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Random impurity and phonon-scattering processes in multibarrier structures
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In mesoscopic devices, in addition to the tunnel barriers, the electrons interact with a random configuration
of impurities as well as with phonons. The scattering processes are usually modeledapsitagthiessen’s
rule with (b) phenomenological parameters. In this paper, we investigate the validity of such scattering models
and propose an alternative approach based on the Keldysh formulation and the diagrammatic analysis. Con-
sequently, the scattering rates depend on the strength of the disorder, the temperature, the electron energy as
well as on the spatial coordinates. However, we show that the semiclassical Matthiessen rule can be used to
combine the two scattering rates in quantum effect devices assuming large electron mean free paths and within
the scope of self-consistent Born approximation. The assumption of a large mean-free path remains valid for
moderately strong disorder even at room temperature, which makes our model suitable for practical simulation
of electron transpor{.S0163-182807)07407-9

It is well known that quantum-mechanical models, basedocalized for weak disorder, and localization effects are
on pure or coherent quantum statedalone cannot describe much less pronounced on the transport propetfies.
the carrier transport mechanisms in nanostructure devices, In this paper, the nonequilibrium Green’s-function tech-
e.g., the resonant tunneling structures. This is because phaguédque (Keldysh formalisnr is used for a rigorous descrip-
breaking and inelastic-scattering processes influence tHéon of the scattering rates in mesoscopic devices. In our
transport processes in these devit@a include the effects Model, to guarantee the conservation of charge and current
of various scattering processes, most transport models usec@ntinuity, the scattering rates become functions of both the
phenomenological constant imaginary potential, a constar@N€ray and the position coordinates. The electron scattering

mean-free path, or a constant phase-breaking ti@hen ~ 'ates due to phonons and impurities are added using Mat-
more than one type of scattering is present in a device, Matt—r]'(as§('3r],S rule. Although Matthless_en’s rule_ls de?"’ed semi-
classically, one generally expects it to remain valid even for

thiessen’s ruldthe scattering rates simpl id commonl ! . .
¢ 9 ply & y Jliesoscopic devices when the scattering rates are low

used to combine these scattering processes. Such mod eriough. However, we report the results of an investigation

Wh”.e. a.ttrac'uve, are n ot always a}dequgte to qlescnbeg "Mhto the regime of validity for the application of Matthies-
equilibrium transport in mesoscopic devices. Klimetlal.

. ) ) ; sen’s rule in such devices when electron-random impurity
have aptly shown that although inclusion of inelastic Scatter(disordeif and electron-phonon scattering processes are con-

ing is necessary for realistic simulation of quantum effectgjyored.
de\_/ices, use of phenomenological scattering rates_ in;ide the To simulate the electron-random impurity scattering, we
active devices does not guarantee current continuity. F%se a model that was developed recettiit. was shown in
these reasons, some attention has been given to develop rigmt model that the self-energy, resulting from the ensemble
orous transport models for various scattering processes. averaging, leads to phase breaking of the electron waves.
The effects of inelastic scattering in disordered mediumsThe impurity potential in our model is uncorrelated and very
have been studied widely in reference to the localizatiorshort ranged and is described by a Gaussian white-noise
problem(for a review, see Ref. 30It is known that random model. The Green’s function of our interest needs to be av-
impurity scattering processes do not destroy the phase cohegraged over the ensemble of random impuritieShe gen-
ence of the two sets of time-reversed paths around the impwral term in the perturbation series of the Green’s function
rities interfering at the starting poir(electrons and holes involves a very large number of possible diagrams. To sum
moving in opposite directions around the loophe effect of  the series, we use the Born approximation in which only two
such constructive interference, known as the weak localizascatterings from a single impurity are considered. The ex-
tion, leads to decreased conductivity. On the other hand?ression forry, is as follows:*
electron-phonon interaction tends to destroy the phase coher-
ence between the time-reversed paths and decreases the 1 _<m VZNA(rE 1
phase-coherence length. Consequently, the circumference of Timp(1 E) T NoVoNo(r;E). @
the loops of paths, which contribute to weak localization
decreases, and the effects of weak localization gets weaker Here, ng is the density of the impuritied/, is the impurity
higher temperatures. Moreover, it has been shown that evgpotential, andN(r;E) is the local position-dependent density
in quasi-one-dimensional semiconductor wire nanostrucef states(DOS).
tures, localization is unlikely to affect device performances; The electron-phonon scattering is described via a model
hence its effect can be neglected for such devices operatirdgveloped by Datt& The phonons are represented by a bath
at elevated temperatur&sin three dimensions, states are not of independent oscillators within the harmonic approxima-
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FIG. 1. The series of the Green’s function up to second-order T(K)
terms in the presence of both random impurity and phonon interac-
tions. FIG. 2. Plot ofkgl vs T with B as the parameter.

tion. Each oscillator interacts with electrons through a deltaing from both random impurities and phonons. Thus for

function potential in space. The expression fgf,,is given  k.I>1, one neglects the diagrams with intersecting interac-

by Datta:®*’ tion lines[terms like(j) through(o) in Fig. 1] and sum up the
remaining diagrams. The resulting Dyson equation,

1 1 1
= + : 2
Tphon  Tppnon  "Mpnon G=Gy+Gy2G, (6)
where
L ) contains a self-energy terligiven as> =3, o5t 2imp - Go IS
_em R — R N the noninteracting Green’s function art is the Green’s
Tpphm_ h f dE'F(r;E")No(rE~E)T(rE~E") function in the presence of both types of interactions. It is

3 important to note that the above-mentioned self-energy terms
are no longer independent of the other; each of these must
and now be evaluated using the total Green’s function in a self-
1 consistent manner. To estimalg,, andX,,,in the coordi-

_ 2_77 J dE'F(r:E")Ng(r:E+E")[1—f(r;E+E")] nate space, we use the following expressiths:
ﬁ ) ] y .
4

f(r;E) is the local electron occupation factor and is given by

h fd,|GR(r,r’;E)|2
No(;E) 27 ) &~ 7 (r"E)

T
nphon

Eimp:novge(rlyrzitlytz)b\a’(rl_rz) (7)

and
f(r;E)= 5

. 2phori= D(r1,r2:t1,t)G(rq,r55ty,t5). 8
with

N(hw) if >0
N(|how])+1 if 0<O 1000

F(r;hw)=U2Jy(r;|hw|) X .
— 0K
andGR is the retarded Green’s function. T ek
To combine the above-mentioned scattering rates, we be- 10.0 Be10
gin with the Green’s function for the device in the presence E~012eV
of scatterings from both phonons and random impurities.
Considering only one phonon event, the series of the Green'’s
function up to second-order terms is shown in Fig. 1. Note
that the Feynman diagrams for the Green’s function contain o | .
two types of diagrams. In one type, the impurity or the pho- B e Y
non interaction lines do not intersect one another. The other locations H H
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type consists of intersecting interaction lines. It is known that 0.0
the contributions from diagrams with intersecting interaction
lines are kgl) ! times smaller than those with no intersect-
ing interaction lines® Here ki is the electron Fermi wave  FIG. 3. 7., vs x for the same DBQW device as in Fig. 4 for
vector and is the mean-free path in the presence of scatterthree different values of. Ex=0.12 eV and3=1.0.
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FIG. 4. 7, VS X for the DBQW device withT as the parameter. FICi. 5. 7igr VS x for DBQW device for three different va_lues of
Here, E-=0.038 eV such thaEg+ % wy<E, and 8=1.0. T.Eg=0.05 eV such thaE <Ey<Eg+#fwy. The value of3=1.0.

The consequence of expressing the total self-energy asda disorder parameteB, temperaturel, the Fermi energy
sum of the two components is that one can also express tHg-, and the positiorx on 7,; in a a double-barrier quantum-
total scattering rate as a sum of the two components. Finallwell (DBQW) device. The well of the device is 50 A wide,
we obtain and the barrier width and the height are 30 A and 0.3 eV,

respectively. The lowest resonant energy for this structure is
1 1 1 E(,~0.08 eV. It should be mentioned that in the three-
?Ot: Tph0n+ Tmp ©) dimensional(3D) model of the DBQW, the 3D DOS inside
the well is large for all energieB>E,.
Here 7 is the total scattering timez,,q, is the scattering Figure 3 corresponds t@=1.0. The Fermi energy
time due to electron-phonon scattering, amg, is the elec- E-=0.12 eV. SinceEr—fwy>E,, electrons at this energy
tron random-impurity scattering time. These scattering timegan both absorb and emit optical phonons. The figures show
are obtained from the imaginary parts of the respective selfresults at three different temperatures. We observerhas
energies. Thus one finds that the assumption of large electrafbminated by disorder at 77 K and the effects of the phonons
mean-free path is necessary for the derivation of Matthiespecome substantial only near room temperature.

sen’s rule for mesoscopic devices. o _ Figure 4 shows a similar plot foE-=0.038 eV and
We now investigate the regime of validity of the basic B=1.0. The energy value was chosen such that
assumption of our model, i.&kgl>1. Here | =r v andvg Er+hwo<E, and Ep—fw,>0 eV. Since the 3D DOS is

is th_e Fermi velocity. For GaAs dew_ces, optical phononsIOW for E<E,, the scattering rate 4/, inside the well is
dominate the electron-phonon scattering processes. To es bout two orders of magnitude smaller than that shown in

mate the electron-phonon scattering rate, within the harz. : ~ .
monic approximation for the phonon spectrum, one needs tIEQ' 3. In Fig. 5, we have usedlz=0.05 eV, which is also

choose the  electron-phonon  scattering  strengt ess than the resonant . _energEo. However, since
[«U%Jo(hw)].X® We use the Einstein model for optical FThwo>Eg, the probability of phonon absorption is
phonons  where the phonon  spectral densitygrea“y enhanced due to the availability of a large DOS
Jo(hw)~w+wy), with iw,=36 meV. We have chosen a aPove the resonant energy.

value ofU such that Eq(2) gives 7, =8x10 12 's for the In conclusion, we have presented a transport model for
bulk GaAs at 77 K. The value of,,,, used in our computa- multibarrier mesoscopic devices that includes both electron-
tion is also consistett with that obtained in the semiclassi- Phonon and electron-random impurity interactions. The total
cal analysis based on Fermi’s golden rtleOn the other scattering rate has been obtained from the Feynman dia-
hand, to quantify the strength of the disorder in our calculagrams of the Green’s function using the Keldysh formalism.
tions, we have used a single dimensionless parameter defin€lir analysis is based on the assumption of large mean-free
by B=3.24x10P®n,V 2, where the dimensions af, andV, path of electrons. The regime of validity of our model has
are in Sl units* It is noted that, in bulk GaAs, the disorder been investigated. It is shown that for typical moderately
of value B8 corresponds to a low-temperature mobility of disordered systems, the theory remains valid even at room
u=(70003) cn?/V s. temperature.

Figure 2 shows the plot dgl vs T for various values of Our calculations for DBQW devices show that the spatial
the disorder strengtB with the Fermi energ=0.1 eV. It  variation of the scattering time can be quite large in multi-
is observed that foB<1 (moderately strong disordgrour  barrier structures. Moreover, the scattering ratg,lis a
approximation remains valid even at room temperature. Notéunction of disorder and temperature as well as of the elec-
that, for such strengths of the disorder, the electron-phonotron energy. One of the attractive features of our scattering
scattering processes are insignificant up to the liquidimodel is that our transport model always guarantees
nitrogen temperatur€/7 K). However, neai3=10, the as- electronic-charge conservation and current continuity. The
sumption ofkgl>1 is not reasonable. above is not true for the phenomenological scattering mod-

In Figs. 3-5 we present a pictorial summary of the effectsels.
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