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Polaron effects in asymmetric semiconductor quantum-well structures
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In this paper, polaron effects in asymmetric quantum-well structures~QW’s! are investigated by using
second-order perturbation theory and the modified Lee-Low-Pines~LLP! variational method. By applying the
Green’s-function method, explicit analytical expressions for the electron extended-state wave functions and the
density of states in a general step QW’s are given. Within the framework of second-order perturbation theory,
the ground-state polaron binding energy and effective mass in step and asymmetric single QW’s are studied as
due to the interface optical phonons, confined bulklike LO and half-space LO phonons. The full energy
spectrum is included in our calculations. The effects of the finite electronic confinement potential and the
subband nonparabolicity are also considered. The relative importance of the different phonon modes is ana-
lyzed. By means of the modified LLP variational method, the binding energy of a polaron confined to asym-
metric single QW’s is also investigated. Our results show that in ordinary asymmetric QW’s, the asymmetry of
the QW’s has a significant influence on the polaron effect, which has a close relationship to the interface
phonon dispersion. When the well width and one side barrier height of asymmetric single QW’s are fixed and
identical with those of symmetric QW’s, the polaron binding energy in asymmetric QW’s is always smaller
than that in symmetric QW’s. We have also found that it is necessary to include the continuum energy
spectrum as intermediate states in the perturbation calculations in order to obtain the correct results; the
subband nonparabolicity has a small influence on the polaron effect. Comparing our results obtained by using
two different methods, good agreement is found.@S0163-1829~97!03704-1#
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I. INTRODUCTION

In recent years, there have been several investigation
polaron effects in polar semiconductor heterostructures s
as dielectric slabs, heterojunctions, quantum wires, quan
boxes and quantum-well structures~QW’s!. It is well known
that an electron moving slowly in a heterostructure of po
crystals may cause a distortion of the lattice, establishin
polarization field which acts back on the electron who
properties are then modified; in particular, the electron
quires a self-energy and an enhancement of its Bloch ef
tive mass. The single electron, together with its accompa
ing distortion, is called a polaron. Some usual QW’s, such
GaAs/AlxGa12xAs QW’s, are composed of polar compoun
in which the interaction of an electron with optical phono
is an important mechanism that needs to be studied in de
The polaron effects can strongly influence the optical a
transport properties of the heterostructures. Hence the
laron has been a major topic of great interest for a long tim

Polarons in a bulk material have been investigated
many years. Numerous mathematical techniques have
applied to the polaron problem. Excellent reviews have b
given by Mitra, Chatterjee, and Mukhopadhyay1 and Peeters
550163-1829/97/55~7!/4670~10!/$10.00
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and Devreese.2 The polaronic effects in polar semiconduct
heterostructures are markedly different from those in b
materials due to the presence of their heterointerfaces.
cently, there has been considerable interest in the electr
properties of the heterostructures of polar crystals. Beca
the polaron problem in semiconductor heterostructures
much more complicated than that in bulk materials, so
approximation methods must be used. The major ones
the perturbation theory, the Lee-Low-Pines~LLP! variational
method,3 the Landau and Pekar variational calculation,4 and
the Green’s-function method. Within the framework
second-order perturbation theory, Licari5 and Liang, Gu, and
Lin6 studied the polaron states in a polar slab. The pola
effects in a heterojunction were investigated by Degani a
Hipólito.7 Lin, Chen, and George,8 and Hai, Peeters, an
Devreese9 further studied the electron-phonon interacti
and the polaron states in a symmetric single QW. A pola
in a symmetric single QW within an electric field has al
been investigated by Chen, Liang, and Li.10 The interface
polaron in a heterojunction in a magnetic field was stud
by Ban, Liang, and Zheng.11 Magnetopolarons in a QW hav
been investigated in the case of a weak external magn
field in Ref. 12. Haupt and Wendler13 studied the resonan
4670 © 1997 The American Physical Society
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55 4671POLARON EFFECTS IN ASYMMETRIC SEMICONDUCTOR . . .
magnetopolaron effects in parabolic QW’s. Magnetopolar
in quantum dots were investigated in Ref. 14. Hai, Peet
and Devreese15 have further studied the magnetopolaron in
GaAs/AlAs symmetric QW. The self-trapping energy of
polaron in a polar-crystal slab in a magnetic field has b
obtained by Wei, Zhao, and Gu,16 who used the Larsen
perturbation-theory method. By means of the modified L
variational method, Ercelebi and Tomak17 investigated po-
laron effects in GaAs/Ga12xAl xAs QW’s, using the infinite-
square-well approximation. Surface polarons in a bila
system are given in Ref. 18. The bound polarons in a het
junction were studied by Farias, Degani, and Hipo´lito.19 The
binding energies of bound polarons in strong magnetic fie
in a QW, a quantum-well wire, and a quantum box we
given in Ref. 20. The properties of a polaron in a pol
crystal slab were also given by Lu and Li.21 Magnetopo-
larons in cylindrical quantum wires were investigated
Zhou and Gu.22 Bound magnetic polarons in a QW we
given in Ref. 23. Impurity bound polarons in quantum-w
wires were also studied by Zhou and Gu.24 In the infinite-
square-well approximation, Thilagam and Singh25 investi-
gated polarons in quasi-two-dimensional structures, in wh
only confined bulklike LO phonons were considered. F
thermore, Zheng, Ban, and Liang26 considered confined
bulklike LO and interface phonons, and studied the prop
ties of a polaron in an infinite QW. Using the Landau-Pek
theory, a strong-coupling theory of quasi-two-dimensio
polarons was proposed in Ref. 27, in which the contribut
of the interface modes to the polaron effects is ignored. M
netopolarons in a heterojunction were investigated by me
of Green’s-function method in Refs. 28 and 29. Knowled
of the behavior of a polaron confined to a finite QW, inclu
ing all the phonon modes, will be needed for further the
retical investigations and for device applications.

Recently, asymmetric QW’s, such as asymmetric sin
and step QW’s, have attracted much attention for some
cial device applications.30–36 Optical-phonon modes
electron-phonon interaction, and scattering in asymme
single and step QW’s have been investigated in Refs. 31–
Some interesting results, such as the frequency-forbidden
havior of the interface optical~IO! modes and the anomalou
phenomenon of the electron-phonon interaction in asymm
ric QW’s have been found. However, to our knowledge, lit
work has been done about the polaron effects in asymm
single and step QW’s, which are of great theoretical a
practical importance at present. Hence it is worthwhile inv
tigating the polaron properties in these asymmetric QW
The goal of the present paper is to investigate the pola
binding energy and effective mass in asymmetric single
step QW’s by means of the second-order perturbation the
and the modified LLP variational method, in which all th
possible phonon modes are incorporated and the full elec
energy spectrum, i.e., the discrete energy levels in the
and the continuum energy spectrum above the barrier, ar
included as intermediate states. The finite barrier height
the conduction band nonparabolicity are also considered

The present paper is organized as follows. In Sec. II,
outline the theory of polaron binding energy and effect
mass. In Sec. III, we present and discuss our numerica
sults. Section IV gives a summary, which also contains
main conclusions.
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II. THEORY

A. Hamiltonian

We consider a general step QW composed of four diff
ent polar crystals as shown in Fig. 1 of Ref. 32, which can
regarded as a generalized structure of some important QW
such as commonly used step QW’s and asymmetric and s
metric single QW’s. The total Hamiltonian for the couplin
of an electron to the optical phonons in this system is
scribed by

H5He1HLO1H IO1He-LO1He-IO . ~1!

The first term is the Hamiltonian of an electron confin
within a potential wellV(z) in the z direction and can be
written as

He5
p2

2mb
1V~z!, ~2!

with the confinement potential

V~z!5H Vl , z,2a
Vw~50!, 2a<z<0
Vs , 0<z<b
Vr , z.b,

~3!

where p is electron momentum operator. Considering t
subband nonparabolicity, the electron effective massmb is
given by37

mb5H ml~E!5ml@12~Vl2E!/Egl#, z,2a
mw~E!5mw@12~Vw2E!/Egw#, 2a<z<0
ms~E!5ms@12~Vs2E!/Egs#, 0<z<b
mr~E!5mr@12~Vr2E!/Egr#, z.b,

~4!

whereEgn is the energy gap between the conduction a
light-hole valence bands in the materialn ~n5l ,w,s,r !, and
E is the electron energy.mn is the electron band mass con
stant in materialn. The second and third terms in Eq.~1!
stand for the LO and IO phonon Hamiltonians, and can
written

HLO5 (
n, j ,ki

\vLn@an j
1 ~ki!an j~ki!1 1

2 #,

~5!

H IO5 (
m,ki

\vm~ki!@am
1~ki!am~ki!1 1

2 #,

where\vLn is the bulklike LO-phonon energy in materialn
and\vm(ki) is the IO-phonon energy which can be obtain
by solving dispersion relation~12! of Ref. 31. The indexm
~51, 2, 3, 4, 5, and 6! labels the six branches of the IO
phonons for step QW’s, andm ~51, 2, 3, and 4! for asym-
metric single QW’s.

The fourth termHe-LO in Eq. ~1! is the electron–LO-
phonon interaction Fro¨hlich-like Hamiltonian, and can be
written as33,34

He-LO5 (
n, j ,ki

eiki•r Gn j
L ~ki ,z!@an j~ki!1an j

1 ~2ki!#, ~6!
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where~r,z! is the position vector of the electron, andG n j
L is

the electron–LO-phonon coupling function, which describ
the coupling strength of a single electron with thej th LO
mode of layern ~n5l ,w,s,r ! and is given as follows:

Gn j
L ~ki ,z!5S \e2

A«0
D 1/2S vLn

Tn
D 1/2S 1

e`n
2

1

e0n
D 1/2

3
1

@ki
21~qn

j !2#1/2
u~qn

j ,z!,

u~qn
j ,z![H sin@ql

j~z1a!#, 2L,z<a

sin~qw
j z!, 2a<z,0

sin~qs
j z!, 0<z<b

sin@qr
j ~z2b!#, b<z,L,

~7!

qn
j 5

jp

Tn
, j51,2,3,...jmax, jmax5 intF Tn

a0n
G ,

whereA is the cross-sectional area of the heterostructure
«0 is the absolute dielectric constant.e0n ande`n are, respec-
tively, the static and high-frequency dielectric constant.a0n
is the lattice constant of layern, int[x] means the integra
part of x, andTn is the thickness of layern and is given as

Tl5L2a, Tw5a, Ts5b, Tr5L2b. ~8!

Note that for the half-space LO phonons the sum overj in
Eq. ~6! transforms into an integration, because their m
menta in thez direction, i.e.,ql andqr , become continuous
whenL→`.

The last term in Eq.~1! is the electron–IO-phonon inter
action Hamiltonian, which has been given in Sec. II A
Ref. 32.

B. Bare electron states

The bound-electron subband states in our general
QW were given in Sec. II B of Ref. 32, which are localize
at the inside of the QW’s. In the following, we will only
study the electron extended states in the two energy reg
Vl<E,Vr ~for definiteness, assumingVl<Vr! andE>Vr ,
respectively. We consider the case when the total sam
length 2L is much larger than the well width; in fact, we wi
assume thatL→`.

~1! Vl<E,Vr case.
In this case, the electron energy spectrum is continu

and nondegenerate.38 Assuming the usual effective-mass a
proximation for the conduction band and by using the B
tard boundary condition,39 the normalized electron extende
state wave function in our general step QW can be obtai
from the solution of the Schro¨dinger equation as follows:

c~z!55 S 2L D 1/2 cos~klz1a!, 2L,z<2a

B cos~kwz1b!, 2a<z,0
C cos~ksz1d!, 0<z,b
De2krz, b<z,L,

~9!

where ki5A2mi(E)(E2Vi)/\ ( i5 l ,w,s) and kr
5A2mr(E)(Vr2E)/\, with E being the electron energy
s

d

-

ep

ns

le

s

-

d

The constantsB, C, D, a, b, andd in Eq. ~9! can be easily
determined by the boundary and the normalization con
tions.

The density of statesr1(E) in the regionVl<E,Vr can
be obtained by using the Green’s-function method40 and by
using the infinite boundary conditionG→0 ~G the Green’s
function! as uzu→` and the Bastard boundary condition
follows:

r1~E!5
LA2ml

p\

1

AE2Vl

. ~10!

Here the electron spin corrective factor has been conside
~2! E>Vr(>Vl) case.
In this case, the electron energy spectrum is continu

and twofold degenerate.38 Hence the electron Hamiltonia
has two linearly independent eigenfunctions, which can
obtained from the solutions of the Schro¨dinger equation as
follows:

c1~z!5H C1cos~klz2j!,
C2cos~kwz1a!,
C3cos~ksz1b!,
C4cos~krz1j!,

2L,z<2a
2a<z,0
0<z,b
b<z,L,

~11a!

and

c2~z!5H C18sin~klz2j8!, 2L,z<2a

C28sin~kwz1a8!, 2a<z,0

C38sin~ksz1b8!, 0<z,b

C48sin~krz1j8!, b<z,L,

~11b!

whereki5A2mi(E)(E2Vi)/\ ( i5 l ,w,s,r ).
By using an analogous method described in the above

density of statesr2(E) in the regionE>Vr (>Vl) in our
general step QW can be obtained as follows:

r2~E!5
&L

p\ F Aml

AE2Vl

1
Amr

AE2Vr
G . ~12!

Let us now briefly discuss the above results in two cas
When b50, the above results reduce to the correspond
results of an asymmetric single QW. Whenb50 and
Vl5Vr[V, the electron extended-state wave functions a
the density of states in a symmetric single QW can be
tained from our general results given in the above. In a sy
metric single QW case,c1(z) reduces to the symmetric so
lution cs(z), and c2(z) to the antisymmetric oneca(z)
because the structure is symmetric about its center. This
clusion is consistent with the results of Ref. 9 but is not w
the results of Ref. 41. The density of statesr(E) in a sym-
metric single QW can be immediately obtained from E
~12! as

r~E!5
2&L

p\

Am
AE2V

, ~13!

whereL→` andm is the electron effective mass in the ba
rier layer, andV is the barrier height. Equation~13! is not
exactly the same as Eq.~14! of Ref. 42 and the correspond
ing results of Ref. 9.
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By using these results, we obtain the correct polaron bi
ing energy and effective mass~see below!. Comparing with
the results obtained by the independent variational met
~see Sec. II D!, which do not use the above electro
extended-state wave functions and the density of state
good agreement is found~see Fig. 2!. This indicated in one
aspect that the formulas given in this subsection are corr

C. Polaron energy and effective mass

In this subsection, we will calculate the polaron correcti
to the ground-state energy and its effective mass in a gen
step QW. Most of the present-day QW’s are made out
weak polar semiconductors, and consequently we are
lowed to use second-order perturbation theory. Based on
theory, the energy of a polaron in the ground state is gi
by

E5Ei1E1
z2DE, ~14!

whereEi5pi
2/2mi is the energy,pi being the electron mo

mentum andmi the effective mass in thexy plane, respec-
tively. E 1

z is the ground-state energy for the electron mot
in thez direction.DE is the binding energy of a polaron du
to the different phonon modes at the bottom of the first le
and is given by

DE5DE~1!1DE~2!1DE~3!, ~15!

where

DE~1!5
A

2p (
n51

nmax

f 1~En
z!,

DE~2!5
A

2p E
Vl

Vr
r1~E! f 1~E!dE, ~16!

DE~3!5
A

2p E
Vr

`

r2~E! f 1~E!dE.

In Eq. ~16!, nmax is the number of the discrete energy leve
in our general step QW, and the definition of functionf 1(E)
is given by

f 1~E!5 (
m51

6 E
0

`

dki

kiuM1,n
m ~ki!u2

\vm~ki!1E2E1
z1\2ki

2/2mi

1 (
m5w,s

(
j51

jmax E
0

`

dki

kiuM1,n
m j ~ki!u2

\vLm1E2E1
z1\2ki

2/2mi

1 (
n5 l ,r

E
0

`

dqnE
0

`

dki

kiuM1,n
n j ~ki!u2

\vLn1E2E1
z1\2ki

2/2mi

.

~17!

The corresponding polaron effective mass can be obta
from the formula

1

m*
[

1

\2

d2E

dk2

as follows:
-

d

, a

ct.

ral
f
l-
is
n

l

ed

m* 5̇mi1Dm, ~18!

where Dm is the effective-mass correction due to th
electron-phonon interaction, and is given by

Dm5Dm~1!1Dm~2!1Dm~3!, ~19!

with

Dm~1!5
A

2p (
n51

nmax

f 2~En
z!,

Dm~2!5
A

2p E
Vl

Vr
r1~E! f 2~E!dE, ~20!

Dm~3!5
A

2p E
Vr

`

r2~E! f 2~E!dE,

where the functionf 2(E) is defined as

f 2~E!5 (
m51

6 E
0

`

dki

\2ki
3uM1,n

m ~ki!u2

@\vm~ki!1E2E1
z1\2ki

2/2mi#
3

1 (
m5w,s

(
j51

jmax E
0

`

dki

\2ki
3uM1,n

m j ~ki!u2

@\vLm1E2E1
z1\2ki

2/2mi#
3

1 (
n5 l ,r

E
0

`

dqn

3E
0

`

dki

\2ki
3uM1,n

n j ~ki!u2

@\vLn1E2E1
z1\2ki

2/2mi#
3 . ~21!

In Eqs.~17! and~21!, M 1,n
m (ki), M 1,n

m j (ki), andM 1,n
n j (ki) are

the electron-IO, electron confined-LO, and electron–ha
space–LO-phonon interaction matrix elements, respectiv

D. Variational calculation of the polaron energy

For the sake of comparison, in this subsection we w
further investigate the polaron binding energy by using
modified LLP variational method in asymmetric single QW
~b50! for simplicity, which has no direct connection wit
the perturbation method. The following formulas can be e
ily extended to the step QW. Consider the following ans
to the polaron wave function:

uc&5Ufn~z!u0&, ~22!

wherefn(z) is the electron wave function in thez direction,
and is given as

fn~z!5H f ln5BnAlne
klnz, z,0

fwn5Bn@Awnsin~kwnz!1Alncos~kwnz!#,
0<z<a

f rn5Bne
2krnz, z.a,

~23!

where knn[[2mn(En
(0))(Vn2En

(0))] 1/2/\ (n5 l ,r ) and kwn
[[2mw(En

(0))En
(0)] 1/2/\, with En

(0) being thenth eigenvalue
of the electron HamiltonianHe and can be determined by th
following Eq. ~25!. Aln , Awn , andBn are defined as
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Aln5e2krna/@ f wlnsin~kwna!1cos~kwna!#,

Awn5Aln f wln , ~24!

Bn5ekrnaH 1

2krn
1@ f wlnsin~kwna!1cos~kwna!#22

3F 1

2kln
1
a

2
1
sin~2kwna!

4kwn

1 f wln
2 S a22

sin~2kwna!

4kwn
D1 f wln

sin2~kwna!

kwn
G J 21/2

.

The subband energy equation in our asymmetric single
potential is obtained as

~ f wrnf wln21!sin~kwna!1~ f wrn1 f wln!cos~kwna!50, ~25!

where

f wrn[
mw~E!krn
kwnmr~E!

, f wln[
mw~E!kln
kwnml~E!

. ~26!

In Eq. ~22!, u0& is the phonon vacuum state, and the c
nonical transformationU is given by

U5U1U2 ,

U15expH (
n, j ,ki

@gn jki
~r,z!an jki

1 2gn jki
* ~r,z!an jki

#J , ~27!
-

U25expH(
i ,ki

@g iki
~r!aiki

1 2g iki
* ~r!aiki

#J ,
where

gn jki
~r,z!5an jki

u~qn
j ,z!e2 iki•r,

g iki
~r!5b iki

e2 iki•r, ~28!

with an jki
and b iki

being the two variational paramete
which will subsequently be determined by minimizing th
energy of the system. Since we are interested only in
ground state of the polaron, assuming that the momentum
the electron in thexy plane is zero, for simplicity we shal
neglect the interaction between the virtual phonons emi
and reabsorbed by the recoiled electron, which is gener
very small in the case of weak coupling.3 The total polaron
ground-state energy is obtained by computing the expe
tion value^cuHuc&, which gives

E15^cuHuc&5E1
~0!1E1

~LO!1E1
~ IO! , ~29!

whereE1
~0! is the lowest-energy solution of Eq.~25!. E1

~LO!

andE1
~IO! are, respectively, the contributions of the electr

LO and IO interactions. After lengthy algebra, we can fina
obtain explicit analytical expressions ofE1

~LO! andE1
~IO! as

follows:
2E1
~LO!5 (

n5 l ,r

sn

4p

B1
2Cn

kn1F\vLn1
\2

mn
~kn1!

2G E0
`

dq
q2

~kn1!
21q2

lnF2SmnvLn

\
1~kn1!

2D 1

q2
11G

1
sw

a (
j51

int@a/a02# uJwj1u2

S \2

2mw

j 2p2

a2
2\vLwDJwj12

\2

2mw

j 2p2

a2
Vwj1

lnF \2

2mw

j 2p2

a2
Jwj1

\vLwJwj11
\2

2mw

j 2p2

a2
Vwj1

G , ~30!

where

Jwj15
B1
2

4 H ~Aw1
2 2Al1

2 !Fa2
sin~2qw

j a!

2qw
j 2

sin~2kw1a!

2kw1
1
sin@2~qw

j 2kw1!a#

4~qw
j 2kw1!

1
sin@2~qw

j 1kw1!a#

4~qw
j 1kw1!

G1Al1
2 F2a2

sin~2qw
j a!

qw
j G

1Aw1Al1F12cos~2kw1a!

kw1
1
cos@2~kw11qw

j !a#21

2~kw11qw
j !

1
cos@2~kw12qw

j !a#21

2~kw12qw
j ! G J ,

Vwj15
B1
2

2 H ~Aw1
2 1Al1

2 !a1~Al1
2 2Aw1

2 !
sin~2kw1a!

2kw1
1

1

kw1
@12cos~2kw1a!#Aw1Al1J 2Jwj1 ,

~31!

sn5
~\vLn!e2

4p«0
S 1

e`n
2

1

e0n
D , n5 l ,w,r ,

Cn5 HAl1
2 , n5 l

e22kr1a, n5r
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and

2E1
~ IO!5(

i51

4
\2e2

16p«0
E
0

`

dki

L1
2

\v ik i
L2S \v ik i

1
\2ki

2

2m̄i
D , ~32!

where

L15B1
2H Al1

2

2kl11ki
~12r l !~12r w

2 !e2kia1
e22kr1a

2kr11ki
~12r w!@~12r l r w!1~r w2r l !e

22kia#

1~12r w!~r w2r l !e
2kiaF ~Aw1

2 2Al1
2 !S f 3~ki!2

ki1@2kw1sin~2kw1a!2kicos~2kw1a!#e2kia

2@~ki!
214~kw1!

2#
D 12Al1

2 f 3~ki!

1Aw1Al1

2kw12e2kia@kisin~2kw1a!12kw1cos~2kw1a!#

~ki!
214~kw1!

2 G1~12r w!~12r l r w!

3F ~Aw1
2 2Al1

2 !S f 3~ki!1
kie2kia2@2kw1sin~2kw1a!1kicos~2kw1a!#

2@~ki!
214~kw1!

2#
D 12Al1

2 f 3~ki!

1Aw1Al1

2kw1e
2kia1@kisin~2kw1a!22kw1cos~2kw1a!#

~ki!
214~kw1!

2 G J ,
L25Dl~12r w

2 !2e22kia1Dw@~12r l r w!21~r l2r w!2e22kia#~12e22kia!1Dr@~r l2r w!e22kia1r w~12r l r w!#2,

f 3~ki!5
12e2kia

2ki
, ~33!

Dn5
e`n
2 ~vLn

2 2vTn
2 !2

vTn
2 ~e0n2e`n!@e`n~vLn

2 2v ik i

2 !2~vTn
2 2v ik i

2 !#2
,

r n5
en~v!11

en~v!21
,

whereen~v! is the dielectric function of layern. Supposingmi5mz , 1/m̄i in Eq. ~32! can be given as

1

m̄i
5B1

2H Al1
2

2kl1ml~E!
1

e22kr1a

2kr1mr~E!
1

1

mw~E!
FAw1

2 S a22
sin~2kw1a!

4kw1
D 2Aw1Al1

cos~2kw1a!21

2kw1
1Al1

2 S a21
sin~2kw1a!

4kw1
D G J .

~34!

The polaron binding energyDE can be defined as

DE5E1
~0!2E152E1

~LO!2E1
~ IO! . ~35!
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III. NUMERICAL RESULTS AND DISCUSSION

As an application of our theory given in Sec. II, we ha
performed numerical calculations for the ground-state
laron binding energy and effective mass in GaA
Al xGa12xAs asymmetric single and step QW’s. The physic
parameters used in our calculations are the same as tho
Ref. 32. In addition, we take the parameterEgn
5142411266xn1260x n

2 meV ~n5l ,w,s,r ! and the lattice
constant43 a0n55.653310.0078xn Å. For convenience, we
takemi50.0665m0 , with m0 being the free-electron mass.

The polaron binding energyDE has been numerically cal
culated as a function of well widtha for Al0.18Ga0.82As/
GaAs/Al0.42Ga0.58As asymmetric single QW’s. We know
from our numerical calculations thatDE is a sensitive func-
-
/
l
of

tion of the interface phonon dispersion. The polaron bind
energy may have a remarkable change when the frequenc
the interface phonons has a small deviation. The contri
tions of different phonon modes from the discrete ene
levels and the continuum energy spectrum are shown in F
1~a! and 1~b!, respectively. We can see the following fro
Fig. 1. ~1! For the half-space LO-phonon modes in the tw
barrier layers, the contribution from the continuous spectr
plays an important role in narrow QW; for instance, it a
proaches approximately 85% of the total half-space
modes contribution ata516 Å. ~2! For the confined bulklike
LO modes in the well layer, the contribution of them to th
polaron binding energy from the continuous spectrum
within about 30% of their total contribution ata875 Å, and
15% ata8200 Å. The contributions from the discrete ener
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levels and the continuous spectrum have all a discontinu
derivative each time an energy level enters the quantum
when the well width increases.~3! The contribution of the IO
modes comes mainly from the discrete levels, and the c
tribution of them from the continuous energy spectrum
very small, and has been neglected in Fig. 1~b!. As stated in
the above, for half-space LO modes in the two barrier lay
the contributions of them to the polaron binding energy co
mainly from the continuous spectrum. However, for the co
fined bulklike LO and IO modes, the contributions from t
continuous spectrum is smaller than the corresponding c
tribution from the discrete energy levels. The contribution
various phonon modes from the continuous spectrum to
polaron energy approaches approximately 80% of the t
polaron energy ata516 Å, and 15% fora.30 Å. The above
results clearly show that it is necessary to include the
energy spectrum and all the possible phonon modes in
study of the polaron effects in a QW. We also calculated
corresponding results for the polaron effective mass, and
results show that the behavior of the polaron effective m
correction due to various phonon modes is similar to tha
the binding energy.

The ground-state polaron binding energy as a function
the well width a for Al0.18Ga0.82As/GaAs/Al0.42Ga0.58As
asymmetric single QW’s is given in Fig. 2~a!. The figure
clearly shows that in the case when the well width is sm

FIG. 1. The contribution of the confined bulklike LO-phono
mode~heavy dotted line!, the IO-phonon mode~short-dashed line!,
and half-space LO-phonon mode~dot-dashed line! to the polaron
binding energy from~a! the discrete energy levels in the well an
~b! the continuum energy spectrum above the barrier
Al0.18Ga0.82As/GaAs/Al0.42Ga0.58As asymmetric single QW’s. Here
the solid line gives their summation.
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the contribution of the half-space LO modes in the two b
rier layers is very important; the polaron binding ener
comes mainly from the contribution of the IO modes wh
the well width 18 Å,a,120 Å; the contribution of the con
fined bulklike LO phonons in GaAs layer is significant in th
case of the well widtha.120 Å. We can also see from Fig
2~a! that the total polaron binding energy is a complicat
function of well widtha in the case ofa,100 Å, and then
monotonically increases slowly to the three-dimensio
~3D! bulk value of GaAs as the well width is very large
Comparing with our variational calculation results, a go
agreement is found. This proves in one aspect that our res
for the electron extended states and the density of state
Sec. II B are correct. Figure 2~a! also indicates that the sub
band nonparabolicity has a small influence on the pola
binding energy. For comparison, the results f
Al0.25Ga0.75As/GaAs/Al0.25Ga0.7As symmetric single QW’s
are also given in Fig. 2~b!. The figure shows that the tota
polaron binding energyDE depends very little on the wel

r

FIG. 2. Polaron binding energy as a function of the well widtha
for ~a! Al0.18Ga0.82As/GaAs/Al0.42Ga0.58As asymmetric and~b!
Al0.25Ga0.75As/GaAs/Al0.25Ga0.75As symmetric single QW’s. The
heavy solid, short-dashed, heavy dotted, and long-dashed line
dicate the total polaron binding energy, the contribution of the I
confined bulklike LO-, and the half-space LO-phonon modes,
spectively. The dot-dashed line in~a! gives the polaron binding
energy in asymmetric QW’s, ignoring the subband nonparabolic
The thin solid line in~a! and~b! shows the polaron binding energ
obtained by using LLP variational method. The dot-dashed line
~b! stands for the polaron binding energy in the same structure a
~a!.
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width a in symmetric QW’s. Furthermore, in the limitin
casea→0, the 3D Al0.25Ga0.75As bulk value can be approxi
mately obtained and when the well widtha→`, the 3D
GaAs bulk value can also be exactly obtained. This is als
agreement with the sum rule established by so
authors.44–46Comparing Figs. 2~a! and 2~b!, we can see that
in the case of asymmetric single QW’s, the asymmetry of
structure and the condition that a confined electron state
exist result in a difference of polaron binding energy b
tween asymmetric and symmetric QW’s. The smaller
well width, the larger the difference of a polaron bindin
energy between our symmetric and asymmetric QW’s. Ho
ever, when the well width is very large, the difference b
tween asymmetric and symmetric QW’s can be neglecte

The calculation results for the polaron effective mass
Al0.18Ga0.82As/GaAs/Al0.42Ga0.58As asymmetric and
Al0.25Ga0.75As/GaAs/Al0.25Ga0.75As symmetric single QW’s
are shown in Figs. 3~a! and 3~b!, respectively, in which we
denote the polaron effective-mass correction with respec
the 3D GaAs valueDmGaAs5amw/6, where a is the
electron-phonon Fro¨hlich coupling constant of GaAs mate
rial. The figures show that the situation of the contributio
of different phonon modes to the polaron effective mass
similar to that of the contributions to the polaron bindin
energy shown in Fig. 2. Figure 3~a! also clearly shows tha
the subband nonparabolicity has a small influence on
polaron effective mass. Comparing Figs. 3~a! and 3~b!, we
can see that the polaron effective-mass correction in
asymmetric QW’s is smaller than that in symmetric QW’s
the casea,300 Å, and the difference between the two stru

FIG. 3. Same as in Fig. 2, but for the polaron effective mass
in
e

e
an
-
e

-
-

n

to

s
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e

ur
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tures can be neglected when the well widtha.300 Å.
To further investigate the relation between the polar

effect and the asymmetry degree in asymmetric QW’s,
Fig. 4 we give the polaron binding energy as a function of
fraction x1 ~which determines the left barrier height! for
Al x1Ga12x1

As/GaAs/Al0.25Ga0.75As QW’s with fixed well
width a530 Å. An interesting result is seen in Fig. 4: th
total polaron binding energy in the casex180.25~symmetric
QW! is larger than that in asymmetric QW’s. The larger t
asymmetry degreeu0.252x1u, the larger the difference of a
polaron binding energy between our symmetric and asy
metric QW’s. The polaron effective mass as a function ofx1
for a similar structure as in Fig. 4 is also calculated. T
results show that the behavior of the polaron effective m
is analogous to that of the binding energy. This indicate t
the influence of the asymmetry of the structure on the
laron effect is significant for narrow QW’s, which resul
from the sensitivity of phonon modes and electron wa
function on the structure parameters.

Figure 5 shows the polaron binding energy as a funct
of the well width a for Al0.35Ga0.65As/GaAs/Al0.2Ga0.8As/
Al0.4Ga0.6As step QW’s with a fixed step widthb550 Å. We
can see from Fig. 5 that the contributions of the LO phono
in the Al0.2Ga0.8As layer to the polaron binding energy
small, and can be neglected when the well widtha.100 Å.
The contribution of the half-space LO phonons in the tw
barrier layers is very small, and can also be neglected w
a.100 Å. The contribution of the IO phonons and the co
fined LO phonons in the GaAs layer are important, and si
lar to those shown in Fig. 2 for asymmetric single QW’s. T
total polaron binding energy is a complicated function of t
well width a and, in the limita→`, the 3D GaAs bulk value
can be exactly obtained. For comparison, we have also
culated the polaron binding energy for Al0.35Ga0.65As/GaAs/
Al0.2Ga0.8As/Al0.35Ga0.65As commonly used step QW’s. W
find that for narrow QW’s~a,200 Å!, the total polaron
binding energy in the commonly used step QW’s is sligh
larger than that in general step QW’s, and, whena.200 Å,
the difference of a polaron binding energy between co
monly used and general step QW’s can be neglected.
thermore, the subband nonparabolicity has a small influe
on the polaron energy in step QW’s.

FIG. 4. Polaron binding energy as a function of Al compositi
x1 for Al x1Ga12x1

As/GaAs/Al0.25Ga0.75As QW’s in fixing well
width a530 Å. The various lines have the same meaning as in F
2, respectively.
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Figure 6 indicates the polaron effective mass for a str
ture corresponding to that in Fig. 5. We can see that
situation of the contributions of different phonon modes
the polaron effective mass is analogous to that of the con
butions to the polaron binding energy shown in Fig. 5. T
influence of the subband nonparabolicity on the polaron
fective mass in step QW’s is also trivial.

Moreover, we have also further calculated the pola
binding energy in asymmetric QW’s Al0.2Ga0.8As/GaAs/
Al0.4Ga0.6As and Alx1Ga12x1

As/GaAs/Al0.3Ga0.7As and sym-
metric QW’s Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As. The results
are very similar to Figs. 2 and 4.

IV. SUMMARY

In this paper, we investigated the ground-state pola
binding energy and effective mass in asymmetric single
step QW’s by using the second-order perturbation theory
the modified LLP variational method, in which the full en
ergy spectrum and all possible phonon modes are all
cluded. The effects of the finite electronic confinement p
tential and the subband nonparabolicity are also consid
in our calculations. Comparing our results obtained by us
two different methods, a good agreement is found. The m
conclusions obtained in the present paper are summarize
follows.

~1! The electron extended-state wave function and
density of states in step QW’s are correctly derived for
first time, to our knowledge. The extended-state wave fu
tion in QW’s is a standing wave but not a propagating on

~2! The polaron effect is closely related to the interfa
phonon dispersion in QW’s.

~3! The contribution of the continuous spectrum to t
polaron binding energy approaches approximately 80%
the total polaron binding energy at a well widtha516 Å and

FIG. 5. Polaron binding energy as a function of the well widtha
for Al0.35Ga0.65As/GaAs/Al0.2Ga0.8As/Al0.4Ga0.6As step QW’s in
fixing step widthb550 Å for the IO modes~the short-dashed line!,
the half-space LO modes~the dot-dashed line!, the confined bulk-
like LO phonons in the GaAs layer~the heavy dotted line! and those
in the Al0.2Ga0.8As layer ~the long-dashed line!, and their summa-
tion ~the heavy solid line!. Here the dot-dot-dashed line represen
the polaron binding energy, ignoring the subband nonparabolic
The thin solid line indicates the polaron binding energy
commonly used step QW’s Al0.35Ga0.65As/GaAs/Al0.2Ga0.8As/
Al0.35Ga0.65As with fixing the step widthb550 Å.
-
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f-

n

n
d
d

-
-
ed
g
in
as

e
e
-
.

f

15% in the casea.30 Å. Therefore, it is necessary to in
clude the continuous energy spectrum as intermediate s
in the second-order perturbation calculation for the pola
binding energy and effective mass in order to obtain the c
rect results.

~4! For GaAs/AlxGa12xAs QW’s, our results show tha
the contribution of half-space LO phonons to the polar
effects comes mainly from the continuous energy spectr
above the barrier and is important for narrow well width, f
instance, the well widtha,100 Å. However, the contribu-
tions of the IO modes and the confined bulklike LO modes
the well layer to the polaron effects due to the continuo
energy spectrum are smaller than those of the discrete en
levels in the well. For neither too wide nor too narrow qua
tum wells, the polaron binding energy and effective ma
come mainly from the contribution of the IO modes, and a
determined by the confined bulklike LO modes in the w
layer when the well width is large.

~5! The influence of the asymmetry of QW’s on the p
laron states is significant when the well widtha is small, for
instance,a,300 Å. However, the influence of the asymm
try can be neglected when the well width is large.

~6! The polaron binding energy and effective mass
complicated functions of the well width in QW’s. When th
well width and one side barrier height of asymmetric sing
QW’s are fixed and identical with those of symmetric QW
the polaron binding energy and effective mass in asymme
QW’s are always less than those in symmetric QW’s.

~7! In GaAs/AlxGa12xAs symmetric single QW’s, the po
laron binding energy and effective mass go continuou
from the 3D AlxGa12xAs to the 3D GaAs results when th
well width varies from zero to infinity. This indicates that th
sum of all phonon modes may look bulklike, and thus bu
phonon approximations in QW’s may remain reasonably
curate. This is in agreement with the sum rule of Refs. 4
46.

~8! For GaAs/AlxGa12xAs step QW’s, the influence of the
well width on the polaron states is much more obvious th
that of the step width.

~9! The subband nonparabolicity has a small influence
the polaron properties in QW’s.

As stated above, the polaron effect has a close relatio
the potential parameters of the QW’s. The results obtaine
this paper are very useful for further investigating the p

y.

FIG. 6. Same as in Fig. 5, but for the polaron effective mass
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laron properties and the optical and transport properties
the D2 centers in step and asymmetric single QW’s and h
significant meanings for analyzing experimental results,
for some important optoelectric device designs and appl
tions in the near future.
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