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In this paper, polaron effects in asymmetric quantum-well struct(@4’s) are investigated by using
second-order perturbation theory and the modified Lee-Low-RldgB) variational method. By applying the
Green’s-function method, explicit analytical expressions for the electron extended-state wave functions and the
density of states in a general step QW's are given. Within the framework of second-order perturbation theory,
the ground-state polaron binding energy and effective mass in step and asymmetric single QW’s are studied as
due to the interface optical phonons, confined bulklike LO and half-space LO phonons. The full energy
spectrum is included in our calculations. The effects of the finite electronic confinement potential and the
subband nonparabolicity are also considered. The relative importance of the different phonon modes is ana-
lyzed. By means of the modified LLP variational method, the binding energy of a polaron confined to asym-
metric single QW's is also investigated. Our results show that in ordinary asymmetric QW's, the asymmetry of
the QW’s has a significant influence on the polaron effect, which has a close relationship to the interface
phonon dispersion. When the well width and one side barrier height of asymmetric single QW’s are fixed and
identical with those of symmetric QW's, the polaron binding energy in asymmetric QW’s is always smaller
than that in symmetric QW's. We have also found that it is necessary to include the continuum energy
spectrum as intermediate states in the perturbation calculations in order to obtain the correct results; the
subband nonparabolicity has a small influence on the polaron effect. Comparing our results obtained by using
two different methods, good agreement is fouf®D163-182607)03704-1

[. INTRODUCTION and Devrees@ The polaronic effects in polar semiconductor
heterostructures are markedly different from those in bulk
In recent years, there have been several investigations ofiaterials due to the presence of their heterointerfaces. Re-
polaron effects in polar semiconductor heterostructures suatently, there has been considerable interest in the electronic
as dielectric slabs, heterojunctions, quantum wires, quanturproperties of the heterostructures of polar crystals. Because
boxes and quantum-well structur@@W's). It is well known  the polaron problem in semiconductor heterostructures is
that an electron moving slowly in a heterostructure of polatTmuch more complicated than that in bulk materials, some
crystals may cause a distortion of the lattice, establishing approximation methods must be used. The major ones are
polarization field which acts back on the electron whosethe perturbation theory, the Lee-Low-Pin&&P) variational
properties are then modified; in particular, the electron acmethod® the Landau and Pekar variational calculattcamd
quires a self-energy and an enhancement of its Bloch effedhe Green’s-function method. Within the framework of
tive mass. The single electron, together with its accompanysecond-order perturbation theory, Licaand Liang, Gu, and
ing distortion, is called a polaron. Some usual QW's, such ain® studied the polaron states in a polar slab. The polaron
GaAs/AlLGa _,As QW'’s, are composed of polar compounds effects in a heterojunction were investigated by Degani and
in which the interaction of an electron with optical phononsHipodlito.” Lin, Chen, and Georg&,and Hai, Peeters, and
is an important mechanism that needs to be studied in detaiDevrees further studied the electron-phonon interaction
The polaron effects can strongly influence the optical andand the polaron states in a symmetric single QW. A polaron
transport properties of the heterostructures. Hence the pan a symmetric single QW within an electric field has also
laron has been a major topic of great interest for a long timebeen investigated by Chen, Liang, and'{.iThe interface
Polarons in a bulk material have been investigated fopolaron in a heterojunction in a magnetic field was studied
many years. Numerous mathematical techniques have beéy Ban, Liang, and Zhent}.Magnetopolarons in a QW have
applied to the polaron problem. Excellent reviews have beebeen investigated in the case of a weak external magnetic
given by Mitra, Chatterjee, and Mukhopadhyand Peeters field in Ref. 12. Haupt and Wendférstudied the resonant
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magnetopolaron effects in parabolic QW'’s. Magnetopolarons Il. THEORY

in quantum dots were investigated in Ref. 14. Hai, Peeters,
and Devreese have further studied the magnetopolaron in a ) )
GaAs/AlAs symmetric QW. The self-trapping energy of a  We consider a general step QW composed of four differ-

polaron in a polar-crystal slab in a magnetic field has bee§nt Polar crystals as shown in Fig. 1 of Ref. 32, which can be

obtained by Wei, Zhao, and Gfi,who used the Larsen regarded as a generalized structure of some important QW'’s,
perturbation-theory method. By means of the modified LLPSUCh as commonly used step QW's and asymmetric and sym-

variational method, Ercelebi and Tontaknvestigated po- metric single QW's. The Fotal Hamilton?an fpr the coupling
laron effects in GaAs/Ga ,Al,As QW's, using the infinite- of an electron to the optical phonons in this system is de-
square-well approximation. Surface polarons in a bilayerSCrIbeOI by
system are given in Ref. 18. The bound polarons in a hetero- -

junction were studied by Farias, Degani, and Hitpo'® The A=HetHiotHiotHeot Hero- @
binding energies of bound polarons in strong magnetic fielddhe first term is the Hamiltonian of an electron confined
in a QW, a quantum-well wire, and a quantum box werewithin a potential wellV(z) in the z direction and can be
given in Ref. 20. The properties of a polaron in a polar-written as
crystal slab were also given by Lu and 4li.Magnetopo- )
larons in cylindrical quantum wires were investigated by H :p—+V(z) %)
Zhou and Gif? Bound magnetic polarons in a QW were € 2my '

given in Ref. 23. Impurity bound polarons in quantum-well

wires were also studied by Zhou and &un the infinite-
square-well approximation, Thilagam and Sifiyinvesti-

A. Hamiltonian

with the confinement potential

. . . . . . V| s z<—a
gated polarons in quasi-two-dimensional structures, in which V(=0 <,<0
only confined bulklike LO phonons were considered. Fur- V(z)= w(=0), —aszs 3)
thermore, Zheng, Ban, and Liaffgconsidered confined Vs, 0Osz=<b
bulklike LO and interface phonons, and studied the proper- Vi, z>b,

ties of a polaron in an infinite QW. Using the Landau-PekarWhere o is electron momentum operator. Considering the

theory, a strong-coupling theory of quasi-two-dimensional - . .
polarons was proposed in Ref. 27, in which the contributionSK/bet:]ag%nonparabOIICIty' the electron effective matgsis
of the interface modes to the polaron effects is ignored. Mag9
netopolarons in a heterojunction were investigated by means m(E)=ml1—(V.—E)/E

of Green’s-function method in Refs. 28 and 29. Knowledge (B) 11=MVi=B)/Eql,

of the behavior of a polaron confined to a finite QW, includ- my=

z<-—a
my(E)=m,[1—-(V,—E)/Egy]l, —aszs<O0

ing all the phonon modes, will be needed for further theo- my(E)=my[1—(Vs—E)/Egs], O=z=<b
retical investigations and for device applications. m(E)=m[1-(V,—E)/Ey], z>b,
Recently, asymmetric QW’s, such as asymmetric single (4)

and step QW's, have attracted much attention for some sp&ghere E. is the energy gap between the conduction and
cial device applications™* Optical-phonon  modes, Iight-holgyvalence bands in the materialv=I,w,s,r), and
electron-phonon interaction, and scattering in asymmetrig s the electron energyn, is the electron band mass con-
single and step QW's have been investigated in Refs. 31-3Gtant in materialv. The second and third terms in Ed)

Some interesting results, such as the frequency-forbidden bgiznq for the LO and 10 phonon Hamiltonians, and can be
havior of the interface opticdlO) modes and the anomalous | itten '

phenomenon of the electron-phonon interaction in asymmet-
ric QW's have been found. However, to our knowledge, little

work has been done about the polaron effects in asymmetric Hio= > hoy,[ay;(k)a,(k)+3],

single and step QW'’s, which are of great theoretical and S

practical importance at present. Hence it is worthwhile inves- (5)
tigating the polaron properties in these asymmetric QW's. Hio= > homk)la(k)am(k)+ 21,

The goal of the present paper is to investigate the polaron mk

binding energy and effective mass in asymmetric single and . . . .
step QW's by means of the second-order perturbation theor herefia,, 1S the bulklike LO-phonon energy in mate”ﬂ_'
and the modified LLP variational method, in which all the ndﬁ?’m(k”zj.'s the.IO-ph;)n_orgﬂ-ezr)}er?)F/{vx;hlgg C‘I?r? b.e ((j)btalned
: - ! solving dispersion relatio of Ref. 31. The indexm
possible phonon modes are incorporated and the full electroﬁil, 2.3, 4, 5, and Blabels the six branches of the 10

energy spectrum, i.e., the discrete energy levels in the we ; -
and the continuum energy spectrum above the barrier, are emhonons for step QW's, amwh (=1, 2, 3, and #for asym-

included as intermediate states. The finite barrier height anH‘etrlc single QW's. . )

the conduction band nonparabolicity are also considered. The fc_>urth te.rme»‘-L‘? |n.Eq. (1) IS th_e electron-LO-
The present paper is organized as follows. In Sec. I, Wé)hpnon g‘;‘;{a"“o” Fidich-like Hamiltonian, and can be

outline the theory of polaron binding energy and effective'/!"te" 8™

mass. In Sec. lll, we present and discuss our numerical re-

sults. Section IV gives a summary, which also contains our  H,, o= >, eik‘l"’l“bj(k” ’Z)[avj(kH)Jrajj(_kH)], (6)

main conclusions. v,j.kK
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where(p,z) is the position vector of the electron, aﬁd,j is  The constant8, C, D, «, 8, andd in Eg. (9) can be easily
the electron—LO-phonon coupling function, which describesdetermined by the boundary and the normalization condi-
the coupling strength of a single electron with thté LO  tions.

mode of layerv (v=I,w,s,r) and is given as follows: The density of statep;(E) in the regionV,<E<V, can
o 12 1 9 be obtained by using the Green’s-function metfahd by
It (K ,2)= he”| " o, 1 1 using the infinite boundary conditio8—0 (G the Green's
ST Ae) T, €ry €0y function) as |z|— and the Bastard boundary condition as
1 follows:
- - j
T ) b2m 1 "
. _ P1 wh f—E_VI .
sifgl(z+a)], —L<z=a
. sin(q{'Nz), —a=z7<0 Here the electron spin corrective factor has been considered.
u(gl,z)= sin(qlz), 0=z=b (7 (2 E=V,(=V,) case.
_ 9s2), U=szs In this case, the electron energy spectrum is continuous
sifai(z—b)], b=z<L, and twofold degenerafé.Hence the electron Hamiltonian

has two linearly independent eigenfunctions, which can be

7 —12a. int T, obtained from the solutions of the Schioger equation as
q,= Tv, J=Lag v maxe Jmax™ ao, ' follows:
whereA is the cross-sectional area of the heterostructure and C,cogkz—¢), —-L<z=-a
gq is the absolute dielectric constaeg, ande.,, are, respec- C,coqk,z+a), —a<z<0
tively, the static and high-frequency dielectric constau, Y (z)= Cacogkz+ B) 0<z<b (11a
is the lattice constant of layer, int[x] means the integral C3c05(ksz+§), b<z<L
part ofx, andT, is the thickness of layer and is given as 4 r ' = '
and
T=L-a, T,=a, Ts=b, T,=L-b. (8)
. Cssinkiz—¢’), —-L<zs-a
Note that for the half-space LO phonons the sum gvar ! .n(k| ¢ 2 _
Eq. (6) transforms into an integration, because their mo- Uo(2)= Cés?n( wZta’), —asz<0 (11D
menta in thez direction, i.e.,q, andq,, become continuous Cgsin(ksz+pB’), 0sz<b
when L —oo, Cysink,z+¢'), bs=sz<L,
The last term in Eq(1) is the electron—10-phonon inter-
action Hamiltonian, which has been given in Sec. Il A of wherek, = \2m;(E)(E—V,)/% (i=1,w,s,r).
Ref. 32. By using an analogous method described in the above, the
density of stateg,(E) in the regionE=V, (=V,) in our
B. Bare electron states general step QW can be obtained as follows:
The bound-electron subband states in our general step

QW were given in Sec. Il B of Ref. 32, which are localized po(E)= ‘/E \/ﬁ + ‘/E _ (12)
at the inside of the QW's. In the following, we will only mh | JE-V, JE-V,

study the electron extended states in the two energy regions
V,<E<V, (for definiteness, assuming=<V,) andE=V,, Let us now briefly discuss the above results in two cases.
respectively. We consider the case when the total samplé/henb=0, the above results reduce to the corresponding
length 2 is much larger than the well width; in fact, we will results of an asymmetric single QW. When=0 and
assume that —oo. V|,=V,=V, the electron extended-state wave functions and
(1) V\<E<V, case. the density of states in a symmetric single QW can be ob-
In this case, the electron energy spectrum is continuoutgined from our general results given in the above. In a sym-
and nondegenerat8 Assuming the usual effective-mass ap- metric single QW casey(z) reduces to the symmetric so-
proximation for the conduction band and by using the Baslution (z), and y,(2) to the antisymmetric onej,(z)
tard boundary conditiof’ the normalized electron extended- because the structure is symmetric about its center. This con-
state wave function in our general step QW can be obtaineg@lusion is consistent with the results of Ref. 9 but is not with
from the solution of the Schdinger equation as follows: the results of Ref. 41. The density of stajg€&) in a sym-
metric single QW can be immediately obtained from Eq.

vz (12) as
L coskzta), —L<z=-a
#(z)={ B cogk,z+pB), —asz<O0 (9) . _ vl Jym .
p(E)=—3— : (13)
C COS(kSZ—I— ), 0=z<b T E-V

-k . . .
De ™% bsz<L, whereL —o andm is the electron effective mass in the bar-

rier layer, andV is the barrier height. Equatiofi13) is not
where ki=2m;(E)(E-V;)/A (i=l,w,s) and Kk, exactly the same as E@l4) of Ref. 42 and the correspond-
=y2m,(E)(V,—E)/%, with E being the electron energy. ing results of Ref. 9.
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By using these results, we obtain the correct polaron bind- m*=m,+Am, (18)
ing energy and effective magsee below. Comparing with
the results obtained by the independent variational methowhere Am is the effective-mass correction due to the
(see Sec. Il which do not use the above electron electron-phonon interaction, and is given by
extended-state wave functions and the density of states, a

good agreement is foun@ee Fig. 2 This indicated in one Am=AmP+Am@+Am®), (19
aspect that the formulas given in this subsection are correc&\./ ith
C. Polaron energy and effective mass Mmax
In this subsection, we will calculate the polaron correction Am“):ﬂ ;l fo(ER)

to the ground-state energy and its effective mass in a general
step QW. Most of the present-day QW's are made out of A (v
weak polar semiconductors, and consequently we are al- Am(2>:_f " (EVf.(E)dE 20
lowed to use second-order perturbation theory. Based on this 2w P1(B)T2(E) 20
theory, the energy of a polaron in the ground state is given
d @_ A [
Am®=—— f pa(E)fH(E)dE,
E=E,+E]—AE, (14 Ve

where E,=pf/2m, is the energyp, being the electron mo- Where the functiorf,(E) is defined as

mentum andm, the effective mass in they plane, respec- 6 5

tively. EZ is the ground-state energy for the electron motion _ 2 > 2k M Tn( (k)2

in the z direction.AE is the binding energy of a polaron due 2(E) dk [hwn(k)+E—EZ+#k2kZ2m ]
to the different phonon modes at the bottom of the first level

and is given by JmaXf A2 M4 (k) |2
+ d
AE=AEW+AE?+AE®), (15) e WS' i oLtE- El%zkﬁlzm“]s
where + d
20 1o 9%
A Nmax
AEW=2— 3 £y (ED) XJ i 12K M (k) |2 2
"~ o hao,,+E- E1+ﬁ2kf/2m”]3'
A \ j Vj
AE@=2 J po(E)fL(E)dE, (16  InEgs.(17) and(21), M Ty(k), M (k)), andM 1i,(k) are
2 Jy, the electron-10, electron confined-LO, and electron—half-

space—LO-phonon interaction matrix elements, respectively.

A o
B=__
AE 2 erPZ(E)fl(E)dE' D. Variational calculation of the polaron energy

In Eq. (16), Npmayis the number of the discrete energy levels, For the sake of comparison, in this subsection we will
in our general step QW, and the definition of functigifE) further investigate the polaron binding energy by using the
is given by modified LLP variational method in asymmetric single QW'’s

(b=0) for simplicity, which has no direct connection with
kMT (k)2 the perturbation method. The following formulas can be eas-
f(E)= >, f dk; s> ily extended to the step QW. Consider the following ansatz
m=1.J0 hon(k)+E—E +A7%k{/2m, to the polaron wave function:

‘max K, |M# (k.)|2
f dk I |#)=Udn(2)0), 22
n= WSJ 1 hw L,u+E_E +h k/ZmH

where ¢,,(2) is the electron wave function in thedirection,

” ” KiIM1h(kp)|? and is given as
+ k . .
v;,r 0 qujO d ! fl(,!)Ly+ E_Ei‘f'ﬁzkf/zmu K 7
din=BARe"%,  z<0

(17 )= bwn= Bnl Awnsin(kynz) +Ajpcogkyn2) ], 23)
The corresponding polaron effective mass can be obtaineg“(Z B O=sz=a
from the formula dn=B,e kmZ  z>a,
1 1 d%E wherek,,= EZm (Eg))(v —EMNY2% (v=1,r) andky,,
P S ATl =[2m,(E{ )E(O)] /1, with E () being thenth eigenvalue

of the electron Hamiltoniaf and can be determined by the
as follows: following Eq. (25). A, , Awn, andB,, are defined as
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AIn = e_kma/[fwlnsm(kwna) + Cngwna)]v

Aun=Anfwin, (24

1 . _
Bn:ekma( 2k + [ fwinSin(kyd) + cogkyna) | 2
m

1 a sin(2kypa)

X | e+ s+ ——
2k, 4Ky

e (2 sin(2kyna) Sir?(Kynd) }—1/2
win 2 4kwn win kwn .
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Uy=ex ;ku [YikH(P)aii”_‘Vi*kH(P)aik"] '
where
YVuik, (P2 =, u(dl,2)e P,
Yik,(P)=Bi @ I°P, (28)

with @ik, and Bik, being the two variational parameters
which will subsequently be determined by minimizing the

The subband energy equation in our asymmetric single QVénergy of the system. Since we are interested only in the

potential is obtained as

(fwrn win™ 1)S|n(kwna)+(fwrn+fwln)coikwna) 0 (25)
where
_ mW(E)krn _ mW(E)kIn
= (B T ke 20

In Eq. (22), |0) is the phonon vacuum state, and the ca-

nonical transformatiotd is given by

U=U1U2,

U =ex E [%,kH(P'Z)awk V:jk(P,Z)ayjk"]]y (27)

v.jkK

ground state of the polaron, assuming that the momentum of
the electron in thy plane is zero, for simplicity we shall
neglect the interaction between the virtual phonons emitted
and reabsorbed by the recoiled electron, which is generally
very small in the case of weak couplifdhe total polaron
ground-state energy is obtained by computing the expecta-
tion value(y{H| ), which gives

Ev=(ylH[¢)=E+ELO+EL, (29
whereE{? is the lowest-energy solution of E¢5). E{-©
and EQO) are, respectively, the contributions of the electron
LO and IO interactions. After lengthy algebra, we can finally
obtain explicit analytical expressions & and E{® as
follows:

, B3C, oo 2 m,w., 1
_E(lLO):E 7 - 2 qu qz 7 In 2( oL +(k,,1)2)—2+1
VST 4w h ol Jo (k) Hq h q
kvl ﬁva+ T (kvl)
mV
hZ j2’772
ﬂint[%/‘jloz] |ij1|2 . Z_mW 22 Ewj1l 0
a = (ﬁZ j2’772 h ),_4 ﬁZ JZWZQ ﬁ L ﬁ2 ]2,”_2 ’
2mw a2 Lw wjl 2m a2 wijl LW wijl 2mw az wjl
where
_ Bl o Az)a_simzqiva>_sirx2kwla) sif2(a),—kw)al _sin2(a,+kwal] [ sin2gla)
B 249, 2K 4(ally— k) 4(dly+ k) 't Cy
A A {1—cos(2kwla) cog2(kyy+al)al -1 coi2<kwl—q"w)a]—1H
Wi kwl 2(kwl+q{/v) 2(kwl_q{/v) ,
82 sin(2k, @) 1 _
Quii=— | (Ad+ AR a+ (Al — 1)— k—l[l—C0€(2kwla)]Aw1A|1 —Ewj1
W.
(3D
(thV)eZ( 1 1)
V=— - 1 V=|1W1r1
47T80 €xy €0y
All' VZI
CV [e 2k,1a, v=r
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and
4 2
k2?2 [ A
_ (o) _ 1
B Zl 16meg fo dky ﬁZkH ' (32)
hwikHAZ ﬁwlku-i— ZF”
where
2 —2k;1a
A,=B2 Al (1-r)(1-r2)e e+ i (I=r)[(1=rry) +(ry—r)e 242
Y 2kt v 2ki1 1K " o
- K, +[ 2k, 1Sin(2ky ) — k,cog 2k,a) Je "2
H(Lr)(r=r)e™ (Afy— AR falky) — F2Anfa(k)
W
2Ky1— e kI3[ K, sin(2k,1a) + 2Ky1 €0 2k @) ]
+A,1A +(1—=ry)(1—rr
w11 (k\\)2+4(kw1)2 ( w)( | w)
ke~ Ki2—[ 2k, Sin( 2k a) + k cog 2K,1a) ]
x| (A2, — A2 (f k) + — w w M)+ 2A2 4k
( wl Il) 3( H) 2[(kll)2+4(kwl)2] 11 3( H)
2ky1€” K3+ [k sin( 2k,,a) — 2Ky, €0 2k @) ]
+AwiAir 7 7 )
(k) +4(ky)
A2:Dl(l_r\%\/)zeizk“a_’—DW[(l_rlrw)2+(rl_rw)zeizk”a](l_eizkna)_kDr[(rl_rw)eizkua'i_rw(l_rlrw)]za
f4(k _le 33
3( ||)_ 2k” y ( )

2 2 2 \2
EOCV(wLV— wTv)
D,

- w-zl-V(EOV_ ewv)[facv(wﬁv_ wizk”) - (w'zl'v_ wizkH)]Z ,
(o)t
= Ev(w) -1

wheree, () is the dielectric function of layer. Supposingn,=m,, 1/m, in Eq. (32) can be given as

O . e 2k . 1 , [a sin(2ky,a) cog2kya) t  ,(a  sin(2kya)
m - 2kamy(E) T 2kami(E) T my(E) [TWHN2 4k W 2Ky 2 4k '
(34)
The polaron binding energ§E can be defined as
AE=E{"-E,=-E{"9-E{9. (35

. NUMERICAL RESULTS AND DISCUSSION tion of the interface phonon dispersion. The polaron binding
energy may have a remarkable change when the frequency of
As an application of our theory given in Sec. I, we havethe interface phonons has a small deviation. The contribu-
performed numerical calculations for the ground-state potions of different phonon modes from the discrete energy
laron binding energy and effective mass in GaAs/levels and the continuum energy spectrum are shown in Figs.
Al,Ga _,As asymmetric single and step QW's. The physicali(g) and 1b), respectively. We can see the following from
parameters used in our calculations are the same as thosemy. 1. (1) For the half-space LO-phonon modes in the two

Ref. 32. In addition, we take the parametet,,
=1424+1266¢,+ 26(x2 meV (v=I,w,s,r) and the lattice
constarft® a,,=5.6533+0.007&, A. For convenience, we
takem,;=0.0669n,, with m, being the free-electron mass.
The polaron binding energ§E has been numerically cal-
culated as a function of well widtla for Al ,dGa, gAS/
GaAs/Al 4 Gay sAs asymmetric single QW's. We know
from our numerical calculations thatE is a sensitive func-

barrier layers, the contribution from the continuous spectrum
plays an important role in narrow QW; for instance, it ap-
proaches approximately 85% of the total half-space LO
modes contribution aa=16 A. (2) For the confined bulklike

LO modes in the well layer, the contribution of them to the
polaron binding energy from the continuous spectrum is
within about 30% of their total contribution at=75 A, and

15% ata=200 A. The contributions from the discrete energy
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FIG. 1. The contribution of the confined bulklike LO-phonon a(A)
mode(heavy dotted ling the I0-phonon modéshort-dashed line o ] )
and half-space LO-phonon modédot-dashed lingto the polaron FIG. 2. Polaron binding energy as a function of the well width

binding energy from(a) the discrete energy levels in the well and for (@) Alg 1658 gAS/GaAs/A 4G5a sgAs asymmetric and(b)
(b) the continuum energy spectrum above the barrier forAlo25Ga 75AS/GaAs/Ab 2:Ga 7As symmetric single QW's. The
Al 1458 g AS/GaAs/Ab 4Ga sgAs asymmetric single QW's. Here heavy solid, short-dashed, heavy dotted, and long-dashed lines in-
the solid line gives their summation. dicate the total polaron binding energy, the contribution of the 10O-,
confined bulklike LO-, and the half-space LO-phonon modes, re-
levels and the continuous spectrum have all a discontinuouspectively. The dot-dashed line i@ gives the polaron binding
derivative each time an energy level enters the quantum weéinergy in asymmetric QW's, ignoring the subband nonparabolicity.
when the well width increase&) The contribution of the IO The thin solid line in(a) and (b) shows the polaron binding energy
modes comes mainly from the discrete levels, and the corpbtained by using LLP variational method. The dot-dashed line in
tribution of them from the continuous energy spectrum is(b) stands for the polaron binding energy in the same structure as in
very small, and has been neglected in Figh)1As stated in  (a-
the above, for half-space LO modes in the two barrier layers,
the contributions of them to the polaron binding energy comehe contribution of the half-space LO modes in the two bar-
mainly from the continuous spectrum. However, for the con+ier layers is very important; the polaron binding energy
fined bulklike LO and 10 modes, the contributions from the comes mainly from the contribution of the IO modes when
continuous spectrum is smaller than the corresponding corthe well width 18 A<a<120 A; the contribution of the con-
tribution from the discrete energy levels. The contribution offined bulklike LO phonons in GaAs layer is significant in the
various phonon modes from the continuous spectrum to thease of the well widta>120 A. We can also see from Fig.
polaron energy approaches approximately 80% of the tota?(a) that the total polaron binding energy is a complicated
polaron energy aa=16 A, and 15% fom>30 A. The above function of well widtha in the case 0a<100 A, and then
results clearly show that it is necessary to include the fullmonotonically increases slowly to the three-dimensional
energy spectrum and all the possible phonon modes in thgD) bulk value of GaAs as the well width is very large.
study of the polaron effects in a QW. We also calculated th&Comparing with our variational calculation results, a good
corresponding results for the polaron effective mass, and thagreement is found. This proves in one aspect that our results
results show that the behavior of the polaron effective masfor the electron extended states and the density of states in
correction due to various phonon modes is similar to that ofSec. |l B are correct. Figure(® also indicates that the sub-
the binding energy. band nonparabolicity has a small influence on the polaron
The ground-state polaron binding energy as a function obinding energy. For comparison, the results for
the well width a for Alg,4Ga g AS/IGaAS/AL 4 GasAS  AlgxGay 75As/GaAs/AL ,:Gay ;As symmetric single QW's
asymmetric single QW'’s is given in Fig.(@. The figure are also given in Fig. ®). The figure shows that the total
clearly shows that in the case when the well width is smallpolaron binding energAE depends very little on the well
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FIG. 4. Polaron binding energy as a function of Al composition
o (5)1 " Xy for Al, Ga_, As/GaAs/Ab 2:Ga7sAs QW's in fixing well
width a=30 A. The various lines have the same meaning as in Fig.
2, respectively.

tures can be neglected when the well width300 A.

To further investigate the relation between the polaron
effect and the asymmetry degree in asymmetric QW’s, in
Fig. 4 we give the polaron binding energy as a function of Al
fraction x; (which determines the left barrier heighfor
AIXlGai_XlAs/GaAs/Ab_zg,Gao_wAs QW's with fixed well

width a=30 A. An interesting result is seen in Fig. 4: the
total polaron binding energy in the casg=0.25(symmetric
QW) is larger than that in asymmetric QW's. The larger the
asymmetry degre®.25-x,|, the larger the difference of a
polaron binding energy between our symmetric and asym-
metric QW’s. The polaron effective mass as a functiomx of
width a in symmetric QW’s. Furthermore, in the limiting for a similar structure as in Fig. 4 is also calculated. The
casea—0, the 3D A}, ,Ga, 75As bulk value can be approxi- results show that the behavior of the polaron effective mass
mately obtained and when the well widdh—c, the 3D is analogous to that of the binding energy. This indicate that
GaAs bulk value can also be exactly obtained. This is also ithe influence of the asymmetry of the structure on the po-
agreement with the sum rule established by somdaron effect is significant for narrow QW’s, which results
authors*~4¢Comparing Figs. @) and 2b), we can see that, from the sensitivity of phonon modes and electron wave
in the case of asymmetric single QW'’s, the asymmetry of thédunction on the structure parameters.
structure and the condition that a confined electron state can Figure 5 shows the polaron binding energy as a function
exist result in a difference of polaron binding energy be-of the well width a for Alg3:Ga, gsAS/GaAs/A} Ga, gAS/
tween asymmetric and symmetric QW’s. The smaller theAl, Ga, 6As step QW’s with a fixed step width=50 A. We
well width, the larger the difference of a polaron binding can see from Fig. 5 that the contributions of the LO phonons
energy between our symmetric and asymmetric QW'’s. Howin the Al,,Ga, gAs layer to the polaron binding energy is
ever, when the well width is very large, the difference be-small, and can be neglected when the well width100 A.
tween asymmetric and symmetric QW’s can be neglected. The contribution of the half-space LO phonons in the two-
The calculation results for the polaron effective mass inbarrier layers is very small, and can also be neglected when
Al 1Gay g AS/IGaAS/IAh 4 Gay sAS asymmetric and a>100 A. The contribution of the 10 phonons and the con-
Al »:Gay 75AS/GaAs/A ,:Ga, 75As symmetric single QW’s  fined LO phonons in the GaAs layer are important, and simi-
are shown in Figs. @) and 3b), respectively, in which we lar to those shown in Fig. 2 for asymmetric single QW's. The
denote the polaron effective-mass correction with respect ttotal polaron binding energy is a complicated function of the
the 3D GaAs valueAmg,~=am,/6, where « is the well width a and, in the limita—x, the 3D GaAs bulk value
electron-phonon Fidich coupling constant of GaAs mate- can be exactly obtained. For comparison, we have also cal-
rial. The figures show that the situation of the contributionsculated the polaron binding energy forAlGa, gsAs/GaAs/
of different phonon modes to the polaron effective mass il ;Gay gAS/Alg 3G gsAS commonly used step QW's. We
similar to that of the contributions to the polaron binding find that for narrow QW’s(a<200 A), the total polaron
energy shown in Fig. 2. Figure(@® also clearly shows that binding energy in the commonly used step QW's is slightly
the subband nonparabolicity has a small influence on thé&rger than that in general step QW’s, and, wiaen200 A,
polaron effective mass. Comparing Figga)3and 3b), we the difference of a polaron binding energy between com-
can see that the polaron effective-mass correction in oumonly used and general step QW's can be neglected. Fur-
asymmetric QW's is smaller than that in symmetric QW's in thermore, the subband nonparabolicity has a small influence
the casen<300 A, and the difference between the two struc-on the polaron energy in step QW's.

AM/AMgaae

FIG. 3. Same as in Fig. 2, but for the polaron effective mass.
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FIG. 5. Polaron binding energy as a function of the well width FIG. 6. Same as in Fig. 5, but for the polaron effective mass.

for Alg3Gay gsAS/GaAs/Ab ;Gay gAS/Alg Gay AS step QW's in

fixing step widthb=50 A for the 10 modesthe short-dashed line  15% in the cas@>30 A. Therefore, it is necessary to in-
the half-space LO modeshe dot-dashed linethe confined bulk-  ¢clyde the continuous energy spectrum as intermediate states
like LO phonons in the GaAs layéthe heavy dotted lineand those  j, the second-order perturbation calculation for the polaron
in the Al [GagAs layer (the long-dashed lineand their summa- i 4in o energy and effective mass in order to obtain the cor-
tion (the heavy solid ling Here the dot-dot-dashed line represents rect results.

the polaron binding energy, ignoring the subband nonparabolicity. ,
The thin solid line indicates the polaron binding energy in (4) For GaAs/AlGa, ,As QW's, our results show that

commonly used step QW's AbGa,sAS/GaAs/Al GasAs/  the contribution of half-space LO phonons to the polaron
Al 2:Ga, gAS with fixing the step widttb=50 A. o effects comes mainly from the continuous energy spectrum

above the barrier and is important for narrow well width, for

Figure 6 indicates the polaron effective mass for a strucinstance, the well widtta<100 A. However, the contribu-
ture corresponding to that in Fig. 5. We can see that thdions of the IO modes and the confined bulklike LO modes in
situation of the contributions of different phonon modes tothe well layer to the polaron effects due to the continuous
the polaron effective mass is analogous to that of the contrienergy spectrum are smaller than those of the discrete energy
butions to the polaron binding energy shown in Fig. 5. Thelevels in the well. For neither too wide nor too narrow quan-
influence of the subband nonparabolicity on the polaron eftum wells, the polaron binding energy and effective mass
fective mass in step QW's is also trivial. come mainly from the contribution of the 10 modes, and are

Moreover, we have also further calculated the polarordetermined by the confined bulklike LO modes in the well
binding energy in asymmetric QW's MGagAs/GaAs/  |ayer when the well width is large.

Alo.GayeAs and Al Gay_ As/GaAs/Ab 3Gy -As and sym- (5) The influence of the asymmetry of QW's on the po-
metric QW’s Al Ga, ;As/GaAs/A} Ga;As. The results laron states is significant when the well widihis small, for
are very similar to Figs. 2 and 4. instancea<300 A. However, the influence of the asymme-

try can be neglected when the well width is large.

(6) The polaron binding energy and effective mass are
complicated functions of the well width in QW's. When the

In this paper, we investigated the ground-state polaronvell width and one side barrier height of asymmetric single
binding energy and effective mass in asymmetric single an@QW'’s are fixed and identical with those of symmetric QW's,
step QW’s by using the second-order perturbation theory anthe polaron binding energy and effective mass in asymmetric
the modified LLP variational method, in which the full en- QW's are always less than those in symmetric QW's.
ergy spectrum and all possible phonon modes are all in- (7) In GaAs/ALGa, _,As symmetric single QW's, the po-
cluded. The effects of the finite electronic confinement podaron binding energy and effective mass go continuously
tential and the subband nonparabolicity are also considerefdom the 3D ALGa _,As to the 3D GaAs results when the
in our calculations. Comparing our results obtained by usingvell width varies from zero to infinity. This indicates that the
two different methods, a good agreement is found. The maisum of all phonon modes may look bulklike, and thus bulk-
conclusions obtained in the present paper are summarized phonon approximations in QW’s may remain reasonably ac-
follows. curate. This is in agreement with the sum rule of Refs. 44—

(1) The electron extended-state wave function and thel6.
density of states in step QW'’s are correctly derived for the (8) For GaAs/AlGa, _,As step QW's, the influence of the
first time, to our knowledge. The extended-state wave funcwell width on the polaron states is much more obvious than
tion in QW’s is a standing wave but not a propagating one.that of the step width.

(2) The polaron effect is closely related to the interface (9) The subband nonparabolicity has a small influence on
phonon dispersion in QW's. the polaron properties in QW's.

(3) The contribution of the continuous spectrum to the As stated above, the polaron effect has a close relation to
polaron binding energy approaches approximately 80% ofhe potential parameters of the QW's. The results obtained in
the total polaron binding energy at a well widik=16 A and  this paper are very useful for further investigating the po-

IV. SUMMARY
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