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Heat generation by electric current in nanostructures
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Heat generation for collisionless Ohmic electric conductance in quantum semiconductor microstructures
joining two classical reservoirs is investigated. Spatial distribution of the heat generated by current through a
semiconductor microstructure is calculated. The heat is spread over the length of electron mean free path in the
reservoirs. We find that the amount of heat generated per second in both reservoirs that are joined by the
nanostructure is the san{&0163-18207)06007-4

[. INTRODUCTION electrostatic potential distribution in metallic microcontacts
and the distribution in semiconductor nanowires. In metals
During recent years various properties of quantum pointhe potential profile is determined by the spatial distribution
contacts were investigated theoretically and on experimenbf the current and strong screening of the chaiges Refs.
Among them one can name a steplike variation of conduc7-9. In semiconductor nanostructures the electron concen-
tance (Ohmic and non-Ohmj¢ shot noise, thermoelectric trations are usually rather low and the screening may be not
properties, and a number of other transport effects. The totaf so much importance. The potential distribution is mainly
amount of heat generated by a quantum contact can be dgetermined by the arrangement and the potentials of the gate
termined by simple energy conservation considerations proelectrodes. Usually there is zero current between the nano-
vided that the contact conductanGeis known. However,  structure and these electrodes. Then the surfaces of gate elec-
such considera_tions tell nothing about the spatial distributioRygdes are at constant potentials. By manipulating these po-
of the heat which can be expressed via the rate of entropiantials one can, in principle, create various potential
production. Meanwhile the heat distribution is an importanty fijes, We consider inelastic electron scattering in the con-

characteristic of a contact. It can be measured on eXperimer}hcts(which as we have mentioned. are assumed to be clas-

Moreover, calculation of the heat provides an alternat'Vesical) and find that for any potential distribution in the nano-

method qf cqmputatlon of a contact condu_ct_ance which UNstructure the heat generation in both contacts is the same.
der certain circumstances may be more efficient than the ex- , . . .
We also find that practically all the heat is generated in

isting methods. The purpose of the present paper is to inve he classical reservoirs rather than in the quantum contact
tigate the heat generation in current-carrying semiconducto% : Vol ! quantu : '
ur theory permits us to resolve the following seemingly

guantum nanostructurés. Sy R
The resistance of a classical ballistic point contact pepParadoxical situation. On the one hand, the rate of Joule heat

tween two metals was considered by ShaRifhe charac- 9deneration is determined by the relaxation mechafgsfor
teristic dimensions of the contact were assumed to be mucii€ physical system in consideration, or, in other words, by
larger than the de Broglie wavelength. Kulik, Shekhter, andelaxation rates. On the other hand, quite often in nanostruc-
Omelyanchouk pointed out that the processes leading totures there is the so-called collisionless transport where the
electric resistance and heat generation are spatially separaté@nductanceG is independent of any relaxation rate. This
in a classical point contact. The spatial distribution of Joulemeans, in other words, that the resistance and therefore the
heat generated by current across such a ballistic point contacverall heat production does not depend on any mechanism
was treated in the diffusive limit by Rokni and Levinsbn. of electrons’ relaxation. We will show by consideration of
As a further development of the Landauer- heat generation in classical reservoirs how these two facts
Buttiker-Imry®>® approach we consider the heat generation incan be reconciled.
the case of ballistic Ohmic conduction in semiconductor In conclusion we briefly discuss the non-Ohmic conduc-
guantum nanostructurémicrocontacts We assume that the tion on a qualitative level. We discuss also the situation
microcontact has a transverse dimension of the order of eleavhere the electrons of the nanowire are weakly scattered by
tron de Broglie wavelengtir. It is joining two reservoirs, the phonons so that the heat may be partly released in the
each being in independent equilibrium. We will show that tovicinity of the nanowire.
measure a quantum conductance the resergbiosld be as- It will be convenient to consider an isolated system.
sumed to be classicalt will be indicated that this fact is in Therefore we will have in mind the following physical situ-
accordance with the general quantum theory of measurestion. There is a capacitor which is discharged through the
ments. conductor of interest. The produBtC of the whole system,
We wish to emphasize that we do not make any assumgR and C being the resistance and capacitance, respectively,
tions concerning the potential distribution along the structurés much bigger than any relaxation time characterizing the
assuming only that it is smooth on the scale of the electron’slectron or phonon system of the conductor. This means that
de Broglie wavelength. We consider this a point of somefor all the practical purposes the conduction process can be
importance as there is a difference between the problem dboked upon as a stationary one. The total energy of the
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system4, is conserved while its total entrop§, is growing. moti(gr; is quantized. In the spirit of an approach by Glazman
The rate of heat generation is expressed throligis/ at et al.~ we assume that the variablgsandr, are separable

whereT is the temperature. So our main purpose will be toin the adiabatic approximation. This means that f_or each
calculate the rate of the entropy production value ofx ther, dependence of the potential determines the

wave function of transverse quantizatigg(r, ;x) that de-
pends orx as a parameter. Hereis the quantum number of
transverse quantization. The electron spectrum depends on
An isolated macroscopic sysl,l;cem possesseseahanical X and this dependence has the following form:
energy £ (see Landau and Lifshita. This means that owin
to intge)ﬁna(l processes, without a ?zzsulting variation of its \g/]ol— €n(P;X) = p*/2m+ €y(0;), )
ume, the system can execute work on external systems. lhere m is the electron effective mass anrgq0x) is the
general, the amount of work depends on how the interngbosition of the band’s bottom that depends»oas a param-

state of the system under consideration is changed. Mechangter. ¢,(0;x) is the solution of the eigenvalue problem for
cal energy is the maximal amount of work that can be prothe Hamiltonian

duced if the system finally reaches the state of thermody-

Il. MECHANICAL ENERGY AND HEAT

namic equilibrium. 2?9 _
It is well known (see Ref. 1pthat " omlay? Taz2) TeelLiX. ®
€=LI—LI0(S‘), (D) The electron wave functions can be presented in the fol-
lowing form:

whereuo(S) is the total energy of the system in thermody-

namic equilibrium expressed as a function of its entrdpy B 1 ) L
given by the relations of equilibrium thermodynamics. Cal- Wr)“””“\/ﬁ‘”‘ i p(x")dx'/h
culating its time derivative one can write

(1. 3%). (6)

Here the wave functions of the transverse quantizatgn
dé du dipy dS du dS depend orx as a parameten is the corresponding quantum

a—a—d—sa—a—Toa, (2 number. . .
The energy conservation relation for such a system can be

To(3) being the temperature of the equilibrium system'ritten in the following integral form:
whose entropy is equal t8. As the first term on the right- du

hand side vanishes because of the conservation of energy of r =JV, @)
an isolated system, one gets
R where
dé ds 3
dt°dt U= f dxf dépencFnp- ®)
n

This means that the mechanical energy of an isolated system,

unlike its total energy, is not conserved. While the relaxation] is the total current across the nanostructure which is given
processes tending to bring the system into equilibrium takd®y

place its mechanical energy dissipates into heat. Equégjon

describes the rate of dissipation in the nonequilibrium system => f dé v noFs. 9)

in consideration or, in other words, the rate of Joule heat n prnenp

eneration. . . . .
g Hered¢,=dp/27# (summation over the spin variable is im-

plied; we assume that the electron energy is spin indepen-

deny, v,p,=den,/dp=p/m is the electron group velocity
Let us consider a nanostructure where there is a directiofivhich does not depend explicitly an, F,(x) is the elec-

(X axis) a|ong which the electron motion is infinite and a tron distribution function that depends on the quantum num-

current flows. Along the perpendicular directien r, the bern as a parameter whilp (the x component of the elec-

electron motion is quantized. To be definite we will discuss &fon quasimomentuimandx are classical variables:,(x)

3D case although one can turn to a 2D case by a simplgatisfies the Boltzmann equation

change of notation. We will consider the so-called adiabatic

transport(see Glazmaret all) where the potential profile vaF“P(X) _ 9Fnp(X) denp(X) _

varies smoothly along axis on the scale of (whereX is 28 ap X

the electron de Broglie wavelengthWe assume that the

electron mean free path is much bigger than the characteris-

Ill. TRANSPORT IN QUANTUM NANOSTRUCTURE

IFnp
ot

} . (10
coll

IV. CALCULATION OF ENTROPY PRODUCTION

tic dimensions of the microstructure. Then there is a system
. . - FOR A NANOSTRUCTURE
of one-dimensiona(1D) electron bandschannel$ describ-
ing the electrons’ motion in th& direction both in the mi- The general expression for the rate of heat generation by a

crostructure and in the adjoining parts of the contacts. Thisianostructure is given by E@3). To calculate the entropy
motion will be consideredquasijclassically. The transverse production for the electron system in consideration interact-
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ing with phonons one should treat simultaneously the[ ;&

electron-phonon and phonon-electron collisions. The entropy

=de% fdgpj dfpffdnqwnnr(p,p’:w

production is given by(we will set kg=1 throughout the It con
ape
pape} P (1= Fop) (Ng 1)
43 s Frp(1=Fnp)Ng
E:J dx — K (11) X[Fprpr(1=Fpp)(Ng+1) = F (1= F vy ) Ng .
CO!
17
IS =S [ qe Inl_ Frp| Fnp This equation can be compared with the entropy produc-
at] . m P Fnp at |, tion in a bulk sample which we will need below when we

will treat the region outside the nanostructure, within the

14+ Ng4| N reservoir region. The result (see Ref. 1
+ f dpgn——2 =9 (12) g ( 4
Nq at coll <
S de 0S
JR— = ri—
whereS is the 1D entropy density. Now, [ B 29

[%Lf; fdfp/fdnq{wnn/(p,p’;q) :derfdg"f dgp’fd”qw(p’p,m
(1—Fp)Fp (Ng+1)

X[F'(1=F)(Ng+ 1)~ F(1—F')N] XN TTE RN,
FWorn(p",P;a)[F'(1-F)Ng X[Fp(1=Fp)(Ng+1)—Fy(1=Fy)Ng],
—F(1-F")(Ng+ 1)1}, (13 (18

wheredé,=d*p/(27#)? (the summation over the spin vari-

able is implied and we use the same notati8rfor the 1D

entropy density and 3D entropy density. Hevep,p’;q) is

the specific probability of an electron-phonon collision. It is

Wan (P,P"50)% 8pr p+nq, O €nrpr — €np=Aillq).  (14)  proportional tod(e,— €, +% Q). For phonon emission the

second argument corresponds to the initial electron state. As

W, (P,p’;q) is proportional to the probability of an electron for the quasimomenta of electrons and phonon, they satisfy

to make a transition from the state specified by the quanturthe conservation law

numbersn’,p’ to the staten,p accompanied by emission of

a phonon with wave vectay. In such a general form this p—p’'+fig=hb, (19

equation is valid for any phonon states. If one considers in

teraction of the electrons of a nanowire with bulk phonon

then perturbation theory givdsf. with Refs. 12,138

whereF=F,,, F'=F,,, dn,=d%q/(27)3 the summa-
tion over the phonon branches is implied while

whereb is a vector of the reciprocal lattice. For normal pro-
Scessedp=0 and we have

p—p’ +#g=0. (20
2 .
Won (PP, 0) = %|Cq|2|<n|exp(iqlh)|n'>|2 ﬁgkilse\/%e”r;eral case of Umklapp processes @§) with b
« 5[En(p)—fn'(p')+ﬁ9q]5p/,p+hqx- We do not give here the corresponding rate for the inter-

action of electrons with impurities within the nanowire. The

(15)  point is that the item of our main interest will be nanowires

where the impurity scattering is of no importance. Where it

Herec, is the matrix element of the interaction of electronsis of importance it may be difficult to describe it because the
with bulk phonons;r, denotesy,z; while q, denotes Wwidely used procedure of averaging over the impurity posi-

dy.d;- tions is not applicable within a nanostructure. However, such
Now, a procedure is usually applicable outside the nanostructure,
within the reservoir region where it givésee Refs. 15,14
N 1 R
2o 23 [ de [ dgpwantppria) 75 7S
[ ot Loll 'Ann’ P pr o (P. P ot ”:f dr ot ”:nif dsrf dfpf dfp'W(p',p)
[of0] col
X[F'(1=F)(Ng+1)—F(1—F")Ngl,
d d (1-F,)F,
(16) X|nm(Fp—Fpr). (21
p/Fp’

whereA is the area of a cross section of the wire. EmployingHeren; is the impurity concentrationy(p’,p)=w(p,p’) is
Eqg. (12) we finally get the specific probability of electron-impurity scattering from
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statep into statep’. w(p’,p) is proportional tod(e,—€,r) ~ Wherew(d,q’,—q") is the specific probability of the corre-

because of the energy conservation. For simplicity, we hav&ponding three-phonon procgasart from the factorsl, and

written this formula for a case where a crystal and an impu{Ny+ 1)]. For the case where a phonon is absorbed and two

rity have a center of symmetry. phonons are emitted, the two first arguments correspond to
The contribution of the electron-electron interaction to en-the emitted phononsw(q,q’,—q") is proportional to

tropy production within a nanowire can be described, in prin-6(q+ Qg — Q). Here

ciple, by a straightforward generalization of EQ2) (see

below). However, the possibility of electron-electron colli- q’=qg+q’+b, (25

sions is severely restricted for this cdsee Ref. 15 Indeed, o )

one can easily check that because of 1D electron dynamic¥hereb is either O(normal processgr a vector of recip-

the conditions for the energy and quasimomentum conservdocal lattice(Umklapp processgslf the Umklapp processes

tion in the course of electron-electron collisions cannot usu@re of importance then E24) vanishes provided tha is

ally be satisfied(We can also remark that for sufficiently the Bose function with an arbitrary temperature.

small values of the relative velocity of two interacting elec- _For collisions of phonons with the lattice defects the ex-

trons these collisions cannot be treated by a perturbatioRlicit expression fofdS/dt], does not differ very much

theory) This is why we are not giving here the correspond-from Eq.(21) (see Ref. 18 and we will not give it here. It

ing expression. vanishes forN, being an arbitrary function of the phonon
Outside the nanowire, within a contact region one can us&€nergy,n .

the following equation for the electron-electron collisions

(cf. with Ref. 17. Again we will assume that the crystal has V. OHM’S LAW FOR A NANOSTRUCTURE

a center of symmetry. Then ) ) )
In the present section we discuss an important case where

there is a linear relation between the voltage and the current

S 1 L L ;
= :ZJ dgpf dgp,f dgplj dgpiw(plipi;pvp,) S{o] t_h_at_the _deV|at|on of the distribution functions from the
oll equilibrium is small

(1=Fp)(1=Fp)Fy For
(1= Fp) (1= Fp)FpFp

Frp=F(enp) +AF Ng=N©@(Qg)+ANg, (26)

np»

XIn
whereAF,, andAN, satisfy thelinearizedBoltzmann equa-

X[(1=F,)(1—F,)F, F, tions. AF,,, and AN, should be proportional to the external

P PP Py potential difference which we assume to be the sole source of
—(1-Fp ) (1—Fp)F Fp]. (22)  the deviation of the functions from equilibrium. As the col-

1 1

lision terms vanish for the equilibrium parts of the distribu-
tion functions, one can express the heat production through
the linearized collision operators, acting onAF,, and
N . , ) . ANg. The linear terms il F,,, andAN, vanish in the equa-
initial el.ectron states whilp,,p; refer to the final states. |t.IS tion for the entropy production. This can be either easily
proportional tod(ep+ €, — €y, — €). The entropy change in - checked directly or established using the following physical
Eq. (22 vanishes provided thdt, is a Fermi functionF(®  considerations. A linear term idF,, or ANy can be of
depending on an arbitrary chemical potential and temperaeither sign whereas the rate of heat generation should be
ture. If the electron quasimomentumis conserved during non-negative.
the electron-electron collisiondS/dt]., vanishes also To give the leading terms of expansion in Ef7), in the
whenF, is a function of the form most concise form it will be convenient to introduce the
functions x, and v, defined as follows:

Here w(py,p1;p.p’)=w(p,p’;p1.p1) is the specific prob-
ability of electron-electron collisions whepep'’ refer to the

FO(e,—pV—u) (23
Aan:anF(O)(Enp)[l_F(O)(Enp)],
whereV is an arbitrary vector having the physical meaning
of electron drift velocity. This quasimomentum conservation ANg= v NO(Q [N (Q) +1]. (27
usually takes place in semiconductors.
A few words about the phonon-phonon collisions will fol- We have for the electron-phonon and phonon-phonon colli-
low. We will discuss only the bulk phonons. We will con- Sions, respectively,
sider three-phonon processes due to the cubic anharmonic

terms in the interaction Hamiltonian. We hatse=e Ref. 138 )
- =2 dé, | déy | dygFO(a—F )
coll nn
S 1 , , . )
a5 szf dan dnew(dq,9’,—q") XNy Wnn (P,P"58) (Xnp=— Xnrpr T 7g)°, (28)
CO!
X[(Ng+1)(Ng+21)Ngr—NgNg (Ngr+1)] aS 1
q 9 4 4 a E ”:EJ dan danJ' dnqr/Ngo)(N((qO)-i-l)
CO!

(Ng+1)(Ng +1)Ng
NgNg(Ngrs1)

(29)

Xw(q!q,v_q”)(yq"’_Vq’_Vq”)z- (29)
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To get the total rate of heat production one should integrat IFnp
these equations over the whole length of the conductor an &t =Z f dfp'j d7gAF o {Wnn (P,P";Q)
multiply the result by temperaturE. coll - n

As we have already mentioned Eg&8) and (29) are X[(1—-FO)N +F<°)(N +1)]+W,(p’,p;0)
P - . . . . np q nn gl
quadratic in the deviations of the distribution functions form o o
the equilibrium values. This means that calculate the X[(1=F)(Ng+1)+FON,1}
Joule heat it is sufficient to solve the Boltzmann equation up
to the first order in the potential difference —AanZ f dfprf d7{Wnn (P,P";0)

In view of further applications it is worthwhile to indicate
that these equations can be presented in a different form. As

(0) (0) (0)
an example we consider E8). Then one can write X[F“ (Ng"+1)+(1= F )N ]

+Whn(p’,P; Q)
a(F<o>+A,:)} A 0 X[FOIND+(1-F (NP +1) 1} (34)
—F——| =IAF. 30
at coll It is an algebraic sum of two terms. One of them is an inte-

gral term whereAF,,/,, is in the integrand. The other one is

) a time-of-relaxation term which has the form
In the same way one can write

al;np}(r) - ATan' a5
J(N© -+ AN) coll e
{T} HIIAN, (3)  where the relaxation time,, is given by
CcO

1
=3 [ dey [ dugfwan (pp'5@F0 (NP +1)

where we use the same notatibfor the linearized collision

operators acting upoAF and AN. Now, +(1—F£,9)pf)N(0)]+Wn'n(p' p:q)
X[FL N+ (1= Fi ) (N + 1)1} 36
In FO ~ T In NO T T In the relaxation time approximation, where for some
physical reasons the integral term can be discarded, we have
2
and one can see that due to energy conservation and electron J dé (Aan) 37)
number conservation in the course of electron-phonon colli- coll Pr TnpF (1 F )

sions, the terms linear iIAF and AN vanish. This is as it
should be because the linear terms can be of either sign Again for a bulk samplefor instance, within the reser-
whereas the entropy production should be nonnegative. Theoirs) one can write instead of E437)

guadratic term can be written in the following form:

S f : (AF,)? 38
i P01 _EFO)"
Tt o ToFp (1=Fp7)
V_S} =_ E f dép =g o (0) o1 AF One can use this expressioniiF, has a sharp maximum for
I o Fn F b) some valués) of p and the integral in Eq.37) is dominated
AN by the values ofAF, near the maximuntsee, for instance,
_ I B Abrikosov!® Sec. 7.3. Such a situation will be considered
d7q S0 o |AN (32 :
Ng (1+Ng") below, in Sec. VI.
. o VI. JOULE HEAT GENERATED
Equation(29) can be also transformed to a similar form. BY BALLISTIC CURRENT
Now, if the relaxation processes within the phonon sys- THROUGH NANOSTRUCTURE

tem are rapid, one can neglect the second term in(&).

and we are left with In the spirit of the Landauer-Btiker-Imry>® approach we

assume the quantum microstructure to be connected with the
reservoirs which we call “left”(+) and “right” ( —), each
{‘9_5} _ _2 J dé IAF,, (33) of these being in independent equilibrium. We assume that
], pF“’) F“’)) the electrons enter the contacts adiabaticaige Ref. 11
As, however, the width of the classical contacts is much
larger than the width of the microstructure the number of the
| is a linear integral operator acting aiF,,. Its explicit  channels within the contacts is also much larger. Most of
expression for the electron-phonon collisions is these channels are not current carrying as the electrons be-
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longing to them are reflected from the wire backward into JAF L, AFq,
the corresponding contact. So we start with consideration of Unpo-,—X+T:0- (39

the current-carrying channels within the nanostructure.

As is shown in Ref. 11 unless the bottom of an electronStrictly speaking, the boundary condition for this equation
1D band almost touches the Fermi leyide situation we do should be formulated somewhere near the border of the con-
not consider in the present papehe electron transport tact region. However, by our assumption the electrons do not
through a nanostructure is practically reflectionless, whictexperience collisions within the nanostructure, or, in other
will be assumed here. Let us, for example, consider the cas&ords, the electron mean free path is much bigger than the
p>0. Then we will be interested in the regior»0 where Iongit_udinal dimension of the nanostructure. There_fore we
the relaxation and therefore heat production takes place. TH¥actically would introduce no mistake by formulating the
states in the current-carrying channels entering the conta@oundary conditions at=0,
region, i.e., atx=0, will have the distribution function pr=
FO(€pn— ™). Forx<0 this distribution function is the AF ol yeo0= g A, (40)
same as for all other states a& 0. This means that the

current-carrying states with>0 are at equilibrium with all |\ h4re Ap=uM—pu)=eV. We assume here that
other states in the region<0. Indeed, ak<<0 all the states o\/<T.

with p>0 as well as withp<<0 have the distribution func- The solution of Eq.(39) with the boundary condition
tion of the same fornf(%)(e,,— u(")). To the contrary, for  given by Eq.(40) is
x>0 the distribution of electrons in the current-carrying

channels will be out of equilibrium relative to the rest of aFﬁﬁ} X
electrons [whose distribution is F(O)(e,,— u(7))]. This Aan:_ﬁﬂ Apexp —— (41)
P

means that in this region the relaxation processes should tend
to bring the current-carrying states into equilibrium. It is Here we have neglected the difference between the channel
these processes that we are going to investigate to calculaeelocity v,, and the 3D velocity,. Inserting Eq.(41) into
the overall heat production and its spatial distribution. Eq. (37) we get for the spatial distribution of the rate of heat
We consider the ballistic transport of electrons within theproduction
nanostructure which means that the scattering of electrons o
there is negligibly weak. For the sake of definiteness let us _|dS| 3 dp 1 dFL) 2X
assume that the electrons relax in the contacts due to colli- '| zt| ~ 2(&V) ¥ ) _w2mh 1, op M~ vy
sions with phonons and the phonon relaxation due to anhar- col (42)
monicity and scattering by lattice defedis well as to the
escape of the nonequilibrium phonons from the microcontact 8king into account Eqg3) and(11) we get for the overall
region is rapid so that Eq(33) is valid, the phonon system heat production within the reservoir
being in equilibrium. The electrons to be scattered should ) )
penetrate rather deeply into the contact region. Physically d_g: (ev) J’“’ dp fwdx ex;{ _ 3)5':%
this means that the number of channels in the contact region dt s 0 27h Jo vy dp
is large as compared with the number in the microstructure. (43
As the number of electrons in the contacts is large they ca
be treated as a 3D electron gas so that the usual Bloch wav
representation can be used instead of the channel representa- de 2
. o . ) . (eV)
tion when this is more convenient. For adiabatic transport the =
number of nodes of a function of transverse quantization

(1. 3X) for a current-carrying channel is invariantirand —\yhere Aris the number of active channels, i.e., the channels

is small. Far from the microstructure the bottoms of theynose bottoms are below the Fermi level. Calculating the

channelsg(0,x) are approaching each other. This means thagontribution of the regiox<0 we find that for the consid-

a few electron states that are out of equilibrium have transered case the full rate of heat generatisthe same in both

verse parts of their quasimomenta small as compared to thentacts(even though the values of the relaxation times

longitudinal part. In other words, their quasimomenta havemay be different This is true irrespective to the actual form

practically the same valug, i.e., only a few electron states of the potential profile. Equatio®?3) gives the spatial distri-

of all the states belonging to the contact region are out obution of the generated heat. The heat is spread over regions

equilibrium. This means that the nonequilibrium part of theof length equal to the mean free path,, i.e., well outside

electron distribution function is a sharp function of the qua-the nanostructure.

simomentump and we are dealing with the situation dis- One can present the total rate of heat generation for the

cussed after Eq37). The integral part of the collision op- entire system in the form

erator should be negligibly small as compared to the

relaxation time term, Eq37), so one can use the relaxation dé )

time approximatiorf’ TR AR (45
Within this approximation the nonequilibrium part of the

distribution functionAF,,, satisfies the following equation: where forG one has the well-known expressioh,

fter the integration we get for the contact region

o dt 2@k (44
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e? In the present paper we discuss mostly the Ohmic conduc-
G= %N- (46)  tion. The simplest example of non-Ohmic conduction is a
ballistic resistance foeVsT.?21223Again the heat genera-
Thus the calculation of the heat production provides an altion takes place well outside the nanostructure, within the
ternative method to calculate the conductance of nanostrugontacts. Its calculation should go along the line developed
ture. We can also remark that the fact that the relaxation timégn Sec. VI.
7, Was due to the electron-phonon collisions was not crucial More complicated are various aspects of the so-called
for the derivation of Eq(43). We would have come to the phonon-assisted ballistic resistance, both Ohmic and
same relation if, for instancer, had been due to another non-Ohmic'?!32%n the classical regime, nonlinear phenom-
scattering mechanism within the classical contdot ex- ena in the current-voltage characteristics of point contacts
ample, the electron-electron collisigns between normal metals were observed and discussed in a
A crucial point for our derivation was the fact that we pioneering work by Yansoff. Here we mean a quantum situ-
have neglected the difference between the channel velocitytion where the conduction electrons experience some scat-
vnhp and the 3D velocity,. In other words, this means that tering within the nanostructure. As indicated in Ref. 26, the
we treat the reservoir regions classicallyhis fact agrees situation here is quite unlike the usual collisionless transport
with the general concept of quantum theory of measurewhere the electron-phonadfas well as the electron-electron
ments. To perform a quantum measurem@ita conduc- and electron-impurityinteractions are restricted to the con-
tance in the present cgsene needs a classical measuringtacts and hence all the heat is released in the contacts only. In
device(i.e., classical reservoirs for the present gase the mentioned case some energy is transferred to phonons
One can obtain the same result using classical equaticand may be released as a heat by the phonon system outside
(37) for the entropy production. We are going to outline hereboth the wire and the contacts.
briefly such a calculation. We have In summary, we have calculated the Joule heat release in
the course of collisionless Ohmic transport of electric current
2 ) through a quantum nanostructure. We come to the conclu-
f dxf d rif dép——1 7 _Fon F<°)(1 F(0>) (47 sjon that to calculate the Joule heat for this cesewell as
coll for any case of Ohmic conductipit is sufficient to solve the
For AF one can use Eq41) where(as is stated aboy®ne  Boltzmann equation up to the first order in the voltage drop
can disregard the dependence on the small transverse cogicross the nanostructuer in electric fieldE). We find that
ponents of quasimomentum , or, in other words, on the the heat is spread over the length of the electron mean free
channel numben. Now, the integration ovedzrldzpi can  path in the reservoirs. Even if the electron mean free paths in
be replaced by summation over discrete valuepof As  both reservoirs are different the total rate of heat generation
indicated above, the number of terms in such a sum shoulgh each reservoir is the same. We indicate that a calculation
be equal to the number of open channels, and we again engf the heat generation may provide an alternative method of
up with Eq.(44) irrespective to the actual scattering mecha-computation of collisionless conductance.
nism that is responsible for the relaxation timeThe only
dependence of this result on the actual form of the potential
profile within the nanostructure is in the number of active ACKNOWLEDGMENTS
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