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Edge and strip plasmons in a two-dimensional electron fluid
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We study plasma oscillations in a bounded two-dimensional electron fluid. The use of a variational method
allows a simple analysis of plasma modes in a strip of finite width. For the exactly solvable model that neglects
the pressure gradient in a plasma confined to a semi-infinite plane a simple one-parameter variational function
gives the edge plasmon frequency reasonably close to the exact value. In the case of the semi-infinite plane we
also incorporate the effects of the pressure gradient in our variational solution. In a two-dimensional strip of
finite width we find the symmetric and antisymmetric plasma modes of different frequencies. The method used
here can be readily extended to include the effects of applied magnetic fields and different confinement
geometries.@S0163-1829~97!08107-1#
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I. INTRODUCTION

Plasma excitations have been of considerable interes
recent studies of semiconductor quantum wells. The confi
ment provided by the doped heterostructure allows the
mation of a quasi-two-dimensional electron gas. The in
subband plasmons that are associated with a single ele
subband can be studied as collective excitations in a t
dimensional electron fluid. These excitations will be affec
by the presence of boundaries in the confinement plan
the electron fluid. The existence of edge modes in a boun
two-dimensional~2D! electron fluid is well known.1–4 Their
dispersion in an applied magnetic field has been stud
theoretically by various methods and the localization of
magnetoplasmon near the edge is known to produce a
less excitation.2,3 The edge mode propagates along the e
of the bounded 2D system and decays exponentially a
from the edge. An integral equation describing this mode
a semi-infinite 2D system can be obtained from the hyd
dynamic model2–4 and it allows an exact solution by th
Wiener-Hopf method.3,5 The early approximate method1,2,4

replaces the kernel of the integral equation with a simp
exponential form similar to the one that appears in the eq
tion for surface plasmons.2 This approach was recognized
unsatisfactory and approximate numerical solutions of
integral equation were proposed6,7 based on expansion in th
basis of the Laguerre polynomials. Such solutions give
good approximation for the energy of the edge magnetop
mon without reproducing the detailed behavior of the ex
solution near the edge. A 2D system with two boundaries
the other hand, does not allow an exact solution. The exis
treatment of the plasmons in a strip of a finite width5 is
suitable only for strong magnetic fields, when the width
the region of localization is much smaller than other leng
in the problem.

In this work we derive an integral equation for the str
plasmons using a hydrodynamic model of the 2D elect
fluid, and propose a variational solution for the density
550163-1829/97/55~7!/4684~5!/$10.00
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cillations. In order to test this solution we consider at firs
semi-infinite 2D system neglecting the gradient of press
terms in the equation of motion for the electrons. The ene
of the edge plasmon is shifted down from the 2D bulk valu
and we find that a simple one-parameter variational funct
gives the edge plasmon energy shift within 15% of the ex
value of the shift. Better agreement with the exact solut
can be obtained if one incorporates an inverse square-
divergence of the density oscillations near the edge into
variational function. When the pressure-gradient term a
electron scattering are neglected the only character
length in the semi-infinite system is given by the wavelen
of the plasmon. When the pressure-gradient term is includ
resulting in the nonzero speed of sound, the localizat
length of the plasma oscillations depends on the value of
plasmon wave vector along the edge.

In the case of a 2D strip an additional length is intr
duced, the width of the strip. Here we investigate the os
lation modes that are localized near the edges and de
toward the middle of the strip. We refer to these modes
the strip plasmons. Using a one-parameter variational fu
tion we find the lowest-frequency plasmon represented
the symmetric nodeless solution of the integral equation.
also find an antisymmetric solution of higher frequency.
the zero-width limit the lowest symmetric solution repr
duces the dispersion of the 1D plasmon while the energy
the antisymmetric solution becomes infinite. The variatio
method we used here can be extended to the cases of d
ent geometries of the bounded-2D system. It can be also u
when the effects of an applied magnetic field are include

II. VARIATIONAL METHOD
FOR THE EDGE PLASMONS

We consider a semi-infinite plasma layer whose thr
dimensional densityrb~r ,z! can be written as
4684 © 1997 The American Physical Society
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rb~r ,z!5d~z!r~r !u~x!, ~1!

wherer is a 2D position vector in the (x,y) plane with they
axis chosen along the edge,u(x) is the step function. We
define a 2D gradient operator

“[ x̂
]

]x
1 ŷ

]

]y
. ~2!

We treat the electron gas as a compressible negati
charged fluid placed in a rigid neutralizing positiv
background.2 The equation of the continuity and the Eul
equation are projected on the (x,y) plane to give the equa
tions for the 2D plasma:

]r

]t
1“•~rv!50,

mr
]v

]t
1mr~v•“ !v52erE2“p, ~3!

whereE is an electric field projection on thez50 plane,
E5(Ex ,Ey)52“f; p is the electron fluid pressure,m is the
electron effective mass, andv is the 2D velocity field. In the
equilibriumr~r !5n0 andE50. Under a density perturbatio
we have

r~r ,t !5n01dr~r ,t !, ~4!

wheredr~r ,t! describes the time-dependent plasma osci
tions and determines the electric potentialf~r ,z,t! through
the 3D Poisson equation

“

2f1
]2f

]z2
5
4pe

es
dr~r !d~z!u~x!, ~5!

wherees is a background dielectric constant. We define
1D space-time Fourier transformation so that

dr~r ,t !5~2p!22E
2`

`

dqE
2`

`

dv ei ~qy2vt !drq~x,q,v!.

~6!

Then from Eq.~5! we obtain a relation2 between 1D Fourier
components ofr andf:

fq~x,t !52
2e

es
E
0

`

dx8drq~x8,q,t !K0~qux2x8u!, ~7!

whereK0 is the modified Bessel function.8

For an adiabatic process the pressurep~r ,t! in Eq. ~3! is a
function of the densityr~r ,t!, and we can write

“p5S dpdr D
0

“r5ms2“r, ~8!

wheres is the speed of sound. When this equation is app
to the degenerate electron gas one obtainss25v F

2/2 where
vF is the Fermi velocity. The hydrodynamic model uses a
erage quantitiesr andv and does not take into account co
relation effects. If one uses the Boltzman-Vlasov equat
for the velocity distributionf ~v! the long-wavelength expan
ly

-

e

d

-

n

sion givess2 in terms of the second moment off ~v!.9 When
the resulting expression is applied to a degenerate elec
gas one obtains

s25 3
4vF

2. ~9!

This is identical to the result obtained in a self-consist
quantum model10 and is different from the value obtaine
from the inverse compressibility. We will use the form in E
~9! for s2. For small oscillations,dr!n0, we linearize Eq.~3!
in dr and v. The consideration of nonlinear effects in
bounded fluid is beyond the scope of this work.11

Let us define an axillary 3D densityn3 and a dimension-
less 2D densityN as

n3[n0 /a3 , N[n0a2
2 ~10!

wherea3 and a2 are, respectively, the 3D and 2D electro
Bohr radii, a352a25\2es/me2. We define an axillary fre-
quencyvp to be the bulk plasmon frequency of the 3D ele
tron gas with the densityn3 and also define a dimensionles
frequencyV:

vp
2[

4pe2n3
esm

, V2[
v2

vp
2 . ~11!

and a dimensionless coordinatej[xq. From the Fourier
transformation~6! of Eqs.~3! and using Eq.~7! we obtain the
following integro-differential equation for the density osc
lations:

V2dr~j!1
a2q

p S ]2

]j2
21D E

0

`

dj8K0~ uj2j8u!dr~j8!

1
s2q2

vp
2 S ]2

]j2
21D dr~j!50. ~12!

We impose the boundary condition of a sharp edge in
density distribution by requiring the normal component
the electron velocity to be zero atx50:

vx~x50!50. ~13!

From Eqs.~3! and~7! this can be expressed in terms ofdr~j!.
Let us define a functionf ~j! as

f ~j![
a2q

p E
0

`

dj8K0~ uj2j8u!dr~j8!1
s2q2

vp
2 dr~j!.

~14!

Then the boundary condition~13! leads to the condition onf :

] f

]j
~j501!50. ~15!

The integro-differential Eq.~12! with boundary condition
~15! can be transformed into an integral equation6 using the
Green’s functionG~j,j8! defined by the following equations

S ]2

]j2
21DG~j,j8!5d~j2j8!,

]G

]j
~j501!50. ~16!
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Its explicit form is

G~j,j8!52 1
2 @e2~j1j8!1e2uj2j8u#, j,j8.0. ~17!

The system of Eqs.~12! and~15! is equivalent to one homo
geneous integral equation:

f ~j!1V2E
0

`

dj8G~j,j8!dr~j8!50. ~18!

Let us rewrite this equation in an operator form:

Âc5V2B̂c, ~19!

where B̂ and Â are integral operators with kernelsB~j,j8!
andA~j,j8! given by

B~j,j8!52G~j,j8!u~j!u~j8!, ~20!

A~j,j8!5Fa2qp
K0~ uj2j8u!1

s2q2

vp
2 d~j2j8!Gu~j!u~j8!.

~21!

Applying the variational principle12 to Eq.~19! we minimize
the functional

J$c%5
^cÂc&

^cB̂c&
, ~22!

where the scalar products are defined as

^cÂc&5E dj dj8c~j!A~j,j8!c~j8!. ~23!

As a trial function we choose a simple exponential form

c~j![dr~j!5ce2bju~j!, ~24!

where c is a constant. Transforming to coordinat
u65j6j8 and using a particular integral representation8 for
K0 we can evaluate the integrals in Eq.~22! analytically. We
define a dimensionless momentum,

k[qa2 ~25!

and minimizing the functional~22! with c given by Eq.~24!
we obtain

V25J1~b!k1 3
2J2~b!k2, ~26!

where

J1~b!5
2

p

~11b!2

112b Fu~12b!

A12b2
arccosb

1
u~b21!

2Ab221
lnS b1Ab221

b2Ab221
D G ~27!

J2~b!5
~11b!2

112b
. ~28!

If we sets250, the minimum is reached atb→1. This value
corresponds tov/v2D5~8/3p!1/2'0.921 wherev2D(q) is the
frequency of the 2D plasmon in an infinite syste
v2D(q)5(a2q)

1/2vp . When thes2 term is retained, the dis
persion is given by Eq.~26!. We find thatb(k) is a mono-
,

tonically decreasing function ofk as shown in Fig. 1. The
frequency of the edge plasmon approaches the 2D plas
frequency at largek where both modes tend to become
sound wave. We can compare our trial function in Eq.~24! to
the density oscillations obtained in the exact solution5 for a
semi-infinite plane withs250. It follows then that better val-
ues ofv will be obtained with a two-parameter form for th
trial function, namely,

dr~j!5cj2ae2bju~j!, ~29!

wherea→1
2 for s

2→0, anda(p), 1
2 for s

2Þ0. With the trial
function given by Eq.~29! the integrals in Eq.~22! would
have to be evaluated numerically.

III. STRIP PLASMONS

We consider a strip of widthd and choose they axis in
the middle so the edges are atx56d/2. The boundary con-
ditions are

vx~x56d/2!50. ~30!

The integral equation for the plasma oscillations is derived
the same way as in the previous section:

a2q

p E
2j0/2

j0/2

dj8K0~ uj2j8u!dr~j8!1
s2q2

vp
2 dr~j!

1V2E
2j0/2

j0/2

dj8G~j,j8!dr~j8!50, ~31!

where j5qx, j05qd. The Green’s functionG~j,j8! is de-
fined by Eq.~16! and the boundary condition of zero deriv
tives at j56j0/2. Its explicit form in the interval
@2j0/2,j0/2# is

FIG. 1. Variational parameterb for the edge plasmon in a sem
infinite 2D electron fluid. It gives the spatial rate of decay of t
density oscillations away from the edge and is shown here a
function of the wave vector along the edge.a2 is the 2D electron
Bohr radius. Parameterb decreases withq because at largeq the
plasmon becomes a sound wave.
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G~j,j8!52
1

sinh j0
@cosh~j1j0/2!cosh~j0/22j8!

3u~j82j!1cosh~j0/22j!cosh~j81j0/2!

3u~j2j8!#. ~32!

Equation ~31! and boundary conditions~30! are invariant
under the reflectionx→2x. Therefore, the nondegenera
solutions have a definite parity, i.e., they are either even
odd. We can rewrite Eq.~31! in the operator form as in Eq
~19! and look for the variational solution. To simplify th
discussion for the strip plasmons we sets250, corresponding
to the long-wavelength limitqs!vp . The definition of op-
eratorsÂ and B̂ that appear in the eigenvalue equation~19!
follow from Eq. ~31!. The operators are real and symmet
and the solutions form an orthogonal set. Variational so
tions are found by minimizing the functional defined in E
~22!. For the two lowest-frequency solutions we take t
following trial functions to describe thex dependence of the
plasma oscillations localized near the edges:

dr1~j!5c1cosh~bj!u~j0/22uju!, ~33!

dr2~j!5c2sinh~bj!u~j0/22uju!. ~34!

In the y direction the density variation oscillates a
exp(iqy). Transforming the coordinates tou65j6j8 we can
evaluate^B̂& in terms of elementary functions and^Â& in
terms of a simple integral. The frequencies of the even
odd plasmons are shown in Fig. 2 as functions ofqd in the
units of v05(a2/d)

1/2vp . In the limit qd→` the solutions
become degenerate and reproduce the dispersion of the
plasmon. In the opposite limitqd→0 we expand̂ Â& and
^B̂& in powers ofqd and find that the even solutiondr1~j!
reproduces the dispersion of the 1D plasmon:

v1
2→

2e2

mes
n0dq

2ln~1/qd!, ~35!

wheren0d gives the linear density of electrons in one dime
sion. For the odd solutiondr2~j! in the limit qd→0 the fre-
quency approaches a constant value:

v2
2→

15e2n0
esmd

. ~36!

Such behavior of the odd mode can be understood by c
sidering this mode as a 2D plasma wave whose wave-ve
.

r

-
.

d

dge

-

n-
or

component in thex direction isp/d. Then the frequency is
Cv2D(q5p/d) and the variational solution give
C5~15/2p2!1/2 and Eq.~36!. If the linear electron density
n0d is fixed asd→0, the frequencyv2 diverges as 1/d.
Therefore in the narrow strip limit only the lowest-frequen
mode will exist, with dispersion given in Eq.~35!.

We want to mention possible extensions of the variatio
calculation presented above. It is simple to incorporate
effect of the pressure gradient in the variational analysis
the strip plasmons just as we did for the semi-infinite pla
in the previous section. We can also apply the variatio
method for different geometries and boundary conditions,
example, assuming metal electrodes on both sides of
strip. Boundary conditions will then be imposed on the ele
trostatic potential. The variational method can also be
plied to the strip magnetoplasmons and the results will
given elsewhere.
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FIG. 2. The frequency of the strip plasmon in units
v05(a2/d)

1/2vp . The lower solid curve shows the dispersion of t
lowest-frequency even mode, the upper solid curve shows the
persion of the odd mode. They are shown as functions of the w
vectorq along the strip of widthd. At small q the even solution
becomes a 1D plasmon. The frequency of the odd solution
proaches a constant value}(n0/d)

1/2. At largeq both frequencies
approach the edge plasmon frequency that is shifted downw
from the 2D plasmon dispersion, shown here by the broken cu
ev.

is-
.,
in-
1D. B. Mast, A. J. Dahm, and A. L. Fetter, Phys. Rev. Lett.54,
1706 ~1985!.

2A. L. Fetter, Phys. Rev. B32, 7676~1985!.
3V. A. Volkov and S. A. Mikhailov, Pisma Zh. Eksp. Teor. Fiz
42, 450 ~1985! @JETP Lett.42, 556 ~1985!#.

4J.-W. Wu, P. Hawrylak, and J. J. Quinn, Phys. Rev. Lett.55, 879
~1985!.

5V. A. Volkov and S. A. Mikhailov, Zh. Eksp. Teor. Fiz.94, 217
~1988! @Sov. Phys. JETP67, 1639~1988!#.

6A. L. Fetter, Phys. Rev. B33, 3717~1986!.
7J.-W. Wu, P. Hawrylak, G. Eliasson, and J. J. Quinn, Phys. R
B 33, 7091~1986!.

8Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun~Dover, New York, 1965!.

9J. D. Jackson,Classical Electrodynamics, 2nd ed.~Wiley, New
York, 1975!, Chap. 10.

10F. Stern, Phys. Rev. Lett.18, 546 ~1967!.
11The nonlinear terms in hydrodynamic equations with linear d

persionv(q) lead to the discontinuities in the solutions, i.e
formation of shock waves. These will be affected by the nonl



a
ble
an

s

4688 55S. RUDIN AND M. DYAKONOV
ear inq terms in the dispersion lawv(q). The combination of
the nonlinear terms and dispersion in unbounded systems
known to allow a propagation of nonlinear waves with sta
profile ~solitons!. Discussion of nonlinear waves in plasma c
re
be found in E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics
~Pergamon, Oxford, 1983!, Chap. 3.

12P. M. Morse and H. Feshbach,Methods of Theoretical Physic
~McGraw-Hill, New York, 1953!, Chap. 9.


