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Random impurity and phonon-scattering processes in multibarrier structures
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In mesoscopic devices, in addition to the tunnel barriers, the electrons interact with a random configuration
of impurities as well as with phonons. The scattering processes are usually modeled using~a! Matthiessen’s
rule with ~b! phenomenological parameters. In this paper, we investigate the validity of such scattering models
and propose an alternative approach based on the Keldysh formulation and the diagrammatic analysis. Con-
sequently, the scattering rates depend on the strength of the disorder, the temperature, the electron energy as
well as on the spatial coordinates. However, we show that the semiclassical Matthiessen rule can be used to
combine the two scattering rates in quantum effect devices assuming large electron mean free paths and within
the scope of self-consistent Born approximation. The assumption of a large mean-free path remains valid for
moderately strong disorder even at room temperature, which makes our model suitable for practical simulation
of electron transport.@S0163-1829~97!07407-9#
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It is well known that quantum-mechanical models, bas
on pure or coherent quantum states,1–3 alone cannot describ
the carrier transport mechanisms in nanostructure devi
e.g., the resonant tunneling structures. This is because ph
breaking and inelastic-scattering processes influence
transport processes in these devices.4 To include the effects
of various scattering processes, most transport models u
phenomenological constant imaginary potential, a cons
mean-free path, or a constant phase-breaking time.5–9 When
more than one type of scattering is present in a device, M
thiessen’s rule~the scattering rates simply add! is commonly
used to combine these scattering processes. Such mo
while attractive, are not always adequate to describe n
equilibrium transport in mesoscopic devices. Klimecket al.9

have aptly shown that although inclusion of inelastic scat
ing is necessary for realistic simulation of quantum eff
devices, use of phenomenological scattering rates inside
active devices does not guarantee current continuity.
these reasons, some attention has been given to develo
orous transport models for various scattering processes.

The effects of inelastic scattering in disordered mediu
have been studied widely in reference to the localizat
problem~for a review, see Ref. 10!. It is known that random
impurity scattering processes do not destroy the phase co
ence of the two sets of time-reversed paths around the im
rities interfering at the starting point~electrons and holes
moving in opposite directions around the loop!. The effect of
such constructive interference, known as the weak local
tion, leads to decreased conductivity. On the other ha
electron-phonon interaction tends to destroy the phase co
ence between the time-reversed paths and decrease
phase-coherence length. Consequently, the circumferenc
the loops of paths, which contribute to weak localizati
decreases, and the effects of weak localization gets weak
higher temperatures. Moreover, it has been shown that e
in quasi-one-dimensional semiconductor wire nanostr
tures, localization is unlikely to affect device performanc
hence its effect can be neglected for such devices opera
at elevated temperatures.11 In three dimensions, states are n
550163-1829/97/55~7!/4645~4!/$10.00
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localized for weak disorder, and localization effects a
much less pronounced on the transport properties.12

In this paper, the nonequilibrium Green’s-function tec
nique ~Keldysh formalism!13 is used for a rigorous descrip
tion of the scattering rates in mesoscopic devices. In
model, to guarantee the conservation of charge and cur
continuity, the scattering rates become functions of both
energy and the position coordinates. The electron scatte
rates due to phonons and impurities are added using M
thiessen’s rule. Although Matthiessen’s rule is derived se
classically, one generally expects it to remain valid even
mesoscopic devices when the scattering rates are
enough. However, we report the results of an investigat
into the regime of validity for the application of Matthies
sen’s rule in such devices when electron-random impu
~disorder! and electron-phonon scattering processes are c
sidered.

To simulate the electron-random impurity scattering,
use a model that was developed recently.14 It was shown in
that model that the self-energy, resulting from the ensem
averaging, leads to phase breaking of the electron wa
The impurity potential in our model is uncorrelated and ve
short ranged and is described by a Gaussian white-n
model. The Green’s function of our interest needs to be
eraged over the ensemble of random impurities.15 The gen-
eral term in the perturbation series of the Green’s funct
involves a very large number of possible diagrams. To s
the series, we use the Born approximation in which only t
scatterings from a single impurity are considered. The
pression fortimp is as follows:

14

1

t imp~r ;E!
5
2p

\
n0V0

2N0~r ;E!. ~1!

Here,n0 is the density of the impurities,V0 is the impurity
potential, andN0~r ;E! is the local position-dependent densi
of states~DOS!.

The electron-phonon scattering is described via a mo
developed by Datta.16 The phonons are represented by a b
of independent oscillators within the harmonic approxim
4645 © 1997 The American Physical Society
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4646 55A. N. KHONDKER AND A. HAQUE
tion. Each oscillator interacts with electrons through a de
function potential in space. The expression fortphon is given
by Datta:16,17

1

tphon
5

1

tpphon
1

1

tnphon
, ~2!

where

1

tpphon
5
2p

\ E dE8F~r ;E8!N0~r ;E2E8! f ~r ;E2E8!

~3!

and

1

tnphon
5
2p

\ E dE8F~r ;E8!N0~r ;E1E8!@12 f ~r ;E1E8!#.

~4!

f ~r ;E! is the local electron occupation factor and is given

f ~r ;E!5
1

N0~r ;E!

\

2p E dr 8
uGR~r ,r 8;E!u2

tp~r 8;E!
~5!

with

F~r ;\v!5U2J0~r ;u\vu!3 HN~\v! if v.0
N~ u\vu!11 if v,0

andGR is the retarded Green’s function.
To combine the above-mentioned scattering rates, we

gin with the Green’s function for the device in the presen
of scatterings from both phonons and random impuriti
Considering only one phonon event, the series of the Gre
function up to second-order terms is shown in Fig. 1. N
that the Feynman diagrams for the Green’s function con
two types of diagrams. In one type, the impurity or the ph
non interaction lines do not intersect one another. The o
type consists of intersecting interaction lines. It is known t
the contributions from diagrams with intersecting interact
lines are (kFl )

21 times smaller than those with no intersec
ing interaction lines.18 Here kF is the electron Fermi wave
vector andl is the mean-free path in the presence of scat

FIG. 1. The series of the Green’s function up to second-or
terms in the presence of both random impurity and phonon inte
tions.
-
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ing from both random impurities and phonons. Thus
kFl@1, one neglects the diagrams with intersecting inter
tion lines@terms like~j! through~o! in Fig. 1# and sum up the
remaining diagrams. The resulting Dyson equation,

G5G01G0SG, ~6!

contains a self-energy termS given asS5Sphon1Simp . G0 is
the noninteracting Green’s function andG is the Green’s
function in the presence of both types of interactions. It
important to note that the above-mentioned self-energy te
are no longer independent of the other; each of these m
now be evaluated using the total Green’s function in a s
consistent manner. To estimateSimp andSphon in the coordi-
nate space, we use the following expressions:18

S imp5n0V0
2G~r1 ,r2 ;t1 ,t2!d

3~r12r2! ~7!

and

Sphon5D~r1 ,r2 ;t1 ,t2!G~r1 ,r2 ;t1 ,t2!. ~8!

r
c-

FIG. 2. Plot ofkFl vs T with b as the parameter.

FIG. 3. ttot vs x for the same DBQW device as in Fig. 4 fo
three different values ofT. EF50.12 eV andb51.0.
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55 4647RANDOM IMPURITY AND PHONON-SCATTERING . . .
The consequence of expressing the total self-energy
sum of the two components is that one can also express
total scattering rate as a sum of the two components. Fin
we obtain

1

t tot
5

1

tphon
1

1

t imp
. ~9!

Here ttot is the total scattering time,tphon is the scattering
time due to electron-phonon scattering, andtimp is the elec-
tron random-impurity scattering time. These scattering tim
are obtained from the imaginary parts of the respective s
energies. Thus one finds that the assumption of large elec
mean-free path is necessary for the derivation of Matth
sen’s rule for mesoscopic devices.

We now investigate the regime of validity of the bas
assumption of our model, i.e.,kFl@1. Here,l5ttotvF andvF
is the Fermi velocity. For GaAs devices, optical phono
dominate the electron-phonon scattering processes. To
mate the electron-phonon scattering rate, within the h
monic approximation for the phonon spectrum, one need
choose the electron-phonon scattering stren
@}U2J0~\v!#.16 We use the Einstein model for optica
phonons where the phonon spectral dens
J0~\v!;d~v6v0!, with \v0536 meV. We have chosen
value ofU such that Eq.~2! givestphon58310212 s for the
bulk GaAs at 77 K. The value oftphon used in our computa
tion is also consistent16 with that obtained in the semiclass
cal analysis based on Fermi’s golden rule.19 On the other
hand, to quantify the strength of the disorder in our calcu
tions, we have used a single dimensionless parameter de
by b53.2431066n0V 0

2, where the dimensions ofn0 andV0
are in SI units.14 It is noted that, in bulk GaAs, the disorde
of value b corresponds to a low-temperature mobility
m.~7000/b! cm2/V s.

Figure 2 shows the plot ofkFl vs T for various values of
the disorder strengthb with the Fermi energyEF50.1 eV. It
is observed that forb<1 ~moderately strong disorder!, our
approximation remains valid even at room temperature. N
that, for such strengths of the disorder, the electron-pho
scattering processes are insignificant up to the liqu
nitrogen temperature~77 K!. However, nearb510, the as-
sumption ofkFl@1 is not reasonable.

In Figs. 3–5 we present a pictorial summary of the effe

FIG. 4. ttot vs x for the DBQW device withT as the parameter
Here,EF50.038 eV such thatEF1\v0,E0 andb51.0.
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of disorder parameterb, temperatureT, the Fermi energy
EF , and the positionx on ttot in a a double-barrier quantum
well ~DBQW! device. The well of the device is 50 Å wide
and the barrier width and the height are 30 Å and 0.3 e
respectively. The lowest resonant energy for this structur
E0;0.08 eV. It should be mentioned that in the thre
dimensional~3D! model of the DBQW, the 3D DOS inside
the well is large for all energiesE.E0 .

Figure 3 corresponds tob51.0. The Fermi energy
EF50.12 eV. SinceEF2\v0.E0 , electrons at this energy
can both absorb and emit optical phonons. The figures s
results at three different temperatures. We observe thatttot is
dominated by disorder at 77 K and the effects of the phon
become substantial only near room temperature.

Figure 4 shows a similar plot forEF50.038 eV and
b51.0. The energy value was chosen such t
EF1\v0,E0 and EF2\v0.0 eV. Since the 3D DOS is
low for E,E0 , the scattering rate 1/ttot inside the well is
about two orders of magnitude smaller than that shown
Fig. 3. In Fig. 5, we have usedEF50.05 eV, which is also
less than the resonant energyE0. However, since
EF1\v0.E0 , the probability of phonon absorption i
greatly enhanced due to the availability of a large DO
above the resonant energy.

In conclusion, we have presented a transport model
multibarrier mesoscopic devices that includes both electr
phonon and electron-random impurity interactions. The to
scattering rate has been obtained from the Feynman
grams of the Green’s function using the Keldysh formalis
Our analysis is based on the assumption of large mean-
path of electrons. The regime of validity of our model h
been investigated. It is shown that for typical moderat
disordered systems, the theory remains valid even at ro
temperature.

Our calculations for DBQW devices show that the spa
variation of the scattering time can be quite large in mu
barrier structures. Moreover, the scattering rate 1/ttot is a
function of disorder and temperature as well as of the e
tron energy. One of the attractive features of our scatter
model is that our transport model always guarant
electronic-charge conservation and current continuity. T
above is not true for the phenomenological scattering m
els.

FIG. 5. ttot vs x for DBQW device for three different values o
T. EF50.05 eV such thatEF,E0,EF1\v0 . The value ofb51.0.
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