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Exchange instabilities in semiconductor double-quantum-well systems
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We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the
absence of any external magnetic field. We establish that there is no exchange-driven bilayer-to-monolayer
charge-transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock
approximation, the low-density stable phase~even in the absence of any interlayer tunneling! is a quantum
‘‘pseudospin-rotated’’ spontaneous interlayer phase-coherent spin-polarized symmetric state rather than the
classical Ising-like charge-transfer phase. The U~1! symmetry of the double-quantum-well system is broken
spontaneously at this low-density quantum phase transition, and the layer density develops quantum fluctua-
tions even in the absence of any interlayer tunneling. The phase diagram for the double-quantum-well system
is calculated in the carrier density-layer separation space, and the possibility of experimentally observing
various quantum phases is discussed. The situation in the presence of an external electric field is investigated
in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good
agreement with existing experimental results is obtained.@S0163-1829~97!06708-8#
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I. INTRODUCTION

Exchange-driven instabilities in an electron gas have b
a subject of long-standing interest1 in condensed matte
physics dating back to 1929, when Bloch first pointed o2

that a low-density free electron gas may undergo a spo
neous spin polarization transition to a ferromagnetic state
virtue of the dominance of exchange energy over kinetic
ergy at low enough electron density. A number of possi
exchange instabilities has been proposed and extens
studied theoretically1 in three-dimensional electron system
including ferromagnetism, antiferromagnetism, and vario
spin and/or charge texture phases. It is, however, unc
whether any such exchange instability has ever been ex
mentally observed in a three-dimensional free-electron-
system. One problem is that the available three-dimensio
free-electron systems, namely alkali metals, have reason
high effective electron densities, making the normal pa
magnetic ground state energetically stable and excha
instabilities unlikely.1 Recent interest in this subject ha
focused on the possibility of exchange instabilities
two-dimensional electron systems as occurring in ar
cially structured semiconductor quantum wells, heterostr
tures, and superlattices. These two-dimensional electron
tems, particularly the ones existing in modulation-dop
GaAs- AlxGa12xAs nanostructures, offer several advantag
over three-dimensional electron systems~e.g., metals, doped
bulk semiconductors! in terms of a systematic study o
exchange-correlation effects. First, lower dimensiona
typically enhances interaction effects, making exchange
stabilities more likely in two-dimensional electron system
Second, the electron density can be varied over~almost! two
orders of magnitude in modulation-doped two-dimensio
systems ~either by varying the modulation doping lev
and/or by using suitable gates!, thereby enabling one to tun
the relative magnitude of exchange-correlation effec
Third, these artificially structured two-dimensional syste
can be made ultrapure~substantially reducing disorder e
550163-1829/97/55~7!/4506~10!/$10.00
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fects! because the ionized dopants are spatially separ
from the electron layer. Fourth, artificial structuring enab
the introduction of additional degrees of freedom into t
problem, e.g., separation between the layers in a bilayer
tem, which are not available in purely two- or thre
dimensional electron systems, thus allowing the possibi
of further tuning interaction effects. Finally, and perha
most importantly, the application of a strong external ma
netic field perpendicular to the two-dimensional lay
quenches the kinetic energy of the system as the t
dimensional electron gas gets quantized into Landau lev
thereby increasing the importance of electron-electron in
action effects. Because of these reasons, as well as the
ous reason of substantial experimental and technological
evance, there has been a great deal of recent interest in
possibility of interaction~i.e., exchange-correlation! induced
exchange instabilities in two-dimensional systems. Wh
much of this recent activity3–10focuses on the situation in th
presence of an external magnetic field, there has also b
considerable interest10–17 in the possibility of exchange in
stabilities in two-dimensional electron gases in the abse
of any external magnetic fields. In this paper we theoretica
investigate a specific zero magnetic field exchange insta
ity, namely a charge-transfer instability, which has been p
dicted to occur in semiconductor double-quantum-w
systems10,11,15–17under suitable conditions.

The basic issue we study is quite simple. Consid
a semiconductor double-quantum-well structure~e.g.,
Al xGa12xAs-GaAs-AlyGa12yAs-GaAs-AlxGa12xAs sys-
tem! at zero temperature, which has been modulation do
to produce a bilayer two-dimensional electron system~in the
x-y plane! with a layer separationd ~in the z direction! and
a total two-dimensional electron density 2n ~per unit area!.
Simple electrostatic considerations imply that the equil
rium situation, which minimizes the Coulomb energy, is
classically symmetric situation with each quantum w
equally populated with an electron densityn. ~Quantum! ki-
netic energy is also minimized by having equal populatio
4506 © 1997 The American Physical Society
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55 4507EXCHANGE INSTABILITIES IN SEMICONDUCTOR . . .
of both layers, as this leads to a lower Fermi energy. T
the naive expectation~which, as we shall prove in this pape
turns out to be correct in this case! is that the double-
quantum-well system prefers a bilayer electron gas with e
layer equally populated with electrons. It has, however, b
pointed out10,11 that this simple picture may break down
low density and small interlayer separation where th
could be a zero-temperature~quantum! phase transition from
a bilayer to a monolayer system driven entirely by exchan
correlation effects. This low-density bilayer-to-monolay
phase transition11 is, in fact, an exchange instability where
some low values ofn there is predicted to be a spontaneo
charge transfer from one layer to another, resulting in
symmetry-broken monolayer phase where, instead of a
layer electron system with each layer having an electron d
sity of n, all the electrons reside in one layer with an electr
density of 2n. This transition is similar to the exchange
driven ferromagnetic spin polarization transition. This co
clusion on the existence of a charge-transfer instability i
double-quantum-well system was reached in Ref. 11 by c
sidering the competition among the kinetic energy, the C
lomb ~Hartree! charging energy, and the exchange ener
Our goal is to investigate the problem in the unrestric
Hartree-Fock approximation~HFA! by treating the layer in-
dex as a fully quantum-mechanical variable. We conclu
that there can be no exchange-driven charge-transfer in
bility in a semiconductor quantum-well system under a
conditions. The suggested charge-transfer instability is a
ture of the restricted HFA where the layer index is treated
a classical Ising-like variable. In the more general un
stricted HFA, there is an exchange-driven instability towa
a transition to a low-density symmetric phase rather than
monolayer phase.

A related issue we investigate connects with the rec
experimental search15–17 to observe the predicted charg
transfer instability with some of the papers15 reporting ex-
perimental support for an abrupt double-to-single-layer tr
sition in a double-quantum-well structure. The
experimental studies involve measurements of layer elec
densities@via low field Shubnikov–de Haas~SdH! oscilla-
tions# in a double-quantum-well systemunder the applica-
tion of an external electric field. The applied electric field
explicitly breaks the layer symmetry in the problem, and
observed nonlinearity15–17 in the layer depopulation is a di
rect manifestation of the so-called exchange-correlation
duced ‘‘negative compressibility’’ effect.18 We study the
layer or subband electron densities in the GaAs dou
quantum-well structures in the presence of an applied ele
field within the self-consistent spin polarized local-dens
approximation, obtaining excellent agreement with the ex
ing experimental measurements.15–17 The same self-
consistent approximation is used to calculate the phase
gram of the double-quantum-well system in the absence
any external electric field and no stable monolayer electro
phase is found.

The rest of this paper is organized as follows. In Sec
we investigate the phase diagram of a double-quantum-
structure in the electron density (n) –layer separation (d)
space within the restricted HFA including effects of electr
spin. In Sec. III we allow for the possibility that the laye
electron density is not required to be a good quantum n
s
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bereven in the absence of interlayer tunnelingand explicitly
include quantum fluctuations in the layer density by cons
ering symmetric quantum states which are linear superp
tions of electron states confined to different layers. Suc
‘‘pseudospin-rotated’’ quantum state, which involves
charge transfer, is shown to always have a lower energy t
the monolayer charge-transfer phase, establishing unamb
ously that the monolayer phase isnot energetically stable in
the HFA. In Sec. IV we consider the recent ‘‘charg
transfer’’ experiments in double-quantum-well systems
the presence of external electric fields, obtaining quantita
agreement between measured electron densities and
consistent spin polarized local-density calculations. We c
clude with a discussion in Sec. V.

II. RESTRICTED HARTREE-FOCK APPROXIMATION

Consider a double-quantum-well system where each e
tron is in spin up or down and in layer left~or layer 1! or
right ~or layer 2! states~Fig. 1!. In this system there are fou
possible~completely polarized or unpolarized! phases which
are denotedS0 ~equal population of both layer and spin com
ponents: the normal bilayer paramagnetic phase!, S1 ~equal
population of both layers, but the electrons are spin polari
in each layer: the bilayer ferromagnetic phase!, A0 ~equal
population of each spin component, but all the electrons
in a single layer: the monolayer paramagnetic phase!, and
A1 ~the electrons are spin polarized and reside only in o
layer: the monolayer ferromagnetic phase!. Earlier work11

did not explicitly consider the possibility of an exchang
driven spin polarization transition~considering only para-
magnetic phases with equal populations of both up and do

FIG. 1. The definitions of the four phases,S0 , S1 , A0, and
A1 used in the mean-field phase diagrams.
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4508 55LIAN ZHENG, M. W. ORTALANO, AND S. DAS SARMA
spins! and therefore included only the possibility ofS0 and
A0 phases in their restricted HFA of double-quantum-w
charge-transfer instability. The fundamental principle und
lying the exchange instability is that exchange interact
prefers a spatially antisymmetric wave function which,
keeping the electrons away from each other, optimizes
interaction energy. This can be accomplished equally ef
tively by having a symmetric spin state~i.e., a spin polarized
ferromagnetic state! and/or by having a symmetric layer sta
~i.e., a monolayer state!, which will necessarily imply that
the spatial part of the wave function is antisymmetric. Th
exchange should lead to a spin polarization ferromagn
transition in each layer as much as the bilayer-to-monola
transition. In fact, the exchange-driven intralayer ferrom
netic transition (S0→S1) is more likely than the bilayer-to
monolayer transition (S0→A0) because there is no Coulom
Hartree energy to overcome in the spin polarization tran
tion. With this introduction to the possible spin and lay
phases of the double-quantum-well system, we discuss
HFA to the ground-state energy including only kinetic, e
change, and Hartree energy contributions. Following R
10 and 11, we model each electron layer as a tw
dimensional sheet of zero thickness, which then allows fo
simple analytic calculation of the ground-state HFA ene
per unit area,EHF(n,d), as a function of the layer separatio
d and the electron densityn.

For a two-layer system withni andmi being, respectively,
the electron density and the spin polarization index of la
i ( i51 or 2!, the total energy per unit area within the HFA
@herem5(n↑2n↓)/(n↑1n↓) is the spin polarization in a
particular layer, withn↑(↓) being the number density of spi
up ~down! electrons in the layer#

EHF5
e2n1
2a* S 11m1

2

r s1
2 2

4A2
3pr s1

@~11m1!
3/21~12m1!

3/2# D
1
e2n2
2a* S 11m2

2

r s2
2 2

4A2
3pr s2

@~11m2!
3/21~12m2!

3/2# D
1
2pe2d

kbarrier
S n22n1

2 D 2, ~1!

where r si51/(a*Apni), with a*5k\2/m* e2, where
k5(kwell1kbarrier)/2 is the lattice dielectric constant, as th
effective Bohr radius for the double-quantum-well syste
Note that, in general, 0<ni<2n with the constraint
n11n252n, and 0<umi u<1. The various contributions in
Eq. ~1! for the HFA energy are the kinetic energy~the two
terms involvingr s

22), the exchange energy~the two terms
involving r s

21), and the electrostatic Hartree Coulomb e
ergy associated with charge transfer~the last term!.

For the stateS0, n15n25n andm15m250,

EHF52S 1r s2 2
8A2
3pr s

D e2n2a*
. ~2!

For the stateS1, n15n25n andm152m251,

EHF52S 2r s2 2
16

3pr s
D e2n2a*

. ~3!
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For the stateA0, n150, n252n, andm15m250,

EHF5F2S 2r s2 2
16

3pr s
D 1

4d

a

1

r s
2G e2n2a*

. ~4!

For the stateA1, n150, n252n, m150, andm251,

EHF5F2S 4r s2 2
16A2
3pr s

D 1
4d

a

1

r s
2G e2n2a*

. ~5!

In Eqs.~4! and ~5!, a5kbarriera* /k is different froma* be-
cause kwell[kGaAsÞkbarrier[kAlxGa12xAs

in the double-
quantum-well system.~The quantitative correction arisin
from this difference is very small sincea*598.3 Å and
a595.6 Å.!

Before presenting our results, we make some brief
marks about Eqs.~1!–~5!. First, we note that there is som
arbitrariness in our definitions of the symmetry-brok
phasesS1, A0, and A1. In particular, each spin polarize
phase (S1 ,A1) is characterized byumu51, and therefore we
could choose, for example, forS1, m15m251, and forA1,
m150,m2521. It is obvious that this arbitrariness does n
affect energetics and the calculated phase diagram, an
just the usual arbitrariness of the order parameter in the
ken symmetry phase. Second, we point out that the sym
try broken phases S1, A0, and A1 are completely spin
and/or layer polarized phases where the symmetry-bro
order parameters (mi ,ni) take on their maximum~in magni-
tude! values allowed~i.e., umi u51, uni u52n). In general,
partial spin and/or layer polarization phases where, for
ample, um1uÞum2u with um1u,um2uÞ0 or un1uÞun2u with
un1u, un2uÞ0 are allowed, but our energetic calculations ha
not found any of these partial polarization phases to be g
bal energy minima for any values ofn-d parameters. We
therefore believe that within our model partial spin and
layer polarization phases are not stable ground states for
values of the parameters. We obtain our restricted H
phase diagram by minimizingEHF(m1 ,m2 ;n1 ,n2) with re-
spect to the order parameters (m1 ,m2 ;n1 ,n2) for each value
of the system parameters (d,n). Each (d,n) point provides a
unique set of (m1 ,m2 ;n1 ,n2) which minimizes the HFA en-
ergy, and thus a complete phase diagram in (d,n) parameter
space is obtained, as shown in Fig. 2.

In Fig. 2 we show the results of our simple HFA pha
diagram, which allows for only three phasesS0 , S1, and
A1, with theA0 phasenot stable at any values of the syste
parameters. Our calculated phase boundary~triangles in Fig.
2! between the high-density~i.e., low r s) paramagnetic bi-
layer phase (S0) and the low-density ferromagnetic bilaye
phase (S1) occurs at a fixedr s52.011~by contrast, the cor-
responding three-dimensional HFA ferromagnetic instabi
occurs atr s55.45) for all values ofd because this is just the
two-dimensional HFA instability to the formation of a ferro
magnetic phase in which the Hartree energy does not p
any role~note that interlayer correlations are being neglec
in our approximation!. At still lower ~higher! density (r s)
there is a transition~the phase boundary marked by squar!
from the bilayer ferromagnetic phase (S1) to the monolayer
ferromagnetic phase (A1) in Fig. 2 — this transition moves
to lower densities~higher r s) as the interlayer separationd
increases because of the higher cost in Hartree energy.
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55 4509EXCHANGE INSTABILITIES IN SEMICONDUCTOR . . .
shown in Fig. 2 are three lines. The lowest line~the dotted
line! is ther s5d/a* line, which distinguishes approximatel
the regime of the average intralayer interelectron separa
~i.e., r s) being larger or smaller~the regime above or below
the dashed line! than the average interlayer interelectr
separation~i.e., d/a* ) in dimensionless units. The line wit
three dots and a dash in Fig. 2 is the phase boundary betw
the paramagnetic bilayer phase~below this line! and the
paramagnetic monolayer phase~above this line!, which is
obtained if the spin polarization is ignored. We also show
Fig. 2 by a solid line the calculated phase boundary betw
the bilayer~below the line! and the monolayer~above the
line! phases forspinlesselectron systems, where, by defin
tion, the ferromagnetic spin polarized phases do not ex
Not surprisingly, the phase boundary~solid line! for spinless
fermions coincides with the phase boundary~squares! sepa-
rating the bilayer (S1) and the monolayer (A1) spin polar-
ized ferromagnetic phases because the spin degree of
dom is frozen in the (S1, A1) spin polarized phases.

From Fig. 2 we conclude that within the restricted HF
any charge-transfer instability between bilayer and mo
layer phases~we emphasize that fractional layer and/or sp
occupancy states are not found to be ground states for
values ofn and d) in double-quantum-well systems mu
necessarily be preceded by a ferromagnetic phase trans
and the charge-transfer instability~the squares in Fig. 2! is
theS1→A1 transition. Inclusion of interlayer correlation an
tunneling effects should favor the bilayer phase over
monolayer phase, but our results show that, within the
stricted HFA, there is indeed a low-density bilayer-t
monolayer charge-transfer instability.

III. UNRESTRICTED HARTREE-FOCK THEORY

In this section, we study the double-layer spin-1/2 int
acting electron gas in the unrestricted HFA. We show t

FIG. 2. Phase diagram for the restricted Hartree-Fock the
The dotted line is ther s5d/a* line. The line with the three dots
and a dash is the phase boundary of Ref. 11. The solid line is
phase boundary for spinless fermions.r s51/a* (pn)1/2

55.737 593105/(n)1/2 for n in units of 1/cm2.
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the predicted bilayer-to-monolayer charge-transfer transi
at low electron densities~see the previous section! is an ar-
tifact of the restricted HFA resulting from treating the lay
index as a classical Ising-like variable. Treating the lay
degree of freedom in a fully quantum-mechanical fashi
we show in this section that, within the unrestricted HFA, t
charge-transferred monolayer states are energetically u
vorable under any condition. This generic conclusion rega
ing the nonexistence of a charge-transfer instability is rig
ously true in the HFA.

For convenience, we adapt the pseudospin description7,8,19

for the layer degree of freedom, wheresz561 represent the
electronic states localized in the left or right layers, resp
tively, and sx561 represent the symmetric and antisym
metric states formed by the linear combinations of the left
right or sz561 eigenstates, respectively. In this languag
population of all the electrons in a single layer correspon
to the pseudospin polarization in theẑ direction, and popu-
lation of all the electrons in the symmetric state correspo
to the pseudospin polarization in thex̂ direction. Thus, these
two states~monolayer occupancy and symmetric state oc
pancy! are just pseudospin rotations of each other. In
HFA, the ground state of low-density electron systems te
to have complete spin and pseudospin polarizations in o
to optimize the exchange energy. Since the Hamiltonian
an electron gas is spin-rotationally invariant@SU~2! symme-
try#, the energy of the system does not depend on the or
tation of the spin polarization. The Hamiltonian of th
double-layer system is, however, pseudospin-depen
@U~1! symmetry#, so the energy depends on the orientation
the pseudospin polarization. As we will see shortly, the s
gested bilayer-to-monolayer charge-transfer instability is
artifact arising from the classical restriction of the pse
dospin polarization to theẑ direction. The pseudospin rotate
sx-polarized state necessarily has a lower energy than
monolayer occupancysz-polarized state because there is
Hartree energy cost associated with charge transfer in
sx-polarized state.

To study the dependence of the ground-state propertie
the orientation of the pseudospin polarization, we define
following orthonormal base in the pseudospin space:

uj&5auL&1buR&,

u j̄&5buL&2auR&, ~6!

where uL& and uR& represent thesz561 electronic states
localized in the left and right layers, respectively,a andb,
with uau21ubu251, are the pseudospin rotation paramet
determining a direction in the pseudospin space. Becaus
the symmetry of the system, we need only to consider
case where botha and b are real numbers with
1>a>b>0. Our unrestricted HFA consists of doing th
energy minimization witha, b as free parameters~with the
constraintuau21ubu251) whereas the earlier restricted HF
~Sec. II! made the specific choice ofa/b51/0 ~or 0/1).

We will examine the dependence of the HFA energy
the electron gas on the orientation of the pseudospin po
ization, and compare it to that of an unpolarized~i.e., bi-
layer! state. For definiteness, we assume that there is no
terlayer tunneling, since the effect of the interlayer tunnel

y.

he
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is always to oppose the charge-transfer instability. T
ground state of the spin and pseudospin unpolarized p
~the S0 phase of Sec. II! is given by uS0&
5PkCkj↑

† Ckj↓
† Ck j̄ ↑

†
Ck j̄ ↓
† u0&, whereCkjs

† (Ckjs) is the cre-
ation ~annihilation! operator for an electron with momentu
k, pseudospinj, and spins, andu0& is the vacuum state. Th
corresponding HFA energy of the electron gas is

ES0
HF5S 1r s2 2

8A2
3pr s

D ne2a*
, ~7!

where r s is related to the electron density throug
n51/(pa* 2r s

2). The ground state of the spin polarized b
pseudospin unpolarized phase~the S1 phase! is given by
uS1&5PkCkj↑

† Ck j̄ ↑
† u0&. The corresponding HFA energy o

the electron gas is

ES1
HF5S 2r s2 2

16

3pr s
Dne2a*

. ~8!

The ground state of the spin and pseudospin polarized p
is given by uPj&5PkCkj↑

† u0&. The corresponding HFA en
ergy of the electron gas is

EPj

HF~a,b!5F 4r s2 1
2d~a22b2!2

ars
2 1a2b2@ I ~0,r s!

2I ~d,r s!#Gne2a*
, ~9!

where

I ~d,r s!5
4a*

dp E
0

1

dx xE
0

p

du@1

2e22A2d/a* r s~A12x2sin2u2x cosu!#. ~10!

.
As shown in Eq.~9!, the energy of the spin and pse

dospin polarized state explicitly depends on the orienta
of the pseudospin polarization because the Coulomb inte
tion is layer index dependent. It is straightforward to sh
that the minimum ofEPj

HF(a,b) occurs whena5b51/A2,
i.e., when all the electrons reside in the symmetric state,
the maximum ofEPj

HF(a,b) occurs whena51 andb50,

i.e., when all the electrons reside in a single layer. Thus
the pseudospin space the monolayer occupancy phase
fact, an energy maximum for the possible pseudospin po
ized states of the system. While both the symmetric state
the monolayer state optimize the exchange interaction en
by having complete pseudospin polarization, the symme
state has on the average equal electron densities in the
layers and hence pays no cost in the static charging en
~the Hartree energy!. The optimization of the exchange en
ergy due to the pseudospin polarization is somewhat large
the monolayer state than in the symmetric state because
intralayer Coulomb interaction is larger than the interlay
Coulomb interaction, but this difference is small compar
with the Hartree energy cost for any values of the layer se
ration and electron density. Hence, the symme
(sx-polarized! state is always energetically favored over t
e
se

t

se

n
c-

d

in
, in
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gy
ic
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gy
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the
r
d
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c

monolayer (sz-polarized! state. Note, however, that if th
electrons were not charged objects so that there was no C
lomb charging energy involved in the charge-transfer ins
bility, then exchange energy by itself is better optimized
thesz polarization and the monolayer state would be sta
at low density.

In Fig. 3, we show the calculated HFA energies of t
double-layer spin-12 interacting electron gas in the spin an
pseudospin unpolarized state (ES0

HF), in the spin polarized but

FIG. 3. The Hartree-Fock energies of a double-layer spin-1
2 in-

teracting electron gas in the totally unpolarized state (ES0
HF), in the

spin polarized but pseudospin unpolarized state (ES1
HF), in the spin

polarized symmetric state (ESP-SY
HF ), and in the spin polarized mono

layer state (ESP-MO
HF ) at different electron densities:~a! r s5(2)1/2;

~b! r s52(2)1/2; ~c! r s54(2)1/2.
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pseudospin unpolarized state (ES1
HF), in the spin polarized

symmetric state@ESP-SY
HF 5EPj

HF(1/A2,1/A2)#, and in the spin

polarized monolayer state@ESP-MO
HF 5EPj

HF(1,0)# as functions

of the layer separationd at different electron densities. A
mentioned above,ESP-MO

HF is always larger thanESP-SY
HF ,

hence, the bilayer-to-monolayer charge-transfer transi
can never occur under any conditions. In the HFA, the en
gies of the pseudospin unpolarized states are indepen
of the layer separation because there is no interlayer d
or exchange interaction. On the other hand, the ener
of the pseudospin polarized states are monotonically incr
ing functions of the layer separation. The ground state
the spin-12 double-layer system is found to be the sp
and pseudospin unpolarized~paramagnetic bilayer! state
at high electron densities, the spin polarized but pseudo
unpolarized~ferromagnetic bilayer! state at intermediate den
sities, and the spin polarized symmetric~ferromagnetic
sx-pseudospin-polarized! state at low densities. The calcu
lated unrestricted HFA phase digram is shown in Fig.
There are three stable phases: the spin and pseudospin
larized phase (S0 phase!, the spin polarized but pseudosp
unpolarized phase (S1 phase!, and the new spontaneous
interlayer phase-coherent spin polarized symmetric ph
~SP-SY phase!. This phase diagram is similar to that of Fi
2, except for one fundamental difference—the phase wh
exists at low densities and small layer separations in Fig.
not the charge-transferred monolayer phase, but
pseudospin-rotated spin polarized symmetric phase w
electrons on the average equally populate both layers. In
sion of interlayer tunneling further reduces the energy of
SP-SY phase, making it even more energetically favo
over the monolayerA1 phase. The spin polarization trans
tion S0→S1 is not affected by tunneling since the tunnelin
Hamiltonian is spin independent.

Our focus here is on the interesting spontaneous interla
phase-coherent transition even in the absence of any tun
ing energy. We emphasize that the transition from theS1

FIG. 4. Phase diagram of a double-layer spin-1
2 interacting elec-

tron gas in the Hartree-Fock approximation. There are three st
phases: the totally unpolarized phase (S0 phase!, the spin polarized
but pseudospin unpolarized phase (S1 phase!, and the spin polarized
symmetric phase~SP-SY phase!. The charge transferred monolay
phase (A0 or A1 of Fig. 1! is not found to be a stable phase for a
values of (r s ,d).
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phase to the SP-SY phase in Fig. 4 is a true phase trans
involving the spontaneous breaking of the pseudospin s
metry because it happenseven in the absence of any inte
layer tunneling. Without any interlayer tunneling~i.e., no
spatial wave function overlap between the layers! the layer
index is conserved in the Hamiltonian, and therefore
symmetric state, which is the even linear combination of
uL,R& eigenstates, cannot be an eigenstate of the Ha
tonian unless there is a spontaneous breaking of the l
symmetry. An equivalent statement is that in the absenc
tunneling one expects the ground state to be an eigensta
the z component of pseudospinsz , not an eigenstate ofsx
as the symmetric state is. This is simply because the sys
Hamiltonian commutes~does not commute! with the sz
(sx) operator. In the presence of wave-function overlap~i.e.,
when interlayer tunneling is allowed! between the layers, the
symmetric state is an allowed eigenstate of the system an
trivially the ground state of the noninteracting doubl
quantum-well structure. What is extremely interesting is o
finding that even in the strict absence of interlayer tunneli
exchange interaction can drive the ground state of the sys
into the symmetric state~i.e., an eigenstate ofsx) at low
electron densities. This is a surprising result because in
absence of tunneling all the terms in the Hamiltonian~the
two-dimensional intralayer kinetic energy and the Coulom
interaction! conserve the layer index of an electron where
the symmetry broken ground state turns out to be a cohe
superposition of the electron being in the left and the rig
well state. In the strict absence of any tunneling, the lo
density SP-SY phase of Fig. 4 is an example of spontane
interlayer phase coherence.8 We note that the layer density i
not a good quantum number in the SP-SY phase even tho
there is no interlayer tunneling in the system. Thus the U~1!
symmetry of the double-quantum-well Hamiltonian~without
any tunneling! is broken spontaneously in the SP-SY pha
While being extremely interesting theoretically, the practic
aspects of this spontaneous rotation in pseudospin s
~from an eigenstate ofsz to a symmetry-broken eigenstate
sx) remain unclear because in the presence of any fi
tunneling, the system should indeed be an eigenstate
sx . It is certainly possible to make double-quantum-w
samples of highr s and low d, which also have negligible
interlayer tunneling~by having a very high potential barrie
between the two layers!. Our prediction is that such a sys
tem, if it is indeed in the SP-SY phase of Fig. 4, wou
behave as if it is in the~tunneling induced! symmetric state
even though the actual tunneling matrix element is zero. T
situation is analogous to a quantum Hall system8 at the filling
factor of 1, where it is believed that even in the absence
any Zeeman splitting there will be a spontaneous exchan
driven spin polarization transition. In our case, we have
spontaneous exchange-driven pseudospin polarization.

IV. LOCAL-DENSITY APPROXIMATION

There have been several recent experimental studies15–17

searching for the charge-transfer instability. All these stud
involve applying an external electric field~along thez direc-
tion! to continuously tune electron densities and then to m
sure layer electron densities via SdH oscillations. The exp
mental work involves15–17 a GaAs-Alx Ga12xAs double-
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quantum-well structure~with an AlAs barrier layer! with an
applied bias voltage between a front gate and the quan
wells. The action of this gate is to produce an electric fi
that is external to the device and to draw electrons from
quantum wells, thereby lowering the total electron density
the system. We study this system in the presence of an
ternal electric field~and also in zero external field! using
both the self-consistent local-density approximation~LDA !
and the self-consistent local-spin-density approximat
~LSDA! to determine the electron density in each well
well as the polarization state of the electron gas in each w
which can then be compared with the experimental resu

The basic idea behind the LDA for the spin unpolariz
case is to self-consistently solve the coupled Poisson e
tion and the one-dimensional Schro¨dinger-like Kohn-Sham
equation20 in order to obtain the ground-state electron de
sity of the quantum well. The LSDA is used to explore t
possibility of a spontaneous spin polarization transition
the system. The LSDA is similar in spirit21,22 to the afore-
mentioned LDA. The major differences are that there are
Kohn-Sham equations~one for each spin component! that
need to be solved in LSDA and that the exchange-correla
potential now depends22 on both the electron density and th
spin polarization of the electron gas. For the exchan
correlation potentials, we use the parametrization of Cep
ley and Alder21 for spin unpolarized or completely polarize
and an interpolation formula due to von Barth and Hedi22

for partial polarizations. Details of LDA~Ref. 18! and LSDA
~Ref. 23! calculations for double-layer systems can be fou
in the literature.

Because the spin polarization of the final state can
affected by numerical inaccuracies, we perform the calcu
tion using two very different initial values of polarization
One choice is a starting polarization that is small (10%) a
the other is a starting polarization that is large~90%!. If both
choices lead to a polarized final state, then we say that s
is polarized. If only one choice~say the 90% initial polariza-
tion! leads to a polarized final state, then we assume tha
final result is affected by numerical inaccuracies and is
certain. We follow the procedure of Eisensteinet al.18 in
allowing for the interlayer charge transfer in the presence
the external bias voltage within the LDA and LSDA. Th
external electric field is generated by adding additio
charge to the topmost donor impurity sheet while mainta
ing overall charge neutrality between the donor sheets
the quantum wells.

We reproduce the results of Yinget al.16 for two different
double-quantum-well structures in the presence of an ex
nal electric field in Figs. 5~a!, 5~b!, and 5~c! finding good
quantitative agreement between their results and ours
Figs. 5~a! and 5~b! we calculate the front and back laye
densities within the Hartree approximation~dashed line! and
the LDA ~solid line!. The linear behavior of the electro
densities within the Hartree approximation is expected as
electrons in the front layer attempt to screen the electron
the back layer from the electric field. However, within th
LDA, the density of the front layer decreases more quic
than in the Hartree approximation and the back layer den
actually increases with increasing electric field. In Fig. 5~c!,
we show the results of the LSDA~three dots and a dash!
showing that even with the possibility of spin polarize
m
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FIG. 5. ~a! Plot of layer electron density versus total electr
density for a double-quantum-well structure from Ref. 16 with
barrier width of 14 Å and well widths of 180 Å. The dashed line
the Hartree approximation. The solid line is the LDA.~b! Plot of
layer electron density versus total electron density for a dou
quantum-well structure from Ref. 16 with a barrier width of 70
and well widths of 150 Å. The dashed line is the Hartree appro
mation. The solid line is the LDA.~c! Plot of layer electron density
versus total electron density for the double-quantum-well struc
in ~b!. The dashed line is the Hartree approximation. The solid l
is the LDA calculation. The line with three dots and a dash is
LSDA calculation.
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states, the density of the back layer increases. This incr
in the back layer density is a manifestation of the exchan
correlation induced ‘‘negative compressibility’’ effect,18

which leads to a nonlinear layer depopulation in the exter
voltage.

We also perform the LSDA calculation on the sam
double-quantum-well structure as in Fig. 5~c! without an ex-
ternal electric field to calculate the ground-state phase
gram of the system. Our phase diagram, in electron den
layer separation space shown in Fig. 6, indicates that as
total density of the system is decreased, charge is not tr
ferred from one well to the other, but instead, we find s
polarized ferromagnetic states~ourS1 states of Fig. 2! for the
electron gas in both wells. This establishes that altho
there is a net interlayer charge transferin the presence of an
external electric field, it is not the exchange-driven spont
neous bilayer-to-monolayer charge-transfer instability. W
note that our LSDA phase diagram shown in Fig. 6 is qu
tatively similar to the HFA phase diagram~e.g., Fig. 2! with
two important differences:~i! The monolayer phases are n
present, and~ii ! the ferromagnetic transition occurs at
somewhat higher~lower! r s ~density! value, which is ex-
pected because the realistic LSDA calculation includes
fects of finite well widths, etc., and includes correlation e
fects.

Our LDA and LSDA calculations establish that the exte
nal electric-field-induced interlayer charge-transfer exp
ments can be quantitatively understood as ‘‘negat
compressibility’’18 effects. This point, in fact, has alread
been made in some of the experimental publications16,17

where good agreement between the experimental data
the LDA calculations was shown to exist. Our predict
LSDA calculation based ferromagnetic spin polarizati
transition~Fig. 6! should occur at substantially lower dens
ties than the experimental densities utilized in the exist
literature.15–17Our predicted densities for the spin polariz
tion transition in semiconductor double-well systems shou
however, be accessible, particularly in hole-doped sample24

FIG. 6. Phase diagram of the double-quantum-well structur
Fig. 5~b! within the LSDA without an external electric field. Th
lower ~upper! line corresponds to an initial spin polarization
10% (90%) in the LSDA calculation. The region between the
two lines is comprised of points for which the final spin polarizati
is dependent on the initial spin polarization used in the LSDA c
culation.
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where large effectiver s (>25) values have been recent
achieved experimentally.

We emphasize that the experimental measurements
ried out in the presence of an external electric field have li
to do with the theoretical issue of a bilayer-to-monolay
charge-transfer instability because the application of the
ternal electric field necessarily destroys the layer symme
in the problem and the issue of a spontaneous symme
breaking~phase! transition or exchange instability become
irrelevant. The situation is analogous~but not identical! to a
magnetic transition in the presence of an external magn
field, which is not a phase transition in any sense beca
there is an applied symmetry-breaking field. As mention
before, the depopulation of subbands in the presence o
applied gate voltage is nonlinear due to exchange-correla
effects, and the so-called18 exchange-correlation induce
‘‘negative compressibility’’ effect is the cause of the ‘‘unex
pected’’ bump seen in the experimental results~see our Fig.
5 and Refs. 15–17!, which is quantitatively explained by th
LDA/LSDA calculations.

V. CONCLUSION

We have obtained four theoretical results in this pape
~i! We have shown that there cannot be any exchan

driven bilayer-to-monolayer charge-transfer instability
semiconductor double-quantum-well systems.

~ii ! We have shown, within a mean-field HFA and al
within a self-consistent LSDA theory, that there could be
ferromagnetic spin polarization transition in a doub
quantum-well system at low~but accessible! densities.

~iii ! We have shown that within a mean-field unrestrict
HFA there is a quantum phase transition in a doub
quantum-well system from a~spin polarized! bilayer state to
a ~spin polarized! interlayer phase-coherent symmetric sta
at low electron densities even in the absence of any interla
electron tunneling—in the symmetric state the electron d
sity in each layer develops spontaneous quantum fluctuat
even though there is no overlap between the layer wave fu
tions in the absence of tunneling.

~iv! We have shown that the experiment
measurements15–17 of layer or subband charge densities
double-quantum-well systems as a function of an app
external electric field can be understood quantitatively on
basis of LDA/LSDA calculations as arising from the two
dimensional ‘‘negative compressibility ’’ effect.

Of these four results, obviously the most interesting
the results~ii ! and ~iii ! above, both of which are based o
reasonable but approximate theories. Our HFA phase
grams invariably show low-density ferromagnetic phas
where the electrons in each layer undergo a complete
polarization transition. Our numerical LSDA calculatio
~Fig. 6! also finds the same result. While it is certainly po
sible ~may even be likely! that our mean-field theory overes
timates the density at which the ferromagnetic transition
curs, we believe that at high~low! enoughr s ~density! the
semiconductor double-quantum-well system does underg
spin polarization transition. It would be difficult experimen
tally to directly observe this ferromagnetic transition becau
the actual spontaneous electronic magnetic moment as
ated with the spin polarized two-dimensional electrons
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rather small, and would be difficult to measure because
the large~orders of magnitude larger! background effect aris
ing from the lattice. For the same reason, standard ther
dynamic measurements~e.g., heat capacity! of the ferromag-
netic phase transition may also be impossible. O
possibility is to measure the two-dimensional Fermi mom
tumkF in each layer, which will exhibit a jump by a factor o
A2 at the ferromagnetic transition. Transport measurem
~in individual layers or in interlayer drag experiments! may
be useful in this respect because, in principle, su
measurements24,25 are capable of indirectly measuringkF .
We believe transport24,25 and capacitance18 spectroscopies
should show observable structures at the spin polariza
transition in density sweep experiments.

Our most interesting theoretical finding is the possibil
of a low-density quantum phase transition from a bilay
state to a coherent interlayer symmetric state~cf. Fig. 4!,
which happens even in the absence of any interlayer tun
ing. Within the HFA we believe the existence of this pha
transition to be rigorous. We speculate that this phase t
sition would exist even when correlation effects are includ
in the theory because correlation should affect the bila
and the symmetric phase more or less equivalently. W
being very interesting theoretically in its own right, a defin
tive experimental observation of this exchange-driv
bilayer-to-symmetric phase transition~cf. Fig. 4! in semicon-
ductor double-quantum-well systems would be difficult fo
number of reasons. First, very low electron density (;109

cm22) and low disorder double-quantum-well samples w
be needed with rather large AlAs potential barriers to s
press tunneling. This is currently beyond the reach of M
growth techniques for electron doped samples. It is, ho
ever, possible to makep-doped hole samples with very larg
effectiver s (*25) values,24 which may be more suitable fo
observing our predicted spontaneous phase-coherent tr
tion. Even if the desired samples are produced, few exp
ments~short of actual thermodynamic measurements wh
can look at specific heat anomalies at the phase transi!
can actually distinguish between bilayer and symme
states, because both states have the sameaveragelayer elec-
tron densities — in one case~bilayer! the layer electron den
sity is an exact quantum number with no fluctuations wh
in the other case~symmetric! the layer electron density ha
quantum fluctuations and is not conserved. It seems tha
interesting quantum phase transition shown in Fig. 4 m
ys
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remain only a tantalizing theoretical possibility in the ne
future.

A natural question arises about the nature of the quan
phase transition involved in the spontaneous breaking of
U~1! pseudospin symmetry in going from the bilayerS1
phase to the interlayer phase-coherent SP-SY phase in F
Note that a similar phase transition has earlier been discu
in the literature8 in the context of the quantum Hall effec
phenomena in bilayer systems, where it has been argued
the U~1! symmetry of a double-quantum-well system in t
absence of tunneling is spontaneously broken at a Lan
level filling factor of 1~and possibly at other filling factors a
well!. We find that there is nothing special about the qua
tum Hall situation in this context, and in fact as we show
this paper, a zero field exchange-induced spontaneous br
ing of the U~1! symmetry is indeed possible at low densitie
The theoretical phase diagram~Fig. 4! in the zero field situ-
ation is, in fact, richer because there are two tuning para
eters (r s andd) controlling the phase transition~whereas in
the quantum Hall cased is the only tuning parameter!. Ex-
perimentally, of course, the situation is much more eas
realized in the quantum Hall situation because it is mu
easier to obtain a Landau level filling factor of 1 than anr s of
10. We speculate26 that the nature of the U~1! pseudospin-
symmetry-breaking phase transition in the zero magn
field case is similar to that in the finite field quantum Ha
situation,8 even though further investigation of this issue
the zero field case is clearly warranted. While all t
implications26 of such a transition in our zero field case st
remain to be worked out, it is likely that there is~at least the
possibility of! an interesting finite temperature transition.
this context it may be worthwhile to point out that spontan
ous interlayer phase coherence has been argued27 to lead to
interesting and observable effects in interlayer dr
experiments.25We believe that such effects27 would show up
in the SP-SY phase as well and may be a way of identify
the new phase. More work is clearly needed in establish
the properties of the SP-SY phase and in elucidating
nature of the U~1! pseudospin-symmetry-breaking pha
transition.
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5R. Côté, L. Brey, and A. H. MacDonald, Phys. Rev. B46, 10 239

~1992!.
6X. M. Chen and J. J. Quinn, Phys. Rev. B45, 11 054~1992!.
7A. H. MacDonald, P. M. Platzman, and G. S. Boebinger, Ph
Rev. Lett. 65, 755 ~1990!.

8K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L.
.

Zheng, D. Yoshioka, and S. C. Zhang, Phys. Rev. B51, 5138
~1995!; S. M. Girvin and A. H. MacDonald, inPerspectives in
Quantum Hall Effects: Novel Quantum Liquids in Low
Dimensional Semiconductor Structures,edited by S. Das Sarma
and A. Pinczuk ~Wiley, New York, 1996!, and references
therein.

9Lian Zheng and H. A. Fertig, Phys. Rev. B52, 12 282~1995!.
10A. H. MacDonald, Phys. Rev. B37, 4792~1988!.
11P. Paul Ruden and Zhiqiang Wu, Appl. Phys. Lett.59, 2165

~1991!.
12S. Datta, Phys. Lett.103A, 381 ~1984!.
13L. Swierkowski, D. Neilson, and J. Szymanski, Phys. Rev. Le



d

u

an

y

.
ys

v. B

r,

litz-
ture
de-
-
ve-
ase
tu-

55 4515EXCHANGE INSTABILITIES IN SEMICONDUCTOR . . .
67, 240 ~1991!; D. Neilson, L. Swierkowski, J. Szymanski, an
L. Liu, ibid. 71, 4035~1993!.

14S. Das Sarma and P. I. Tamborenea, Phys. Rev. Lett.73, 1971
~1994!; R. J. Radtke and S. Das Sarma, Solid State Comm
96, 215 ~1995!; 98, 771 ~1996!.

15Y. Katayama, D. C. Tsui, H. C. Manoharan, and M. Shayeg
Surf. Sci. 305, 405 ~1994!; Y. Katayama, D. C. Tsui, H. C.
Manoharan, S. Parihar, and M. Shayegan, Phys. Rev. B52,
14 817~1995!.

16X. Ying, S. R. Parihar, H. C. Manoharan, and M. Shayegan, Ph
Rev. B52, R11 611~1995!.

17N. K. Patel, I. S. Millard, E. H. Linfield, P. D. Rose, M. P
Grimshaw, D. A. Ritchie, G. A. C. Jones, and M. Pepper, Ph
Rev. B53, 15 443~1996!.

18J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. B50,
1760 ~1994!.

19B. I. Halperin, Surf. Sci.305, 1 ~1994!.
20W. Kohn and L. J. Sham, Phys. Rev.140, A1133 ~1965!.
21D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 556 ~1980!.
22U. von Barth and L. Hedin, J. Phys. C5, 1629~1972!.
n.

,

s.

.

23R. J. Radtke, P. I. Tamborenea, and S. Das Sarma, Phys. Re
54, 13 832~1996!.

24U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev. Lett.68,
1196 ~1992!; A. R. Hamilton et al., Phys. Rev. B54, 5259
~1996!.

25T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffe
and K. W. West, Phys. Rev. Lett.66, 1216~1991!; Phys. Rev. B
47, 12 957~1993!.

26The spontaneous breaking of the U~1! symmetry in the SP-SY
phase corresponds to the classicalX-Y model. It is, therefore,
natural to speculate that there is a finite temperature Koster
Thouless transition in the SP-SY phase at a critical tempera
TKT , with interlayer phase coherence of the SP-SY phase
stroyed aboveTKT . Below TKT , the SP-SY phase should sup
port a Goldstone mode with vanishing energy at long wa
lengths. We believe that many details of our zero field ph
transition should correspond to the finite field quantum Hall si
ation discussed in Ref. 8.

27G. Vignale and A. H. MacDonald, Phys. Rev. Lett.76, 2786
~1996!.


