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Voltage-probe and imaginary-potential models for dephasing in a chaotic quantum dot

P. W. Brouwer and C. W. J. Beenakker
Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 26 September 1996!

We compare two widely used models for dephasing in a chaotic quantum dot: the introduction of a fictitious
voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We
identify the limit in which the two models are equivalent and compute the distribution of the conductance in
that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution
remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs occurs
via ballistic single-mode point contacts, but becomes Gaussian if the coupling occurs via tunneling contacts.
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I. INTRODUCTION

Extensive theoretical work has provided a detailed
scription of the universal features of phase-coherent trans
in classically chaotic systems, such as universal conducta
fluctuations, weak localization, and a non-Gaussian cond
tance distribution.1–12 The advances of submicrometer tec
nology in the past decade have made these manifestatio
quantum chaos in electronic transport accessible
experiment.13–20 Although experiments on semiconduct
quantum dots confirm the qualitative predictions of t
phase-coherent theory, a quantitative comparison requ
that loss of phase coherence be included in the theory. T
methods have been used for this purpose.

The first method, originating from Bu¨ttiker,21 is to include
a fictitious voltage probe into the scattering matrix. The vo
age probe breaks phase coherence by removing elec
from the phase-coherent motion in the quantum dot, and s
sequently reinjecting them without any phase relationsh
The conductanceGf of the voltage probe~in units of
2e2/h) is set by the mean level spacingD in the quantum dot
and the dephasing timetf , according toGf52p\/tfD.
This method was used in Refs. 7, 8, 13, and 20. The sec
method is to include an~spatially uniform! imaginary poten-
tial in the Hamiltonian, equal to2 i\/2tf . This method was
used in Refs. 9 and 11.

The two methods have given very different results for
distribution of the conductanceG, in particular, in the case
that the current through the quantum dot flows throu
single-mode point contacts. While the distributionP(G) be-
comes ad peak at the classical conductance for very stro
dephasing (tf→0) in the voltage-probe model,P(G) peaks
at zero conductance in the imaginary-potential model. I
the purpose of the present paper to reconcile the two m
ods, and to compute the conductance distribution in the li
that the two methods are equivalent.

The origin of the differences lies with certain shortcom
ings of each model. On the one hand, the imaginary-poten
model does not conserve the number of electrons. We
show how to correct for this, thereby resolving an ambigu
in the formulation of the model noted by McCann a
Lerner.11 On the other hand, the voltage-probe model d
scribes spatially localized instead of spatially unifor
550163-1829/97/55~7!/4695~8!/$10.00
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dephasing. This is perfectly reasonable for dephasing b
real voltage probe, but it is not satisfactory if one wants
fictitious voltage probe to serve as a model for dephasing
inelastic processes occurring uniformly in space. A seco
deficiency of the voltage-probe model is that inelastic sc
tering requires a continuous tuning parametertf , while the
number of modesNf in the voltage probe can take on integ
values only. Although the introduction of a tunnel barri
~transparencyGf) in the voltage probe allows the condu
tanceGf5NfGf to interpolate between integer values, t
presence oftwomodel parameters creates an ambiguity: T
conductance distribution depends onNf andGf separately,
and not just on the productNfGf set by the dephasing time

In this paper we present a version of the voltage-pro
model that does not suffer from this ambiguity and that c
be applied to dephasing processes occurring uniformly
space. This version is equivalent to a particle-conserv
imaginary-potential model. We show that the absorbing te
in the Hamiltonian can be replaced by an absorbing lead~the
voltage probe! in the limit Nf→`, Gf→0 at fixed
Gf5NfGf . This is the ‘‘locally weak absorption limit’’ of
Zirnbauer.2 Both shortcomings of the voltage-probe mod
are cured: The limitNf→` together with ergodicity ensure
spatial uniformity of the dephasing, while the conductan
Gf is the only variable left to parametrize the dephasing ra

The outline of the paper is as follows. In Sec. II we rec
the voltage-probe model and derive the limitNf→`,
Gf→0 at fixed NfGf from the particle-conserving
imaginary-potential model. We then calculate the effect
dephasing on the conductance distribution in the case
single-mode point contacts~Sec. III!. The distribution nar-
rows around the classical series conductance of the two p
contacts when the dimensionless dephasing
g52p\/tfD becomes@1, but not precisely in the way
which was computed in Refs. 7 and 8. In Sec. IV we brie
consider the case of multiple-mode point contacts~number
of modes@1), which is less interesting. We conclude
Sec. V.

II. TWO MODELS FOR DEPHASING

The system under consideration is shown in Fig. 1.
consists of a chaotic cavity, coupled by two point conta
4695 © 1997 The American Physical Society



gy

e

l

s

e

ro

rb

n
on

eby
l.

al
st
es.
w
del
it

ral

l,

of

o

en-
in

e is
ity
pa-
ple
the
con-
tum

ra

4696 55P. W. BROUWER AND C. W. J. BEENAKKER
~with N1 and N2 propagating modes at the Fermi ener
EF) to source and drain reservoirs at voltagesV1 andV2. A
currentI5I 152I 2 flows from the source to the drain. In th
voltage-probe model,21 a fictitious third lead (Nf modes!
connects the cavity to a reservoir at voltageVf . Particle
conservation is enforced by adjustingVf in such a way that
no current is drawn (If50). The third lead contains a tunne
barrier, with a transmission probabilityGf which we assume
to be the same for each mode. The scattering matrixS has
dimensionM5N11N21Nf and can be written as

S5S s11 s12 s1f

s21 s22 s2f

sf1 sf2 sff

D , ~1!

in terms of Ni3Nj reflection and transmission matrice
si j . Application of the relations22

I k5
2e2

h (
l
GklVl , k51,2,f, ~2a!

Gkl5dklNk2tr sklskl
† , ~2b!

yields the ~dimensionless! conductanceG5(h/2e2)I /(V1
2V2),

G52G122
G1fGf2

Gf11Gf2
. ~3!

Using unitarity ofS we may eliminate the conductanc
coefficientsGkl which involve the voltage probe,

G52G121
~G111G12!~G221G12!

G111G121G211G22
. ~4!

The remaining conductance coefficients are constructed f
the matrix,

S̃5S s11 s12

s21 s22
D , ~5!

which formally represents the scattering matrix of an abso
ing system. The first term in Eq.~4! would be the conduc-
tance if the voltage probe would truly absorb the electro
which enter it. The second term accounts for the electr

FIG. 1. Chaotic cavity, connected to current source and d
reservoirs~1 and 2!, and to a voltage probe (f). The voltage probe
contains a tunnel barrier~dotted line!. The voltageVf is adjusted
such thatIf50.
m

-

s
s

that are reinjected from the phase-breaking reservoir, ther
ensuring particle conservation in the voltage-probe mode

The imaginary-potential model relatesS̃ to a Hamiltonian
H̃ with a spatially uniform, negative imaginary potenti
2 igD/4p. As used in Refs. 9 and 11, it retains only the fir
term in Eq. ~4!, and therefore does not conserve particl
We correct this by including the second term. We will no
show that this particle-conserving imaginary-potential mo
is equivalent to the voltage-probe model in the lim
Nf→`, Gf→0, NfGf[g.

Our equivalence proof is based on the gene
relationship,23,24

S̃5122p iW̃†~EF2H̃1 ipW̃W̃†!21W̃, ~6!

between theN3N scattering matrixS̃ (N5N11N2) and the
N83N8 HamiltonianH̃ ~the limit N8→` is taken later on!.
The Hamiltonian contains an imaginary potentia
H̃mn5Hmn2 idmngD/4p, with H a Hermitian matrix. For a
chaotic cavity,H is taken from the Gaussian ensemble
random matrix theory.25 The N83N matrix W̃ has
elements24,26

pW̃mn
2 5p21dmnN8D~2Gn

212122Gn
21A12Gn!. ~7!

Here Gn is the transmission probability of moden in the
leads and the energyD is the mean level spacing ofH. We
embedW̃ into anN83N8 matrix by the definitionW̃mn50
for N,n<N8, and define

pWmn
2 5pW̃mn

2 1dmngD/4p. ~8!

Substitution into Eq.~6! shows thatS̃ is anN3N submatrix
of anN83N8 unitary matrix,

S5122p iW†~EF2H1 ipWW†!21W. ~9!

We have neglected the difference betweenW̃mm andWmm for
1<m<N, which is allowed in the limitN8→`. The matrix
S is the scattering matrix of a cavity with three leads: Tw
real leads withN1, N2 modes, plus a fictitious lead with
N82N modes. The transmission probabilityGn of a mode in
the fictitious lead follows from Eqs.~7! and ~8!,

Gn5
4p2Wnn

2 N8D

~N8D1p2Wnn
2 !2
→

g

N8
if N8→`, ~10!

where we have used thatpWnn
2 5gD/4p for N,n<N8.

We conclude that the particle-conserving imaginary-pot
tial model and the voltage-probe model are equivalent
the limit Nf5N82N→`, Gf5g/N8→0, NfGf
5g(12N/N8)→g.

III. SINGLE-MODE POINT CONTACTS

The effect of quantum interference on the conductanc
maximal if the point contacts which couple the chaotic cav
to the source and drain reservoirs have only a single pro
gating mode at the Fermi level. Then the sample-to-sam
fluctuations of the conductance are of the same size as
average conductance itself. One thus needs the entire
ductance distribution to characterize an ensemble of quan

in
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55 4697VOLTAGE-PROBE AND IMAGINARY-POTENTIAL . . .
dots.~An ensemble may be generated by small variations
shape or in Fermi energy.!

In the absence of dephasing, the conductance distribu
P(G) is strongly non-Gaussian.3–6 For ideal point contacts
~transmission probabilitiesG15G251), one finds4,5

P~G!5 1
2 bG~b22!/2. ~11!

The symmetry parameterb52 (1) in the presence~absence!
of a time-reversal-symmetry breaking magnetic field. F
high tunnel barriers (G1 ,G2!1), P(G) is maximal for
G50, and drops off}G23/2 for G@G1G2.

3,6 In this section,
we compute the conductance distribution in the presenc
dephasing, using the voltage-probe model in the lim
Nf→`, Gf→0 at fixedNfGf , in which it is equivalent to
the current-conserving imaginary-potential model. We foc
on the case of ideal point contacts, and discuss the effec
tunnel barriers briefly at the end of the section.

The scattering matrixS is distributed according to the
Poisson kernel,26–29

P~S!5
1

V

det~12S̄S̄†!~bM122b!/2

udet~12S̄S†!ubM122b , ~12!

whereV is a normalization constant,M5N11N21Nf is the
dimension ofS, and S̄ is a diagonal matrix with diagona
elementsS̄nn5A12Gn. Here Gn is the transmission prob
ability of moden (Gn[Gf for N11N2,n<M ). The mea-
suredS is the invariant measure on the manifold of unita
~unitary symmetric! matrices forb52 (1).

We now focus on the case of ideal single-mode po
contacts,N15N251 andG15G251. We seek the distribu
tion of the 232 submatrixS̃ defined in Eq.~5!. We start
with the polar decomposition ofS,

S5S u 0

0 v D S A12t†t i t †

i t A12tt†
D S u8 0

0 v8
D , ~13!

where u and u8 (v and v8) are 232 (Nf3Nf) unitary
matrices, andt is aNf32 matrix with all elements equal to

zero excepttnn5ATn, n51,2. In the presence of time
reversal symmetry,u85uT andv85vT. In terms of the polar
decomposition~13! we have

S̃5uS A12T1 0

0 A12T2
D u8. ~14!
n
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s
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The two parametersT1 and T2 govern the strength of the
absorption by the voltage probe. ForT1 ,T2→0 the matrix
S̃ is unitary and there is no absorption, whereas
T1 ,T2→1 the matrixS̃ vanishes and the absorption is com
plete. Substitution of the invariant measure12

dS5uT12T2ub~T1T2!
~bNf222b!/2du du8 dv dv8dT1dT2

~15!

and the polar decomposition~13! into the Poisson kernel~12!
yields the distribution ofS̃ in the form

P~T1 ,T2 ,u,u8!

5Gf
Nf~bNf121b!/2uT12T2ub

1

V

3E dvE dv8
~T1T2!

~bNf222b!/2

udetu~12v8v t!ubNf121b , ~16a!

t5A~12Gf!~12tt†!. ~16b!

Since Eq.~16! is independent ofu andu8, the matricesu and
u8 are uniformly distributed in the unitary group, and th
distribution of S̃ is completely determined by the joint dis
tribution P(T1 ,T2) of the absorption probabilitiesT1 and
T2.

We must still perform the integral overv andv8 in Eq.
~16!. This is a nontrivial calculation, which we describe
the Appendix. The final result in the limitNf→`, Gf→0 at
fixed g5NfGf is

P~T1 ,T2!5 1
8 T1

24T2
24exp@2 1

2 g~T1
211T2

21!#uT1

2T2u@g2~222eg1g1geg!

2g~T11T2!~626eg14g12geg1g2!

1T1T2~24224eg118g16geg16g21g3!#

~17a!

for b51 ~presence of time-reversal symmetry!, and
P~T1 ,T2!5 1
2T1

26T2
26exp@2g~T1

211T2
21!#~T12T2!

2@g4~122eg1e2g2g2eg!2g3~T11T2!~428eg14e2g12g22geg

22g2eg2g3eg!1g2~T1
21T2

2!~224eg12e2g14g24geg1g21g2eg2g3eg!1g2T1T2~20240eg120e2g

116g216geg14g228g2eg24g3eg2g4eg!2gT1T2~T11T2!~12224eg112e2g124g224geg112g212g3

22g3eg2g4eg!1T1
2T2

2~12224eg112e2g124g224geg124g2212g2eg18g314g3eg1g422g4eg!# ~17b!
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for b52 ~absence of time-reversal symmetry!.
To relate the conductanceG to T1, T2, u, and u8, we

substitute the polar decomposition ofS into Eq.~4!, with the
result

G5 (
i , j51

2

u1iui28 u1 j* uj28 *A~12Ti !~12Tj !

1~T11T2!
21 (

i , j51

2

uu1i u2uuj28 u2TiTj . ~18!

Equations~17! and ~18!, together with the uniform distribu
tion of the 232 matricesu, u8 over the unitary group, fully
determine the distributionP(G) of the conductance of a cha
otic cavity with two ideal single-mode point contacts. W
parametrizeu, u8 in Euler angles and obtainP(G) as a
four-dimensional integral, which we evaluate numerica
The distribution is plotted in Fig. 2~solid curves! for several
values of the dimensionless dephasing rateg52p\/tfD.
For g@1,30 the conductance distribution becomes peak
around the classical conductanceG51/2,

P~G!→
gb

2
~11uxu2db1x!e2uxu if g@1, ~19!

FIG. 2. Solid curves: Conductance distributions of a quant
dot with two ideal single-mode point contacts, computed from E
~17! and ~18! for dephasing ratesg50, 0.5, 1, 2, and 5. The top
panel is for zero magnetic field (b51), the bottom panel for broken
time-reversal symmetry (b52). The dotted curves are the results
Refs. 7 and 8 for the model of an ideal voltage probe~without a
tunnel barrier!, in which dephasing is not fully uniform in phas
space. Forg50 the two models coincide. The valueg50.5 is not
accessible in the model of an ideal voltage probe~because
g5NfGf can take on only integer values ifGf51).
.

d

wherex52gb(G21/2). Notice that the distribution remain
non-Gaussian for all values ofg. The limiting distribution
~19! is plotted in Fig. 3, forb51 and 2. The average an
variance of the conductance are

^G&5 1
2 2 1

2 db1g
211O~g22!, ~20a!

varG5 1
4 ~112db1!g

221O~g23!. ~20b!

The effect of dephasing was previously studied in Refs
and 8 for the caseGf51 of an ideal voltage probe~without
a tunnel barrier!. The corresponding results are also shown
Fig. 2 ~dotted curves!. We see that the limitNf→`,
Gf→0 results in narrower distributions at the same value
g5NfGf . In particular, the tailsG→0 and G→1 are
strongly suppressed even for the smallestg, in contrast with
the case of the ideal voltage probe. The physical reason
the difference is that keepingNf small and settingGf equal
to 1 corresponds to dephasing which is not fully uniform
phase space, and therefore not as effective as the
Nf→`, Gf→0. For largeg, the difference vanishes, an
the distribution~19! is recovered for an ideal voltage prob
as well. ~The fact that the conductance fluctuations arou
G51/2 are non-Gaussian was overlooked in Refs. 7 and!

We have shown in the previous section that the volta
probe model in the limitNf→`, Gf→0 is equivalent to the
particle-conserving imaginary-potential model. The requi
ment of particle conservation is essential. This is illustra
in Fig. 4, where we compare our results with those obtain
from the imaginary-potential model without enforcing co
servation of particles.@This model corresponds to settin
G52G12 in Eq. ~4! and was first solved in Ref. 3.# For
g@1, the imaginary potential without particle conservati
yields a distribution which is maximal atG50, instead of a
strongly peaked distribution aroundG51/2 @cf. Eq. ~19!#.

The first two moments of the conductance can be co
puted analytically from Eqs.~17! and ~18!. The resulting
expressions~which are too lengthy to report here! are plotted
in Fig. 5. The markers at integer values ofg are the results of
the ideal voltage-probe model of Refs. 7 and 8, wh
Gf51 andg5Nf50,1,2,. . . . Theremarkable result8 that
^G& is the same forg50 andg51 is special for dephasing

.

FIG. 3. The limiting conductance distribution~19! for g@1
~solid curves!. A Gaussian distribution with the same mean a
variance is shown for comparison~dotted curves!.
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55 4699VOLTAGE-PROBE AND IMAGINARY-POTENTIAL . . .
by a single-mode voltage probe: The present model w
spatially uniform dephasing has a strictly monotonic incre
of ^G& with g for b51.

So far we have considered ideal point contacts. Nonid
point contacts~i.e., point contacts with tunnel barriers! cor-
respond toG1 ,G2,1 in the distribution~12! of S. This case
can be mapped onto that of ideal point contacts by
parametrization26–28

S5R1T~12S8R!21S8T, ~21!

whereR andT5 iA12R2 are diagonal matrices. The onl
nonzero elements of R are R115A12G1 and
R225A12G2. The distribution ofS8 is given by the Poisson
kernel ~12! with G15G251. Physically,S8 is the scattering
matrix of the quantum dot without the tunnel barriers in t
point contacts, whileR (T) is the reflection~transmission!
matrix of the tunnel barriers in the absence of the quan
dot.26 We may restrict the parametrization~21! to the 232
submatrixS̃,

S̃5R̃1T̃~12S̃8R̃!21S̃8T̃, ~22!

FIG. 4. Solid curves: Same as in Fig. 2, bottom panel. Dot
curves: Results of the imaginary-potential model without parti
conservation.

FIG. 5. Variance of the conductance as a function of the dep
ing rateg, for b51 ~solid curve! andb52 ~dotted curve!, com-
puted from Eqs.~17! and ~18!. The crosses (b51) and squares
(b52) at integerg result from the model of Refs. 7 and 8 with th
ideal voltage probe. The inset shows the average conductanc
b51. ~For b52 the average is trivially equal to 1/2 for allg in
both models.!
h
e

al

e

m

where the matricesS̃8, R̃, and T̃ are the upper-left 232
submatrices ofS8, R, andT, respectively. The matrixS̃8 has
the distribution given by Eqs.~16! and ~17!. The matrices
R̃ and T̃ are fixed, so the distribution ofS̃ follows directly
from Eq. ~22!.

For strong dephasing (g@G1 ,G2), we find that the con-
ductance distribution becomes a Gaussian with the mean
variance given by

^G&5
G1G2

G11G2
2
2G1

2G2
2~4/b2G12G2!

g~G11G2!
3 , ~23a!

varG5
4G1

2G2
2~G1

21G2
22G1G2

22G1
2G2!

bg~G11G2!
3 . ~23b!

The average conductance^G& is the classical series conduc
tance of the two point-contact conductancesG1 andG2. Fluc-
tuations around the classical conductance are of o
g21/2. For ideal point contacts (G1 ,G2→1) the variance
~23b! vanishes. The higher-order fluctuations are no
Gaussian, described by Eq.~19!.

Again our result is entirely different from that of th
imaginary-potential model without a particle conse
vation,3,11 where P(G) becomes sharply peaked atG50
when g@G1 ,G2. We have verified that we recover the r
sults of Ref. 3 from our Eqs.~17! and~18! if we retain only
the first term in Eq.~4!, i.e., if we setG52G12. The results
of Ref. 11 are recovered if we symmetrize this term, i.e.
we setG52(G121G21)/2. ~This is different from2G12 if
b52 andgÞ0.! Once particle conservation is enforced, t
imaginary-potential model leads unambiguously to Eq.~23!.

IV. MULTIPLE-MODE POINT CONTACTS

In this section we consider the caseN1 ,N2@1 of a large
number of modes in the two point contacts. The conducta
distribution is then a Gaussian, hence it suffices to comp
the first two moments ofG. We first consider ideal poin
contacts (G15G251), and discuss the effect of tunnel ba
riers at the end.

For N1 ,N2@1 the integration over the scattering matr
Swith the probability distribution~12! can be done using the
diagrammatic technique of Ref. 31. The result for the av
age of the conductance coefficientsGi j is

^Gi j &5Nid i j2
NiNj

N1NfGf
1db,1Ai j , ~24a!

Ai j5
NiNj~N12NfGf2NfGf

2 !

~N1NfGf!3
2

d i j Ni

N1NfGf
, ~24b!

up to terms of orderN21. ~We recall thatN5N11N2.! For
the covariances cov(Gi j ,Gkl)[^Gi jGkl&2^Gi j &^Gkl&, we
find

cov~Gi j ,Gkl!5AikAjl1db,1AilAjk

1
2NiNjNkNlNf~Nf1N!Gf

2 ~12Gf!

b~N1NfGf!6
.

~25!

d
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In order to find the average and variance of the conducta
in the presence of dephasing, we substitute Eqs.~24! and
~25! into Eq. ~4!. The result is

^G&5
N1N2

N S 12
db1

N1g D , ~26a!

varG5
2N1

2N2
2

bN2~N1g!2
, ~26b!

with g5NfGf .
Equation~26a! was previously obtained by Aleiner an

Larkin.10 Equation~26b! for varG agrees with the interpola
tion formula of Baranger and Mello7. The present derivation
shows that this interpolation formula is in fact a rigoro
result of perturbation theory.@However, the interpolation for-
mula of Ref. 7 for^G& differs from Eq.~26a!.# In the final
expression for̂ G& and varG only the productNfGf ap-
pears, although the moments of the conductance coeffici
Gi j depend onNf andGf separately. Apparently, in large
N perturbation theory the precise choice ofNf andGf in the
voltage-probe model is irrelevant, the conductance distri
tion being determined by the productNfGf only. For small
dephasing ratesg!N, Eq. ~26! agrees with Efetov’s result,9

which used the imaginary-potential model without enforci
particle conservation. However, forg*N, our result differs
from that of Ref. 9, indicating the importance of partic
conservation once the dephasing rateg and the dimension-
less escape rateN through the point contacts become com
parable.

We have carried out the same calculation for the cas
nonideal point contacts. The transmission probability
moden is denoted byGn (n51, . . . ,N1 corresponding to the
first point contact,n5N111, . . . ,N11N2 to the second
point contact!. The result is

^G&5
g1g18

g
2db1

g2g18
21g1

2g28

g2~g1g!
, ~27a!

varG5
2g1

2g18
2

bg2~g1g!2
1
4~g1

4g282g1
4g381g2g18

42g3g18
4!

bg4~g1g!

1
3~g1

4g28
21g2

2g18
4!

bg4~g1g!2
2
4g1

2g18
2~g21g28!

bg3~g1g!2
, ~27b!

gp5 (
n51

N1

Gn
p , gp85 (

n511N1

N11N2

Gn
p , g5g11g18 . ~27c!

One can check that Eq.~27! reduces to Eq.~26! for ideal
point contacts~when gp5N1, gp85N2). As in the case of
single-mode point contacts, varG}g22 for g@1 without
tunnel barriers, while varG}g21 otherwise.

V. CONCLUSION

In summary, we have demonstrated the equivalence
two models for dephasing, the voltage-probe model and
imaginary-potential model. In doing so we have correcte
number of shortcomings of each model, notably the nonu
formity of the dephasing in the voltage-probe model of Re
7 and 8 and the lack of particle conservation in t
ce

ts

-

of
f

of
e
a
i-
.

imaginary-potential model of Refs. 9 and 11. We have c
culated the distribution of the conductance and shown tha
peaks at the classical conductance for strong dephasing
particle conservation is enforced, thereby reconciling
contradictory results of Refs. 7 and 8, on the one hand,
Refs. 9 and 11, on the other hand. We find that for id
single-mode point contacts~no tunnel barriers!, conductance
fluctuations are non-Gaussian and}tf for strong dephasing
(tf→0). In the case of nonideal point contacts~with tunnel
barriers!, fluctuations are larger (}Atf) and Gaussian for
tf→0.

The effect of dephasing becomes appreciable when
dimensionless dephasing rateg52p\/tfD is of the same
order as the dimensionless escape rateg5(nGn through the
two point contacts. Forg@g, the weak-localization correc
tion dG5^G&(b52)2^G&(b51) and the conductanc
fluctuations are given by30

dG5a1g/g1O~g/g!2, ~28a!

varG5b1g/g1b2~g/g!21O~g/g!3, ~28b!

wherea1, b1, andb2 are numerical coefficients determine
by Eqs.~20!, ~23!, ~26!, and~27!. For the special case of two
single-mode point contacts, we have

a15
4G1

2G2
2

~G11G2!
4 , ~29a!

b15
4G1

2G2
2~G1

21G2
22G1G2

22G1
2G2!

b~G11G2!
4 . ~29b!

The coefficient b2 is only relevant if G1 ,G2'1, when
b1'(22G12G2)/4b!1 and b2'(112db1)/16. At finite
temperatures, in addition to dephasing, the effect of ther
smearing becomes important.9 Since thermal smearing ha
no effect on the average conductance, the weak-localiza
correction dG provides an unambiguous way to find th
dephasing rateg.

The fact that dephasing was not entirely uniform in pha
space in the model of Refs. 7 and 8 leads to small but
ticeable differences with the completely uniform descripti
used here, in particular, for the case of single-mode po
contacts. The differences may result in a discrepa
Dg'1 in the estimated value of the dimensionless deph
ing rateg, if the ideal voltage-probe model of Refs. 7 and
is used instead of the model presented here. A differe
Dg'1 is relevant, as experiments on semiconductor qu
tum dots can have dephasing rates as low asg'2.32

Both the voltage-probe model and the imaginary-poten
model only provide an effective description of dephasin
They cannot compete with a microscopic theory of inelas
scattering in quantum dots~see, e.g., Refs. 33 and 34!. At
this time, a microscopic theory for the effect of inelas
scattering on the conductance distribution does not yet e
For the time being, the model presented here may well be
most realistic description available.
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APPENDIX: CALCULATION OF P„T1 ,T2…

We start the calculation ofP(T1 ,T2) from the integral
expression~16!, in which we may replace the double integr
of v andv8 by a single integral of the matrixv8v over the
unitary group~for b52) or over the manifold of unitary
symmetric matrices~for b51). We make a substitution o
variablesv8v→w via

v8v5t2A12t2 w~12tw!21 A12t2. ~A1!

The matrixt was defined in Eq.~16b!. One verifies that the
matrixw is unitary~unitary symmetric forb51). The Jaco-
bian of this transformation is26–28

detS dv8v
dw D5

V

V8

udet~12v8vt!ubNf122b

det~12t2!~bNf122b!/2 , ~A2!

whereV andV8 are normalization constants. This change
variables is a key step in the calculation, since the Jaco
~A2! cancels the denominator of the integrand of Eq.~16a!
almost completely,

P~T1 ,T2!5
1

V8
E dw Gf

b~62b!uT12T2ub

3 )
j51,2

~11GfTj
212Gf!2~bNf162b!/2

3 )
j51,2

Tj
22b22udet~12tw!u2b. ~A3!

We now consider separately the integral

I b5E dw udet~12tw!u2b

5E dw det~12AtwAt!bdet~12Atw21At!.

~A4!

Here we have used thatt is a positive diagonal matrix. We
now change variablesAtw21At→w̃21. If the matrixt were
unitary, we could write

I b5E dw̃ det~12tw̃t!bdet~12w̃21!b, ~A5!

in view of the invariance of the measuredw5dw̃. However,
t is not unitary. A theorem due to Weyl allows us to co
tinue Eq.~A5! analytically to arbitraryt.35

To evaluateI b , we decomposew̃ in eigenvectors and
eigenphases,w̃5UeiQU†, whereU is an orthogonal~uni-
tary! matrix for b51 (2), andQ i j5d i ju j , 0<u j,2p. The
invariant measuredw̃ reads25
r

f
an

dw̃5dU)
i, j

ueiu i2eiu j ub)
i
du i . ~A6!

After some algebraic manipulations, we arrive at

I b5E du1 . . . E duNf)i, j
ueiu i2eiu j ub

3)
j51

Nf

~12e2 iu i !b)
j51

Nf

@12~12Gf!eiu j #b

3E dU detAb, ~A7a!

where the 232 matrixA is given by

Ai j5d i j2~12Gf!(
l51

Nf UilU jl* e
iu lATiTj

12~12Gf!eiu l
. ~A7b!

The determinant ofA is computed by a direct expansion
SinceNf@1, we may consider the matrix elementsUkl as
independent real~complex! Gaussian distributed variable
with zero mean and variance 1/Nf for b51 (2). Wewrite
the result of the Gaussian integrations in terms of derivati
of a generating functionFb ,

)
j51

Nf

@12~12Gf!eiu j #bE dU detAb5DbFb . ~A8!

The generating functionFb depends on the variablesxk ,
yk , andzk , wherek51 for b51 andk51,2 for b52,

Fb5)
j51

Nf

)
k51

b

~11xk1yk!@11 f ~xk ,yk ,zk!e
iu j #,

~A9a!

f ~x,y,z!5~11x1y!21~12Gf!@11x~122T1!

1y~122T2!1zAT1T2#. ~A9b!

The differential operatorDb reads

D15
1
2 Nf

21~]x11]y1!1Nf
22]z1]z1, ~A10a!

D25Nf
22@ 1

2 ~]x1]x21]y1]y2!2 1
4 ~]x12]y2!

2#

1Nf
23~ 3

2 ]z2]z22
1
2 ]z1]z1!~]x11]y1!

1Nf
24]z1]z2]z2~3]z222]z1!. ~A10b!

The derivatives in Eq. ~A8! should be evaluated a
xk5yk5zk50 (k51,2).

We are left with an integral over the phasesu j which is of
the type
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I b85E du1 . . . E dun)
i, j

ueiu i2eiu j ub

3)
j51

n

~12e2 iu j !b)
k51

b

~ak2eiu j !. ~A11!

The integrand is a product of secular determina
det(l2U) of a unitary matrixU. Integrals of this form were
considered by Haakeet al.36 Forb51 we can directly apply
the results in their paper, forb52 we need to extend thei
method to include a product of four secular determinan
We find
et

hy

s

s

,

t,

ai,

.

C

s

s.

I 185
~11n!~a1

n1321!2~31n!a1~a1
n1121!

~a121!3~n21!
,

~A12a!

I 285
~a1

n1221!~a2
n1221!

~a121!2~a221!2
2

~a1
n122a2

n12!~n12!

~a121!~a222!~a12a2!
.

~A12b!
The desired integralI b is obtained fromI b8 by the substitu-
tion of Eq. ~A12! with n5Nf , ak5 f (xk ,yk ,zk) into Eqs.
~A7!–~A10!. The substitution ofI b into Eq. ~A3! then leads
to the final result~17!.
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