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Spontaneous charge polarization in single-electron tunneling through coupled nanowires
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Recent observations of periodic anomalies in conductance of two-dimensional arrays of densely packed
metal or semiconductor nanowires give some indication on the importance of collective charge excitations in
such systems. These structures can be viewed as parallel arrays of double-tunnel-junction systems with nano-
wires in the middle which are electrostatically coupled to each other. To assess possible effects of the interwire
coupling on the electron transport in such arrays, we investigate the electrical behavior of a simpler system of
two coupled double-junction systems under the condition of Coulomb-controlled tunneling. Using Monte Carlo
simulations of the electron transport through the system and the master equation analysis, we find that a system
of two coupled nanowires exhibits a spontaneous polarization of charge where the accumulation of excessive
electrons on one wire is accompanied by the hole accumulation on the neighboring wire. This yields consid-
erable net charge polarization in the transverse direction, which stochastically oscillates in time but depends
periodically on the applied voltage, with both the average polarization and the polarization noise decreasing
with increasing temperature. The effect gives rise to a number of changes to the well-known Coulomb-
Blockade features of a double-junction system, and may lead to the appearance of periodic polarization
structures or polarization waves in nanowire arrays which might be detected externally.
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I. INTRODUCTION

Recently, a method of making nanostructures by elec
chemical deposition of materials of interest into an array
self-organized pores in anodized aluminum oxide films
been developed.1–3 These nanowire templates, when san
wiched in-between metal/oxide layers, form tw
dimensional arrays of double-junction systems~Fig. 1!. At
room temperature these arrays exhibit a great variety
promising device behaviors and interesting phenomena
cluding both periodic and anomalous conductance osc
tions, as well as staircaseI -V behavior resembling the cha
acteristics of single-electron tunneling~SET!.4 The task of
understanding the behavior of these nanowire devices t
out to be as challenging as making them, or even more s
is complicated both by the fact that most of the origins of
observed phenomena are yet to be identified, and by the
that this nonlithographic nanofabrication technique is at
infancy and inevitably suffers from unintentional~often not
yet known or identifiable! variations as well as the lack o
precise knowledge of some key structure parameters. Re
bling the situation of the early days of the now celebra
semiconductor technology itself, this calls for step-by-s
methodological investigations of a range of interesting phy
cal effects at both the experimental and theoretical fro
Although a complete theory is out of our reach, and a
explanation of the experimental results must remain spec
tive at the present time, progress may still be made by bu
ing up a basic understanding of the key intrinsic effects a
critical features of this new class of nanodevices.

One of the important features of these nanoarrays
clearly theelectrostatic couplingbetween nanowires, which
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is common to all the nanowire devices fabricated this w
This coupling may affect different aspects of the nanow
device behavior, with probably the most exciting prospect
self-organized 2D charge structures which might appea
an array due to the Coulomb interactions between wir
Such a self-organized electrical polarization of the wires, i
exists, should affect electronic transport through the arr
and possibly might lead to steps forI -V characteristics such
as those observed experimentally. Note that the system u
consideration differs in many important aspects from the p
viously investigated in-plane 2D arrays of tunneling jun
tions connected in series, where the cotunneling in
Coulomb-blockade regime leads to excitonlike behavior.5

In the present work, we will examine theoretically th
effect of interwire coupling in one particular situation per
nent to nanostructures—under conditions of Coulom
controlled tunneling~or SET!. We will further narrow our
focus to a model system of two electrostatically coup

FIG. 1. Two-wire double-junction system. Arrows show the pr
vailing directions of tunneling forV.0.
4530 © 1997 The American Physical Society
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55 4531SPONTANEOUS CHARGE POLARIZATION IN SINGLE- . . .
nanowires connected in parallel on the top and bottom
nanoscale tunnel junctions. This system, though greatly s
plified, is, however, a basic building block of the overa
device ~Fig. 1!, and its behavior can give some importa
insights into what may happen in the nanowire arrays.
sults of the present study show that this seemingly sim
system manifests quite interesting behavior different in m
ways from that of an ordinary double-junction system, wh
providing an example of spontaneous creation of the tra
verse charge polarization in coupled nanowire system6,7

Electron transport in a somewhat similar system of t
coupled multijunction chains with mutually isolated out
terminals was considered previously,8 but mainly in the Cou-
lomb blockade regime when the cotunneling effects play
most important role, and in the case of weak coupling wh
there is no self-polarization effect.

II. MODEL SYSTEM OF COUPLED WIRES

We will investigate the electric behavior of two metall
nanowires imbedded in an oxide and contacted from top
bottom by common electrodes. We will consider the oxide
an ideal dielectric, and any exchange of electrons betw
contacts and wires goes through the tunneling junctions. F
ther, we assume that there is no electron exchange betw
wires since they are well separated (.30 nm typically!.
However, the wires are coupled electrostatically, and we
going to investigate possible consequences of this coup
in the SET regime. The junction under a positive poten
will be called the drain junction, and the other onethe
source junction. These notations reflect theprevailingdirec-
tion of tunneling, although for finite temperatures electro
tunnel in both directions.

Current through the system is governed by the tunne
ratesGW i j andGQ i j , where the first index specifies the junctio
~‘‘1’’ for the source and ‘‘2’’ for the drain!, and the second
one the wire, and the arrows show the direction of tunneli
According to the so-calledglobal rule of the orthodox
theory,9,10 tunneling rates depend on the differences in
total electrostatic energy of the system before and afte
tunneling eventEi j , which depends on the applied voltag
V and wire chargesQ1,252eN1,2, with the elementary
chargee and number of the excess electrons on thej th wire
Nj . At finite temperatureT these tunneling rates in the ca
of low-impedance environment are given by9,10

G i j5
1

e2Ri j

Ei j

12exp~2Ei j /kT!
, ~1!

whereRi j are the tunneling resistances.
Straightforward calculations using equivalent model

Fig. 1 with junction capacitancesCi j and interwire coupling
capacitanceC0 give relatively simple expressions for energ
shiftsEi j as functions of the wire chargesQj . In particular,
tunneling of an electron onto the wirej51 from the source
contact will decrease the overall electrostatic energy of
system by

E115
e2C0

Z SVCdr

e
2N2

1

2D1
e2C2

Z SVC21

e
2N12

1

2D ,
~2!
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with Z5C0(C11C2)1C1C2, total junction capacitance of a
wire Cj5C1 j1C2 j , total charge on both wires
N5N11N2, and total source and drain capacitanc
Csr5C111C12 and Cdr5C211C22, respectively. Charging
energies associated with all the other possible tunne
events can be found similarly.11

Note that forC050, Eq. ~2! becomes a standard expre
sion for the charging energy of a metal island in a doub
junction system10 with single-wire junction capacitances. I
this limit of negligible coupling, an electron tunneling on
particular wire does not feel the presence of the other w
and all tunneling events for both wires sum up indepe
dently, as do the currents. In this case the Coulomb repul
at low temperatures limits the maximum charge on ea
wire, which with increasing voltage increases stepwise
one elementary charge each time the voltage reaches cr
valuesVNj>e(Nj2

1
2)/C2 j , whereNj51,2 . . . defines the

maximum charge on the wire for voltages betweenVNj and
VNJ11

at zero temperatures.

In the opposite limit of infinite coupling, e.g.,C0→`,
both wires effectively constitute a single island, so the cha
ing energy depends only on the total charge on both w
N. It is again described by the same standard double-junc
expression, but with junction capacitances correspondin
the total source and drain junction capacitancesCsr and
Cdr . Obviously, in this case the charging energy and
current do not depend on what particular wire an electron
actually tunnels, and the maximum allowed charge on b
wires increases by one each time the voltage reaches

VN>e~Nm2 1
2 !/Cdr , Nm51,2 . . . . ~3!

So that forVN,V,VN11 at low enough temperatures, w
always haveN<Nm.

In the more interesting intermediate case, according to
~2!, each tunneling event ‘‘probes’’~1! the whole array as a
double-junction system with junction capacitances equa
the total drain/source capacitances and charged with the
chargeN ~the first terms in the square brackets!, and~2! the
particular wire on~from! which the tunneling is actually hap
pening~the second terms in the brackets!. The relative con-
tribution of the terms is governed by the ratio of junction a
coupling capacitancesCi /C0. In the case considered her
extremely small wire diameters yield junction capacitanc
on the order of 10218–10219 F, while the interwire capaci-
tance for a typical wire length;1mm is at least two orders
of magnitude greater, i.e.,Ci /C0<1022.12 In this case it is
the total array chargeN which matters for tunneling prob
abilities in the first place, and at low temperatures it is co
trolled by the Coulomb repulsion in the same way as
individual wire charges for uncoupled wires. One appar
consequence of this is a reduction of the critical voltag
~and corresponding shrinking of the Coulomb-blockade
gion!, since they are now determined by the total sou
capacitanceCsr5(C1 j . Attempts to apply this finding di-
rectly to our experimental system are, however, impeded
a present lack of knowledge of which specific wires in t
array participate in the charge transport, and of a finite d
persion in oxide thickness and a large dispersion in junct
resistances.



e
p
le
s
on

-

-
o
r
th

-
fo
e
e

a

g
r
n
r
o
a
n
ll

ec
b
m

e
rg
d
en

cu
o

us
tie
t
t
t
ea
o
h

of
bed
g
in
ous
e
se
on
se
cy
-
se
of
e

ca-
low
ar-

o-

a-

4532 55A. A. TAGER, J. M. XU, AND M. MOSKOVITS
Thus from the viewpoint of external terminal respons
the matter does not seem to be far from an ordinary com
cation of the simple SET phenomenon in a single uncoup
wire. When we look closer into the internal system respon
things become more interesting. We show below that str
wire coupling under SET conditions may lead to thesponta-
neous polarizationof neighboring wires, which can be de
scribed by the wire charge differenceP5N12N2 ~in units of
the electron chargee). The characteristic energy of this ‘‘ex
citonic excitation’’ of the system, when an accumulation
excessive electrons on one wire is partly compensated fo
the hole accumulation on another one, is controlled by
large interwire capacitance, and can be estimated
EP;(eP)2/8C0. For P;N it makes only a small contribu
tion to the total charging energy of the system. Thus,
Vn,V,Vn11, electrons entering the wires through th
source junctions bring with them enough energy to excit
highly polarized state withP@Nm. This may in turn lead to
externally observable effects such as rf radiation of the
rays when a constant bias voltage is applied.

We have examined this collective effect by~i! performing
Monte Carlo simulations of the electron transport throu
the system using Eqs.~1! and~2! and similar expressions fo
the other tunneling energies, and~ii ! using a master equatio
for analytical investigations at low temperatures. The latte
greatly simplified by an assumption of a strong asymmetry
the drain and source resistances, which is justified in the c
of a considerable difference in thickness of the drain a
source oxide junctions, and is also known to give a we
defined Coulomb staircase on theI -V characteristics of a
single double-junction system. Typical values were used
modeling: junction capacitancesCi j5(1.660.2)310219 F,
coupling capacitanceC05(0–200)3Ci j , junction resis-
tances R115R125R550 kV ~source!, R215200R, and
R225200–2000)3R ~drain!.

III. MONTE CARLO SIMULATIONS RESULTS

We investigated the Coulomb-controlled transport of el
trons through the double-wire system shown in Fig. 1
means of a simple Monte Carlo approach which is co
monly employed to simulate SET effects.9 Starting with an
initial wire charge configuration, our computer program us
Eq. ~2! and similar equations to calculate separately ene
shifts associated with tunneling of an electron in either
rection through each of the four tunnel junctions, and th
using Eq. ~1!, calculates all eight tunneling rates~in two
directions for each tunnel junction! for a given applied volt-
age. After that, the eight tunneling probabilities are cal
lated by normalizing each tunneling rate by the total rate
tunnelingG tot5SG i j , with G tot

21 defining the time step. An
interval of unit length is then divided into eight contiguo
sectors of the same proportions as the tunneling probabili
and a random number from a unit interval is generated
determine which event actually takes place. A changed se
charging energies is calculated then in accordance with
changed charge configuration, and the procedure rep
The resulting set of charging states represent the time ev
tion of the wire charges~and the transferred charge, whic
determines the electric current! with varying time step
1/G tot .
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Figures 2–5 show the results of computer simulations
electron flow through the double-wire system as descri
by Eqs. ~1! and ~2!. We found that, in the case of stron
coupling, considerable interwire polarization does occur
certain voltage ranges. For identical wires this spontane
polarization stochastically oscillates in time, with zero tim
average^P&. Figure 2 shows the spectral density of the
fluctuations for two different temperatures in comparis
with the spectral density of the total charge noi
^uN(v)u2&. The big difference between the low-frequen
intensities of theP andN noise comes partly from the dif
ference in their bandwidths: while the polarization noi
bandwidth is determined by a slow process of recharging
the large coupling capacitor with a characteristic tim
RC0(R;Ri j ), noise of the total array chargeN is spread out
over much larger bandwidth determined by the junction
pacitances. The difference appears even more striking at
temperatures, when a Coulomb blockade of tunneling p

FIG. 2. Spectral density of fluctuations for the wire charge p
larizationP and the total wire chargeN at T50 and 300K.

FIG. 3. Average interwire polarization of charge and polariz
tion dispersion vs wire asymmetry.
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55 4533SPONTANEOUS CHARGE POLARIZATION IN SINGLE- . . .
tially suppresses the total charge noise while effectively
creasing the polarization noise, as is shown in Fig. 2, wh
^DP2&(v'0) exceedŝDN2&(v;0) by more than three or
ders of magnitude.

The polarization becomes more regular in the case
asymmetrical wires, when either the source or drain junctio
resistancesRi j differs for different wires. If the second wire
drain junction resistance is larger than that of the first w
electrons will leave the first wire faster, thus yielding a po
tive charge~‘‘holes’’ ! accumulation on this wire and an ele
tron accumulation on the ‘‘slower’’ wire. Figure 3 show
that ^P& at first rapidly increases and then saturates w
increasing wire asymmetry.

FIG. 4. Average interwire polarization̂P&5^N12N2& vs volt-
age at three different temperatures. The dotted curve represen
interwire polarization in accordance with Kirhhof’s laws. Circl
represent the wire polarization at a particular time instant
T50 K. For comparison, theI -V staircase at zero temperature
shown by a dashed line~arb. units!.

FIG. 5. Average charge polarization and the polarization disp
sion vs temperature for different voltages: anomalous suppres
of the polarization noise with temperature.
-
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f

,
-
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Both ^P& andsP , however, are not constant for a give
set of wire parameters, but periodically oscillate with i
creasing voltage~Fig. 4!. It appears that they reach loca
minima at critical voltages described by Eq.~3!, i.e., where
infinitely strong coupled wires give steps on theN-V and
I -V curves. The average wire charges at these voltages
determined approximately by Kirhhoff’s laws, and are a
most independent of the system temperature.

The strong system polarization in between critical vo
ages, being the consequence of the Coulomb-controlled
neling, does not exist for high temperatures relative to
charging energy, i.e.,kT>e2/2Cj , where the thermal fluc-
tuations govern the charge statistics. For high temperat
the average wire charges approach Kirhhoff’s values for
voltages and vary almost linearly with the voltage~500
K—curves on Fig. 4!.

For lower temperatures the polarization statistics is
stead governed by the shot noise in combination with
Coulomb repulsion, which suppresses the fluctuations of
total charge on both wires but increases the anticorrela
fluctuations of the individual wire charges. This behavior
illustrated on Fig. 5 which shows hoŵP& andsP depend on
temperature for two different voltages: one that correspo
to a local ^P& minimum ~the top graph!, and another that
gives a peak value of̂P& for low temperature~the lower
graph!. In the first case the almost constant average polar
tion is accompanied by an increasing noise as tempera
increases.

Surprisingly, in the second case, not only the average
larization, but alsothe polarization noisedecrease at first a
the temperature rises, and only at higher temperatures
the polarization noise start rising again due to the therm
contribution, eventually reaching the same level as in
first case.

This anomalous temperature dependence of the pola
tion fluctuations is even more evident for spectral charac
istics as was shown above~Fig. 2!. Since the spectral band
width of the SET-induced polarization noise is much sma
than that of the pure shot noise, and increases with temp
ture, the low-frequency polarization noise decreases m
faster than the polarization dispersion as the tempera
increases—in our case by a factor of 3 when the tempera
increases from 0 to 300 K.

The results of numerical simulations can be explain
next, and analytically, at least forT50, by means of the
master-equation approach, which relates the probability
finding a system in a given state (N1 ,N2) to the transition
rates to and from this state. Before doing that, however,
helpful to reexamine the equations for tunneling rates~1! and
energy shifts~2!, and draw some important conclusions d
rectly from these.

IV. MAXIMUM POLARIZATION

First, in the case of high drain resistances, the system
spend most of the time in a state with maximum possi
total chargeN5Nmax, since a ‘‘refill’’ of the wire charge
goes much faster than a draining ifN,Nmax, where
Nmax5Nm for P50 or C05`.

Second, we note that there are two processes which
limits on the degree of polarization:

the
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~1! Accumulation of holes on a wire can finallyopen up
this wire for tunneling into it of an additional electron, thu
making the total wire chargeN5Nm11 and obviously shut-
ting off electron tunneling on the other wire. If holes acc
mulate on the first wire, the corresponding condition rea
E11(N

m11,N1)>0, or

N1<~N1
max!1[FC0

C2

V2VN11

DV
1C21

V

e
1
1

2G
'2FC0

C2
S 12

V2VN

DV D2
C21

Cdr
NmG,0, ~4!

whereDV5VN112VN5e/Cdr , and @x# denotes maximum
integer equal or less thanx. Obviously, forN2 we would
have

N2>~N2
max!15Nm112~N1

max!1 . ~5!

~2! Simultaneous accumulation of electrons on anot
wire can by itself finally block this wire for tunneling from
the source contact, thus setting a maximum number of e
trons on a wire; for the second wire, this condition
E12(N

m,N1)>0, or

N2<~N2
max!2[FC0

C1

V2VN

DV
1C22

V

e
1
1

2G , ~6!

with

N1>~N1
max!25Nm2~N2

max!2 . ~7!

Note that, due to the large factorC0 /C2 in the first term in
the square brackets of Eq.~4!, Nj

max can greatly exceed th
maximum total charge, which for zero polarization is giv
by

Nm5FVCdr

e
1
1

2G . ~8!

Note also, that while the first mechanism leads to decrea
polarization with increasing voltage, the second one defi
polarization limit which increases with voltage aboveVN ,
and both predict polarization minimum atV5VN .

Dotted lines in Fig. 6 show the polarization limits as d
fined by Eqs.~4–7!. Comparing them with simulations resu
at T50 for ^N1& and ^N2&, which are given by solid lines
one can see that, while Eqs.~4! and ~5! relatively well de-
scribe the descending part of the polarization curves, the
crease of the average polarization goes slower than pred
by Eqs.~6! and ~7!. To describe the system behavior in th
case, we will employ the master-equation approach.

V. MASTER-EQUATION APPROACH

In the general case, the polarization is driven by the s
noise of tunneling, and stochastically oscillates in tim
around some average value^P& which is defined by the de
gree of the wire asymmetry. While for strictly symmetric
wires (Ci15Ci2 andRi15Ri2), obviously^N1&5^N2&, non-
zero interwire polarization is required to compensate for w
asymmetry in steady-state conditions.

To find this stationary polarization, as well as the pol
-
s

r

c-

ng
s

-

n-
ted

ot

e

-

ization noise for an arbitrary wire asymmetry, one has
obtain a probability function for the system to be in a certa
charge state. In the case of strong interwire coupling, i
more appropriate to describe the state of the system in te
of total wire chargeN and wire polarizationP rather than
individual wire chargesN1 and N2. While the latter are
strongly coupled, random ‘‘motions’’ ofN andP occur on
completely different energy scales, and can therefore be
coupled from each other and described separately.

As above, we consider the case of a strongly asymme
system withRdr@Rsr so thatN almost always has time to
reach its maximum value before an electron leaves the wi
and the system spends its time jumping between states
N5Nmax andNmax21. However, the polarizationP varies
over a much wider range, and its behavior is reminiscen
the diffusion of a particle in a potential well when it is drive
by a random force—the shot noise of tunneling in this ca
If the maximum wire chargeNmax5Nm, i.e., conditions~4!
are not yet fulfilled, the corresponding steady-state distri
tion can be found, in some approximations, in a closed fo

The probabilityr(N,P) for the system to be in a stat
(N,P) with N5Nmax can change either by tunneling of a
electron on either of the wires from state
(N121,N2)[(N21,P21) or (N1 ,N221)[(N21,P11),
or by tunneling of an electronfrom either of the wires:

ṙ~Nmax,P!5r~Nmax21,P21!I12~Nmax21,P21!

1r~Nmax21,P11!I22~Nmax21,P11!

2r~Nmax,P!@I11~Nmax,P!1I21~Nmax,P!#.

~9!

whereIi2(N,P) denotes the rate of tunneling of an electr
onto the i th wire, andIi1(N,P) is the electron tunneling rate
from the i th wire if the system is currently in the stat
(N,P). In the case of zero temperature, which we will co
sider for simplicity below,

FIG. 6. Wire charges vs voltage as given by Monte Carlo sim
lations ~solid line!, polarization limits in accordance with Eqs.~4!
and~5! ~dotted lines!, and average polarization given by the mast
equation analysis@Eq. ~25!, dashed line#.
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Ii1~N,P!5G2i~N1 ,N2!, Ii2~N,P!5G1i~N1 ,N2!,
~10!

where N5N11N2 and P5N12N2. Similarly, for
r(Nmax21,P8), one can write

ṙ~Nmax21,P8!5r~Nmax,P811!I11~Nmax,P811!

1r~Nmax,P821!I21~Nmax,P821!

2r~Nmax21,P8!@I12~Nmax21,P8!

1I22~Nmax21,P8!#, ~11!

SubstitutingP11 and P21 into this equation instead o
P8, we obtain a pair of equations which, together with E
~7!, constitutes a complete set. In steady-state conditio
when all time derivatives are set to zero, using Eq.~11! one
can easily expressr(Nmax21,P8) through the probability
function atN5Nmax,

r~N21,P8!5r~N,P811!
I11~N,P811!

IS2~N21,P8!

1r~N,P821!
I21~N,P821!

IS2~N21,P8!
. ~12!

Substituting this forP85P61 in Eq. ~9!, we finally find an
equation for the polarization probabilityr(P)5r(Nmax,P):

Ar~P!1Br~P22!1Cr~P12!50, ~13!

where

A5
I11~N,P!I12~N21,P21!

IS2~N21,P21!

1
I21~N,P!I22~N21,P11!

IS2~N21,P11!
2IS1~n,P!, ~14!

B5
I21~N,P22!I12~N21,P21!

IS2~N21,P21!
, ~15!

C5
I11~N,P12!I22~N21,P11!

IS2~N21,P11!
, ~16!

and

IS6~N,P!5I16~N,P!1I26~N,P!.

Due to the very weak dependence of charging ener
and tunneling rates on the polarizationP, one can reasonabl
expect probabilityr to be a slow function of polarization, s
that the finite difference equation~13! can be replaced by a
differential equation using the expansion

r~P62!5r~P!62rP8 ~P!12rPP9 ~P!, ~17!

that gives

ar~P!12b2rP8 ~P!12b1rPP9 ~P!50, ~18!

with

a5A1B1C,

b25C2B, ~19!

b15C1B.
.
s,

es

To solve this equation, one has to find the coefficie
a,b2, andb1 explicitly from Eqs.~14!–~19!. Assuming for
simplicity that all the junctions capacitances are equal,

C115C125C215C225C!C0 ,

and using Eq.~10!, one can write the tunneling rates in th
form

I12~N,P!5
1

R11
u@g2~N!2g0P#,

I11~N,P!5
1

R21
u@g1~N!1g0P#, ~20!

I22~N,P!5
1

R12
u@g2~N!1g0P#,

I21~N,P!5
1

R22
u@g1~N!2g0P#,

whereu@x#5x for x.0, and 0 otherwise:

g6~N!5
1

4C F2VCe 2
1

2S 11
C

C1C0
D6NG

>
1

4CS 2VCe 2
1

2
6ND , ~21!

g05
1

4~C1C0!
>

1

4C0
. ~22!

Note thate2g6(N) is equal to the energy change associa
with tunneling of an electron onto/from the wires with tot
chargeN on them, if they were galvanically connected
each other~i.e., the coupling capacitanceC05`).

Assuming further that the source junction resistances
equal, i.e.,R115R12, from Eqs. ~18!–~22! one can finally
find an equation for the polarization probability in an explic
form,

r~P!1~P2ax!rP8 ~P!1~x2aP!rPP9 ~P!50, ~23!

where

a5
R212R22

R221R21
~24!

reflects the asymmetry between wires, and

x5
g1~N!g2~N21!1g0

2P2

„g1~N!1g2~N21!…g0
. ~25!

We can further simplify this equation by considering on
slightly asymmetrical drain resistances and neglectingaP
with respect tox in the last term of Eq.~23!, andg0

2P2 in the
nominator of Eq.~25!. Equation ~23! can be then readily
solved, yielding a Gaussian function for the polarizati
probability,

r~P!}expS 2
~P2^P&!2

2sP
2 D , ~26!

with the average polarization̂P&5ax, and the polarization
dispersionsP

25x(12a2). Expression(25) for x can be



e

e

e
a

si-
n

t
t

ly
ly
in
he
io
r

ut
is
io
f

e
s

up

a
ng
a

the
-

ly

or

is
g

he
en

e-
hat
em
th
g
tal

of

om-

4536 55A. A. TAGER, J. M. XU, AND M. MOSKOVITS
simplified by rewriting it in terms of characteristic voltag
VN5(e/2C)(Nm2 1

2). Theng1(Nmax) andg2(Nmax21) be-
come simply

g1~N!5
V1VN

2e
,

g2~N!5
V2VN

2e
.

Substituting these expressions into Eq.~25!, we find

x5
C0

eV
~V22VN

2 !, ~27!

and, finally, for the average polarization,

^P&5a
C0

eV
~V22VN

2 !, ~28!

and for the polarization dispersion,

sP5S C0

eV
~V22VN

2 !~12a2! D 1/2. ~29!

From Eqs. ~28! and ~29! we easily find
^Nj&5(^N&6^P&)/2, andsNj5sP/2. In Fig. 6 these averag
wire charges as defined from Eq.~28! are shown by the
dashed lines forN51, 2, 3, and 4, and, as one can see, th
well describe the initial increase in average polarization
the voltage increases aboveVN . A polarization increase with
voltage, however, will finally lead to an opening of the po
tively charged wire for tunneling of an additional electro
and increase of the maximum possibleN from Nm to
Nm11, which happens at voltages corresponding in Fig. 6
intersections of the dotted and dashed curves. This se
characteristic voltages, which we will denote asVN* , can be
easily estimated from Eqs.~4! and ~28!,

VN*'VN1
DV

11a
. ~30!

As mentioned in Sec. IV, this will close off the negative
charged wire for tunneling, and the polarization will slow
decay until the negatively charged wire opens for tunnel
again. That in turn will increase the polarization, and t
system will thus oscillate around the average polarizat
given by Eqs.~4! and ~5!, as is clearly seen in Fig. 6 fo
voltages slightly lower thanVN .

The correspondence of analytical results and comp
simulations is also relatively good for the polarization d
persion. Figure 7 shows by a dotted line the wire polarizat
dispersion as given by Eq.~29!, together with the results o
Monte Carlo simulations for symmetrical wires~solid line!,
and asymmetrical wire drain resistances as in Fig. 5~dashed
line!. For comparison, the long-dashed curve in Fig. 6 giv
the charge dispersion at high temperatures. As one can
the effect of SET is to increase the polarization~and fluctua-
tions! of wire charges in some voltage regions, and to s
press them in others.

An important question is the observability of the polariz
tion effect from ‘‘outside’’ the nanoarray, e.g., by measuri
the current. The average current is given in the general c
as
y
s

o
of

g

n

er
-
n

s
ee,

-

-

se

^I &5eE dP dN r~N,P!„I11~N,P!1I21~N,P!….

~31!

In the case when system spends most of its time in
state withN5Nm , i.e., in regions where polarization in
creases with voltage, we have, using Eqs.~20!, ~24!, and
~28!,

^I &5
1

Rdr
SV1VN

2
1aeg0^P& D

5

V~12a2!1VNS 11a2
VN

V D
2Rdr

. ~32!

According to this expression, the polarization effective
decreases the system differential conductancedI/dV in the
corresponding voltage regions, which is reduced to zero
even slightly negative values fora→1, i.e., when one of the
wires is effectively isolated from the drain electrode. Th
wire acts then as an effective ‘‘stopper’’ of the tunnelin
current through the other one as well.

However, the change in differential conductance is on t
order ofa2 and requires a very strong asymmetry betwe
wires to be visible. Indeed, this is clearly seen in Fig. 8~a!,
which shows the systemI -V characteristics forR215R22
~upper curve!, R2150.6R22 ~middle!, and R2150.1R22
~lower! and equalRdr . It also shows areductionin the sys-
tem differential resistance in regions where polarization d
creases with voltage, which can be explained by noting t
in these regions there is a nonzero probability for the syst
to be in the state with an additional electron, i.e., wi
N5Nm11, and this probability increases with increasin
voltage, as illustrated by the rising fluctuations of the to
wire chargeN in Fig. 8~b!. The rising probability to transfer
an additional electron through the system should give ade-

FIG. 7. Results of master-equation~ME! analysis and Monte
Carlo calculations~MC! for the polarization dispersion. Curves 1
and 3 show the predictions of the ME approach and the results
the MC simulations forR12/R2250.4 andT50 K. Curve 2 shows
the simulation results for equal drain resistances atT50 K. Curve
4 represents the polarization noise at high temperature. For c
parison, theI -V staircase is shown in the figure by curve 5.
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creaseddifferential resistance, with the effect being the mo
pronounced the higher the wire asymmetry. Indeed, us
Eqs.~4! and~5! and assuming equal capacitances of the t
nel junctions, for the polarization we find a simple expre
sion

P'2C0

VN112V

e
,

which gives

^I &5
V~11a!1VN2aVN11

2Rdr
,

with the increased differential conductance. We thus find t
the systemI -V characteristics become more complicat
when the wires become polarized, and an additional crit

FIG. 8. Current-voltage characteristics of the double-wire s
tem ~a!, and fluctuation dispersion of the total charge on both wi
~b! depending on interwire asymmetry.
g
-
-

at

al

voltage pointVN* appears in between Coulomb stepsVN and
VN11. This adds an interesting ‘‘twist’’ to the otherwise e
pected changes in externalI -V dependence, such as a dow
scaling of the critical voltages of Coulomb steps in the pr
ence of strong coupling.

VI. CONCLUSIONS

We investigated the effect of wire coupling on Coulom
controlled tunneling for a two-wire double-junction syste
and developed a theory of spontaneous interwire polariza
which occurs in the case of strong interwire coupling. T
theory can be used as a basis for treatment of SET effec
strongly coupled nanowires such as in the arrays being
ricated electrochemically in our labs. The predicted spon
neous charge polarization could lead to interesting and ex
nally observable effects such as a nonmonotonic differen
resistance measurable in external terminalI -V characteris-
tics, and a possible electromagnetic radiation from
charge-polarization ‘‘waves’’ when a constant external b
is applied to an array of nanowires.

An important question remains unanswered, of whet
these ‘‘polarization waves,’’ which should exist in nanowi
arrays under SET conditions, are purely stochastic or s
sort of polarization order can result from the Coulomb int
actions between the wire charges and possibly external e
tric field, and deserves additional considerations which
currently underway. These considerations should also
clude an important effect which is untouched upon in
present model, namely, the so-called cotunneling, or ma
scopic quantum tunneling of charge.13 This effect, which for
a single double-junction system yields a nonvanishing c
rent below the Coulomb-blockade voltage, in the case of
or more coupled systems may lead to more complex co
quences due to the possible spontaneous accumulatio
charge on the wires in the Coulomb-blockade region.
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11Tunneling through the junction@Eq. ~21!# from the first wire onto
the right contact layer yields system energy shiftE21, which can
be found from theE11 by changing allQ’s to2Q, Cdr→Csr and
C21→C11. Similarly, tunneling onto the second wire is asso
ated with the energy shiftE12 that can be found from theE11

simply by changingC2→C1 and C21→C22. For E22 then,
all we have to do is to change signs of theQ’s and make re-
placementsCdr→Csr and C22→C11. Energy shiftsEi j due
to tunneling in the opposite direction are the
Ei j (Q,Qj ,V)5Ei j (2Q,2Qj ,2V).

12This estimation should be seen as a lower limit of the wi
contact electrode capacitance. In the case of a single f
standing wire, the self-capacitance of the wire has to be adde
-
e-
to

the junction capacitance when considering charging energ
This capacitance increases with wire length asL/ ln(L), and
therefore the interwire capacitance–junction capacitance r
Ci /C0 would be at least an order of magnitude higher th
assumed. However, when placed in a nanowire array, a wir
shielded by its neighbors, and the wire-ground capacita
should be to a large extent reduced. The problem of a la
wire-ground capacitance in this case is shifted to the arra
boundary conditions, whose effect on the ‘‘inner’’ wires r
quires a separate examination and is beyond the scope o
paper.

13D. V. Averin and Yu. V. Nazarov, inSingle Charge Tunneling
Coulomb Blockade Phenomena in Nanonstructures~Ref. 5!, pp.
217–247.


