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Edge and strip plasmons in a two-dimensional electron fluid
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We study plasma oscillations in a bounded two-dimensional electron fluid. The use of a variational method
allows a simple analysis of plasma modes in a strip of finite width. For the exactly solvable model that neglects
the pressure gradient in a plasma confined to a semi-infinite plane a simple one-parameter variational function
gives the edge plasmon frequency reasonably close to the exact value. In the case of the semi-infinite plane we
also incorporate the effects of the pressure gradient in our variational solution. In a two-dimensional strip of
finite width we find the symmetric and antisymmetric plasma modes of different frequencies. The method used
here can be readily extended to include the effects of applied magnetic fields and different confinement
geometries[S0163-182007)08107-1

[. INTRODUCTION cillations. In order to test this solution we consider at first a
semi-infinite 2D system neglecting the gradient of pressure
Plasma excitations have been of considerable interest iterms in the equation of motion for the electrons. The energy
recent studies of semiconductor quantum wells. The confineaf the edge plasmon is shifted down from the 2D bulk value,
ment provided by the doped heterostructure allows the forand we find that a simple one-parameter variational function
mation of a quasi-two-dimensional electron gas. The intragives the edge plasmon energy shift within 15% of the exact
subband plasmons that are associated with a single electraalue of the shift. Better agreement with the exact solution
subband can be studied as collective excitations in a twoean be obtained if one incorporates an inverse square-root
dimensional electron fluid. These excitations will be affecteddivergence of the density oscillations near the edge into the
by the presence of boundaries in the confinement plane Gfariational function. When the pressure-gradient term and
the electron fluid. The existence of edge modes in a boundeglectron scattering are neglected the only characteristic
two-dimensional2D) electron fluid is well knowrt™ Their  |ength in the semi-infinite system is given by the wavelength
dispersion in an applied magnetic field has been studieg@f the plasmon. When the pressure-gradient term is included,
theoretically by various methods and the localization of theresulting in the nonzero speed of sound, the localization

magnetoplasmon near the edge is known to produce a gaspgh of the plasma oscillations depends on the value of the
less excitatiorf:> The edge mode propagates along the edg lasmon wave vector along the edge

of the bounded 2D system and decays exponentially awa In the case of a 2D strip an additional length is intro-

from the edge. An integral equation describing this mode mduced, the width of the strip. Here we investigate the oscil-

a semi-infinite 2B system can be obtained from the hydro'Iation modes that are localized near the edges and deca
dynamic modeé™ and it allows an exact solution by the 9 y

Wiener-Hopf method:® The early approximate methb#l* t(r:ward_ thel middle OLthe strip. We refer to thes_e_modle;s as
replaces the kernel of the integral equation with a simplefn€ Strip plasmons. Using a one-parameter variational func-

exponential form similar to the one that appears in the equai®" We find the lowest-frequency plasmon represented by

tion for surface plasmorfsThis approach was recognized as the sy_mmetric npdeless s_olution_of the integral equation. We
unsatisfactory and approximate numerical solutions of théSo find an antisymmetric solution of higher frequency. In
integral equation were propoetbased on expansion in the the zero-wujth I|m|t the lowest symmetric §olut|on repro-
basis of the Laguerre polynomials. Such solutions give &Uces the dispersion of the 1D plasmon while the energy of
good approximation for the energy of the edge magnetoplast-he antisymmetric solution becomes infinite. The variational
mon without reproducing the detailed behavior of the exactn€thod we used here can be extended to the cases of differ-
solution near the edge. A 2D system with two boundaries, o/$N't 9eometries of the bounded-2D system. It can be also used
the other hand, does not allow an exact solution. The existinyhen the effects of an applied magnetic field are included.

treatment of the plasmons in a strip of a finite wilik
suitable only for strong magnetic fields, when the width of
the region of localization is much smaller than other lengths Il. VARIATIONAL METHOD
in the problem. FOR THE EDGE PLASMONS
In this work we derive an integral equation for the strip
plasmons using a hydrodynamic model of the 2D electron We consider a semi-infinite plasma layer whose three-
fluid, and propose a variational solution for the density os-dimensional densityy(r,z) can be written as
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pu(r,2)=68(2)p(r)H(x), ) sion givess2 in terms of the second moment tv).° When

_ N . . the resulting expression is applied to a degenerate electron
wherer is a 2D position vector in thex(y) plane with they  gas one obtains

axis chosen along the edgé(x) is the step function. We

define a 2D gradient operator s?=2p2, (9)
9 p This is identical to the result obtained in a self-consistent
V=X —+y—. (2)  quantum modéf and is different from the value obtained
X % from the inverse compressibility. We will use the form in Eq.

We treat the electron gas as a compressible negativel) for s°. For small oscillationsgp<no, we linearize Eq(3)
charged fluid placed in a rigid neutralizing positive N 9P and v. The consideration of nonlinear effects in a

background. The equation of the continuity and the Euler Pounded fluid is beyond the scope of this wotk.

equation are projected on th&,{) plane to give the equa- Let us defipe an axillary 3D density; and a dimension-
tions for the 2D plasma: less 2D densityN as
na=ng/az, N=ngaj (10

Jd
P v (pv)=0,

at wherea; and a, are, respectively, the 3D and 2D electron

Bohr radii, a;=2a,=%%¢/me*. We define an axillary fre-

ov quencyw, to be the bulk plasmon frequency of the 3D elec-
mp —=+mp(v-V)v=—epE-Vp, (3)  tron gas with the densitsi; and also define a dimensionless
frequencyQ):

where E is an electric field projection on the=0 plane,

2 2
E=(E,.E,)=—V4, p is the electron fluid pressure is the l= 4meng Q=Y (11)
electron effective mass, andis the 2D velocity field. In the P em ’ ;g

equilibrium p(r)=ny andE=0. Under a density perturbation

we have and a dimensionless coordinate=xq. From the Fourier

transformation(6) of Egs.(3) and using Eq(7) we obtain the
p(r,t)=ng+ dp(r,t), (4) :‘g::g\rgv?g integro-differential equation for the density oscil-
where 8p(r t) describes the time-dependent plasma oscilla-

. . . . 2

tions and determines the electric potenyat,z,t) through 2 g J“ , _ /

the 3D Poisson equation Q%6p()+— a2 1], d&'Ko([€—€'])dp(€")

vegs L0 _4me 5 ( ” s )=0 (12)
¢+?_6_5 op(r)8(z)6(x), (5) wﬁ, PP p(£€)=0.
wheree; is a background dielectric constant. We define theWe impose the boundary condition of a sharp edge in the
1D space-time Fourier transformation so that density distribution by requiring the normal component of
the electron velocity to be zero at=0:

o

dqf_ dw €@ Y5p (x,q,0). vy (x=0)=0. (13

(6) From Eqgs(3) and(7) this can be expressed in termspf&).
Let us define a functio(&) as

5p<r,t>=<2w>-2f

Then from Eq.(5) we obtain a relatichbetween 1D Fourier
components op and ¢: o 2.2

_axq , , ) o}
f(§)=7 . d&'Ko(|E—¢€']) Sp(& )+7 op(§).
2 ® P
d’q(X,t):—e—e fo dx’ Spg(x’,q,H)Ko(alx—x"]), (7) (14

Then the boundary conditioid3) leads to the condition oft
whereK is the modified Bessel functich.
For an adiabatic process the pressufet) in Eq. (3) is a

- Nty —
function of the density(r,t), and we can write 9€ (£=07)=0. (15
dp The integro-differential Eq(12) with boundary condition
Vp= (d— Vp=msVp, (8)  (15) can be transformed into an integral equatiosing the
Plo Green'’s functionG(£,£') defined by the following equations:

wheres is the speed of sound. When this equation is applied 72

to the degenerate electron gas one obtafisv 2/2 where (—2—1>G(§,§’)=5(§—§’),

ve is the Fermi velocity. The hydrodynamic model uses av- 9¢

erage quantitiep andv and does not take into account cor-

relation effects. If one uses the Boltzman-Vlasov equation G (£=0%)=0 (16)
for the velocity distributiorf (v) the long-wavelength expan- & '
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Its explicit form is

G(&¢)=—1ie e =€) ¢g¢>0. 1)

The system of Eqg12) and(15) is equivalent to one homo-

geneous integral equation:

f(§)+QZJO d&'G(,£")op(¢")=0. (18)
Let us rewrite this equation in an operator form:
Ay=0?By, (19

whereB and A are integral operators with kerney£,£')
andA(§£') given by

B(£,£')=—G(£,£")0(£)6(&), (20

ayq s%?
A(EE)=| o KollE= €'+~ 86— € [0(£)0(£).
(21

Applying the variational principf€ to Eq.(19) we minimize
the functional

2
p

(YAY)

= , 22

W= ) (22
where the scalar products are defined as

(yAp)= f d¢ d&' WOAEENW(E). (29

As a trial function we choose a simple exponential form

Y€)= dp(&)=ce P40(¢), (29
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FIG. 1. Variational parametdr for the edge plasmon in a semi-
infinite 2D electron fluid. It gives the spatial rate of decay of the
density oscillations away from the edge and is shown here as a
function of the wave vector along the edge.is the 2D electron
Bohr radius. Parametdr decreases witly because at largg the
plasmon becomes a sound wave.

tonically decreasing function df as shown in Fig. 1. The
frequency of the edge plasmon approaches the 2D plasmon
frequency at largk where both modes tend to become a
sound wave. We can compare our trial function in &4) to

the density oscillations obtained in the exact solutifor a
semi-infinite plane witts?=0. It follows then that better val-
ues ofw will be obtained with a two-parameter form for the
trial function, namely,

Sp(£)=cé e "46(¢), (29

where ¢ is a constant. Transforming to coordinateswherea—3 for s>—0, anda(p) <3 for s>#0. With the trial

u.=£&+¢ and using a particular integral representdtitor
K, we can evaluate the integrals in Eg2) analytically. We
define a dimensionless momentum,

k=qa, (25

and minimizing the functional22) with « given by Eq.(24)
we obtain

02=J,(b)k+2J,(b)k?, (26)
where
2 (1+b)*|6(1-b)
‘Jl(b)_; 1+2b | (152 arccod
. o(b—1) . b+\/b?—1” -
2Jb%—1 \b—+b%-1
_(1+b)2
Jz(b)—m. (29

If we sets®=0, the minimum is reached at—1. This value
corresponds t@/w,p=(8/3m)12~0.921 whereaw,p(q) is the

function given by Eq.(29) the integrals in Eq(22) would
have to be evaluated numerically.

lll. STRIP PLASMONS

We consider a strip of widtld and choose thg axis in
the middle so the edges arexat = d/2. The boundary con-
ditions are

vy(x=*d/2)=0. (30
The integral equation for the plasma oscillations is derived in
the same way as in the previous section:

axq (&2 , , $2q2
= f—go/zdg Ko(|€—¢&"])Sp(& )+w—§ Sp(&)

2 o2 l i ’
+Q f dé'G(§,6")6p(¢")=0, (31
—£gl2

where é=qx, &=qd. The Green’s functiorG(¢£,¢') is de-

frequency of the 2D plasmon in an infinite system,fined by Eq.(16) and the boundary condition of zero deriva-
wop(0) = (8,0) Y2w,, . When thes? term is retained, the dis- tives at ¢&=*&/2. Its explicit form in the interval

persion is given by Eq26). We find thatb(k) is a mono-

[~&/2£/2] is
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1
sinh &,

X O(&' — &)+ cosi&yl2— E)cosi & + &y/2)
X (- ¢&")]. (32

Equation (31) and boundary condition$30) are invariant
under the reflectiorx— —x. Therefore, the nondegenerate
solutions have a definite parity, i.e., they are either even or
odd. We can rewrite Eq31) in the operator form as in Eq.
(19) and look for the variational solution. To simplify the
discussion for the strip plasmons we s&t0, corresponding ‘ ‘ ‘ ‘ ‘ . .
to the long-wavelength limigjs<w,. The definition of op- 0 2 4 6 3
eratorsA andB that appear in the eigenvalue equat{@s) qd

follow from Eq. (31). The operators are real and symmetric

and the solutions form an orthogonal set. Variational solu- FIG. 2. The frequency of the strip plasmon in units of
tions are found by minimizing the functional defined in Eq. wo=(a,/d) *?w, . The lower solid curve shows the dispersion of the
(22). For the two lowest-frequency solutions we take thelowe_st-frequency even mode, the upper solid curve shows the dis-
following trial functions to describe the dependence of the persion of the odd mode. They are shown as functions of the wave

G(§,&)=~ [cosh{ £+ &o/2)costiéo/2— ")

plasma oscillations localized near the edges:
8p1(€) =ccoshibé) 0(&o/2—[¢)),

Spa(&)=c,sinh(bé) 6(£o/2— | €]).

(33

(34

vector q along the strip of widthd. At small g the even solution
becomes a 1D plasmon. The frequency of the odd solution ap-
proaches a constant valmfno/d)l’z. At large g both frequencies
approach the edge plasmon frequency that is shifted downward
from the 2D plasmon dispersion, shown here by the broken curve.

In the y direction the density variation oscillates as component in thec direction is«/d. Then the frequency is

exp(iqy). Transforming the coordinates to. =£+ ¢ we can
evaluate(B) in terms of elementary functions ar@) in

Cwyp(q=m/d) and the variational solution gives
C=(15/27%)"? and Eq.(36). If the linear electron density

terms of a simple integral. The frequencies of the even anflod is fixed asd—0, the frequencyw, diverges as 1.

odd plasmons are shown in Fig. 2 as functiongdfin the
units of wy=(a,/d)*?w,. In the limit gd—e° the solutions

Therefore in the narrow strip limit only the lowest-frequency
mode will exist, with dispersion given in E¢35).

become degenerate and reproduce the diSperSiOD of the edgewe want to mention pOSSible extensions of the variational

plasmon. In the opposite limigd—0 we expand(A) and
(B) in powers ofqd and find that the even solutiofp,(¢)
reproduces the dispersion of the 1D plasmon:

2

nodg?in(1/qd), (35)

i
Mes

wherengd gives the linear density of electrons in one dimen-

sion. For the odd solutiodp,(¢) in the limit qd—0 the fre-
guency approaches a constant value:

15?n,
esmd

2
wo—

(36)

calculation presented above. It is simple to incorporate the
effect of the pressure gradient in the variational analysis of
the strip plasmons just as we did for the semi-infinite plane

in the previous section. We can also apply the variational

method for different geometries and boundary conditions, for

example, assuming metal electrodes on both sides of the
strip. Boundary conditions will then be imposed on the elec-

trostatic potential. The variational method can also be ap-
plied to the strip magnetoplasmons and the results will be
given elsewhere.
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