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Deviations from the Gaussian distribution of mesoscopic conductance fluctuations
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The conductance distribution of metallic mesoscopic systems is considered. The variance of this distribution
describes the universal conductance fluctuations, yielding a Gaussian distribution of the conductance. We
calculate diagrammatically the third cumulant of this distribution, the leading deviation from the Gaussian. We
confirm random matrix theory calculations that the leading contribution in quasi-one-dimension vanishes.
However, in quasi-two-dimensions the third cumulant is negative, whereas in three dimensions it is positive.
[S0163-18207)06507-1

I. INTRODUCTION regime in one dimension the conductance is given by the
About ten years ago the universal conductance fIuctuagir;?iﬁtti8;7t_r?onsm'55'on amplitudes, yielding a log-normal

tions (UCF) were discovered in mesoscopic, metallic Althouah hiah ord | h is of th
sampled2 The electronic conductance of these samples “\though high order cumulants govern the tails of the

shows reproducible sample-to-sample fluctuations. The flucdistribution, they do not affect it near the center. A deviation
tuations are called universal because their magnitude is inddlom the Gaussian distribution near the center should be re-
pendent of the sample parameters such as the mean free p¥@gled, first of all, in the lowest nontrivial cumulants. An
|, and the average conductan¢g). The dependence on 'Mportantstep in this direction was the recent calculation of
sample dimension is weak. Studies have mainly focused off€ third cumulant of the distribution using random matrix
the variance of the fluctuations, which is the leading and théheory by Maceo." He found for the orthogonal 4=1)
universal part of the fluctuations. and symplectic ensemblgdE&4) that the third cumulant of
The conductance being a random variable showing sucHe conductance is proportional t@?/ thus the leading term
large fluctuations, one realized that one should consider itdiven by Eq.(1) vanishes(see, for instance, Ref. 12 for the
full distribution. It was soon clear that the first higher cumu- definitions of the ensemblesFor the unitary ensemble

lants of the conductance are proportiond! to (B=2) even this subleading term vanishes. The physical
reason behind this is not cleqWe recently learned that the

n 2—n same result in quasi-one-dimension was found by
(@M@ n<go, (9)>1. (1) Tartakovski® by the scaling method described in Ref. 14.
However, random matrix theory is only valid in quasi-one-
Here the conductance is measured in units®fi, go is the  dimensional systems. Therefore, it was not known whether
mean conductance at the scéle() denotes the ensemble this cancelation is unique to one dimension, or holds also in
averaging, and the subscriptindicates cumulants. In the higher dimensions, which might indicate an overlooked sym-
metallic regime far from localization, wher@g)>1, the metry of the system. That such a possibility exists was also
higher cumulants are thus small, and the distribution of theuggested by the fact that the leading-order contribution to
conductance is therefore roughly Gaussian. However, fothe third cumulant of the density of states vanishes in two
n=g, the decrease in magnitude of cumulants as describegimensiong’. The question whether or not the cancelation
by Eqg. (1) is changed into a very rapid increase holds in two and three dimensions was a major motivation
(xexdg, 'n?]). This leads to the log-normal tails of the for this work.
distribution? With increasing disorder, the log-normal tails  Let us finally mention that related to the conductance dis-
become more important. Although the calculation of the fulltribution, recently third cumulantdand the full distribution
conductance distribution on the threshold of localizationfunctions® of two related transmission quantities were cal-
({(g)~1) is today out of reach, it is quite plausible that the culated. These quantities, the speckle transmission and the
whole distribution crosses over to a log-normal shape in théotal transmission, were measured in scattering experiments
strongly localized regimésee Refs. 5 and 6 for a discus- with electromagnetic waveight and microwaves'’*€ In
sion). Indeed, it is well known that in the strongly localized the regime considered, these distributions are independent of
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dimension. On a diagrammatic level this can be understood: AL(r1,r7)
The diagrams for the cumulants of the speckle and the total ——
transmission are loopless diagratfisThe diagrams for the

cqﬁn;ﬂant? of tge condugtagpe, hqwevgr, cor&talr; Igopst,hangnd similarly for ther, dependence. For rectangular geom-
Wi erefore be,a priorl, dimension dependent. or eg’[ries it is useful to write the solution of the diffuson propa-

_9L(rq,13)

Y1 =0. @

y1=0y,= Ly

ﬁxl Xy =0x;=Ly

electro-magnetic waves the Lanqlauer_ approach Was US€fator in (discrete momentum space. Following Ref. 2ih
however, for conductance properties this yields the same re:

sults as the Kubo approa¢h?® Therefore, the calculations
presented below are also valid for classical waves.

resent work there is an extra factor 1427) in the diffu-
son, we write the diffuson as

In the present paper we will calculate the third cumulant c I Q)i
of the conductance for any rectangular geometry in the me- L(r,F)= ——s— ;'2, 4)
tallic regime in quasi-one-, quasi-two-, and three dimensions. 2mvTDi=1 1,0 iy=0 A

In Sec. Il we review the formalism for calculating conduc- wherei is the momentum vectoii,i. ,i,). TheQ;'s are the
tance fluctuations. In Sec. Il we first describe how the lead- vy ze :

ing diagrams can be found. In Sec. Il A we calculate thenormahzed, orthogonal eigenfunctions

third cumulant and discuss its dimension dependence. After 5 2 % 7i xi i
considering the effects of inelastic scattering, we end witha @, (r)= / —sin( WL z cos{ WL X)cos( 772’ y)_
z X y
®

conclusion. Ly Ly L,
Il. CONDUCTANCE FLUCTUATIONS Note that these eigenfunctions are not properly normalized if
ix=0 or iy=0, in which case one has to replace

In this section we introduce our diagrammatic approachcosrxi, /L) or cosfryiy/L,) by 1//2. The eigenvalues; in
to a large extent following the detailed paper of Lee, Stonegq (4) are

and Fukuyam&! We consider a sample with a rectangular

geometry with sizes ,xXL,XL,; the conductance is mea- w2 L oL 2 L, 2
sured across thedirection. The scatterers are isotropic point )\i=fz 17115 L +1y L (6)
z X Yy

scatterers. The scattering is calculated in second order Born
approximation, which assumes weak scatteriiige present The longitudinal momenturi, takes positive integer values;
calculation can be easily extended beyond second ordehe transverse momenta andi, can, in addition, also be
Born, this will yield the same results provided the correctzero. In quasi-two-dimensional2D) geometries one has
mean free path is také”) We consider the metallic, me- | <L, and only the terms with,=0 contribute in the ei-
soscopic regime, which is characterized by the inequalitiegenvalues. In quasi-one-dimensionélD) samples also
1k<I<L,, wherek denotes the Fermi wavenumbeis the | <L ,, andi, is essentially restricted to zero. On the other
mean free path, related to the scatterer dems#yd scatterer hand, for very wide geometrig$(L,/L,)? becomes a con-
strengthv asl=4m/n|v|®. The relaxation time is given by tinyous variable and the sum over thevariable (or y vari-

7=1/(2K). Incoherent scattering is first neglected, that is, theaple becomes an integral. The average value of the dimen-
incoherence length is much larger than any system siz&jonless conductandg) is

Lin>Ly,Ly,L,.

The conductance and its cumulants are calculated with the LyLy
Kubo formula. The transport through the sample is given by (g)=2mvD T (7)
the so called ladder diagrams or diffusons, describing the z
multiple scattering of the electrons on the scatterers. In th&he inverse of this, 1§), will be a small parameter in our
conductance diagram the field creates an electron-hole pair dtagrammatic expansion.
a current vertex somewhere in the sample, after some diffuse

propagation this pair annihilates. This diagram thus contains A. Hikami boxes
a bubble, the corresponding propagafoobeys the diffusion . .
equation: P g propag y For the calculation of the second and higher order cumu-

lants of g, we need the vertices describing the interference
between two diffusons. These vertices are known as Hikami
—V2L(ry 1) = 1 S(ry—1s), @) boxes?*%° Formally they arise from the spatial derivatives
27v°D alar, anddlar’ g in the Kubo formula foro, 4(r,r'), where
the indicesa, B=X,Y,z label the directions of the incoming
where D is the diffusion constant[Correspondence with and outgoing current. We have drawn the boxes in Fig. 1, the
units often used with classical waves is found by identifyingcorresponding expressions are |abe}dg to Hf' respec-

h=1,m=1/2, v=k/(47?), D=2kl/3] tively:
As mentioned we restrict ourselves to the conductance in
the z direction. The current is restricted to thalirection by 3008
imposing fully reflecting boundaries in theandy direction, Hy=4mvr 3 (8a)

and fully conducting boundaries in ttzedirection:

3 %ap
L(r1,r2)|z=02,-1,=0, Hp=2mvr ; (8b)
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FIG. 1. The Hikami four-point and six-point vertices that were used. The wavy lines denote diffusons or cooperons. The current vertices
are at the unoccupied corners of the polygons and are labeledand 5.

. k upper diagram is 4. The lower diagram has a combinatorial
He=4mivr qg§, (80  factor 2, and the two Hikami vertices bring, comparing Eq.
(8a) to Eq.(8b), an additional factor of 2 Thus one finds a
__ prefactor 12 for the sum of all diagrams with respect to a
HcZ Hcl- (8d) . . .
single diagram of the upper topologyn the unitary en-
Hy=2mv7*D[ — 201 - 95— 20 Ga— (G5 + ) - (Ao + ) ], semble cooperons do not contribute and this would be a fac-

(8¢  tor 6) For each incoming or outgoing current vertex there is
a factor X/L,. It arises from the expression fri(,)
Sup —2IL,, that can be read off from E@2.5) in Ref. 21, and

He=4mv7° 3 (8f)  the wave numbek that originates from each derivative in
the Kubo formula. Next, we use the Fourier decomposition

of the diffusons Eq(4) and interchange the sum over the
(8g)  eigenvalues with the spatial integrals. The two diffusons in-
3 terfering at the Hikami box yield the orthogonality relations:

Theq's are the momenta of the diffusoftie wavy lineg, as [ dr Qi(r)Q;(r)= &3 One finds
numbered according Fig. 1. As the conductance is calculated 4 ) 312
in the z direction, « and B are takerz. Likewise, only the ) 2k 1 2mvT

<g >c:12 L.

O
Hi=— 27T .8

z component of the momentum iH. will be taken into 27vD 3
accountH_ comes in two flavorsH.; andH,. H., has an

additional minus sign due to the reversed orientation of the Xf dr f Ar,L(ry .1 )?
advanced and retarded propagators of the current vertex. We ! 2202
used that the diffusons vary slowly on length scales of the

: 3 : ) 12 1
msén free path, i.eql<1. Finally, other boxes are sublead = L_‘Z‘ IEJ _M\J drlQi(rl)Qj(rl)f dr,Qi(r2)Qj(r)
. 12
B. UCF calculation ZFE n (6 j.6 i0i i )2
= N zlz “xix Tyly
For clarity we briefly present the UCF calculation using 2t T
this formalism. The UCF diagrams are connected diagrams 12 *

containing two conductivity bubbles and thus four current = 9
vertices. Its diagrams are shown in Fig. 2. The UCF dia-
grams contain two four boxesi(, or H,) and two diffusons.

For the orthogonal ensemble the combinatorial factor for th

2 2\ —4

240,k 2
i1 0i,~0 | 2 Lg VL]
én quasi-one-dimension this yields H‘lzizliz_“:%,
which is the well-known result for the UCF in quasi-
one-dimensioR!

VN NG NN

Ill. THE THIRD CUMULANT

We now study the third cumulant. First, we rewrite Eq.
(1) into a relation for the relative cumulants(o(")./(g)")
«(g)2~2", The inverse power ofg) on the right hand side
can be interpreted as the number of Hikami four boxes in the
diagrams. Thus the third cumulant diagram contains four
Hikami four boxes. Indeed, it proves impossible to create
(g®). diagrams with less boxes. Diagrams with more boxes
are subleading as they are of higher power ¢§31/which is
a small parameter. In diagrammatic approaches it is often
tricky to find all the relevant diagrams; already for the much
simpler set of UCF diagrams there was considerable discus-
sion in the literature. We used the following considerations
to find the set of diagrams for the third cumulant. The dia-
FIG. 2. The UCF oKg?). diagrams. grams have six current vertices: three incoming ones and
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The calculation goes similar to the UCF calculation, that is,

the sums over the momenta are taken outside the spatial in-
a) b) tegrals. If two internal diffusons interfere, the spatial inte-

grals bring the orthogonality relations as used for the UCF

calculation. However, two complications arise. First, at the
Hikami vertices not only two, also three, or four diffusons

C) d) interfere (as is seen from Figs. 3 and,4this gives more
W complicated structures. Second, Hikami bokkesandH 4 are

g dependent, corresponding to spatial derivatives of the dif-
fusons. We therefore introduce the matridesS, and T,
FIG. 3. All basic topologies for the third cumulant diagrams. which describe the interaction of the diffusons at the vertices.
The wavy lines are diffusons or cooperons. The dots represent In the diagrams e.i, e.ii, e.v, and e.vi of Fig. 4 four diffu-
Hikami four-point vertices. Detailed inspection of these diagramssons, two with momentum, and two with momenturj

will yield the diagrams of Fig. 4. interfere. Thex components of the diffusons couple as
three outgoing ones. The diagrams contain four four-point 2\2 L, i j X
vertices and each vertex has at least two diffusons attached to R = (_) f dxco§( x )cosz( X )

it, see Fig. 1. This leaves two possibilities: there are three L) Jo L Lx

boxes with each two diffusons and one box with four diffu- 1 1

sons; or, there are two boxes with two diffusons and two =—|1+5(1-68 06 (10)
boxes with three diffusons each. It is now an easy exercise to Lx 2 .

see that there are only four possible basic topologies. The¥
are drawn in Fig. 3. The dots represent the four-point verti-
ces; the lines represent diffusons. The next step is to inse hese  diaarams  will  thus  be roportional  to
the Hikami boxes and connect them in all possible ways tch_ R R g_ prop
the diffusons. This yields many diagrams, yet not in all dia-" "z:Jz "'x:Ix "y ly’ . i i
grams the outgoing electron-hole pair is the same as the in- I most other diagrams three diffusons interfere at a
coming electron-hole pairing. Such diagrams are not thélikami boxHe,, this box brings a derivative/d,. The ma-
product of three conductance bubbles; they do not contributBix S describes the effect of this derivative on theompo-
to the (g3), process and are left out. We end up with thenent, theT describes the integrals overandy components.
diagrams represented in Fig. 4. In the figure there are also oo _ _
diagrams of the same order with one six box and two four _ E de 27 I.Zzm
boxes. They can be obtained by contracting one diffuson in  -i.%~ T, o 941, /%% 1,
jzm\ | [Kpzw
L sin L
S A S S
LZ\/Z_LZ [ 2001k, Ky ity

he y components yield exactly the same integral, see Eq.
), and also thez components yield the same expression.

the diagrams with four boxes. In physical terms the six-box
diagrams correspond to processes where after an interference
process, the amplitudes do not combine into a diffuson. In-
stead, the amplitudes interact again directly without being
scattered.

X sin

A. Evaluation of the diagrams
(11

2\%2 L, i,z |4, k,zm
Ti g k=T f dxco co co
ai)qu i) ¢  bi) ii) Ao - L L
e 1

=—=(6i 05j k t 6 00 Kkt oS j
c.i) A i) L di) e 'O
= é '5
&

We calculate the diagrams for quasi-one-dimensional,
guasi-two-dimensional, and three-dimensional geometries.

N

i) R —28, 08j 08,0 (if ix.jx, OF ke=0) (12)
i) iv) < iii)
, T
< :_\/I(‘six,jx+kx+5jx,ix+kx+5kx,ix+jx) (else.
X
13
ed) morn i) omerm il) - iV)<§M§> 3
Ve e a7 ET@PJ 4 The box H,, has a minus sign resulting in
: TSk Vi ok Ty g ks

FIG. 4. The calculated set of leading diagrams for the third The diagrams can now be written in terms of Rg5,T.
cumulant of the conductance. The diagrams are derived from Fig. 3the prefactors, the combinatorial factors, and the sum over
one sees that structure is similar. The diagrdensire obtained by the momenta are included. The third cumulant is given by
contraction of diffusons in the diagrania), (b), (c), and(d). the sum of diagramég®).=>F, where theF’s are
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however, exactly canceled by a similar divergence in the b.i
and b.ii diagrams. Equatiofil4b) presents the combined,
finite expression.

1
_ 2 2 2
FaitFaii=—144 iJZK %) )\j)\kslz,jz,szix ok Ty oy oy

(143 It is interesting that due to the finite system size momen-

tum conservation apparently does not hold, for example, the
Fp.itFp.ii +Feiii T Feiv momentum of the middle diffuson in thd) diagrams of Fig.

4 need not be zero. This is a result of the mirror terms in the

_72S 1 [w? 3.25 +i2lr R diffusons, which are present to fulfill to the boundary condi-
By B VA 21200, 2 Ry tions. Though such terms would be absent in the bulk, they

never vanish in our geometry.
23 In the quasi-one-dimensional case the diffusons are
+Tr_ —i%8 . +i?2|R R . . © 9 : ;
|_)3(‘ 2 Xy T I i Ny udy simple linear functions of the coordinate
n ™ §-25 +i2lr R (14b) 1 min(zy,2,)[L,— maxz;,2;)]
fg 2|y iy,jy Iy ixvjx izvjz ! E(Zl,ZZ):Z’]TVTZD LZ y
(16)

F o ——a 8r2 1 <2 2 T2 allowing an analytically treatment. The diagrams can now
ci™ Tk )\iz)\J?)\k I220z:Kz siyoKye Ty ody Ky even be calculated directly without introducing the momen-
(149  tum representation at all. As a check we also calculated the
diagrams using this representation. We find, using either

1 method, for the sum of the diagrams
FeiitFeii=—120>, —5—»—S2 . . T2 . T? .,
c.ii c.iii i,Jz,k )\iz)\jz)\kskz,llez ixoix oKy iy !ly(’lzd) <93>C:0 (quasi-one-dimensional 17

Thus the leading contribution to the third cumulant in one
dimension vanishes. This confirms the random matrix theory
result! diagrammatically.

In higher dimensions the sums were performed numeri-
cally. In the numerical evaluation the sums over three sets of
momenta are implicitly reduced to sums over two sets. This
is a direct consequence of the fact that there are only two
independent momenta present. The numerical evaluation re-
1 mains, however, quite involved as in three dimensions one

Foi,=96r >, 13-8--T-2-T--
c.iv Tk )\zi )\jz)\k PRIPTL A PRIPEL N NIV lyaly Ky

(14¢

FaitFaitFaii T Faiy

=864 >, NININ D20k Tk ik, Still has to sum over six variables and the convergence is
Lk ApATAK : NP
quite slow. We find in the orthogonal ensemble for square,
XTi ik Tio i koo (14f) and cubic samples, respectively,
yry'ty Jyryrty
1 (g%.=-0.002qg)"! (quasi-two-dimensiona|
FoitFeii+Fey,+Feoy,i=36r R R R ;.
e.i e.ii ew e.vi |2] )\iz)\jz i Ny Iy(,Jy g) <93>C:+0.007Qg>—1 (3D). (18)
14

The results for rectangular samples are given in the Figs. 5
The sums runs over all allowed momenta indices. The factoand 6, where we multiplied the third cumulant by the average
r contains the prefactors of the diffusons and boxes and af the dimension-less conductance. The third cumulant for
factor (/L ,)® for the incoming and outgoing current verti- wide slabs [,> L,,L,>L,) is proportional to [,L,/(g)).
ces, In the figures due to the multiplication Ky) there is pro-
portionality to (LL,)%/Lj for wide slabs. For very narrow
1 slabs one sees that the correct quasi-two-dimensional and

=—. 15
' 2wvDL, (15

Finally, the sums still contain a factdr}/(L,L,), yielding

quasi-one-dimensional limits are recovered. Note that third
cumulant passes through zero when going from 2D to 3D,
this happens if the sample has the size DA6L,XL,.

multiplied byr a prefactorg) 1. So indeed the third cumu-
lant is proportional to the inverse dimensionless conductance
as predicted. The choice of ensemble is reflected in the com- |ncoherent scattering was neglected in the above calcula-
binatorial factor. For simplicity the combinatorial factors tions. In realistic system, however, incoherent scattering can
were calculated for the unitary ensemble, finally, for the or-pe present. This is especially true at nonzero temperatures
thogonal ensemble all prefactors will be four times largeryhere electron-phonon interactions will occur. This mecha-
The e.iii and e.iv diagrams are divergent in two and thregyism was included in the description of Lee, Stone, and
dimensions, as the SUEﬁ'Z,jx,ij—l is logarithmically diver-  Fukuyama* The inverse inelastic scattering time induces a
gent in 2D and linearly divergent in 3D. This divergence is,positive shift of the diffuson eigenvalues,

B. Inelastic scattering
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Third cumulant of conductance Third cumulant of the conductance

Width dependence in quasi 2D Width dependence in 3D geometry
0.01 0.03

0.00 L 0.02
. .
<g>,.<g> <gs> <g>
.-
001 k 0.01
0.02 ) . 0.00
0.0 1.0 2.0 3.0 , ,
Width ratio: L /L, 0.0 1.0 2.0

Width ratio: L/L,
FIG. 5. The third cumulant of the conductance multiplied by the
average as a function of the transversal size in a 2D sample. Al- FIG. 6. The third cumulant multiplied by the average conduc-
though the leading term vanishes in quasi-one-dimension, it is nortance in a 3D sample plotted against the transversallsjzeThe
trivial in 2D geometries. geometry isL,XL,XL, for the solid line. Note that, the sign
changes in going from a quasi-two-dimensional to a three-
dimensional sample. The dashed line gives a third cumulant in the

N 2 2, L, L2 L, N 5 10 sample with geometryz, XL, XL,.
AR IyL_y P (19
The case that the incoherence length is much smaller than IV. CONCLUSION

the system sizes is of particular interest. The effect on the
third cumulant can now be estimated simply by considering We have considered a mesoscopic sample in the metallic
the sample as being made up of small samples of dimensiaegime and we calculated the third cumulant of the conduc-
LS, with independent conductance distributions. The conductance distribution. Naive scaling predicts that the third cumu-
tance of such a sample is in 3D, lant should be proportional to (). In quasi-one-dimension
we confirm the absence of this leading contribution, as was
1 ) found by Macelo!* In two and three dimensions, however,
-1 _ﬂ Lin this cancelation is not present; the leading contribution to the
E (90) = Jot+ E 690, . . A . . e
L.L LiL third cumulant is negative in two dimensions and positive in
(20)  three dimensions. The fact that the third cumulant changes
sign is surprising. The third cumulant is also known as the
whereg, denotes the conductance of an individual coherenskewness of a distribution. In analogy with the third cumu-
cube. The relative cumulants thus scale as lant of the total transmissidfor if the distribution would be
tending to log-normal, one would have expected a positive
3 inin third cumulant of the conductance. Instead, we find that all
(9")c _( Lin ) (9o)c possible values occur: negative, positive, and zero. We have
n n-: (21) T H
) LyLyL,/ (90) no explanation for this.
To the best of our knowledge there exists no experimental
The relative third cumulant is reduced by a factor WOrK whtere Ftr;]e COFdL:Cta,”CGI distribptionlis Qisclussed. Ex-
6 2 e eriments, either electronical, or using classical waves, or
Linl (LiLyL2)". As a result the combination rF:umericaI simulations, could enlightengpresent results. Pre-
dicted values are small, but should be detectable in electronic

Ly /Lin Ly/Lin [ Lz/Lin
9= > {
iy iy

Iz

(9°)(9) 22) systems with moderate values(g). Also observation of the
(9%)2 conductivity distribution as a whole would be very interest-
ing.

is independent of;,, so that this quantity is universal. As

the incoherence length is the same in all directions, the co-

herent parts are essentially cubic. Therefore, the quantity will ACKNOWLEDGMENTS

roughly tend to its value focoherent, cubicsamples. The

precise value can be obtained by properly including the in- Th.M.N. thanks M. Sanquer for discussion. Two of us
coherence effects in the calculation as indicated above. Bdl.V.L. and B.L.A) gratefully acknowledge support of the
cause of this universality, the quantity is useful experimenNSF under Grant No. PHY94-07194 and kind hospitality
tally. We even expect the full conductance distribution to beextended to us at ITP in Santa Barbara at the final stage of
universal in this regime, that is, independent of geometry anthis work. This research was also supported by N.A.T.O.
incoherence length. (Grant No. CRG 921399



4716 van ROSSUM, LERNER, ALTSHULER, AND NIEUWENHUIZEN 55

*Present address: Room 123, Anatomy-Chemistry Building, Uni?M. L. Mehta, Random Matrices and the Statistical Theory of
versity of Pennsylvania, Philadelphia, PA 19104-6058; elec- Energy Level§Academic Press, New York, 1967

tronic address: vrossum@retina.anatomy.upenn.edu 13A. V. Tartakovski(private communication
1C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb,'*A. V. Tartakovski, Phys. Rev. B2, 2704(1995.
Phys. Rev. B30, 4048(1984). 15M. C. W. van Rossum, J. F. de Boer, and Th. M. Nieuwenhuizen,
°p. A. Lee and A. D. Stone, Phys. Rev. Léif, 1622(1985. Phys. Rev. E52, 2053(1995.
3B. L. Altshuler, Pis’'ma Zh. Esp. Teor. Fiz41, 530(1985 [JETP  Th. M. Nieuwenhuizen and M. C. W. van Rossum, Phys. Rev.
Lett. 41, 649(1985]. ) Lett. 74, 2674(1995.
4B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, ZhkBp. Teor.  17J. F. de Boeet al, Phys. Rev. Lett73, 2567(1994).
Fiz. 91, 2276(1986 [Sov. Phys. JETB4, 1352(1986]. 18a. 7. Genack and N. Garcia, Europhys. L&, 753(1993.
5B. Shapiro, Phys. Rev. Let65, 1510(1990. 19C. L. Kane, R. A. Serota, and P. A. Lee, Phys. Re\3B 6701
6B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, iMesoscopic (1988.

Phenomena in SoligModern Problems in Condensed Matter 2°M. C. W. van Rossum, Th. M. Nieuwenhuizen, and R. Vlaming,
Sciences Vol. 30, edited by B. L. Altshuler, P. A. Lee, and R. A.  Phys. Rev. B51, 6158(1995.

Webb (North-Holland, Amsterdam, 1991p. 449. 21p_A. Lee, A. D. Stone, and H. Fukuyama, Phys. Re531039
“P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, (1987.
Phys. Rev. B22, 3519(1980. 22Th. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen,
8A. A. Abrikosov, Solid State Commurg7, 997 (1981). Phys. Lett. A169, 191(1992.
%V. I. Mel'nikov, Fiz. Tverd. Tela(Leningrad 23, 782 (1981 23Th. M. Nieuwenhuizen and M. C. W. van Rossum, Phys. Lett. A
[Sov. Phys. Solid Stat®3, 444 (1981)]. 177, 102 (1993.
10E, N. Economou and C. M. Soukoulis, Phys. Rev. L46. 618 243, Hikami, Phys. Rev. B4, 2671(198J).
(1981). 25L., P. Gor’kov, A. I. Larkin, and D. E. Khmel'nitskii, Pis’'ma Zh.

A, M. S. Macelo, Phys. Rev. B19, 1858(1994. Eksp. Teor. Fiz30, 248(1979 [JETP Lett.30, 228(1979].



