the sign
changes in going from a quasi-two-dimensional to a thre
dimensional sample. The dashed line gives a third cumulant in t
sample with geometryLx3Lx3Lz .
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