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Heat generation by electric current in nanostructures

V. L. Gurevich
A. F. Ioffe Institute, Solid State Physics Division, 194021 Saint Petersburg, Russia

~Received 22 December 1995; revised manuscript received 24 October 1996!

Heat generation for collisionless Ohmic electric conductance in quantum semiconductor microstructures
joining two classical reservoirs is investigated. Spatial distribution of the heat generated by current through a
semiconductor microstructure is calculated. The heat is spread over the length of electron mean free path in the
reservoirs. We find that the amount of heat generated per second in both reservoirs that are joined by the
nanostructure is the same.@S0163-1829~97!06007-4#
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I. INTRODUCTION

During recent years various properties of quantum po
contacts were investigated theoretically and on experim
Among them one can name a steplike variation of cond
tance ~Ohmic and non-Ohmic!, shot noise, thermoelectri
properties, and a number of other transport effects. The t
amount of heat generated by a quantum contact can be
termined by simple energy conservation considerations
vided that the contact conductanceG is known. However,
such considerations tell nothing about the spatial distribu
of the heat which can be expressed via the rate of entr
production. Meanwhile the heat distribution is an importa
characteristic of a contact. It can be measured on experim
Moreover, calculation of the heat provides an alternat
method of computation of a contact conductance which
der certain circumstances may be more efficient than the
isting methods. The purpose of the present paper is to in
tigate the heat generation in current-carrying semicondu
quantum nanostructures.1

The resistance of a classical ballistic point contact
tween two metals was considered by Sharvin.2 The charac-
teristic dimensions of the contact were assumed to be m
larger than the de Broglie wavelength. Kulik, Shekhter, a
Omelyanchouk3 pointed out that the processes leading
electric resistance and heat generation are spatially sepa
in a classical point contact. The spatial distribution of Jo
heat generated by current across such a ballistic point con
was treated in the diffusive limit by Rokni and Levinson.4

As a further development of the Landaue
Büttiker-Imry5,6 approach we consider the heat generation
the case of ballistic Ohmic conduction in semiconduc
quantum nanostructures~microcontacts!. We assume that the
microcontact has a transverse dimension of the order of e
tron de Broglie wavelengthl. It is joining two reservoirs,
each being in independent equilibrium. We will show that
measure a quantum conductance the reservoirsshould be as-
sumed to be classical. It will be indicated that this fact is in
accordance with the general quantum theory of meas
ments.

We wish to emphasize that we do not make any assu
tions concerning the potential distribution along the struct
assuming only that it is smooth on the scale of the electro
de Broglie wavelength. We consider this a point of so
importance as there is a difference between the problem
550163-1829/97/55~7!/4522~8!/$10.00
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electrostatic potential distribution in metallic microcontac
and the distribution in semiconductor nanowires. In met
the potential profile is determined by the spatial distributi
of the current and strong screening of the charges~see Refs.
7–9!. In semiconductor nanostructures the electron conc
trations are usually rather low and the screening may be
of so much importance. The potential distribution is main
determined by the arrangement and the potentials of the
electrodes. Usually there is zero current between the na
structure and these electrodes. Then the surfaces of gate
trodes are at constant potentials. By manipulating these
tentials one can, in principle, create various poten
profiles. We consider inelastic electron scattering in the c
tacts~which, as we have mentioned, are assumed to be c
sical! and find that for any potential distribution in the nan
structure the heat generation in both contacts is the sam

We also find that practically all the heat is generated
the classical reservoirs rather than in the quantum cont
Our theory permits us to resolve the following seeming
paradoxical situation. On the one hand, the rate of Joule
generation is determined by the relaxation mechanism~s! for
the physical system in consideration, or, in other words,
relaxation rates. On the other hand, quite often in nanost
tures there is the so-called collisionless transport where
conductanceG is independent of any relaxation rate. Th
means, in other words, that the resistance and therefore
overall heat production does not depend on any mechan
of electrons’ relaxation. We will show by consideration
heat generation in classical reservoirs how these two f
can be reconciled.

In conclusion we briefly discuss the non-Ohmic condu
tion on a qualitative level. We discuss also the situat
where the electrons of the nanowire are weakly scattered
the phonons so that the heat may be partly released in
vicinity of the nanowire.

It will be convenient to consider an isolated syste
Therefore we will have in mind the following physical situ
ation. There is a capacitor which is discharged through
conductor of interest. The productRC of the whole system,
R andC being the resistance and capacitance, respectiv
is much bigger than any relaxation time characterizing
electron or phonon system of the conductor. This means
for all the practical purposes the conduction process can
looked upon as a stationary one. The total energy of
4522 © 1997 The American Physical Society
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55 4523HEAT GENERATION BY ELECTRIC CURRENT IN . . .
system,U, is conserved while its total entropy,Ŝ, is growing.
The rate of heat generation is expressed throughT]Ŝ/]t
whereT is the temperature. So our main purpose will be
calculate the rate of the entropy production.

II. MECHANICAL ENERGY AND HEAT

An isolated macroscopic system possesses amechanical
energy, E ~see Landau and Lifshitz10!. This means that owing
to internal processes, without a resulting variation of its v
ume, the system can execute work on external systems
general, the amount of work depends on how the inter
state of the system under consideration is changed. Mech
cal energy is the maximal amount of work that can be p
duced if the system finally reaches the state of thermo
namic equilibrium.

It is well known ~see Ref. 10! that

E5U2U0~ Ŝ!, ~1!

whereU0(Ŝ) is the total energy of the system in thermod
namic equilibrium expressed as a function of its entropyŜ
given by the relations of equilibrium thermodynamics. C
culating its time derivative one can write

dE
dt

5
dU
dt

2
dU0
dŜ

dŜ
dt

5
dU
dt

2T0
dŜ
dt

, ~2!

T0(Ŝ) being the temperature of the equilibrium syste
whose entropy is equal toŜ. As the first term on the right-
hand side vanishes because of the conservation of energ
an isolated system, one gets

2
dE
dt

5T0
dŜ
dt

. ~3!

This means that the mechanical energy of an isolated sys
unlike its total energy, is not conserved. While the relaxat
processes tending to bring the system into equilibrium t
place its mechanical energy dissipates into heat. Equation~3!
describes the rate of dissipation in the nonequilibrium sys
in consideration or, in other words, the rate of Joule h
generation.

III. TRANSPORT IN QUANTUM NANOSTRUCTURE

Let us consider a nanostructure where there is a direc
(x axis! along which the electron motion is infinite and
current flows. Along the perpendicular direction~s!, r' the
electron motion is quantized. To be definite we will discus
3D case although one can turn to a 2D case by a sim
change of notation. We will consider the so-called adiaba
transport~see Glazmanet al.11! where the potential profile
varies smoothly alongx axis on the scale ofl ~wherel is
the electron de Broglie wavelength!. We assume that the
electron mean free path is much bigger than the charact
tic dimensions of the microstructure. Then there is a sys
of one-dimensional~1D! electron bands~channels! describ-
ing the electrons’ motion in thex direction both in the mi-
crostructure and in the adjoining parts of the contacts. T
motion will be considered~quasi-!classically. The transvers
-
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motion is quantized. In the spirit of an approach by Glazm
et al.11 we assume that the variablesx and r' are separable
in the adiabatic approximation. This means that for ea
value ofx the r' dependence of the potential determines
wave function of transverse quantizationhn(r' ;x) that de-
pends onx as a parameter. Heren is the quantum number o
transverse quantization. The electron spectrum depend
x and this dependence has the following form:

en~p;x!5p2/2m1en~0;x!, ~4!

wherem is the electron effective mass ande(0,x) is the
position of the band’s bottom that depends onx as a param-
eter. en(0;x) is the solution of the eigenvalue problem fo
the Hamiltonian

2
\2

2m S ]2

]y2
1

]2

]z2D1ef~r' ;x!. ~5!

The electron wave functions can be presented in the
lowing form:

c~r !5const
1

Ap~x!
expF i E p~x8!dx8/\ Ghn~r' ;x!. ~6!

Here the wave functions of the transverse quantizationhn
depend onx as a parameter,n is the corresponding quantum
number.

The energy conservation relation for such a system can
written in the following integral form:

dU
]t

5JV, ~7!

where

U5(
n
E dxE djpenpFnp . ~8!

J is the total current across the nanostructure which is gi
by

J5(
n
E djpvnpFnp . ~9!

Heredjp5dp/2p\ ~summation over the spin variable is im
plied; we assume that the electron energy is spin indep
dent!, vnp5]enp /]p5p/m is the electron group velocity
~which does not depend explicitly onn), Fnp(x) is the elec-
tron distribution function that depends on the quantum nu
ber n as a parameter whilep ~the x component of the elec
tron quasimomentum! and x are classical variables.Fnp(x)
satisfies the Boltzmann equation

v
]Fnp~x!

]x
2

]Fnp~x!

]p

]enp~x!

]x
5F]Fnp

]t G
coll

. ~10!

IV. CALCULATION OF ENTROPY PRODUCTION
FOR A NANOSTRUCTURE

The general expression for the rate of heat generation
nanostructure is given by Eq.~3!. To calculate the entropy
production for the electron system in consideration intera
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4524 55V. L. GUREVICH
ing with phonons one should treat simultaneously
electron-phonon and phonon-electron collisions. The entr
production is given by~we will set kB51 throughout the
paper!

dŜ
dt

5E dxF]S]t G
coll

, ~11!

F]S]t G
coll

5(
n
E djpln

12Fnp

Fnp
F]Fnp

]t G
coll

1E dhqln
11Nq

Nq
F]Nq

]t G
coll

, ~12!

whereS is the 1D entropy density. Now,

F]F]t G
coll

5(
n8

E djp8E dhq$wnn8~p,p8;q!

3@F8~12F !~Nq11!2F~12F8!Nq#

1wn8n~p8,p;q!@F8~12F !Nq

2F~12F8!~Nq11!#%, ~13!

whereF5Fnp , F85Fn8p8, dhq5d3q/(2p)3; the summa-
tion over the phonon branches is implied while

wnn8~p,p8;q!}dp8,p1\qx
d~en8p82enp2\Vq!. ~14!

wnn8(p,p8;q) is proportional to the probability of an electro
to make a transition from the state specified by the quan
numbersn8,p8 to the staten,p accompanied by emission o
a phonon with wave vectorq. In such a general form this
equation is valid for any phonon states. If one considers
teraction of the electrons of a nanowire with bulk phono
then perturbation theory gives~cf. with Refs. 12,13!

wnn8~p,p8,q!5
2p

\
ucqu2z^nuexp~ iq'r'!un8& z2

3d@en~p!2en8~p8!1\Vq#dp8,p1\qx
.

~15!

Herecq is the matrix element of the interaction of electro
with bulk phonons; r' denotes y,z; while q' denotes
qy ,qz .

Now,

F]Nq

]t G
coll

5
1

A(
nn8

E djpE djp8wnn8~p,p8;q!

3@F8~12F !~Nq11!2F~12F8!Nq#,

~16!

whereA is the area of a cross section of the wire. Employi
Eq. ~12! we finally get
e
y

m

-
s

F ]Ŝ
]t

G
coll

5E dx(
nn8

E djpE djp8E dhqwnn8~p,p8;q!

3 ln
Fn8p8~12Fnp!~Nq11!

Fnp~12Fn8p8!Nq

3@Fn8p8~12Fnp!~Nq11!2Fnp~12Fn8p8!Nq#.

~17!

This equation can be compared with the entropy prod
tion in a bulk sample which we will need below when w
will treat the region outside the nanostructure, within t
reservoir region. The result is~see Ref. 14!

F ]Ŝ
]t

G
coll

5E d3r F ]S

]t
G
coll

5E d3r E djpE djp8E dhqw~p,p8;q!

3 ln
~12Fp!Fp8~Nq11!

~12Fp8!FpNq

3@Fp8~12Fp!~Nq11!2Fp~12Fp8!Nq#,

~18!

wheredjp5d3p/(2p\)3 ~the summation over the spin var
able is implied! and we use the same notationS for the 1D
entropy density and 3D entropy density. Herew(p,p8;q) is
the specific probability of an electron-phonon collision. It
proportional tod(ep2ep81\Vq). For phonon emission the
second argument corresponds to the initial electron state
for the quasimomenta of electrons and phonon, they sat
the conservation law

p2p81\q5\b, ~19!

whereb is a vector of the reciprocal lattice. For normal pr
cessesb50 and we have

p2p81\q50. ~20!

In the general case of Umklapp processes Eq.~19! with b
Þ0 is valid.

We do not give here the corresponding rate for the int
action of electrons with impurities within the nanowire. Th
point is that the item of our main interest will be nanowir
where the impurity scattering is of no importance. Where
is of importance it may be difficult to describe it because
widely used procedure of averaging over the impurity po
tions is not applicable within a nanostructure. However, su
a procedure is usually applicable outside the nanostruct
within the reservoir region where it gives~see Refs. 15,14!

F ]Ŝ
]t

G
coll

5E d3r F ]S

]t
G
coll

5niE d3r E djpE djp8w~p8,p!

3 ln
~12Fp8!Fp

~12Fp!Fp8
~Fp2Fp8!. ~21!

Hereni is the impurity concentration,w(p8,p)5w(p,p8) is
the specific probability of electron-impurity scattering fro
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55 4525HEAT GENERATION BY ELECTRIC CURRENT IN . . .
statep into statep8. w(p8,p) is proportional tod(ep2ep8)
because of the energy conservation. For simplicity, we h
written this formula for a case where a crystal and an im
rity have a center of symmetry.

The contribution of the electron-electron interaction to e
tropy production within a nanowire can be described, in pr
ciple, by a straightforward generalization of Eq.~22! ~see
below!. However, the possibility of electron-electron col
sions is severely restricted for this case~see Ref. 16!. Indeed,
one can easily check that because of 1D electron dynam
the conditions for the energy and quasimomentum conse
tion in the course of electron-electron collisions cannot u
ally be satisfied.~We can also remark that for sufficientl
small values of the relative velocity of two interacting ele
trons these collisions cannot be treated by a perturba
theory.! This is why we are not giving here the correspon
ing expression.

Outside the nanowire, within a contact region one can
the following equation for the electron-electron collisio
~cf. with Ref. 17!. Again we will assume that the crystal ha
a center of symmetry. Then

F]S]t G
coll

5
1

4E djpE djp8E djp1E djp
18
w~p1,p18 ;p,p8!

3 ln
~12Fp8!~12Fp!Fp1

Fp
18

~12Fp1
!~12Fp

18
!FpFp8

3@~12Fp8!~12Fp!Fp1
Fp

18

2~12Fp1
!~12Fp

18
!FpFp8#. ~22!

Here w(p1 ,p18 ;p,p8)5w(p,p8;p1,p18) is the specific prob-
ability of electron-electron collisions wherep,p8 refer to the
initial electron states whilep1 ,p18 refer to the final states. It is
proportional tod(ep1ep82ep12ep

18
). The entropy change in

Eq. ~22! vanishes provided thatFp is a Fermi functionF (0)

depending on an arbitrary chemical potential and temp
ture. If the electron quasimomentump is conserved during
the electron-electron collisions@dS/dt#coll vanishes also
whenFp is a function of the form

F ~0!~ep2pV2m! ~23!

whereV is an arbitrary vector having the physical meani
of electron drift velocity. This quasimomentum conservati
usually takes place in semiconductors.

A few words about the phonon-phonon collisions will fo
low. We will discuss only the bulk phonons. We will con
sider three-phonon processes due to the cubic anharm
terms in the interaction Hamiltonian. We have~see Ref. 18!

F]S]t G
coll

5
1

2E dhqE dhq8w~q,q8,2q9!

3@~Nq11!~Nq811!Nq92NqNq8~Nq911!#

3 ln
~Nq11!~Nq811!Nq9

NqNq8~Nq911!
, ~24!
e
-

-
-

cs
a-
-

n
-

e

a-

nic

wherew(q,q8,2q9) is the specific probability of the corre
sponding three-phonon process@apart from the factorsNq and
(Nq11)#. For the case where a phonon is absorbed and
phonons are emitted, the two first arguments correspon
the emitted phonons.w(q,q8,2q9) is proportional to
d(Vq1Vq82Vq9). Here

q95q1q81b, ~25!

whereb is either 0~normal processes! or a vector of recip-
rocal lattice~Umklapp processes!. If the Umklapp processes
are of importance then Eq.~24! vanishes provided thatNq is
the Bose function with an arbitrary temperature.

For collisions of phonons with the lattice defects the e
plicit expression for@dS/dt#coll does not differ very much
from Eq. ~21! ~see Ref. 18!, and we will not give it here. It
vanishes forNq being an arbitrary function of the phono
energy,\Vq .

V. OHM’S LAW FOR A NANOSTRUCTURE

In the present section we discuss an important case w
there is a linear relation between the voltage and the cur
so that the deviation of the distribution functions from t
equilibrium is small

Fnp5F ~0!~enp!1DFnp , Nq5N~0!~Vq!1DNq , ~26!

whereDFnp andDNq satisfy thelinearizedBoltzmann equa-
tions.DFnp andDNq should be proportional to the extern
potential difference which we assume to be the sole sourc
the deviation of the functions from equilibrium. As the co
lision terms vanish for the equilibrium parts of the distrib
tion functions, one can express the heat production thro
the linearized collision operators,I , acting onDFnp and
DNq . The linear terms inDFnp andDNq vanish in the equa-
tion for the entropy production. This can be either eas
checked directly or established using the following physi
considerations. A linear term inDFnp or DNq can be of
either sign whereas the rate of heat generation should
non-negative.

To give the leading terms of expansion in Eq.~17!, in the
most concise form it will be convenient to introduce th
functionsxp andnq defined as follows:

DFnp5xnpF
~0!~enp!@12F ~0!~enp!#,

DNq5nqN
~0!~Vq!@N

~0!~Vq!11#. ~27!

We have for the electron-phonon and phonon-phonon co
sions, respectively,

F]S]t G
coll

5(
nn8

E djpE djp8E dhqFnp
~0!~12Fn8p8

~0!
!

3Nq
~0!wnn8~p,p8;q!~xnp2xn8p81nq!

2, ~28!

F]S]t G
coll

5
1

2E dhqE dhq8E dhq9Nq
~0!~Nq

~0!11!

3w~q,q8,2q9!~nq1nq82nq9!
2. ~29!
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4526 55V. L. GUREVICH
To get the total rate of heat production one should integ
these equations over the whole length of the conductor
multiply the result by temperatureT.

As we have already mentioned Eqs.~28! and ~29! are
quadratic in the deviations of the distribution functions fo
the equilibrium values. This means thatto calculate the
Joule heat it is sufficient to solve the Boltzmann equation
to the first order in the potential difference.

In view of further applications it is worthwhile to indicat
that these equations can be presented in a different form
an example we consider Eq.~28!. Then one can write

F]~F ~0!1DF !

]t G
coll

5IDF. ~30!

In the same way one can write

F]~N~0!1DN!

]t G
coll

5IDN, ~31!

where we use the same notationI for the linearized collision
operators acting uponDF andDN. Now,

ln
12F ~0!

F ~0! 5
ep2m

T
, ln

11N~0!

N~0! 5
\Vq

T

and one can see that due to energy conservation and ele
number conservation in the course of electron-phonon c
sions, the terms linear inDF andDN vanish. This is as it
should be because the linear terms can be of either
whereas the entropy production should be nonnegative.
quadratic term can be written in the following form:

F]S]t G
coll

52(
n
E djp

DFnp

Fnp
~0!~12Fnp

~0!!
IDFnp

2E dhq

DNq

Nq
~0!~11Nq

~0!!
IDNq . ~32!

Equation~29! can be also transformed to a similar form.
Now, if the relaxation processes within the phonon s

tem are rapid, one can neglect the second term in Eq.~32!
and we are left with

F]S]t G
coll

52(
n
E djp

DFnp

Fnp
~0!~12Fnp

~0!!
IDFnp . ~33!

I is a linear integral operator acting onDFnp . Its explicit
expression for the electron-phonon collisions is
te
nd

p

As

ron
i-

gn
he

-

F]Fnp

]t G
coll

5(
n8

E djp8E dhqDFn8p8$wnn8~p,p8;q!

3@~12Fnp
~0!!Nq1Fnp

~0!~Nq11!#1wn8n~p8,p;q!

3@~12Fnp
~0!!~Nq11!1Fnp

~0!Nq#%

2DFnp(
n8

E djp8E dhq$wnn8~p,p8;q!

3@Fn8p8
~0!

~Nq
~0!11!1~12Fn8p8

~0!
!Nq

~0!#

1wn8n~p8,p;q!

3@Fp8
~0!Nq

~0!1~12Fp8
~0!

!~Nq
~0!11!#%. ~34!

It is an algebraic sum of two terms. One of them is an in
gral term whereDFn8p8 is in the integrand. The other one
a time-of-relaxation term which has the form

F]Fnp

]t G
coll

~t!

52
DFnp

tnp
, ~35!

where the relaxation timetnp is given by

1

tnp
5(

n8
E djp8E dhq$wnn8~p,p8;q!@Fn8p8

~0!
~Nq

~0!11!

1~12Fn8p8
~0!

!Nq
~0!#1wn8n~p8,p;q!

3@Fn8p8
~0! Nq

~0!1~12Fn8p8
~0!

!~Nq
~0!11!#%. ~36!

In the relaxation time approximation, where for som
physical reasons the integral term can be discarded, we h

F]S]t G
coll

5(
n
E djp

~DFnp!
2

tnpFnp
~0!~12Fnp

~0!!
. ~37!

Again for a bulk sample~for instance, within the reser
voirs! one can write instead of Eq.~37!

F]S]t G
coll

5E djp
~DFp!

2

tpFp
~0!~12Fp

~0!!
. ~38!

One can use this expression ifDFp has a sharp maximum fo
some value~s! of p and the integral in Eq.~37! is dominated
by the values ofDFp near the maximum~see, for instance
Abrikosov,19 Sec. 7.3!. Such a situation will be considere
below, in Sec. VI.

VI. JOULE HEAT GENERATED
BY BALLISTIC CURRENT

THROUGH NANOSTRUCTURE

In the spirit of the Landauer-Bu¨ttiker-Imry5,6 approach we
assume the quantum microstructure to be connected with
reservoirs which we call ‘‘left’’~1! and ‘‘right’’ ( 2), each
of these being in independent equilibrium. We assume
the electrons enter the contacts adiabatically~see Ref. 11!.
As, however, the width of the classical contacts is mu
larger than the width of the microstructure the number of
channels within the contacts is also much larger. Most
these channels are not current carrying as the electrons
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55 4527HEAT GENERATION BY ELECTRIC CURRENT IN . . .
longing to them are reflected from the wire backward in
the corresponding contact. So we start with consideratio
the current-carrying channels within the nanostructure.

As is shown in Ref. 11 unless the bottom of an electr
1D band almost touches the Fermi level~the situation we do
not consider in the present paper! the electron transpor
through a nanostructure is practically reflectionless, wh
will be assumed here. Let us, for example, consider the c
p.0. Then we will be interested in the regionx.0 where
the relaxation and therefore heat production takes place.
states in the current-carrying channels entering the con
region, i.e., atx50, will have the distribution function
F (0)(epn2m (1)). For x,0 this distribution function is the
same as for all other states atx,0. This means that the
current-carrying states withp.0 are at equilibrium with all
other states in the regionx,0. Indeed, atx,0 all the states
with p.0 as well as withp,0 have the distribution func
tion of the same formF (0)(epn2m (1)). To the contrary, for
x.0 the distribution of electrons in the current-carryin
channels will be out of equilibrium relative to the rest
electrons @whose distribution isF (0)(epn2m (2))#. This
means that in this region the relaxation processes should
to bring the current-carrying states into equilibrium. It
these processes that we are going to investigate to calc
the overall heat production and its spatial distribution.

We consider the ballistic transport of electrons within t
nanostructure which means that the scattering of elect
there is negligibly weak. For the sake of definiteness let
assume that the electrons relax in the contacts due to c
sions with phonons and the phonon relaxation due to an
monicity and scattering by lattice defects~as well as to the
escape of the nonequilibrium phonons from the microcon
region! is rapid so that Eq.~33! is valid, the phonon system
being in equilibrium. The electrons to be scattered sho
penetrate rather deeply into the contact region. Physic
this means that the number of channels in the contact re
is large as compared with the number in the microstructu
As the number of electrons in the contacts is large they
be treated as a 3D electron gas so that the usual Bloch w
representation can be used instead of the channel repres
tion when this is more convenient. For adiabatic transport
number of nodes of a function of transverse quantizat
hn(r' ;x) for a current-carrying channel is invariant inx and
is small. Far from the microstructure the bottoms of t
channels,e(0,x) are approaching each other. This means t
a few electron states that are out of equilibrium have tra
verse parts of their quasimomenta small as compared to
longitudinal part. In other words, their quasimomenta ha
practically the same valuep, i.e., only a few electron state
of all the states belonging to the contact region are ou
equilibrium. This means that the nonequilibrium part of t
electron distribution function is a sharp function of the qu
simomentump and we are dealing with the situation di
cussed after Eq.~37!. The integral part of the collision op
erator should be negligibly small as compared to
relaxation time term, Eq.~37!, so one can use the relaxatio
time approximation.20

Within this approximation the nonequilibrium part of th
distribution function,DFnp , satisfies the following equation
of
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vnp
]DFnp

]x
1

DFnp

t
50. ~39!

Strictly speaking, the boundary condition for this equati
should be formulated somewhere near the border of the c
tact region. However, by our assumption the electrons do
experience collisions within the nanostructure, or, in oth
words, the electron mean free path is much bigger than
longitudinal dimension of the nanostructure. Therefore
practically would introduce no mistake by formulating th
boundary conditions atx50,

DFnpux505
]Fnp

]m
Dm, ~40!

where Dm5m (1)2m (2)5eV. We assume here tha
eV!T.

The solution of Eq.~39! with the boundary condition
given by Eq.~40! is

DFnp5
]Fnp

~0!

]m
DmexpS 2

x

vtp
D . ~41!

Here we have neglected the difference between the cha
velocity vnp and the 3D velocityvp . Inserting Eq.~41! into
Eq. ~37! we get for the spatial distribution of the rate of he
production

TF]S]t G
coll

52~eV!2(
n
E

2`

` dp

2p\

1

tp

]Fnp
~0!

]m
expS 2

2x

vtp
D .
~42!

Taking into account Eqs.~3! and~11! we get for the overall
heat production within the reservoir

2
dE
dt

5
~eV!2

tp
2NE

0

` dp

2p\E0
`

dx expS 2
2x

vtp
D ]Fnp

~0!

]m
.

~43!

After the integration we get for the contact region

2
dE
dt

5
~eV!2

2p\
N, ~44!

whereN is the number of active channels, i.e., the chann
whose bottoms are below the Fermi level. Calculating
contribution of the regionx,0 we find that for the consid-
ered case the full rate of heat generationis the same in both
contacts~even though the values of the relaxation timestp
may be different!. This is true irrespective to the actual form
of the potential profile. Equation~43! gives the spatial distri-
bution of the generated heat. The heat is spread over reg
of length equal to the mean free pathvtp , i.e., well outside
the nanostructure.

One can present the total rate of heat generation for
entire system in the form

2
dE
dt

5GV2, ~45!

where forG one has the well-known expression,21
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G5
e2

p\
N. ~46!

Thus the calculation of the heat production provides an
ternative method to calculate the conductance of nanost
ture. We can also remark that the fact that the relaxation t
tp was due to the electron-phonon collisions was not cru
for the derivation of Eq.~43!. We would have come to the
same relation if, for instance,tp had been due to anothe
scattering mechanism within the classical contact~for ex-
ample, the electron-electron collisions!.

A crucial point for our derivation was the fact that w
have neglected the difference between the channel velo
vnp and the 3D velocityvp . In other words, this means tha
we treat the reservoir regions classically. This fact agrees
with the general concept of quantum theory of measu
ments. To perform a quantum measurement~of a conduc-
tance in the present case! one needs a classical measuri
device~i.e., classical reservoirs for the present case!.

One can obtain the same result using classical equa
~37! for the entropy production. We are going to outline he
briefly such a calculation. We have

F ]Ŝ
]t

G
coll

5E
0

`

dxE d2r'E djp
~DFp!

2

tpFp
~0!~12Fp

~0!!
. ~47!

For DF one can use Eq.~41! where~as is stated above! one
can disregard the dependence on the small transverse
ponents of quasimomentump' , or, in other words, on the
channel numbern. Now, the integration overd2r'd

2p' can
be replaced by summation over discrete values ofp' . As
indicated above, the number of terms in such a sum sho
be equal to the number of open channels, and we again
up with Eq.~44! irrespective to the actual scattering mech
nism that is responsible for the relaxation timet. The only
dependence of this result on the actual form of the poten
profile within the nanostructure is in the number of acti
channelsN.

VII. CONCLUSION

The methods developed here can also be applicable
other problems. One example is heat release in the con
in the course of tunneling of electrons.
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In the present paper we discuss mostly the Ohmic cond
tion. The simplest example of non-Ohmic conduction is
ballistic resistance foreV@T.22,12,23Again the heat genera
tion takes place well outside the nanostructure, within
contacts. Its calculation should go along the line develop
in Sec. VI.

More complicated are various aspects of the so-ca
phonon-assisted ballistic resistance, both Ohmic a
non-Ohmic.12,13,24In the classical regime, nonlinear phenom
ena in the current-voltage characteristics of point conta
between normal metals were observed and discussed
pioneering work by Yanson.25 Here we mean a quantum situ
ation where the conduction electrons experience some s
tering within the nanostructure. As indicated in Ref. 26, t
situation here is quite unlike the usual collisionless transp
where the electron-phonon~as well as the electron-electro
and electron-impurity! interactions are restricted to the co
tacts and hence all the heat is released in the contacts on
the mentioned case some energy is transferred to pho
and may be released as a heat by the phonon system ou
both the wire and the contacts.

In summary, we have calculated the Joule heat releas
the course of collisionless Ohmic transport of electric curr
through a quantum nanostructure. We come to the con
sion that to calculate the Joule heat for this case~as well as
for any case of Ohmic conduction! it is sufficient to solve the
Boltzmann equation up to the first order in the voltage dr
across the nanostructure~or in electric fieldE). We find that
the heat is spread over the length of the electron mean
path in the reservoirs. Even if the electron mean free path
both reservoirs are different the total rate of heat genera
in each reservoir is the same. We indicate that a calcula
of the heat generation may provide an alternative method
computation of collisionless conductance.
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