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Exchange instabilities in semiconductor double-quantum-well systems
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We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the
absence of any external magnetic field. We establish that there is no exchange-driven bilayer-to-monolayer
charge-transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock
approximation, the low-density stable phaseen in the absence of any interlayer tunnelirgga quantum
“pseudospin-rotated” spontaneous interlayer phase-coherent spin-polarized symmetric state rather than the
classical Ising-like charge-transfer phase. ThHa)lymmetry of the double-quantum-well system is broken
spontaneously at this low-density quantum phase transition, and the layer density develops quantum fluctua-
tions even in the absence of any interlayer tunneling. The phase diagram for the double-quantum-well system
is calculated in the carrier density-layer separation space, and the possibility of experimentally observing
various quantum phases is discussed. The situation in the presence of an external electric field is investigated
in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good
agreement with existing experimental results is obtaif86163-182807)06708-9

I. INTRODUCTION fecty because the ionized dopants are spatially separated
from the electron layer. Fourth, artificial structuring enables
Exchange-driven instabilities in an electron gas have beethe introduction of additional degrees of freedom into the
a subject of long-standing interésin condensed matter problem, e.g., separation between the layers in a bilayer sys-
physics dating back to 1929, when Bloch first pointed®out tem, which are not available in purely two- or three-
that a low-density free electron gas may undergo a spontatimensional electron systems, thus allowing the possibility
neous spin polarization transition to a ferromagnetic state byf further tuning interaction effects. Finally, and perhaps
virtue of the dominance of exchange energy over kinetic enmost importantly, the application of a strong external mag-
ergy at low enough electron density. A number of possiblenetic field perpendicular to the two-dimensional layer
exchange instabilities has been proposed and extensivetjuenches the kinetic energy of the system as the two-
studied theoreticallyin three-dimensional electron systems dimensional electron gas gets quantized into Landau levels,
including ferromagnetism, antiferromagnetism, and varioughereby increasing the importance of electron-electron inter-
spin and/or charge texture phases. It is, however, uncleaction effects. Because of these reasons, as well as the obvi-
whether any such exchange instability has ever been experdus reason of substantial experimental and technological rel-
mentally observed in a three-dimensional free-electron-likeevance, there has been a great deal of recent interest in the
system. One problem is that the available three-dimensionglossibility of interaction(i.e., exchange-correlatipinduced
free-electron systems, namely alkali metals, have reasonab@xchange instabilities in two-dimensional systems. While
high effective electron densities, making the normal paramuch of this recent activify*°focuses on the situation in the
magnetic ground state energetically stable and exchangwesence of an external magnetic field, there has also been
instabilities unlikely* Recent interest in this subject has considerable interé$t*’ in the possibility of exchange in-
focused on the possibility of exchange instabilities instabilities in two-dimensional electron gases in the absence
two-dimensional electron systems as occurring in artifi-of any external magnetic fields. In this paper we theoretically
cially structured semiconductor quantum wells, heterostrucinvestigate a specific zero magnetic field exchange instabil-
tures, and superlattices. These two-dimensional electron sy#y, namely a charge-transfer instability, which has been pre-
tems, particularly the ones existing in modulation-dopeddicted to occur in semiconductor double-quantum-well
GaAs- ALGa,_,As nanostructures, offer several advantagessystem&”11>~7under suitable conditions.
over three-dimensional electron systefagy., metals, doped The basic issue we study is quite simple. Consider
bulk semiconductolsin terms of a systematic study of a semiconductor double-quantum-well structuie.g.,
exchange-correlation effects. First, lower dimensionalityAl,Ga ,As-GaAs-Al,Ga; (As-GaAs-Al,Ga; ,As  sys-
typically enhances interaction effects, making exchange intem) at zero temperature, which has been modulation doped
stabilities more likely in two-dimensional electron systems.to produce a bilayer two-dimensional electron systemnthe
Second, the electron density can be varied ¢aknos) two  Xx-y plane with a layer separatiod (in the z direction and
orders of magnitude in modulation-doped two-dimensionah total two-dimensional electron densityn2(per unit area
systems (either by varying the modulation doping level Simple electrostatic considerations imply that the equilib-
and/or by using suitable gajeshereby enabling one to tune rium situation, which minimizes the Coulomb energy, is a
the relative magnitude of exchange-correlation effectsclassically symmetric situation with each quantum well
Third, these artificially structured two-dimensional systemsequally populated with an electron density(Quantum Kki-
can be made ultrapurésubstantially reducing disorder ef- netic energy is also minimized by having equal populations
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of both layers, as this leads to a lower Fermi energy. Thus
the naive expectatiofwhich, as we shall prove in this paper, /]\\L /]\\L
turns out to be correct in this cgsés that the double- A) State S,
guantum-well system prefers a bilayer electron gas with each
layer equally populated with electrons. It has, however, been
pointed out®! that this simple picture may break down at
low density and small interlayer separation where there
could be a zero-temperatufguantum phase transition from /]V]\ \L\L
a bilaye_r toa monolaye_r system dri\_/en entirely by exchange- B) State S, PN
correlation effects. This low-density bilayer-to-monolayer
phase transitiott is, in fact, an exchange instability where at '
some low values ofi there is predicted to be a spontaneous
charge transfer from one layer to another, resulting in a
symmetry-broken monolayer phase where, instead of a bi- /]\\L
layer electron system with each layer having an electron den-
sity of n, all the electrons reside in one layer with an electron C) State &,
density of . This transition is similar to the exchange-
driven ferromagnetic spin polarization transition. This con-
clusion on the existence of a charge-transfer instability in a
double-quantum-well system was reached in Ref. 11 by con-
sidering the competition among the kinetic energy, the Cou- ’]Vr
lomb (Hartreg charging energy, and the exchange energy.
. . . . . D) State A, s
Our goal is to investigate the problem in the unrestricted P
Hartree-Fock approximatio(HFA) by treating the layer in- R
dex as a fully quantum-mechanical variable. We conclude
that there can be no exchange-driven charge-transfer insta-
bility in a semiconductor quantum-well system under any FIG. 1. The definitions of the four phaseS;, S;, Ao, and
conditions. The suggested charge-transfer instability is a fead; used in the mean-field phase diagrams.
ture of the restricted HFA where the layer index is treated as
a classical Ising-like variable. In the more general unre-bereven in the absence of interlayer tunnelengd explicitly
stricted HFA, there is an exchange-driven instability towardsnclude quantum fluctuations in the layer density by consid-
a transition to a low-density symmetric phase rather than thering symmetric quantum states which are linear superposi-
monolayer phase. tions of electron states confined to different layers. Such a
A related issue we investigate connects with the recentpseudospin-rotated” quantum state, which involves no
experimental sear¢h '’ to observe the predicted charge- charge transfer, is shown to always have a lower energy than
transfer instability with some of the papétseporting ex- the monolayer charge-transfer phase, establishing unambigu-
perimental support for an abrupt double-to-single-layer tranously that the monolayer phaseriet energetically stable in
siton in a double-quantum-well structure. Thesethe HFA. In Sec. IV we consider the recent “charge-
experimental studies involve measurements of layer electrotransfer” experiments in double-quantum-well systems in
densities[via low field Shubnikov—de Haa&SdH) oscilla-  the presence of external electric fields, obtaining quantitative
tions] in a double-quantum-well systeomder the applica- agreement between measured electron densities and self-
tion of an external electric fieldThe applied electric field consistent spin polarized local-density calculations. We con-
explicitly breaks the layer symmetry in the problem, and theclude with a discussion in Sec. V.
observed nonlinearity=’in the layer depopulation is a di-
rect manifesta_tion of the so_-c_a_llled exchange-correlation in- || RESTRICTED HARTREE-FOCK APPROXIMATION
duced “negative compressibility” effe¢t We study the
layer or subband electron densities in the GaAs double- Consider a double-quantum-well system where each elec-
guantum-well structures in the presence of an applied electritton is in spin up or down and in layer lefor layer 1 or
field within the self-consistent spin polarized local-densityright (or layer 2 stateg(Fig. 1). In this system there are four
approximation, obtaining excellent agreement with the existpossible(completely polarized or unpolarizeghases which
ing experimental measurements!’ The same self- are denoted, (equal population of both layer and spin com-
consistent approximation is used to calculate the phase digponents: the normal bilayer paramagnetic phaSe (equal
gram of the double-quantum-well system in the absence gbopulation of both layers, but the electrons are spin polarized
any external electric field and no stable monolayer electroni@n each layer: the bilayer ferromagnetic phask, (equal
phase is found. population of each spin component, but all the electrons are
The rest of this paper is organized as follows. In Sec. llin a single layer: the monolayer paramagnetic phaaed
we investigate the phase diagram of a double-quantum-wel; (the electrons are spin polarized and reside only in one
structure in the electron densitynY—layer separationd) layer: the monolayer ferromagnetic phasEarlier work?
space within the restricted HFA including effects of electrondid not explicitly consider the possibility of an exchange-
spin. In Sec. Il we allow for the possibility that the layer driven spin polarization transitioficonsidering only para-
electron density is not required to be a good quantum nummagnetic phases with equal populations of both up and down
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sping and therefore included only the possibility 8§ and For the statédy, n;=0, n,=2n, andm;=m,=0,

Ao phases in their restricted HFA of double-quantum-well 5
charge-transfer instability. The fundamental principle under- EHF— 2 16 +ﬂ£ en (4
lying the exchange instability is that exchange interaction rg 3nrg)  a r§ 2a* "’

prefers a spatially antisymmetric wave function which, by

keeping the electrons away from each other, optimizes the For the statéA,, n;=0, n,=2n, m;=0, andm,=1,
interaction energy. This can be accomplished equally effec-

tively by having a symmetric spin stafee., a spin polarized EHF— i _ % . ﬂ i ez_n 5
ferromagnetic stajeand/or by having a symmetric layer state 1%\ r2 3 a r2j2a*’ )

(i.e., a monolayer statewhich will necessarily imply that o
the spatial part of the wave function is antisymmetric. Thus)n Eds.(4) and(5), a= kparie@™/ « is different froma* be-
exchange should lead to a spin polarization ferromagneti€8USe Kyel=Kaas? Kbarrie™ KAl Ga,_,As 1N the double-
transition in each layer as much as the bilayer-to-monolayequantum-well system(The quantitative correction arising
transition. In fact, the exchange-driven intralayer ferromagfrom this difference is very small since* =98.3 A and
netic transition §,—S;) is more likely than the bilayer-to- a=95.6 A)
monolayer transitiong,— A,) because there is no Coulomb  Before presenting our results, we make some brief re-
Hartree energy to overcome in the spin polarization transimarks about Eqs.1)—(5). First, we note that there is some
tion. With this introduction to the possible spin and layerarbitrariness in our definitions of the symmetry-broken
phases of the double-quantum-well system, we discuss thghasesS;, A,, and A;. In particular, each spin polarized
HFA to the ground-state energy including only kinetic, ex-phase 8,,A,) is characterized bym|=1, and therefore we
change, and Hartree energy contributions. Following Refscould choose, for example, f&;, m;=m,=1, and forA,,
10 and 11, we model each electron layer as a twom;=0,m,=—1. Itis obvious that this arbitrariness does not
dimensional sheet of zero thickness, which then allows for affect energetics and the calculated phase diagram, and is
simple analytic calculation of the ground-state HFA energyjust the usual arbitrariness of the order parameter in the bro-
per unit areaE"'F(n,d), as a function of the layer separation ken symmetry phase. Second, we point out that the symme-
d and the electron density. try broken phases S Ay, and A are completely spin
For a two-layer system with; andm; being, respectively, and/or layer polarized phases where the symmetry-broken
the electron density and the spin polarization index of layeorder parametersnf; ,n;) take on their maximungin magni-
i (i=1 or 2, the total energy per unit area within the HFA is tude values allowed(i.e., |m;|=1, |n;|=2n). In general,
[here m=(n;—n)/(n;+n)) is the spin polarization in a partial spin and/or layer polarization phases where, for ex-
particular layer, wittn, | being the number density of spin ample, [m;|#|m,| with |my|,[m,|#0 or |n;|#|n,| with
up (down) electrons in the layér Iny|, |n,|#0 are allowed, but our energetic calculations have
not found any of these partial polarization phases to be glo-

HF:ean 1+ mf_ 4.2 (14 my)®2+ (1= mp)®2] bal energy rr_1inima for any values oi-d parameters. We
2a* | 12 3mrg 1 1 therefore believe that within our model partial spin and/or
layer polarization phases are not stable ground states for any
e’n,(1+mi 4.2 3 3 values of the parameters. We obtain our restricted HFA
Yo |\ T2 3ar [(1+my)3%+ (1-my)3?) phase diagram by minimizing"F(m;,m,;n;,n,) with re-
sz 2 spect to the order parameters,(,m,;n,,n,) for each value
2me’d [n,—n; 2 of the system parameterd,f). Each @,n) point provides a
P ) : (1 unique set of fn;,m,;Nn;,n,) which minimizes the HFA en-

ergy, and thus a complete phase diagramdim] parameter
where rg=1/(a*J/7n;), with a*=«#%%m*e? where Space is obtained, as shown in Fig. 2.
k= (Kweit Knaried /2 is the lattice dielectric constant, as the In Fig. 2 we show the results of our simple HFA phase
effective Bohr radius for the double-quantum-well systemdiagram, which allows for only three phasgg, S;, and
Note that, in general, €n;<2n with the constraint A, With theA, phasenotstable at any values of the system
n,+n,=2n, and O<|m;|<1. The various contributions in Parameters. Our calculated phase boundigngles in Fig.
Eg. (1) for the HFA energy are the kinetic ener¢iie two ~ 2) between the high-densit§.e., low ry) paramagnetic bi-
terms involvingr ), the exchange energyhe two terms layer phase %) and the low-density ferromagnetic bilayer
involving r3 %), and the electrostatic Hartree Coulomb en-Phase &) occurs at a fixeds=2.011(by contrast, the cor-
ergy associated with charge transfte last term responding three-dimensional HFA ferromagn_etl_c |_nstab|I|ty
For the stateSy, n;=n,=n andm;=m,=0, occurs arr ;=5.45) for all values ofl because this is just the
two-dimensional HFA instability to the formation of a ferro-

1 82\ en magnetic phase irj which the Hartree energy QOes not play
EMF=2( - 301 257 (2)  any role(note that interlayer correlations are being neglected
s mhs) 2 in our approximatioh At still lower (highep density ()

there is a transitioifthe phase boundary marked by squares
from the bilayer ferromagnetic phasg,j to the monolayer
ferromagnetic phased}) in Fig. 2 — this transition moves
—. (3) to lower densitieghigherry) as the interlayer separati@h
2a increases because of the higher cost in Hartree energy. Also

For the stateS;, ny=n,=n andm;=—-m,=1,
2 16 \éen

HF _ =
E 2(r§ 37,
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the predicted bilayer-to-monolayer charge-transfer transition
at low electron densitieésee the previous sectipis an ar-
tifact of the restricted HFA resulting from treating the layer
index as a classical Ising-like variable. Treating the layer
degree of freedom in a fully quantum-mechanical fashion,
we show in this section that, within the unrestricted HFA, the
charge-transferred monolayer states are energetically unfa-
vorable under any condition. This generic conclusion regard-
ing the nonexistence of a charge-transfer instability is rigor-
ously true in the HFA.

For convenience, we adapt the pseudospin descriptith
for the layer degree of freedom, wharg= = 1 represent the
electronic states localized in the left or right layers, respec-
tively, and o,=*1 represent the symmetric and antisym-
metric states formed by the linear combinations of the left or
right or o0,= =1 eigenstates, respectively. In this language,
0 0.5 1.0 15 20 25 3.0 population of all the electrons in a single layer corresponds

d/ax to the pseudospin polarization in tizedirection, and popu-
lation of all the electrons in the symmetric state corresponds
FIG. 2. Phase diagram for the restricted Hartree-Fock theory,

The dotted line is the,=d/a* line. The line with the three dots to the pseudospin polarization in thedirection. T_hus, these
. SO0 R two stategmonolayer occupancy and symmetric state occu-
and a dash is the phase boundary of Ref. 11. The solid line is theancy are iust pbseudospin rotations of each other. In the
phase ~ boundary for spinless fermionsr,=1/a* ()" IF—)|FA the rjoundpstate ofplow—densit electron s sterﬁs tends
=5.737 59¢10°/(n)*2 for n in units of 1/cn?. »the g : Y | Ssystem:
to have complete spin and pseudospin polarizations in order
to optimize the exchange energy. Since the Hamiltonian of
an electron gas is spin-rotationally invarid®J(2) symme-
X : . . try], the energy of the system does not depend on the orien-
the regime of the average intralayer interelectron separatiofiion of the spin polarization. The Hamiltonian of the
(ie.,rs) bemg_ larger or smallefthe regime abov_e or below double-layer system is, however, pseudospin-dependent
the da;heq line th*an_ thg average mterlgyer mte_relect.ron[u(l) symmetry, so the energy depends on the orientation of
separatior(i.e., d/a*) in dimensionless units. The line with o pseudospin polarization. As we will see shortly, the sug-

three dots and a dash in Fig. 2 is the phase boundary betweglgteq pilayer-to-monolayer charge-transfer instability is an
the paramagnetic bilayer phageelow this ling and the  ;yitact arising from the classical restriction of the pseu-

paramagnetic monolayer phatabove this ling, which is dospin polarization to the direction. The pseudospin rotated

obtained if the spin polarization is ignored. We also show in larized v h | h h
Fig. 2 by a solid line the calculated phase boundary betweeffx Polarized state necessarily has a lower energy than the

the bilayer(below the ling and the monolayefabove the monolayer occupancyz-polarized st_ate because there i_s no
line) phases fospinlesselectron systems, where, by defini- Hartree energy cost associated with charge transfer in the
tion, the ferromagnetic spin polarized phases do not exis’x_Polarized state. .
Not surprisingly, the phase bounddspolid line) for spinless To ;tudy_the dependence of t.he groqnd—;tate propgrﬂes on
fermions coincides with the phase boundésyguares sepa- the or_|entat|on of the pseudpspm polarlzatlo_n, we deflne the
rating the bilayer §,) and the monolayerA;) spin polar- following orthonormal base in the pseudospin space:
ized ferromagnetic phases because the spin degree of free- 1&)=alL)+ B|R)
dom is frozen in the $;, A;) spin polarized phases. '
From Fig. 2 we conclude that within the restricted HFA rl
any charge-transfer instability between bilayer and mono- £)=BIL) -~ alR), 6)
layer phaseswe emphasize that fractional layer and/or spinwhere |L) and |R) represent ther,= =1 electronic states
occupancy states are not found to be ground states for anycalized in the left and right layers, respectively,and 3,
values ofn andd) in double-quantum-well systems must with |a|?+|B|?=1, are the pseudospin rotation parameters
necessarily be preceded by a ferromagnetic phase transitigztermining a direction in the pseudospin space. Because of
and the charge-transfer instabilihe squares in Fig.)2s  the symmetry of the system, we need only to consider the
the S;— A, transition. Inclusion of interlayer correlation and case where botha and B are real numbers with
tunneling effects should favor the bilayer phase over thej=,=g=0. Our unrestricted HFA consists of doing the
mOﬂOlayer phase, but our results show that, within the r9energy minimization withg, :8 as free parametel(svith the
stricted HFA, there is indeed a low-density bilayer-to- constraing«|2+|B|2=1) whereas the earlier restricted HFA

shown in Fig. 2 are three lines. The lowest littke dotted
line) is thers=d/a* line, which distinguishes approximately

monolayer charge-transfer instability. (Sec. 1) made the specific choice af/ 3= 1/0 (or 0/1).
We will examine the dependence of the HFA energy of
Ill. UNRESTRICTED HARTREE-FOCK THEORY the electron gas on the orientation of the pseudospin polar-

ization, and compare it to that of an unpolarizeée., bi-
In this section, we study the double-layer spin-1/2 inter-layen state. For definiteness, we assume that there is no in-
acting electron gas in the unrestricted HFA. We show thaterlayer tunneling, since the effect of the interlayer tunneling



4510 LIAN ZHENG, M. W. ORTALANO, AND S. DAS SARMA 55

is always to oppose the charge-transfer instability. The

ground state of the spin and pseudospin unpolarized phase
(the S phase of Sec. JI is given by |Sp)
=11,C},.C} lckﬁ k £110), where Cly, (Cieo) is the cre- ~
ation (annihilation operator for an electron with momentum {
k, pseudospirE, and spins, and|0) is the vacuum state. The v
corresponding HFA energy of the electron gas is £
B g0l .
ene_ (L 8\/— ne’ @ v,
So _2 37Tr '
where rg is related to the electron density through —0.5¢ . . Es 1
n=1/(ma*?r 2) The ground state of the spin polarized but 0 ) 4 6 8 10
pseudospin unpolarized phagthe S; phase is given by (a) d/a’
|Sl>=HkCl§TCl§|O>. The corresponding HFA energy of
the electron gas is 0.00F g "o B
2 16 \né
HF_ (2 —-0.10} ]
Es, (E Swrs) a* ® —~
o]
The ground state of the spin and pseudospin polarized phase E _0.20k 1
is given by|P§)=HkCE§T|O). The corresponding HFA en- £
ergy of the electron gas is % B
S,
-0.30
4 2d(a®—B?)?
Ep(a.f)=| 5+ +a”B[1(0ry) / z
s ars B,
-0.40 . l s ‘
ne? O 2 4 6 8 10
_I(d’rS)]}a_*’ 9 (b) d/a
where ' ' x v
4 a* 1 EHFSP—MO EHFSP*SY
_t i —0.15} 1
I(d,rg) P fo dxxf0 do[1
_e—z\s“id/a*rS(\l—xzsinza—xcow)]_ (10) % _o20t E";, ]
As shown in Eq.(9), the energy of the spin and pseu- B _posf E", -
dospin polarized state explicitly depends on the orientation
of the pseudospin polarization because the Coulomb interac-
tion is layer index dependent. It is straightforward to show -0.30f . . T
that the minimum OEE:(a,ﬁ) occurs whena=B=1/\/2, O 2 4 & B8 10
i.e., when all the electrons reside in the symmetric state, and () d/a’

the maximum ofE'Sg(a,B) occurs whena=1 and 8=0,

i.e., when all the electrons reside in a single layer. Thus, in FIG. 3. The Hartree-Fock energies of a double-layer gpin-

the pseudospin space the monolayer occupancy phase is, tgfacting electron gas in the totally unpolarized stﬁéﬁ in the
fact, an energy maximum for the possible pseudospin polarspin polarized but pseudospin unpolarized stﬁé':l in the spin
ized states of the system. While both the symmetric state angblarized symmetnc stateEfs <), and in the spin polanzed mono-
the monolayer state optimize the exchange interaction energyyer state ESp.0 at different electron densitiega) ro=(2)%3

by having complete pseudospin polarization, the symmetricb) r,=2(2)"% (c) rs=4(2)"2

state has on the average equal electron densities in the two

layers and hence pays no cost in the static charging energyonolayer ¢r,-polarized state. Note, however, that if the
(the Hartree energy The optimization of the exchange en- electrons were not charged objects so that there was no Cou-
ergy due to the pseudospin polarization is somewhat larger itomb charging energy involved in the charge-transfer insta-
the monolayer state than in the symmetric state because tlipdity, then exchange energy by itself is better optimized by
intralayer Coulomb interaction is larger than the interlayerthe o, polarization and the monolayer state would be stable
Coulomb interaction, but this difference is small comparedat low density.

with the Hartree energy cost for any values of the layer sepa- In Fig. 3, we show the calculated HFA energies of the
ration and electron density. Hence, the symmetricdouble-layer spirg interacting electron gas in the spin and
(oy-polarized state is always energetically favored over the pseudospin unpolarized staﬂégg), in the spin polarized but
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10 . . phase to the SP-SY phase in Fig. 4 is a true phase transition
involving the spontaneous breaking of the pseudospin sym-
sl SP—SY Phase i metry because it happemsen in the absence of any inter-
layer tunneling Without any interlayer tunnelingi.e., no
spatial wave function overlap between the layehe layer
index is conserved in the Hamiltonian, and therefore the
= symmetric state, which is the even linear combination of the
4r S, Phase ] IL,R) eigenstates, cannot be an eigenstate of the Hamil-
tonian unless there is a spontaneous breaking of the layer
2 symmetry. An equivalent statement is that in the absence of
S, Phase tunneling one expects the ground state to be an eigenstate of
0 L ‘ ‘ the z component of pseudospi®n,, not an eigenstate ofr,
0 1 5 3 as the symmetric state is. This is simply because the system
d/a" Hamiltonian commutegdoes not commujewith the o,
(o) operator. In the presence of wave-function ovefiap,

FIG. 4. Phase diagram of a double-layer séi'mteracting elec- when intgrlayer t}JnneIing Is alloyvébetween the layers, the .
tron gas in the Hartree-Fock approximation. There are three stab@'mmetr'c state is an allowed elgenstatg of the_system and is
phases: the totally unpolarized phaSs phase, the spin polarized tivially the ground state of the noninteracting double-
but pseudospin unpolarized phass phasg, and the spin polarized duantum-well structure. What is extremely interesting is our
symmetric phaséSP-SY phase The charge transferred monolayer finding that even in the strict absence of interlayer tunneling,
phase A, or A, of Fig. 1) is not found to be a stable phase for any €xchange interaction can drive the ground state of the system
values of ¢,,d). into the symmetric statéi.e., an eigenstate af,) at low

electron densities. This is a surprising result because in the

pseudospin unpolarized statégf), in the spin polarized @absence of tunneling all the terms in the Hamiltoniéme

. . . two-dimensional intralayer kinetic energy and the Coulomb
HF _ pHF
symmetric statg Esp.sy= EPg(ll\/z’l/\/E)]' and in the spin interaction conserve the layer index of an electron whereas

polarized monolayer stafeEgy o= EEE(l,O)] as functions the symmetry broken ground state turns out to be a coherent
of the layer separatiod at different electron densities. As superposition of the electron being in the left and the right
mentioned aboveERS,, is always larger thanEfh .,  Well state. In the strict absence of any tunneling, the low-
hence, the bilayer-to-monolayer charge-transfer transitio§l€nsity SP-SY phase of Fig. 4 is an example of spontaneous
can never occur under any conditions. In the HFA, the enerinterlayer phase coherent&Ve note that the layer density is
gies of the pseudospin unpolarized states are independef®t a good quantum number in the SP-SY phase even though
of the layer separation because there is no interlayer dire¢bere is no interlayer tunneling in the system. Thus tlig) U
or exchange interaction. On the other hand, the energieymmetry of the double-quantum-well Hamiltoniemithout
of the pseudospin polarized states are monotonically increagny tunneling is broken spontaneously in the SP-SY phase.
ing functions of the layer separation. The ground state ofVhile being extremely interesting theoretically, the practical
the spin double-layer system is found to be the spinaspects of this spontaneous rotation in pseudospin space
and pseudospin unpolarizegparamagnetic bilaygrstate  (from an eigenstate af, to a symmetry-broken eigenstate of
at high electron densities, the spin polarized but pseudospiary) remain unclear because in the presence of any finite
unpolarizedferromagnetic bilay@rstate at intermediate den- tunneling, the system should indeed be an eigenstate of
sities, and the spin polarized symmetriterromagnetic oy. It is certainly possible to make double-quantum-well
o,-pseudospin-polarizedstate at low densities. The calcu- samples of highrg and low d, which also have negligible
lated unrestricted HFA phase digram is shown in Fig. 4.interlayer tunnelingby having a very high potential barrier
There are three stable phases: the spin and pseudospin unpetween the two layeysOur prediction is that such a sys-
larized phase §, phasg, the spin polarized but pseudospin tem, if it is indeed in the SP-SY phase of Fig. 4, would
unpolarized phaseS; phasé¢, and the new spontaneously behave as if it is in thétunneling induceflsymmetric state
interlayer phase-coherent spin polarized symmetric phaseven though the actual tunneling matrix element is zero. The
(SP-SY phase This phase diagram is similar to that of Fig. Situation is analogous to a quantum Hall systathe filling
2, except for one fundamental difference—the phase whicifactor of 1, where it is believed that even in the absence of
exists at low densities and small layer separations in Fig. 4 igny Zeeman splitting there will be a spontaneous exchange-
not the charge-transferred monolayer phase, but thdriven spin polarization transition. In our case, we have a
pseudospin-rotated spin polarized symmetric phase whe@pontaneous exchange-driven pseudospin polarization.
electrons on the average equally populate both layers. Inclu-
sion of interlayer tun_neling further reduces the energy of the IV. LOCAL-DENSITY APPROXIMATION
SP-SY phase, making it even more energetically favored
over the monolayeA; phase. The spin polarization transi-  There have been several recent experimental sttdiés
tion Sy—S; is not affected by tunneling since the tunneling searching for the charge-transfer instability. All these studies
Hamiltonian is spin independent. involve applying an external electric fieldlong thez direc-

Our focus here is on the interesting spontaneous interlayeion) to continuously tune electron densities and then to mea-
phase-coherent transition even in the absence of any tunnedure layer electron densities via SdH oscillations. The experi-
ing energy. We emphasize that the transition from $¢ mental work involve®~'" a GaAs-Al, Ga;_,As double-
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guantum-well structuréwith an AlAs barrier layer with an

applied bias voltage between a front gate and the quantum 180 () ]

wells. The action of this gate is to produce an electric field g 140r ]

that is external to the device and to draw electrons from the Og 120k _ -

guantum wells, thereby lowering the total electron density of =] FoT T T

the system. We study this system in the presence of an ex- = 1007 ]

ternal electric field(and also in zero external fieldising % sol J |

both the self-consistent local-density approximatiibA ) b Vi

and the self-consistent local-spin-density approximation b} eor // ]

(LSDA) to determine the electron density in each well as < sof Y .

well as the polarization state of the electron gas in each well, Z' I 7 1

which can then be compared with the experimental results. i ]
The basic idea behind the LDA for the spin unpolarized ool /. . I

case is to self-consistently solve the coupled Poisson equa- 100 140 180 2200 =60 30.0

. . . e . Niotal (1010 Cm_z)
tion and the one-dimensional ScHinger-like Kohn-Sham

equatio® in order to obtain the ground-state electron den-
sity of the quantum well. The LSDA is used to explore the

possibility of a spontaneous spin polarization transition in 16:0 ' ' 4
the system. The LSDA is similar in spftt??to the afore- o taof ®
mentioned LDA. The major differences are that there are two § ok
Kohn-Sham equationtone for each spin compongnthat R -
need to be solved in LSDA and that the exchange-correlation = 100
potential now depend%on both the electron density and the z i
spin polarization of the electron gas. For the exchange- g o0 // ]
correlation potentials, we use the parametrization of Ceper- T eof Vi .
ley and Aldef* for spin unpolarized or completely polarized % Vs
and an interpolation formula due to von Barth and H&din o Ao L/ |
for partial polarizations. Details of LDARef. 18§ and LSDA = e0F
(Ref. 23 calculations for double-layer systems can be found 0.0 , . L
in the literature. 100 140 180 220 260 300
Because the spin polarization of the final state can be Niotar (10 cm™)
affected by numerical inaccuracies, we perform the calcula-
tion using two very different initial values of polarization.
One choice is a starting polarization that is small (10%) and 6.0 , , , , \
the other is a starting polarization that is 1a§€%. If both © .
choices lead to a polarized final state, then we say that state T sl / _
is polarized. If only one choicésay the 90% initial polariza- 5 7
tion) leads to a polarized final state, then we assume that the Epn / i
final result is affected by numerical inaccuracies and is un- > ST
certain. We follow the procedure of Eisensteshal® in N p |
allowing for the interlayer charge transfer in the presence of 5 Ve
the external bias voltage within the LDA and LSDA. The 5 ool //
external electric field is generated by adding additional g )
charge to the topmost donor impurity sheet while maintain- Lok s i
ing overall charge neutrality between the donor sheets and = /
the quantum wells. ool il
We reproduce the results of Yirgg al1® for two different 80 40 50 60 7.0 80 90 100

double-quantum-well structures in the presence of an exter- Niggat (10'° em™)
nal electric field in Figs. &), 5(b), and %c) finding good
guantitative agreement between their results and ours. In

Figs. 5a) and 5b) we calculate the front and back layer FIG. 5. (a) Plot of layer electron density versus total electron

- Ly . - . density for a double-quantum-well structure from Ref. 16 with a
densities within the Hartree approximatiaeshed lingand barrier width of 14 A and well widths of 180 A. The dashed line is

the LDA (S_OI'_d ling). The linear bgha\/_lor _Of the electron the Hartree approximation. The solid line is the LD@&) Plot of
densities within the Hartree approximation is expected as thgyer electron density versus total electron density for a double-
electrons in the front layer attempt to screen the electrons igyantum-well structure from Ref. 16 with a barrier width of 70 A
the back layer from the electric field. However, within the ang well widths of 150 A. The dashed line is the Hartree approxi-
LDA, the density of the front layer decreases more quicklymation. The solid line is the LDA(c) Plot of layer electron density
than in the Hartree approximation and the back layer densityersus total electron density for the double-gquantum-well structure
actually increases with increasing electric field. In Fige)5  in (b). The dashed line is the Hartree approximation. The solid line
we show the results of the LSD#&hree dots and a dash is the LDA calculation. The line with three dots and a dash is the
showing that even with the possibility of spin polarized LSDA calculation.
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10 . . Prrerrere where large effectives (=25) values have been recently
achieved experimentally.

We emphasize that the experimental measurements car-
ried out in the presence of an external electric field have little
to do with the theoretical issue of a bilayer-to-monolayer
Polarized ] charge-transfer instability because the application of the ex-
o 5f . ternal electric field necessarily destroys the layer symmetry

in the problem and the issue of a spontaneous symmetry-

D:D:D breaking(phasg transition or exchange instability becomes
irrelevant. The situation is analogo(sut not identica) to a
magnetic transition in the presence of an external magnetic
field, which is not a phase transition in any sense because
ol . ! 1 T there is an applied symmetry-breaking field. As mentioned
0 05 10 15 20 25 30 before, the depopulation of subbands in the presence of an

d/ax applied gate voltage is noér%jlinear due to exchange-correlation
. . effects, and the so-called exchange-correlation induced
FIG. 6. Phase diagram of the double-quantum-well structure 'n‘negative compressibility” effect is the cause of the “unex-

Fig. 5b) within the LSDA without an external electric field. The ected” bump seen in the experimental res our Fi
lower (uppe) line corresponds to an initial spin polarization of P P P uise 9.

10% (90%) in the LSDA calculation. The region between these5 and Refs. 15_1)7\.Nh'0h is quantitatively explained by the
two lines is comprised of points for which the final spin polarization LDA/LSDA calculations.

is dependent on the initial spin polarization used in the LSDA cal-

culation.

Unpolarized

V. CONCLUSION

states, the density of the back layer increases. This increase We have obtained four theoretical results in this paper.
in the back layer density is a manifestation of the exchange- (i) We have shown that there cannot be any exchange-
correlation induced “negative compressibility” effett, driven bilayer-to-monolayer charge-transfer instability in
which leads to a nonlinear layer depopulation in the externasemiconductor double-quantum-well systems.
voltage. (i) We have shown, within a mean-field HFA and also
We also perform the LSDA calculation on the samewithin a self-consistent LSDA theory, that there could be a
double-quantum-well structure as in Figcpwithout an ex-  ferromagnetic spin polarization transition in a double-
ternal electric field to calculate the ground-state phase diaguantum-well system at lovibut accessibledensities.
gram of the system. Our phase diagram, in electron density- (iii) We have shown that within a mean-field unrestricted
layer separation space shown in Fig. 6, indicates that as thdFA there is a quantum phase transition in a double-
total density of the system is decreased, charge is not tranguantum-well system from @pin polarizegl bilayer state to
ferred from one well to the other, but instead, we find spina (spin polarized interlayer phase-coherent symmetric state
polarized ferromagnetic statésur S, states of Fig. 2for the  at low electron densities even in the absence of any interlayer
electron gas in both wells. This establishes that althouglelectron tunneling—in the symmetric state the electron den-
there is a net interlayer charge transfethe presence of an sity in each layer develops spontaneous quantum fluctuations
external electric fieldit is not the exchange-driven sponta- even though there is no overlap between the layer wave func-
neous bilayer-to-monolayer charge-transfer instability. Wetions in the absence of tunneling.
note that our LSDA phase diagram shown in Fig. 6 is quali- (iv) We have shown that the experimental
tatively similar to the HFA phase diagrafe.g., Fig. 2with  measurement3™!’ of layer or subband charge densities in
two important differencedi) The monolayer phases are not double-quantum-well systems as a function of an applied
present, and(ii) the ferromagnetic transition occurs at a external electric field can be understood quantitatively on the
somewhat higheflower) rg (density value, which is ex- basis of LDA/LSDA calculations as arising from the two-
pected because the realistic LSDA calculation includes efdimensional “negative compressibility " effect.
fects of finite well widths, etc., and includes correlation ef-  Of these four results, obviously the most interesting are
fects. the results(ii) and (iii) above, both of which are based on
Our LDA and LSDA calculations establish that the exter-reasonable but approximate theories. Our HFA phase dia-
nal electric-field-induced interlayer charge-transfer experigrams invariably show low-density ferromagnetic phases
ments can be quantitatively understood as “negativevhere the electrons in each layer undergo a complete spin
compressibility’®® effects. This point, in fact, has already polarization transition. Our numerical LSDA calculation
been made in some of the experimental publicafibts (Fig. 6) also finds the same result. While it is certainly pos-
where good agreement between the experimental data arsible (may even be likelythat our mean-field theory overes-
the LDA calculations was shown to exist. Our predictedtimates the density at which the ferromagnetic transition oc-
LSDA calculation based ferromagnetic spin polarizationcurs, we believe that at higlilow) enoughrg (density the
transition(Fig. 6) should occur at substantially lower densi- semiconductor double-quantum-well system does undergo a
ties than the experimental densities utilized in the existingspin polarization transition. It would be difficult experimen-
literature?®>~1" Our predicted densities for the spin polariza- tally to directly observe this ferromagnetic transition because
tion transition in semiconductor double-well systems shouldthe actual spontaneous electronic magnetic moment associ-
however, be accessible, particularly in hole-doped sanffles,ated with the spin polarized two-dimensional electrons is
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rather small, and would be difficult to measure because ofemain only a tantalizing theoretical possibility in the near
the large(orders of magnitude largebackground effect aris-  future.

ing from the lattice. For the same reason, standard thermo- A natural question arises about the nature of the quantum
dynamic measurements.g., heat capacinof the ferromag- phase transition involved in the spontaneous breaking of the
netic phase transition may also be impossible. OndJ(1) pseudospin symmetry in going from the bilay8y
possibility is to measure the two-dimensional Fermi momen{hase to the interlayer phase-coherent SP-SY phase in Fig. 4.

tumkg in each layer, which will exhibit a jump by a factor of Note that a similar phase transition has earlier been discussed
J2 at the ferromagnetic transition. Transport measurements the literaturé in the context of the quantum Hall effect
(in individual layers or in interlayer drag experimentsay phenomena in bilayer systems, where it has been argued that
be useful in this respect because, in principle suctine Y1) symmetry of a double-quantum-well system in the
measurement&? are capable of indiréctly measuriné:. absence of tunneling is spontaneously broken at a Landau

We believe transpdi?® and capacitand® spectroscopies level filling factor of 1(and possibly at other filling factors as

; > well). We find that there is nothing special about the quan-
should show observable structures at the spin polarizatiog,,, 'Ha|| situation in this context, and in fact as we show in
transition in density sweep experiments.

) - ‘ =S ... this paper, a zero field exchange-induced spontaneous break-
Our most mterestmg theoretical f|nd|r_19 is the p033|_b|I|tying of the U1) symmetry is indeed possible at low densities.
of a low-density quantum phase transition from a bilayerrhe theoretical phase diagraifig. 4) in the zero field situ-
state to a coherent interlayer symmetric state Fig. 4,  ation is, in fact, richer because there are two tuning param-
which happens even in the absence of any interlayer tunnekters ¢, andd) controlling the phase transitiofwhereas in
ing. Within the HFA we believe the existence of this phasethe quantum Hall casé is the only tuning parameterEx-
transition to be rigorous. We speculate that this phase trarperimentally, of course, the situation is much more easily
sition would exist even when correlation effects are includedealized in the quantum Hall situation because it is much
in the theory because correlation should affect the bilayeeasier to obtain a Landau level filling factor of 1 thanrgiof

and the symmetric phase more or less equivalently. Whild0. We speculaté that the nature of the () pseudospin-
being very interesting theoretically in its own right, a defini- symmetry-breaking phase transition in the zero magnetic
tive experimental observation of this exchange-driverfield case is similar to that in the finite field quantum Hall
bilayer-to-symmetric phase transitiécf. Fig. 4) in semicon- situation® even though_ further investigation of thi_s issue in
ductor double-quantum-well systems would be difficult for athe zero field case is clearly warranted. While all the
number of reasons. First, very low electron density1(° |mpI|qat|on§ of such a transition in our zero field case still
cm~2) and low disorder double-quantum-well samples will '@Main to be worked out, it is likely that there(at least the

be needed with rather large AlAs potential barriers to supP0SsiPility off an interesting finite temperature transition. In
press tunneling. This is currently beyond the reach of MBEthls gontext it may be worthwhile to point out that spontane-
growth techniques for electron doped samples. It is, how®UsS mtgrlayer phase coherence has begn a_?émedlead to
ever, possible to make-doped hole samples with very large interesting Sand ob_servable effects in interlayer drag
effectiver (=25) values* which may be more suitable for gxper|ment§. We believe that such effectswould show up.
observing our predicted spontaneous phase-coherent tran _the SP-SY phase as well _and may be a way of 'de”t.'fy'!"g
tion. Even if the desired samples are produced, few experit- € new phgse. More work is clearly need_ed In e_stal:_)hshmg
ments(short of actual thermodynamic measurements whictjfhe properties of the SP-SY _phase and in elu<_:|dat|ng the
can look at specific heat anomalies at the phase tran)sitiorpat“r_e_ of the L) pseudospin-symmetry-breaking phase
can actually distinguish between bilayer and symmetric,lrans't'on'
states, because both states have the saraeagelayer elec-

tron densities — in one cagbilayer) the layer electron den-

sity is an exact quantum number with no fluctuations while  One of the author¢S.D.S) acknowledges a helpful con-
in the other cas¢ésymmetrig¢ the layer electron density has versation with Professor B. I. Halperin. This work is sup-
guantum fluctuations and is not conserved. It seems that thgorted by the United States Office of Naval Resedtdls.—
interesting quantum phase transition shown in Fig. 4 mayONR).
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