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Change of symmetry of the barrier D™ ground state in finite magnetic fields
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The states of the barri@ ~ center which consists of a positive ion located onztexis at a distance from
the x-y plane and two electrons in the same plane bound by the ion are investigated based on a direct
diagonalization method in finite and relatively high magnetic fields. The energies of the lEarrigtates, the
binding energies for the barri®&~ states, and the expectation values of both the distance of the electron from
the origin and distance between two electrons are obtained as functions of the applied magnetic field strength
v perpendicular to th&-y plane and the distanaebetween the positive ion and tley plane. The effects of
the higher Landau levels become smalhaand{ increase. The change of symmetry of the barfférground
state is possible in finite magnetic fields. Both the distance of the electron from the origin and distance between
two electrons vary discontinuously with the changes of symmetry of the bddriemground states. Our
calculations indicate that the phase transitions of the badbrieground states can be observed in real systems.
[S0163-182607)11407-2

[. INTRODUCTION ited states can be treated under this framework. The results
obtained by using this method will be valid in finite and
A negative hydrogenic donor centdd () in semiconduc- relatively high magnetic fields and can be compared with
tors consists of a single positive ion and two electrons whictihose calculated by Fox and Larséim the strong-magnetic-
are bound to the positive ion. It is analogous to a negativdield limit. As a consequence of our calculations, it is found
hydrogen ion(H ). Recently there has been much experi-that the gﬁects of the higher Landau levels become smal] as
mental and theoretical interest in the problenDof centers ¥ @nd ¢ increase. The change of symmetry of the barrier

in quasi-two-dimensional systems. Since the existence df 9ground state is possible in finite magnetic fields. Both
D~ centers in center-doped GaAs/@a_,As multiple the distance of the electron from the oridin this paper, the
—X

quantum wells was first reported by Huant, Najda, anGorigin is taken as the projection of the positive ion on the
Etienné many experimentar® and theoreticdr ®investiga-  ~ Y plang and distance between two electrons vary discon-

tions forD ™ centers in quantum wells have been carried out.t'm“IOUSIy with the changes of symmetry of the barfier

A system in which two electrons confined to the plane ground state. The phase diagram indicates that the phase

T . transitions of the barridd ~ ground states can be observed in
are bound by a positive ion in the same plane is called 3

. ; ) _ ) ) ) eal systems with vary narrow quantum wells.
strictly two-dimensionaD ~ center. This model gives us im- In Sec. Il we present the model of barr@F center and

portant informations on the behavior &f - centers at the  yegcribe the direct diagonalization method to calculate the
middle of a narrow quantum well. It is well known that in the \,arious guantities associated with the barief states. In
strong-magnetic-field limit if one takes account of only the gec_ |11 we calculate the energies of the barBer states, the
lowest Landau level, exact solutions for this mOderinding energies for the barri®® ~ states and the expecta-
exist*'~** Recently Fox and Larséh proposed a model tion values of both the distance of the electron from the
called a barrieD ™~ center. It is a model obtained by gener- origin and distance between two electrons. Finally we show
alizing the strictly two-dimensional model by retaining elec- the phase diagram for the barrigr ground states and com-
tron confinement in the-y plane, but moving the positive ment on the application of our results to real systems.

ion to a distance from the plane on the axis. They have

shown that exact solutions for the problem of barier

centers exist in the strong-magnetic-field limit and, in such a Il. FORMULATION
limit, the symmetry of the barrieD ~ ground state changes o ] )
as( increases from zero. The Hamiltonian for the barrieD~ center in the

The work by Fox and Larsen motivated us to perform theeffective-mas§ approximation Wherj thg magnetic field is ap-
present work. We are interested in the behavior of the barrieplied perpendicular to the-y plane is given by
D™~ center in finite magnetic fields. When a frame of the
strong-magnetic-field limit is removed and the effects of the
higher Landau levels are taken into account, we investigate
how the symmetry of the barri& ™~ ground state changes as
functions of the applied magnetic field strengthand the
distance{. We calculate the energies of barribr states
applying the direct diagonalization metHod which ~ where hp(j) is the barrier donor Hamiltonian for thih
Dzyubenko and Sivachenko used, because a number of eglectron given by

H=hp(1)+hp(2)+ _Z

- - L] (1)
|Pl_P2|

0163-1829/97/54)/45166)/$10.00 55 4516 © 1997 The American Physical Society



55 CHANGE OF SYMMETRY OF THE BARRIERD~ GROUND ... 4517

_ _ 2 where summation should be done under the conditions that
hD(J):hO(J)_(_pJ_ZW’ (2 L=L;+L,=N;—M;+N,—M,. The eigenvalue€, (L),
and the expansion coeﬁicierﬁsﬁlyMlyNzyMz, are determined
ho(j)= Zy(ajTaj +1), (3) by solving the Schidinger equations
wherehg(j) is the free-particle Hamiltonian for thigh elec- HIL) "= ES,(L)|L>t. (10

tron, F;i is the position of thgth electron in thex-y plane, o . _ )

and ¢ is the distance between the fixed positive ion on the@ne-electron binding energieg; (L) associated with these
z axis and thex-y plane. We have used an effective Bohr €igenvalues are defined as

radius af as the unit of length and an effective Rydberg . .

R* as the unit of energyy=7%w /2R* is the dimensionless eg(L)=Ep-(L)—(Epot ), (11

magnetic field strength, where.=eB/m*c, B is the . .
. o C : where Epo is the ground-state energy for the barrier donor
;trength of the*applled magnet!c field perpendicular t_o th('i‘-|amiltor?ian.EDo g determined by sgg)llving the appropriate
Isr'l;et(rafchr;dagid?anvlzlaz?s goorzq)u;trlgn—i?/zr:]dbmass. The 198" schradinger equations in which the ground state for the bar-
9 5() 9 y rier donor Hamiltonian is given by linear combinations of the

(ahNi(bhHMi eigenstates with zero angular momentum for the free-particle
i j

|N]- ,Mj>j=—|0,0>,-, (4) Hamiltonian.e5 (L) is negative for bound states, and posi-
VN;!'M;! tive for unbound states. We evaluate the interaction terms

between the fixed positive ion and the electron numerically.
6Nj:2y(Nj+%), (5 Using the simple relationship between the representation of

symmetrized or antisymmetrized products of free-particle
where a; and b; are inter-Landau-level and intra-Landau- eigenstates and the representation of products of the center-

level ladder operators for thigh electron defined by of-mass and relative motion eigenstates, the interaction terms
between two electrons can be evaluated analyticaft§.
WYz 24 What we have to do is to solve the Sctilger equations
aj= _2) >t 5 a_zj> : (6)  (10). As has been pointed out, Fox and Laréeshowed that

exact solutions for the problem of barrier centers exist in
112 the strong-magnetic-field limit. The energy differences be-
b, (_2) (_ ) (7)  tween the d|fferenf[ Landau levels are prqporuon{al Mo
whereas the energies due to the Coulomb interaction terms
are proportional toy*2. Therefore mixing between different
Landau levels is ignored in the strong-magnetic-field limit.
The exact solutions in the strong-magnetic-field limit are ob-
: ained by diagonalizing the total Hamiltonian within the low-
|NJ- ,Mj); are also the eigenstates of an angular momen'funt]est Langau Igvelm1=|82=0). In this paper, we remove the

operator along the axis with the eigenvalué;=N;—M;. L . A
Throughout this paper we neglec Zeeman enegies assolf1o% AL e magnercfeid stengh i fe, and
ated with the electron spins. 9

The total Hamiltoniard is invariant under rotation about levels. Since it is almost impossible to take account of all the

the z axis and under interchange of indices 1 and 2. Therel-‘andau levels, we are content to solve the appropriate secu-

fore its eigenstates are classified according toztiempo- lar determinant by taking account of basis states in the low-

) lying Nn,ix Landau levels, wher®&l; and N, should satisfy
nent of the total angular momentumand their symmetry X A ' )
under interchange of the indices 1 and3*We take sym- the conditionN,,;;,=N;+ N,+ 1. The results obtained under

. ) ) . . this framework will be valid in finite and relatively high
metrized (singled or antisymmetrizedtriplet) products of e X ) .

; ) I . magnetic fields. We consider only the state which gives the
the eigenstates for thjeh free Hamiltonian as basis states for

o . minimum energy among the states classified according to
the total Hamiltonian. They are written as and the symmetry under interchange of indices 1 and 2, since

we are interested in the change of symmetry of the barrier
D~ ground state as functions ¢fandvy.

+__
2 yoz
where we used complex numbers to represent two

dimensional vectors, i.ez=x+iy. N; is the Landau-level
quantum number, anitl; is the oscillator quantum number.

IN£,M1;N2,Mp) = ={|N3,M1)1|N;,M>),
*|N2,M32)1 N1, My),}, (8)

where the+ sign is for singlet states and the sign for
triplet states, and permutation between two electrons is rep- We are now in a position to represent our numerical cal-
resented by exchanging the indices of the free-particle eigerculations. Figure 1 shows the dependence of the ground-
states, retaining their quantum numbers. Then the eigenstategate energies of the barrier donor centerfer0.1 and 0.5.
for the total Hamiltonian are given by linear combinations of\e have taken account of the low-lyimy,,, Landau levels.

Ill. RESULT AND DISCUSSION

the basis states Results obtained by takinly,x=1, 4, and 7 are shown by
the dotted, broken, and solid lines, respectively. Here we
*_ - . + note that the barrier donor center consists of only one elec-
L= > Ny My Ny N M 1N, M), Y

tron so that in this casd, the Landau-level quantum number
(9)  of the electron, satisfies the conditiod,,,=N+1. It is

N;1,M1,Ny,M»
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FIG. 1. The ground-state energiEgo (in units of R*) of the
barrier donor center faf=0.1 and 0.5 as a function of. The solid
and broken lines show the results obtained by taking account of the (b)
seven and four low-lying Landau levels, respectively. The dotted 8
lines show the results within the lowest Landau level.

found that the energies of the barrier donor states become
low and approach to the true ones with increasihg, , as is
expected from the procedure of diagonalization.

Figure 2 shows they dependence of the energies of the
singlet barrieD ~ states withL=0 (a) and the triplet states
with L= —3 (b) for {=0.1 and 0.5. Similar to the case of the
barrier donor center, the results obtained by taking account
of the low-lyingN,x=1, 4, and 7 Landau levels are shown
by the dotted, broken, and solid lines, respectively. The dot-
ted lines correspond to the results which are extrapolated . .
from those obtained by Fox and Larsen in the strong- 2o . TS e s p
magnetic-field limit to a finite regime of magnetic field.
When we takeN,x=7, we take account of 72 basis states
for the singlet barrieD ™ states withL=0 and 112 basis
states for the triplet states with=—3. It is found that the FIG. 2. The energie&,(0) andEj-(—3) (in units of R*),
energies of the barridd ~ states become low, and approach respectively, of the singlet barri@™ states withL =0 (a) and the
to the true ones with increasingy,,. For largey and our  triplet barrierD ™ states withL.=—3 (b) for {=0.1 and 0.5 as a
method of calculation is a good approximation because thgmctlo_n of y. The solid and broken lines show tr_\e results obtained
effects of the higher Landau levels become small, as ext-’y takln_g account of the s_even and four Iow-lylng_La_mdau levels,
plained below. But it is not so good an approximation forrespectlvely. The dotted lines show the results within the lowest
small y and{ even if we takeN,,,=7. For example, for the Landau level.
strictly two-dimensional model {=0), calculations based
on the variational method of Larsen and McCHhgive taking account of the seven low-lying Landau levels at
more accurate energies Bf states with lower angular mo- ¢=1.0 as a function of are plotted in Fig. 3. The solid and
mentum than ours. The differences between the dotted linedotted lines indicate the singlet and triplet states, respec-
and the other lines represent the effects of the higher Landdively. An examination of Fig. 3 indicates that the sequence
levels. These effects become smalhaand{ increase. This of the barrier D~ ground states isL=0, singlet —
is reasonable becausejfincreases the lowest eigenvaluesL=—1, triplet — L=—2, singlet - L=-—3, triplet —
of the total Hamiltonian agree asymptotically with the L=—4, singlet— L= —5, triplet wherebyy passes at 0.16,
ground state energies obtained in the strong-magnetic-field.18, 2.46, 3.83, and 5.24. The ground states \lith-5 are
limit. On the other hand, whe# increases, the interaction not bound. This shows that the change of symmetry of the
terms between the electrons do not change while the interabarrier D~ ground state, which has been predicted in the
tion terms between the positive ion and the electron becomstrong-magnetic-field limit! is also possible in finite mag-
small. In consequence of this it is found that the contribu-netic fields. This change of symmetry is caused by the com-
tions from the off-diagonal elements between different Lan-petition between the Coulomb attractive force and the Cou-
dau levels to the ground state energies with definite anguldomb repulsive force.
momentum and the symmetry become small ascreases. To show that the change of symmetry of the barfer

The binding energies for the barribr~ states obtained by ground state is caused by the competition between the Cou-

Energy of D" states Ep(L)

*triplet , L=-3
Loos o

Magnetic-field Y
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FIG. 3. The binding energieén units of R*) of the barrier
D~ center for{=1.0 as a function ofy. All the bound states ob- (b)
tained within the seven low-lying Landau levels are shown. The
solid and dotted lines show the symmet(gingle) and antisym-
metric (triplet) states, respectively.

singlet

triplet

lomb attractive force and the Coulomb repulsive force, in the
case of¢=1.0 we plot the expectation value§p?) of the
distance of the electron from the origia) and the expecta-

tion values\/(|p;—p,|?) of the distance between two elec-
trons (b) for various barrierD™ states obtained by taking
account of the seven low-lying Landau levels as a function
of y in Figs. 4. The solid and the dotted lines indicate the
singlet and triplet states, respectively. In Figb)the angu-

lar momentum quantum numberk take, from left,
0,-1,-2,—3,—4, and -5 for singlet states and ol ol o
—-2,—1,—-4,—3, and —5 for triplet states. The solid lines 0 1 2 3 4
for L=0 and—1, and the dotted lines fdr=—2 and—1, Magnetic-field Y
are almost degenerated, respectively. The phase transitions

fF’r L_’_L_ 1 occur at the broken lines parallel to the vertical FIG. 4. The expectation valuém units ofag) of the distance
line. It is found that both the expectation Valuéépﬂ and  of the electron from the origitfa) and the distance between two

\/(|§1—52|2> become large aH_| increases. Then both the electrons(b) for {=1.0 as a function ofy. All the expectation
Coulomb attractive and Coulomb repulsive energies becomealues are obtained by taking account of the seven low-lying Lan-
small. Since the energies due to the Coulomb attractive forc@au levels. The solid and dotted lines show the symmeésiigle?
terms are functions of and ¢, the optimum numbet also and antisymmetridtriplet) states, respectively. Ith) the angular
depends ony and . The expectation values of the distance Momentum  quantum numberd.  take, from left, 0;-1,
of the electron from the origin are almost independent on the 2~ 3.—4, and -5 for ~ the singlet  states  and
symmetry of the barrieD~ states. For everiodd L the ~2,~1,74,73, and =5 for the triplet states.
expectation values of the distance between two electrons for
the singlet(triplet) states are larger than those for the tripletground states. The dotted and solid lines are calculated by
(singley states, as is expected from the fact that the singletaking account of the low-lying one and seven Landau levels,
states have only even relative angular momentum and theespectively. The dotted lines indicate the results obtained by
triplet states have only odd relative angular momenttim. applying the results in the strong-magnetic-field I¥hipo a
Then for even(odd) L the energies for the singlétriplet)  finite regime of magnetic field. The boundaries representing
barrierD ~ states are lower than those for the triglgihgle)  the phase transitions far—L —1 do not depend on the en-
barrier D~ states. Therefore the symmetry of the barrierergies of the barrier donor ground states, as is shown directly
D~ ground state changes whén becomesL—1. These from Eg.(11). Therefore the differences between the dotted
properties are analogous to those for the two-electron systetimes and the solid lines associated with the phase transitions
in a harmonic quantum ddt:?° Figure 4 indicates that both represent the effects of the higher Landau levels for the en-
the distance of the electron from the origin and distance beergies of the barrieD ™ states. It is found that for a certain
tween two electrons vary discontinuously when the symmevalues of{ the phase transitions far— L —1 occur at larger
try of the barrierD~ ground states changes. v as Nk increases. This phase diagram is compared with
In Fig. 5 we show the phase diagram for the barBer  that for two-electron states in a harmonic quantumdét.

— —

(<l pl_pz|z>}1/z
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is much smaller than the distance between the positive ion
and the center of the well. In such a case the effect of smear-
ing the electronic wave functions in thedirection which
S _ASL= would occur in a well of nonzero width can be neglected. For
"""""""""""""" example, for the case of very narrow GaAs quantum wells, if
we take the effective mass of GaAs} =0.067n,, and the
static dielectric constant of GaAs,=12.5, we obtain
ay=98.7 A, R*=5.83 meV, andy=0.148 B(T). Then it
is expected that the phase transition for
L=0(singlet}»L=—1 (triplet) occurs atB=17.4 (T) for
the case of the positive ion located at 20 A from the center

1.5

no bound states

1.0

Distance from the x-y plane {

____________________________________ of the well, the phase transition for
S0 . e i — L=—1 triplet —L=—2 (singley occurs aB=7.8 (T) for
0.0 e e e e the case of the positive ion located at 100 A from the center

of the well; and the magnetic vaporization of the center
occurs atB=16.7 (T) for the case of the positive ion lo-

FIG. 5. The phase diagram for the barf2f ground states. The cated at 150 A from the center of the well.

solid lines show the results within the seven low-lying Landau lev-  TO conclude, we calculated the energies of the various

els, and the dotted lines show the results within the lowest Landabarrier D~ states, the binding energies for the barrdizr

level. states, and the expectation values of both the distance of the
electron from the origin and distance between two electrons
based on the direct diagonalization method as functions of

In contrast with the quantum dot model in which all States’y and g The effects of the h|gher Landau levels become

are bound, there are no bound states for the belriecenter  sma|l asy and ¢ increase. The change of symmetry of the

in a certain region ofy and . This is the magnetic vapor- parrier D~ ground state, which has been predicted in the

ization of the barrieD ~ center discussed by Fox and Larsen strong-magnetic-field limit, is also possible in finite magnetic

in the strong-magnetic-field limit: The boundaries repre- fieds. Both the distance of the electron from the origin and

senting the magnetic vaporization which are determinegjistance between two electrons vary discontinuously when

from Eq. (11) depend on the barrier donor ground-state enthe symmetry of the barriéd ~ ground states changes. It is

ergies. Because the effects of the higher Landau levels foso found that the magnetic vaporizations occur at suffi-

the energies of the barri@ ~ states become small gsand  ciently large values of and{. Based on the phase diagram

{ increase, the difference between the dotted and solid lineghtained by our calculation, the phase transitions of the bar-

associated with the magnetic vaporization is almost detefrier D~ ground states are expected to be observed in experi-

mined by the difference of the barrier donor ground-statenents concerning barridd ~ states in a very narrow quan-

energies calculated fa¥,,=1 and 7. The phase transition tym well.

and magnetic vaporization of tH2~ center in a more real-

istic quantum-well model were also discussed by Zhu and

Xu?! based on a variatio_nal method in the case of Iow_ angu- ACKNOWLEDGMENTS
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