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Voltage-probe and imaginary-potential models for dephasing in a chaotic quantum dot

P. W. Brouwer and C. W. J. Beenakker
Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
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We compare two widely used models for dephasing in a chaotic quantum dot: the introduction of a fictitious
voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We
identify the limit in which the two models are equivalent and compute the distribution of the conductance in
that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution
remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs occurs
via ballistic single-mode point contacts, but becomes Gaussian if the coupling occurs via tunneling contacts.
[S0163-18207)00808-4

[. INTRODUCTION dephasing. This is perfectly reasonable for dephasing by a
real voltage probe, but it is not satisfactory if one wants a
Extensive theoretical work has provided a detailed defictitious voltage probe to serve as a model for dephasing by
scription of the universal features of phase-coherent transpoittelastic processes occurring uniformly in space. A second
in classically chaotic systems, such as universal conductangteficiency of the voltage-probe model is that inelastic scat-
fluctuations, weak localization, and a non-Gaussian condudering requires a continuous tuning parametgy while the
tance distributiort- 12 The advances of submicrometer tech- number of modesl , in the voltage probe can take on integer
nology in the past decade have made these manifestations wflues only. Although the introduction of a tunnel barrier
quantum chaos in electronic transport accessible tdtransparencyl’,) in the voltage probe allows the conduc-
experiment3~2° Although experiments on semiconductor tanceG =Ny, to interpolate between integer values, the
guantum dots confirm the qualitative predictions of thepresence ofwo model parameters creates an ambiguity: The
phase-coherent theory, a quantitative comparison requirenductance distribution depends N andI", separately,
that loss of phase coherence be included in the theory. Twand not just on the produdt,I', set by the dephasing time.
methods have been used for this purpose. In this paper we present a version of the voltage-probe
The first method, originating from Biiker?!is to include  model that does not suffer from this ambiguity and that can
a fictitious voltage probe into the scattering matrix. The volt-be applied to dephasing processes occurring uniformly in
age probe breaks phase coherence by removing electrospace. This version is equivalent to a particle-conserving
from the phase-coherent motion in the quantum dot, and subimaginary-potential model. We show that the absorbing term
sequently reinjecting them without any phase relationshipin the Hamiltonian can be replaced by an absorbing (&ael
The conductanceG, of the voltage probe(in units of voltage probg in the limit N,—e, I'y—0 at fixed
2e?/h) is set by the mean level spacingin the quantum dot G,=Nyl'y. This is the “locally weak absorption limit” of
and the dephasing time,, according toG,=27h/7,A. Zirnbauer: Both shortcomings of the voltage-probe model
This method was used in Refs. 7, 8, 13, and 20. The secorate cured: The limiN,— o together with ergodicity ensures
method is to include afspatially uniform imaginary poten- spatial uniformity of the dephasing, while the conductance
tial in the Hamiltonian, equal te-i#/27,. This method was G is the only variable left to parametrize the dephasing rate.
used in Refs. 9 and 11. The outline of the paper is as follows. In Sec. Il we recall
The two methods have given very different results for thethe voltage-probe model and derive the limit,—ce,
distribution of the conductandg, in particular, in the case I',—0 at fixed Ny, from the particle-conserving
that the current through the quantum dot flows throughmaginary-potential model. We then calculate the effect of
single-mode point contacts. While the distributiB(G) be-  dephasing on the conductance distribution in the case of
comes aj peak at the classical conductance for very strongsingle-mode point contactSec. Ill). The distribution nar-
dephasing t,—0) in the voltage-probe modeP(G) peaks rows around the classical series conductance of the two point
at zero conductance in the imaginary-potential model. It icontacts when the dimensionless dephasing rate
the purpose of the present paper to reconcile the two methy=2=7#/7,A becomes>1, but not precisely in the way
ods, and to compute the conductance distribution in the limitvhich was computed in Refs. 7 and 8. In Sec. IV we briefly
that the two methods are equivalent. consider the case of multiple-mode point contacismber
The origin of the differences lies with certain shortcom-of modes>1), which is less interesting. We conclude in
ings of each model. On the one hand, the imaginary-potentigbec. V.
model does not conserve the number of electrons. We will
§how how to cqrrect for this, thereby resolving an ambiguity Il. TWO MODELS FOR DEPHASING
in the formulation of the model noted by McCann and
Lerner!! On the other hand, the voltage-probe model de- The system under consideration is shown in Fig. 1. It
scribes spatially localized instead of spatially uniform consists of a chaotic cavity, coupled by two point contacts
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that are reinjected from the phase-breaking reservoir, thereby
ensuring particle conservation in the voltage-probe model.
_ The imaginary-potential model relat&sto a Hamiltonian
H with a spatially uniform, negative imaginary potential
—iyAldm. As used in Refs. 9 and 11, it retains only the first
term in Eq.(4), and therefore does not conserve patrticles.
We correct this by including the second term. We will now
show that this particle-conserving imaginary-potential model
is equivalent to the voltage-probe model in the limit
Ny— 00, F¢—'>o, N¢,F¢E Y.
Our equivalence proof

is based on the general

FIG. 1. Chaotic cavity, connected to current source and drairfelationshipz,3'24

reservoirg1l and 2, and to a voltage probef). The voltage probe
contains a tunnel barrigdotted ling. The voltageV,, is adjusted
such thatl ,=0.

S=1—2mWT(Eg—H+imWW") 1w, (6)

between theN X N scattering matrixs (N=N;+N,) and the

(with N; and N, propagating modes at the Fermi energyN’x N’ HamiltonianH (the limit N’ — is taken later on

Er) to source and drain reservoirs at voltaggsandV,. A

currentl =1,=—1, flows from the source to the drain. In the

voltage-probe modét a fictitious third lead K, modes
connects the cavity to a reservoir at voltagg. Particle
conservation is enforced by adjustikg, in such a way that

no current is drawnl(,=0). The third lead contains a tunnel

barrier, with a transmission probability,, which we assume
to be the same for each mode. The scattering m&rhas
dimensionM =N; +N,+ N, and can be written as

S11 S12 S14
S=| Sa1 S So4 |, (1)
Sg1 Sg2  Sgg

in terms of N;XN; reflection and transmission matrices

Sij - Application of the relatior$

2¢e?
Ik:TZ Gk|V| f k= 1,2,¢, (Za)
G = SuNk—tr Syisty, (2b)

yields the (dimensionless conductanceG=(h/2e?)1/(V,
_V2)1

qu&Gd;Z

O GGy

)

Using unitarity of S we may eliminate the conductance

coefficientsGy, which involve the voltage probe,

(G111t G1) (Gt Gyp)

G=—G+ .
127 G+ Gip+ Gy t+ Gy

(4)

The Hamiltonian contains an imaginary potential,
wv=Hy,—16,,yAldm, with H a Hermitian matrix. For a
chaotic cavity,H is taken from the Gaussian ensemble of

random matrix theory> The N’'XN matrix W has

element&*26

TW2, =715, ,N'A(2l = 1-20 11=T,). (7

Here I',, is the transmission probability of mode in the
leads and the energy is the mean level spacing ¢f. We
embedW into anN’XN' matrix by the definitionw,,=0
for N<n=<N'’, and define

®

Substitution into Eq(6) shows thaS is anNx N submatrix
of anN’ XN’ unitary matrix,

7TWl2m: 7T\7Vl2m+ OunyAld,

S=1-2m7WT(Eg—H+imWWh)tw. 9)
We have neglected the difference betw&ép, andw,, , for
1=<u=<N, which is allowed in the limitN’ —o. The matrix

S is the scattering matrix of a cavity with three leads: Two
real leads withN;, N, modes, plus a fictitious lead with
N’—N modes. The transmission probabillty, of a mode in
the fictitious lead follows from Eqg7) and(8),

4m°W2 N'A y

=W wzgy? n TN

(10
where we have used thatW?2,=yA/4m for N<n<N'.
We conclude that the particle-conserving imaginary-poten-
tial model and the voltage-probe model are equivalent in
=y(1-N/N")—7y.

The remaining conductance coefficients are constructed from

the matrix,

S12
, 5
S22) ©®

S=
So1

Ill. SINGLE-MODE POINT CONTACTS

The effect of quantum interference on the conductance is
maximal if the point contacts which couple the chaotic cavity
to the source and drain reservoirs have only a single propa-

which formally represents the scattering matrix of an absorbgating mode at the Fermi level. Then the sample-to-sample

ing system. The first term in Eq4) would be the conduc-

fluctuations of the conductance are of the same size as the

tance if the voltage probe would truly absorb the electronsiverage conductance itself. One thus needs the entire con-
which enter it. The second term accounts for the electronductance distribution to characterize an ensemble of quantum
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dots.(An ensemble may be generated by small variations inThe two parameter§,; and T, govern the strength of the
shape or in Fermi energy. absorption by the voltage probe. Fdg,T,—0 the matrix

In the absence of dephasing, the conductance distributiog s unitary and there is no absorption, whereas for
P(G) is strongly non-Gaussiah® For ideal point contacts T,,T,—1 the matrixS vanishes and the absorption is com-
(transmission probabilities,;=T',=1), one find$® plete. Substitution of the invariant meastfre

P(G)=1 BGF~272, (11)

The symmetry parametg=2 (1) in the presenc@bsence dS=[Ty =Tyl A(T,To) PNe™2"A%du du do dv’dT,dT,

of a time-reversal-symmetry breaking magnetic field. For (15)

high tunnel barriers I{;,I'»<1), P(G) is maximal for

G=0, and drops off<G~¥?for G>TI",I",.*°In this section, and the polar decompositidf3) into the Poisson kern¢12)

we compute the conductance distribution in the presence dfields the distribution ofs in the form

dephasing, using the voltage-probe model in the limit

N,—, I',—0 at fixedN,I',, in which it is equivalent to

the current-conserving imaginary-potential model. We focugD

on the case of ideal point contacts, and discuss the effect of

tunnel barriers briefly at the end of the section. 1
The scattering matrixS is distributed according to the =FZ¢(EN¢+2+B)/2|T1—T2|BV

Poisson kerned®=2°
(Tsz)(,Bng*Z*ﬁ)/Z
<J oo [ oo gy e 69

(T11T2|ulul)

1 def1-SST)(M+2-p)2
P(S)Zv |de(1_SST)|BM+2—B ! (12

V\{here\( is a normallzit!on co_nstarM = le NZJ_r Nd,_ls the 7= J(1-T ) (1—tt). (16b)
dimension ofS, and S is a diagonal matrix with diagonal

elementsS,,,=+1-T,. HereI', is the transmission prob- o ) .

ability of moden (I',=T",, for Ny+N,<n<M). The mea- Since Eq(_16) is md_epe_ndent CIfl andu ,_the matricesl and

suredS s the invariant measure on the manifold of unitaryY’ a@re uniformly distributed in the unitary group, and the

(unitary symmetrit matrices forg=2 (1). distribution of S is completely determined by the joint dis-
We now focus on the case of ideal single-mode pointiribution P(T;,T,) of the absorption probabilitie3; and

contactsN; =N,=1 andl';=I",=1. We seek the distribu- Ta. _ . .

tion of the 2<2 submatrixS defined in Eq.(5). We start We must still perform the integral over andv’ in Eq.

with the polar decomposition &, (16). This is a nontrivial calculation, which we describe in

the Appendix. The final result in the limN ,—, I' ,—0 at
< (u O)(\/l—t t it )(u

"0 fixed y=N,I', is
. ], (13
0 v It Vi-—tt 0 v

whereu andu’ (v andv’) are 2x2 (N,xN,) unitary P(Ty,To)=5 Ty Ty exd — 3 w(To 4+ T2 H]IT,

matrices, and is aN X2 matrix with all elements equal to CT[yA(2— 267+ v+ ye?)
zero exceptt,,=+T,, n=1,2. In the presence of time-

reversal symmetryy’ =u" andv’=v". In terms of the polar —N(T1+T)(6-6€"+4y+2ye"+ )
decomposition(13) we have +T,Ty(24— 247+ 18y+ 67+ 692+ )]
— (179
~ l_ Tl 0
S=u u’. (14
0 1-T, for B=1 (presence of time-reversal symmetrgnd

P(T1,T2)= 3Ty °T, exel = ¥(Ty '+ T H1(Ta— To) [y (1 267+ €77~ y?e7) = y*(T1 + Tp) (4~ 87+ 4€77+ 2y — 2@
—2y%e7— y3e?) + YA(T5+T2)(2—4e7+ 26?7+ 4y—dye?+ y*+ y2e’— y3e?) + y?T,T,(20— 40e” + 20e%”
+16y— 16ye”+49y°—8y%e?—4y*e?— y*e?) — yT To(T1+ Ty) (12— 2487+ 12627+ 24y — 24ye? + 12y°+ 2y*

—2y%e7— %)+ T2T3(12— 24e” + 12677+ 24y — 24ye+ 24y%— 12y%e7+ 8y°+ 4y%e7+ y*— 2y%")] (17b
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g=2

P(G)/2y8

-2 0 2
2y8(G-1/2)

FIG. 3. The limiting conductance distributiofi9) for y>1
(solid curves. A Gaussian distribution with the same mean and
variance is shown for comparisddotted curves

wherex=2vyB(G—1/2). Notice that the distribution remains
non-Gaussian for all values of. The limiting distribution
(19) is plotted in Fig. 3, for8=1 and 2. The average and
variance of the conductance are

(G)=3 —38py 1+0O(y ?), (203

FIG. 2. Solid curves: Conductance distributions of a quantum varG= § (1+284)y 2+0(y ™). (200)

dot with two ideal single-mode point contacts, computed from Egs.

(17) and(18) for dephasing ratey=0, 0.5, 1, 2, and 5. The top  The effect of dephasing was previously studied in Refs. 7
panel is for zero magnetic fiel@3= 1), the bottom panel for broken gnd 8 for the casE¢= 1 of an ideal voltage prob@vithout
time-reversal symmetrygd=2). The dotted curves are the results of a tunnel barrier The corresponding results are also shown in
Refs. 7 and 8 for the model of an ideal voltage prgéthout a Fig. 2 (dotted curves We see that the limitN,— o,

ts“';'lee' tl’:irr'e_}'o":h‘grt'\',‘;g gi?jré?sl:(?ir:zi;eot;Egyvzrlforg];ri]sp:oatse I' ,—0 results in narrower distributions at the same value of
pace. rory= . ' ye=o. y=NyIl'y. In particular, the tailsG—0 and G—1 are
accessible in the model of an ideal voltage proticause .

_ . _ strongly suppressed even for the smalkgsin contrast with
y=N,I"4 can take on only integer valueslif,=1). . .

the case of the ideal voltage probe. The physical reason for

the difference is that keeping,, small and settind", equal
to 1 corresponds to dephasing which is not fully uniform in
phase space, and therefore not as effective as the limit
Ny—o, I' ,—0. For largey, the difference vanishes, and
the distribution(19) is recovered for an ideal voltage probe

for B=2 (absence of time-reversal symmetry

To relate the conductand® to T, T,, u, andu’, we
substitute the polar decomposition®into Eq.(4), with the
result

2 as well. (The fact that the conductance fluctuations around
G= >, UyuLurul,* J(I-T)(1-T) G=1/2 are non-Gaussian was overlooked in Refs. 7 and 8.
=1 a ! We have shown in the previous section that the voltage-

2 probe model in the limiN ,—<, I ,— 0 is equivalent to the
(T4 T) 1 Unil 2100 12T T 18 parucle—consgrvmg |mag|n_ary—.potent|al .model_. Thg require-
(Ta#T2) i,jzzl Jusil Uil *TiT (18 ment of particle conservation is essential. This is illustrated

in Fig. 4, where we compare our results with those obtained
Equations(17) and (18), together with the uniform distribu-  from the imaginary-potential model without enforcing con-
tion of the 2<2 matricesu, u’ over the unitary group, fully servation of particles[This model corresponds to setting
determine the distributioR(G) of the conductance of acha- G=-G,, in Eq. (4) and was first solved in Ref. BFor
otic cavity with two ideal single-mode point contacts. We ys 1, the imaginary potential without particle conservation
parametrizeu, u’ in Euler angles and obtaiP(G) as a yjelds a distribution which is maximal &=0, instead of a
four-dimensional integral, which we evaluate numerically.strongw peaked distribution arour@= 1/2 [cf. Eq. (19)].
The distribution is plOtted in Flg &Olld CUrVE$ for several The first two moments of the conductance can be com-
values of the dimensionless dephasing rate2n#i/74A.  puted analytically from Egs(17) and (18). The resulting
For y>1. the conductance distribution becomes peakedsxpressiongwhich are too lengthy to report hérare plotted
around the classical conductan@Ge= 1/2, in Fig. 5. The markers at integer valuesyére the results of
p the ideal voltage-probe model of Refs. 7 and LéB where
Y IV ,=1 andy=N,4=0,1,2,.... Theremarkable resultthat
P(G)—>7(1+|x|—5ﬁlx)e Mo y=1, 9 (é) is the samed;‘oryzo andy=1 is special for dephasing



55 VOLTAGE-PROBE AND IMAGINARY-POTENTIAL ...

FIG. 4. Solid curves: Same as in Fig. 2, bottom panel. Dotted
curves: Results of the imaginary-potential model without particle

conservation.

4699

where the matrices’, R, and T are the upper-left 2
submatrices o8’, R, andT, respectively. The matri$’ has
the distribution given by Eqs(16) and (17). The matrices
R andT are fixed, so the distribution d& follows directly
from Eq. (22).

For strong dephasingyeT',,I',), we find that the con-
ductance distribution becomes a Gaussian with the mean and
variance given by

LY BT
r+I, y(I'1+T)3 '
ATTYT24T2-T,02-T2T,)

varG= 1 2( 1 2 1t 2 1t 2 (23[))

By(L1+T,)3

The average conductan¢6) is the classical series conduc-
tance of the two point-contact conductanEgsandI’,. Fluc-

by a single-mode voltage probe: The present model with . otions around the classical conductance are of order

spatially uniform dephasing has a strictly monotonic increas

of (G) with y for 3=1.

So far we have considered ideal point contacts. Nonide

point contactgi.e., point contacts with tunnel barrigrsor-
respond td";,I',<1 in the distribution(12) of S. This case

can be mapped onto that of ideal point contacts by the;ion311

parametrizatioff—22

S=R+T(1-S'R)"!S'T, (22)

whereR and T=i1—R? are diagonal matrices. The only

nonzero elements of R are Ry;;=vy1-I'; and
R,,=+1-T',. The distribution ofS’ is given by the Poisson
kernel(12) with I'y=T",=1. Physically,S’ is the scattering

matrix of the quantum dot without the tunnel barriers in the

point contacts, whileR (T) is the reflection(transmission

matrix of the tunnel barriers in the absence of the quantum

dot”® We may restrict the parametrizati¢al) to the 2x 2
submatrixS,
S=R+T(1-S'R)"1S'T, (22)

0.1

0.08

 0.06

@
> 0.04

0.02

ey*m. For ideal point contactsI{;,I',—1) the variance

23b) vanishes. The higher-order fluctuations are non-
aussian, described by E{.9).

Again our result is entirely different from that of the
imaginary-potential model without a particle conser-
where P(G) becomes sharply peaked &=0
when y>T",,I',. We have verified that we recover the re-
sults of Ref. 3 from our Eqg17) and(18) if we retain only
the first term in Eq(4), i.e., if we setG=—G;,. The results
of Ref. 11 are recovered if we symmetrize this term, i.e., if
we setG=—(Gy,+G,y)/2. (This is different from— G, if
B=2 andy+#0.) Once particle conservation is enforced, the
imaginary-potential model leads unambiguously to &§).

IV. MULTIPLE-MODE POINT CONTACTS

In this section we consider the caNg,N,>1 of a large
number of modes in the two point contacts. The conductance
distribution is then a Gaussian, hence it suffices to compute
the first two moments ofs. We first consider ideal point
contacts [';=I",=1), and discuss the effect of tunnel bar-
riers at the end.

For N;,N,>1 the integration over the scattering matrix
S with the probability distributio{12) can be done using the
diagrammatic technique of Ref. 31. The result for the aver-
age of the conductance coefficien@g is

NiN;

<Gij>:Ni5ij_m

+851A (249

NiN;(N+2N, =Ny 5
e (N+NyI )3

ij Ni

T N+NGT,

(24b)

up to terms of ordeN 1. (We recall thatN=N;+ N,.) For
the covariances co@;;,Gy))=(Gj;Gy)—(Gij;){Gy;), we
find

FIG. 5. Variance of the conductance as a function of the dephas-

ing ratey, for B=1 (solid curve and B=2 (dotted curvg com-
puted from Eqs(17) and (18). The crosses=1) and squares

(B=2) at integery result from the model of Refs. 7 and 8 with the
ideal voltage probe. The inset shows the average conductance for

B=1. (For B=2 the average is trivially equal to 1/2 for ajl in
both models.

oM Gj;j ,Gy) =AiAj + 85 1A1Ajk

2N;N;NNIN (N +N)T5 (1T )
BIN+N,I,)° '

(25
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In order to find the average and variance of the conductandenaginary-potential model of Refs. 9 and 11. We have cal-
in the presence of dephasing, we substitute EB4) and culated the distribution of the conductance and shown that it

(25) into Eq.(4). The result is peaks at the classical conductance for strong dephasing once
particle conservation is enforced, thereby reconciling the

(G)= NiN, ( 1— Sp1 (263 contradictory results of Refs. 7 and 8, on the one hand, and
N N+7y)’ Refs. 9 and 11, on the other hand. We find that for ideal
single-mode point contactso tunnel barriens conductance
2N§N§ fluctuations are non-Gaussian and, for strong dephasing
varG = W (26b) (74—0). In the case of nonideal point contactéth tunnel
) barrierg, fluctuations are Iargero(\/r—¢) and Gaussian for

Equgoﬂon(zﬁa) was previously obtained by Aleiner and " 1ne effect of dephasing becomes appreciable when the
Larkin.™ Equation(26b) for varG agrees with the interpola- gimensionless dephasing rage= 2/ 7,A is of the same
tion formula of Baranger and MelfoThe present derivation order as the dimensionless escape gates, T, through the

shows that this interpolation formula is in fact a rigorousy,q point contacts. Foy>g, the weak-localization correc-
result of perturbation theoryHowever, the interpolation for- tion G=(G)(B=2)— G)(,B=1) and the conductance
mula of Ref. 7 for(G) differs from Eq.(26a.] In the final  ,,ctuations are given

expression fofG) and vaG only the productN,I', ap-

pears, although the moments of the conductance coefficients 8G=a,9/y+0(g/y)?, (283
G;; depend orN,, and I, separately. Apparently, in large-
N perturbation theory the precise choiceNof andI”  in the varG=b,g/y+b,(g/y)?+0(g/ y)3, (28b

voltage-probe model is irrelevant, the conductance distribu-

- . . hereaq, by, andb, are numerical coefficients determined
tion being determined by the produst,I", only. For small %V 1“1 2 .
dephasin% rateg<<N, Eq}./(26) ggreest\b/vi% Efgtov's result, by Egs.(20), (23), (26), and(27). For the special case of two

which used the imaginary-potential model without enforcingsmgle'mOde point contacts, we have

particle conservation. However, far=N, our result differs AT2T2

from that of Ref. 9, indicating the importance of particle alz—124, (299

conservation once the dephasing ratend the dimension- (I'y+1)

less escape ratd through the point contacts become com- 912,122 1D 5 2

Arrsri+rs—rirs—rir,)

parable. e z 1 (290
We have carried out the same calculation for the case of ! B(r+T,)*

nonideal point contacts. The transmission probability of - : . _

moden is denoted by, (n=1, ... N; corresponding to the The coefficientb, is only relevant if I'y,I';~1, when

temperatures, in addition to dephasing, the effect of thermal
smearing becomes importahSince thermal smearing has
no effect on the average conductance, the weak-localization

first point contact,n=N;+1,... N;+N, to the second
point contact The result is

9101 920:°+070;

(G)y= dp1— , (27a  correction §G provides an unambiguous way to find the
9 9%(9+ ) dephasing rate.
2, 4, a4, , , The fact that dephasing was not entirely uniform in phase
varG— 2919;° 4(979,— 9793+ 9201 *—9301* space in the model of Refs. 7 and 8 leads to small but no-
BY*(g+7)* Bg*(g+7) ticeable differences with the completely uniform description
412, 2 44 2 2 , used here, in particular, for the case of single-mode point
3(919>"+ 9591 _ 4910:17(92 1 9>) 270 contacts. The differences may result in a discrepancy
Bg*(g+ ) Bg(g+y)? Avy~1 in the estimated value of the dimensionless dephas-

ing ratey, if the ideal voltage-probe model of Refs. 7 and 8

o , is used instead of the model presented here. A difference

:12+N I'n, 9=0:+9;. (279 Ay=~1 is relevant, as experiments on semiconductor quan-
! tum dots can have dephasing rates as lowa2 32

One can check that Eq27) reduces to Eq(26) for ideal Both the voltage-probe model and the imaginary-potential

point contacts(when g,=N;, g,=N,). As in the case of model only provide an effective description of dephasing.

single-mode point contacts, &y 2 for y>1 without They cannot compete with a microscopic theory of inelastic

N;+N>y

N1
9= 2 Th, 9p=

n

tunnel barriers, while vy~ ! otherwise. scattering in quantum dotsee, e.g., Refs. 33 and )34At
this time, a microscopic theory for the effect of inelastic
V. CONCLUSION scattering on the conductance distribution does not yet exist.

. For the time being, the model presented here may well be the
In summary, we have demonstrated the equivalence ahost realistic description available.

two models for dephasing, the voltage-probe model and the

imaginary-potential model. In doing so we have corrected a ACKNOWLEDGMENTS

number of shortcomings of each model, notably the nonuni-

formity of the dephasing in the voltage-probe model of Refs. We have benefitted from discussions with I. V. Lerner, C.
7 and 8 and the lack of particle conservation in theM. Marcus, and T. Sh. Misirpashaev. This work was sup-
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Materie” (FOM) and by the “Nederlandse organisatie voor dw= dU];[ CREC '|ﬁH de;. (AB)
Wetenschappelijk OnderzoekNWO). =

After some algebraic manipulations, we arrive at
APPENDIX: CALCULATION OF P(T{,Ty)

We start the calculation oP(T,,T,) from the integral
expressior(16), in which we may replace the double integral | p= f do; ..
of v andv’ by a single integral of the matrix’v over the

unitary group(for B=2) or over the manifold of unitary

symmetric matricegfor 8=1). We make a substitution of XH (1- e"gl)ﬁH [1-(1-T )e' Il
variablesv 'v—w via

doy H |e'fi— ']

<]

X | dU detd?, A7a
vv=r—J1-2w(l-rw)"!J1-72 (A1) f (AT3)
The matrix~ was defined in Eq(16b). One verifies that the where the 22 matrix A is given by

matrix w is unitary (unitary symmetric for3=1). The Jaco-

bian of this transformation 1§28

U”u”ei@u/TT

dv'v V |de(1—v'v7)|ANst27F
= (A2)

=7 (BN, TR
dw V' det1— )" The determinant oA is computed by a direct expansion.
whereV andV’ are normalization constants. This change ofSinceN,>1, we may consider the matrix elemendg; as
variables is a key step in the calculation, since the Jacobiaiidependent realcompley Gaussian distributed variables
(A2) cancels the denominator of the integrand of Fpa  Wwith zero mean and varianceN, for B=1 (2). Wewrite
almost completely, the result of the Gaussian integrations in terms of derivatives
of a generating functiok 4,

1 i
PTLTo)= o7 | dw T4 #T,-T)0 v, |
I1 [1—(1—r¢)e'ﬂj]ﬁf dU de\f=D,F,. (A8)
=1

X [ (1+T,T;71=T )~ (BNg+6=A)2
j=12 The generating functior; depends on the variables,
Yk, andz,, wherek=1 for =1 andk=1,2 for B=2,
X ]LT 26=2|def1— 7w)|?~. (A3)
i

=z

¢ B
We now consider separately the integral Fg= IT (1%t yol1+f (X Vi z0e %],

j=1 k=1
(A9a)

Iﬁzf dw |det1— rw)|?#
f(X,y,2)=(1+x+y) Y (1-TH)[1+x(1-2Ty)

= J dw de(1— rw\7)Pde(1— Jrw 7). +y(1—-2T,) + 2T, T, (A9b)
(Ad4)  The differential operatob ; reads

Here we have used thatis a positive diagonal matrix. We
now change variablegrw~*\/7—W 1. If the matrix ~ were D,=% N;l(aler dy)+ N;Zazlazl, (A103)
unitary, we could write

D,=N, 3 (9. 0y +dy.0y)— % (dy. —dy.)?

|B=f dW det1— rr)Pde(1-W 18,  (A5) 2N L2 (Gt ™0 0,) = 2 (0, =00
_ NG (392,92,= 5 02,02) (9, +0y)
in view of the invariance of the measwlav=dw. However,
7 is not unitary. A theorem due to Weyl allows us to con- + Ny 0,,0,,0,(30,,— 23, (A10b)
tinue Eq.(A5) analytically to arbitraryr.®
To evaluateIB, we decomposeév in eigenvectors and The derivatives in Eq.(A8) should be evaluated at

eigenphasesy=Ue'®UT, whereU is an orthogonaluni-  x,=y,=2=0 (k=1,2).
tary) matrix for =1 (2), and®;; = §;; 6;, 0<6;<27. The We are left with an integral over the phasgswhich is of
invariant measure'w read$® the type
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/ o (1+n)(a]™3-1)—(3+n)ay(a)"*-1)

_ II i0; _ ~i0i|B ’_
s fdal"'jdaﬂiq e —e'] h= (a;—1)%n-1) ’
(A12a)

n B
le;[l (1—e*'9i)/3k1:[l (a,—e'%). (A11) (a2+2_1)(ar21+2_1) B (a2+2_a2+2)(n+2)

(31—1)2(32_1)2 (a;—1)(a—2)(ay—ay)

'
I 2

The integrand is a product of secular determinants
det(\ —U) of a unitary matrixU. Integrals of this form were (A12b)

considered by Haaket al*® For =1 we can directly apply The desired integrall, is obtained froml ; by the substitu-
the results in their paper, fg8=2 we need to extend their tion of Eq. (A12) with n=N, a,=f(xy,yx,z) into Egs.
method to include a product of four secular determinants(A7)—(A10). The substitution of z into Eq.(A3) then leads
We find to the final resul{(17).
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