
PHYSICAL REVIEW B 15 FEBRUARY 1997-IVOLUME 55, NUMBER 7
Change of symmetry of the barrierD2 ground state in finite magnetic fields

Sadayoshi Kanamaru and Naoki Tokuda
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

~Received 19 September 1996!

The states of the barrierD2 center which consists of a positive ion located on thez axis at a distance from
the x-y plane and two electrons in the same plane bound by the ion are investigated based on a direct
diagonalization method in finite and relatively high magnetic fields. The energies of the barrierD2 states, the
binding energies for the barrierD2 states, and the expectation values of both the distance of the electron from
the origin and distance between two electrons are obtained as functions of the applied magnetic field strength
g perpendicular to thex-y plane and the distancez between the positive ion and thex-y plane. The effects of
the higher Landau levels become small asg andz increase. The change of symmetry of the barrierD2 ground
state is possible in finite magnetic fields. Both the distance of the electron from the origin and distance between
two electrons vary discontinuously with the changes of symmetry of the barrierD2 ground states. Our
calculations indicate that the phase transitions of the barrierD2 ground states can be observed in real systems.
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I. INTRODUCTION

A negative hydrogenic donor center (D2) in semiconduc-
tors consists of a single positive ion and two electrons wh
are bound to the positive ion. It is analogous to a nega
hydrogen ion~H2). Recently there has been much expe
mental and theoretical interest in the problem ofD2 centers
in quasi-two-dimensional systems. Since the existence
D2 centers in center-doped GaAs/AlxGa12xAs multiple
quantum wells was first reported by Huant, Najda, a
Etienne1 many experimental2–5 and theoretical6–10 investiga-
tions forD2 centers in quantum wells have been carried o

A system in which two electrons confined to thex-y plane
are bound by a positive ion in the same plane is calle
strictly two-dimensionalD2 center. This model gives us im
portant informations on the behavior ofD2 centers at the
middle of a narrow quantum well. It is well known that in th
strong-magnetic-field limit if one takes account of only t
lowest Landau level, exact solutions for this mod
exist.11–13 Recently Fox and Larsen14 proposed a mode
called a barrierD2 center. It is a model obtained by gene
alizing the strictly two-dimensional model by retaining ele
tron confinement in thex-y plane, but moving the positive
ion to a distancez from the plane on thez axis. They have
shown that exact solutions for the problem of barrierD2

centers exist in the strong-magnetic-field limit and, in suc
limit, the symmetry of the barrierD2 ground state change
asz increases from zero.

The work by Fox and Larsen motivated us to perform
present work. We are interested in the behavior of the bar
D2 center in finite magnetic fields. When a frame of t
strong-magnetic-field limit is removed and the effects of
higher Landau levels are taken into account, we investig
how the symmetry of the barrierD2 ground state changes a
functions of the applied magnetic field strengthg and the
distancez. We calculate the energies of barrierD2 states
applying the direct diagonalization method15 which
Dzyubenko and Sivachenko used, because a number o
550163-1829/97/55~7!/4516~6!/$10.00
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ited states can be treated under this framework. The res
obtained by using this method will be valid in finite an
relatively high magnetic fields and can be compared w
those calculated by Fox and Larsen14 in the strong-magnetic-
field limit. As a consequence of our calculations, it is fou
that the effects of the higher Landau levels become sma
g and z increase. The change of symmetry of the barr
D2 ground state is possible in finite magnetic fields. Bo
the distance of the electron from the origin~in this paper, the
origin is taken as the projection of the positive ion on t
x-y plane! and distance between two electrons vary disc
tinuously with the changes of symmetry of the barrierD2

ground state. The phase diagram indicates that the p
transitions of the barrierD2 ground states can be observed
real systems with vary narrow quantum wells.

In Sec. II we present the model of barrierD2 center and
describe the direct diagonalization method to calculate
various quantities associated with the barrierD2 states. In
Sec. III we calculate the energies of the barrierD2 states, the
binding energies for the barrierD2 states and the expecta
tion values of both the distance of the electron from t
origin and distance between two electrons. Finally we sh
the phase diagram for the barrierD2 ground states and com
ment on the application of our results to real systems.

II. FORMULATION

The Hamiltonian for the barrierD2 center in the
effective-mass approximation when the magnetic field is
plied perpendicular to thex-y plane is given by

H5hD~1!1hD~2!1
2

urW 12rW 2u
, ~1!

where hD( j ) is the barrier donor Hamiltonian for thej th
electron given by
4516 © 1997 The American Physical Society
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55 4517CHANGE OF SYMMETRY OF THE BARRIERD2 GROUND . . .
hD~ j !5h0~ j !2
2

~r j
21z2!1/2

, ~2!

h0~ j !52g~aj
†aj1

1
2 !, ~3!

whereh0( j ) is the free-particle Hamiltonian for thej th elec-
tron, rW j is the position of thej th electron in thex-y plane,
and z is the distance between the fixed positive ion on
z axis and thex-y plane. We have used an effective Bo
radius aB* as the unit of length and an effective Rydbe
R* as the unit of energy.g5\vc/2R* is the dimensionless
magnetic field strength, wherevc5eB/m* c, B is the
strength of the applied magnetic field perpendicular to
interface, andm* is the conduction-band mass. The eige
states and eigenvalues forh0( j ) are given by

uNj ,M j& j5
~aj

†!Nj~bj
†!M j

ANj !M j !
u0,0& j , ~4!

eNj
52g~Nj1

1
2 !, ~5!

where aj and bj are inter-Landau-level and intra-Landa
level ladder operators for thej th electron defined by16

aj5S g

2D
1/2S zj*2 1

2

g

]

]zj
D , ~6!

bj5S g

2D 1/2S zj2 1
2

g

]

]zj*
D , ~7!

where we used complex numbers to represent t
dimensional vectors, i.e.,z5x1 iy . Nj is the Landau-level
quantum number, andM j is the oscillator quantum numbe
uNj ,M j& j are also the eigenstates of an angular momen
operator along thez axis with the eigenvalueL j5Nj2M j .
Throughout this paper we neglect Zeeman energies as
ated with the electron spins.

The total HamiltonianH is invariant under rotation abou
the z axis and under interchange of indices 1 and 2. The
fore its eigenstates are classified according to thez compo-
nent of the total angular momentumL and their symmetry
under interchange of the indices 1 and 2.11,14We take sym-
metrized ~singlet! or antisymmetrized~triplet! products of
the eigenstates for thej th free Hamiltonian as basis states f
the total Hamiltonian. They are written as

uN1 ,M1 ;N2 ,M2&
65$uN1 ,M1&1uN2 ,M2&2

6uN2 ,M2&1uN1 ,M1&2%, ~8!

where the1 sign is for singlet states and the2 sign for
triplet states, and permutation between two electrons is
resented by exchanging the indices of the free-particle eig
states, retaining their quantum numbers. Then the eigens
for the total Hamiltonian are given by linear combinations
the basis states

uL&65 (
N1 ,M1 ,N2 ,M2

CN1 ,M1 ,N2 ,M2

6 uN1 ,M1 ;N2 ,M2&
6,

~9!
e

e
-

-

m

ci-

-

p-
n-
tes
f

where summation should be done under the conditions
L5L11L25N12M11N22M2. The eigenvaluesED2

6 (L),
and the expansion coefficientsCN1 ,M1 ,N2 ,M2

6 , are determined

by solving the Schro¨dinger equations

HuL&65ED2
6

~L !uL&6. ~10!

One-electron binding energies«B
6(L) associated with these

eigenvalues are defined as

«B
6~L !5ED2

6
~L !2~ED01g!, ~11!

whereED0 is the ground-state energy for the barrier don
Hamiltonian.ED0 is determined by solving the appropria
Schrödinger equations in which the ground state for the b
rier donor Hamiltonian is given by linear combinations of t
eigenstates with zero angular momentum for the free-part
Hamiltonian.«B

6(L) is negative for bound states, and pos
tive for unbound states. We evaluate the interaction te
between the fixed positive ion and the electron numerica
Using the simple relationship between the representation
symmetrized or antisymmetrized products of free-parti
eigenstates and the representation of products of the ce
of-mass and relative motion eigenstates, the interaction te
between two electrons can be evaluated analytically.12,16

What we have to do is to solve the Schro¨dinger equations
~10!. As has been pointed out, Fox and Larsen14 showed that
exact solutions for the problem of barrierD2 centers exist in
the strong-magnetic-field limit. The energy differences b
tween the different Landau levels are proportional tog,
whereas the energies due to the Coulomb interaction te
are proportional tog1/2. Therefore mixing between differen
Landau levels is ignored in the strong-magnetic-field lim
The exact solutions in the strong-magnetic-field limit are o
tained by diagonalizing the total Hamiltonian within the low
est Landau level (N15N250). In this paper, we remove th
restriction that the magnetic-field strength is infinite, a
take account of the mixing between the different Land
levels. Since it is almost impossible to take account of all
Landau levels, we are content to solve the appropriate s
lar determinant by taking account of basis states in the lo
lying Nmix Landau levels, whereN1 andN2 should satisfy
the conditionNmix>N11N211. The results obtained unde
this framework will be valid in finite and relatively high
magnetic fields. We consider only the state which gives
minimum energy among the states classified according tL
and the symmetry under interchange of indices 1 and 2, s
we are interested in the change of symmetry of the bar
D2 ground state as functions ofz andg.

III. RESULT AND DISCUSSION

We are now in a position to represent our numerical c
culations. Figure 1 shows theg dependence of the ground
state energies of the barrier donor center forz50.1 and 0.5.
We have taken account of the low-lyingNmix Landau levels.
Results obtained by takingNmix51, 4, and 7 are shown by
the dotted, broken, and solid lines, respectively. Here
note that the barrier donor center consists of only one e
tron so that in this caseN, the Landau-level quantum numbe
of the electron, satisfies the conditionNmix>N11. It is
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4518 55SADAYOSHI KANAMARU AND NAOKI TOKUDA
found that the energies of the barrier donor states bec
low and approach to the true ones with increasingNmix , as is
expected from the procedure of diagonalization.17

Figure 2 shows theg dependence of the energies of t
singlet barrierD2 states withL50 ~a! and the triplet states
with L523 ~b! for z50.1 and 0.5. Similar to the case of th
barrier donor center, the results obtained by taking acco
of the low-lyingNmix51, 4, and 7 Landau levels are show
by the dotted, broken, and solid lines, respectively. The d
ted lines correspond to the results which are extrapola
from those obtained by Fox and Larsen in the stro
magnetic-field limit to a finite regime of magnetic field
When we takeNmix57, we take account of 72 basis stat
for the singlet barrierD2 states withL50 and 112 basis
states for the triplet states withL523. It is found that the
energies of the barrierD2 states become low, and approa
to the true ones with increasingNmix . For largeg andz our
method of calculation is a good approximation because
effects of the higher Landau levels become small, as
plained below. But it is not so good an approximation f
smallg andz even if we takeNmix57. For example, for the
strictly two-dimensional model (z50), calculations based
on the variational method of Larsen and McCann18 give
more accurate energies ofD2 states with lower angular mo
mentum than ours. The differences between the dotted l
and the other lines represent the effects of the higher Lan
levels. These effects become small asg andz increase. This
is reasonable because ifg increases the lowest eigenvalu
of the total Hamiltonian agree asymptotically with th
ground state energies obtained in the strong-magnetic-
limit. On the other hand, whenz increases, the interactio
terms between the electrons do not change while the inte
tion terms between the positive ion and the electron beco
small. In consequence of this it is found that the contrib
tions from the off-diagonal elements between different La
dau levels to the ground state energies with definite ang
momentum and the symmetry become small asz increases.

The binding energies for the barrierD2 states obtained by

FIG. 1. The ground-state energiesED0 ~in units ofR* ) of the
barrier donor center forz50.1 and 0.5 as a function ofg. The solid
and broken lines show the results obtained by taking account o
seven and four low-lying Landau levels, respectively. The dot
lines show the results within the lowest Landau level.
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taking account of the seven low-lying Landau levels
z51.0 as a function ofg are plotted in Fig. 3. The solid an
dotted lines indicate the singlet and triplet states, resp
tively. An examination of Fig. 3 indicates that the sequen
of the barrier D2 ground states isL50, singlet →
L521, triplet → L522, singlet→ L523, triplet →
L524, singlet→ L525, triplet wherebyg passes at 0.16
1.18, 2.46, 3.83, and 5.24. The ground states withuLu.5 are
not bound. This shows that the change of symmetry of
barrier D2 ground state, which has been predicted in t
strong-magnetic-field limit,14 is also possible in finite mag
netic fields. This change of symmetry is caused by the co
petition between the Coulomb attractive force and the C
lomb repulsive force.

To show that the change of symmetry of the barrierD2

ground state is caused by the competition between the C

he
d

FIG. 2. The energiesED2
2 (0) andED2

1 (23) ~in units ofR* ),
respectively, of the singlet barrierD2 states withL50 ~a! and the
triplet barrierD2 states withL523 ~b! for z50.1 and 0.5 as a
function ofg. The solid and broken lines show the results obtain
by taking account of the seven and four low-lying Landau leve
respectively. The dotted lines show the results within the low
Landau level.
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55 4519CHANGE OF SYMMETRY OF THE BARRIERD2 GROUND . . .
lomb attractive force and the Coulomb repulsive force, in
case ofz51.0 we plot the expectation valuesA^r j

2& of the
distance of the electron from the origin~a! and the expecta

tion valuesA^urW 12rW 2u2& of the distance between two ele
trons ~b! for various barrierD2 states obtained by takin
account of the seven low-lying Landau levels as a funct
of g in Figs. 4. The solid and the dotted lines indicate t
singlet and triplet states, respectively. In Fig. 4~b! the angu-
lar momentum quantum numbersL take, from left,
0,21,22,23,24, and 25 for singlet states and
22,21,24,23, and 25 for triplet states. The solid line
for L50 and21, and the dotted lines forL522 and21,
are almost degenerated, respectively. The phase transi
for L→L21 occur at the broken lines parallel to the vertic
line. It is found that both the expectation valuesA^r j

2& and
A^urW 12rW 2u2& become large asuLu increases. Then both th
Coulomb attractive and Coulomb repulsive energies beco
small. Since the energies due to the Coulomb attractive fo
terms are functions ofg andz, the optimum numberL also
depends ong andz. The expectation values of the distan
of the electron from the origin are almost independent on
symmetry of the barrierD2 states. For even~odd! L the
expectation values of the distance between two electrons
the singlet~triplet! states are larger than those for the trip
~singlet! states, as is expected from the fact that the sin
states have only even relative angular momentum and
triplet states have only odd relative angular momentum12

Then for even~odd! L the energies for the singlet~triplet!
barrierD2 states are lower than those for the triplet~singlet!
barrier D2 states. Therefore the symmetry of the barr
D2 ground state changes whenL becomesL21. These
properties are analogous to those for the two-electron sys
in a harmonic quantum dot.19,20 Figure 4 indicates that both
the distance of the electron from the origin and distance
tween two electrons vary discontinuously when the symm
try of the barrierD2 ground states changes.

In Fig. 5 we show the phase diagram for the barrierD2

FIG. 3. The binding energies~in units of R* ) of the barrier
D2 center forz51.0 as a function ofg. All the bound states ob-
tained within the seven low-lying Landau levels are shown. T
solid and dotted lines show the symmetric~singlet! and antisym-
metric ~triplet! states, respectively.
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ground states. The dotted and solid lines are calculated
taking account of the low-lying one and seven Landau lev
respectively. The dotted lines indicate the results obtained
applying the results in the strong-magnetic-field limit14 to a
finite regime of magnetic field. The boundaries represent
the phase transitions forL→L21 do not depend on the en
ergies of the barrier donor ground states, as is shown dire
from Eq. ~11!. Therefore the differences between the dott
lines and the solid lines associated with the phase transit
represent the effects of the higher Landau levels for the
ergies of the barrierD2 states. It is found that for a certai
values ofz the phase transitions forL→L21 occur at larger
g asNmix increases. This phase diagram is compared w
that for two-electron states in a harmonic quantum dot.19,20

e

FIG. 4. The expectation values~in units of aB* ) of the distance
of the electron from the origin~a! and the distance between tw
electrons~b! for z51.0 as a function ofg. All the expectation
values are obtained by taking account of the seven low-lying L
dau levels. The solid and dotted lines show the symmetric~singlet!
and antisymmetric~triplet! states, respectively. In~b! the angular
momentum quantum numbersL take, from left, 0,21,
22,23,24, and 25 for the singlet states and
22,21,24,23, and 25 for the triplet states.
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In contrast with the quantum dot model in which all sta
are bound, there are no bound states for the barrierD2 center
in a certain region ofg and z. This is the magnetic vapor
ization of the barrierD2 center discussed by Fox and Lars
in the strong-magnetic-field limit.14 The boundaries repre
senting the magnetic vaporization which are determin
from Eq. ~11! depend on the barrier donor ground-state
ergies. Because the effects of the higher Landau levels
the energies of the barrierD2 states become small asg and
z increase, the difference between the dotted and solid l
associated with the magnetic vaporization is almost de
mined by the difference of the barrier donor ground-st
energies calculated forNmix51 and 7. The phase transitio
and magnetic vaporization of theD2 center in a more real
istic quantum-well model were also discussed by Zhu a
Xu21 based on a variational method in the case of low an
lar momentum. This indicates that these are not special p
nomena for the model of a strictly two-dimensional electr
system. Although our calculations are based on the stri
two-dimensional electron system, our phase diagram wo
be applied to real systems in which the quantum-well wi

FIG. 5. The phase diagram for the barrierD2 ground states. The
solid lines show the results within the seven low-lying Landau l
els, and the dotted lines show the results within the lowest Lan
level.
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is much smaller than the distance between the positive
and the center of the well. In such a case the effect of sm
ing the electronic wave functions in thez direction which
would occur in a well of nonzero width can be neglected. F
example, for the case of very narrow GaAs quantum wells
we take the effective mass of GaAs,m*50.067me , and the
static dielectric constant of GaAs,e0512.5, we obtain
a0*598.7 Å, R*55.83 meV, andg50.148 B(T). Then it
is expected that the phase transition f
L50(singlet)→L521 ~triplet! occurs atB517.4 (T) for
the case of the positive ion located at 20 Å from the cen
of the well, the phase transition fo
L521 triplet →L522 ~singlet! occurs atB57.8 (T) for
the case of the positive ion located at 100 Å from the cen
of the well; and the magnetic vaporization of theD2 center
occurs atB516.7 (T) for the case of the positive ion lo
cated at 150 Å from the center of the well.

To conclude, we calculated the energies of the vario
barrierD2 states, the binding energies for the barrierD2

states, and the expectation values of both the distance o
electron from the origin and distance between two electr
based on the direct diagonalization method as functions
g and z. The effects of the higher Landau levels becom
small asg and z increase. The change of symmetry of th
barrier D2 ground state, which has been predicted in t
strong-magnetic-field limit, is also possible in finite magne
fields. Both the distance of the electron from the origin a
distance between two electrons vary discontinuously w
the symmetry of the barrierD2 ground states changes. It
also found that the magnetic vaporizations occur at su
ciently large values ofg andz. Based on the phase diagra
obtained by our calculation, the phase transitions of the b
rier D2 ground states are expected to be observed in exp
ments concerning barrierD2 states in a very narrow quan
tum well.
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