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Generalized two-dimensional mesoscopic quantum transport:
Application to disordered quantum wires
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A two-dimensional(2D) finite-difference time-domain model based on wave-packet propagation has been
formulated. This method, which is capable of treating arbitrary potential profiles, is applied to the problem of
finding the momentumk) relaxation rates for each subband due to interface roughness scattering in disordered
guantum wires as a function of wire width, electron energy, disorder correlation leAgthafid disorder
penetration depth. Results from the general 2D numerical approach are compared with those from 1D calcu-
lations based on the adiabatic approximation and the Born approximation. The error introduced by the Born
approximation is found to be as much as a factor of 2.5 for small correlation lengths 1), and becomes
significantly greater for large correlation lengthsk>1) owing to the predominance of higher-order scatter-
ing processes. If only intrasubband scattering is effective, the adiabatic approximation agrees to within 50%
with the more general 2D results for a wide range of disorder parameters. However, the relaxation time
decreases significantly at higher energies with the onset of scattering to higher electron subbands, which the
adiabatic approximation is incapable of treating. For electron energies lower than the average disorder-induced
potential barriers, the electron wave packet becomes localized with slow probability density decay due to
tunneling.[S0163-182607)09107-9

[. INTRODUCTION terface roughness scattering in quantum wires has recently
been confirmed experimentalfy®
The recent progress in nanofabrication techniques has cre- The roughness-limited mobility in quantum wires has
ated interesting opportunities for studying quantum transporf0st often been studied within the Born approxim

phenomena in semiconductor mesoscopic systems. In vie@2l0gy with t§hZe treatment of this scattering mechanism in
of the increasing complexity of nanostructures now bein u;:nft(;jrn(]:;\rﬁgr. deHr:)sv;lt?evserérgar:grs tﬁ;?{]ogoémﬁg ?ﬁé rg(c)rer?tly
fabricated, analytic modeling approaches based on Ideallz(;%proximation can underestimate the scattering rate by many

geometries have become inadequate, and more general theyers of magnitude, because the contribution of higher-
retical methods are needed. As a step toward this goal, heggger scattering processes becomes domitidrurthermore,
we discuss the development of a quantum transport calcula&ven for those regions where higher-order processes are less
tion based on a numerical solution of the time-dependengrominent, there have been no detailed assessments of the
two-dimensional(2D) Schralinger equation, which can in accuracy of the Born approximation as a function of relevant
principle be applied to mesoscopic device structures wittdisorder parameters such as the penetration depth of the po-
arbitrary lateral geometries. tential fluctuations and their correlation length along the wire
To illustrate its application, we will calculate momentum axis. While the adiabatic approximatidris expected to have
relaxation times for quantum wires with randomly fluctuat- somewhat broader applicability so long as intersubband scat-
ing widths. Although the lateral substructure is unintentionaltering processes can be neglected, the reliability of that ap-
in this example, nonetheless it will be seen that for mosProach in a wide variety of conditions occurring in disor-
conditions of interest it is important to treat the transport in adéred quantum wires has not been critically tested either.
fully two-dimensional context rather than as a perturbed onelnsofar as interface roughness scattering will ultimately gov-
dimensional problem. The potentially interesting carriere™ the low-temperature mobilities attainable in quantum
transport properties in quantum wires were first noted som&/rés, a more careful examination of this issue seems war-

time ago with the prediction that ionized impurity scattering rantedalt will be ?ien (tjhat oulr mvesu%auon offal s.ys.terr:; W'T
in quantum wires can be dramatically suppressed owing t cwer degrees ol freedom aiso provides usetul Insights into

the reduction to one electronic degree of freedofhere- e nature of the interface roughness scattering process for
fore, at low temperatures electrons in quantum wires could irlihe case of narrow quantum wells, since thgs far even that
principle exhibit very high mobilities, which would ulti- problem has not been treated in full generality. The impor-

mately be limited by scattering from fluctuations in the po_tant role of multisubband transport will be particularly em-

sition of the potential barrier interfaces. Since then a numbephas'zed' and we also demonstrate that our approach pro-

of approaches to fabricating quantum wires with heterostruc\—”des a useful means for examining localization phenomena.

ture barrier confinement has been developed. Among the
most important are lateral patternifig, and growth on

vicinal®’ and patterned nonplanar substratésyhich yield Before proceeding to describe our basic approach to 2D
differing degrees of interface quality. The importance of in-transport, let us briefly review the most common existing

II. BORN AND ADIABATIC APPROXIMATIONS
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methods for calculating momentum relaxation for electrondinal momentum. The expression for the relaxation rate is
in disordered quantum wires. The stationary states of disorsimilar to Eq.(2), apart from using the product of the energy
dered wires have been studied by Taydorl*® and Singht®  fluctuations in the two subbands in the numerator and
who concluded that a moderate amount of lateral disordek; —k; instead of X in the exponent®?! The relaxation time
does not alter the qualitative characteristics of the density ofalculated in this fashion is longer than that given by intra-
states(DOYS) profile for the lower electron subbands. Nixon subband scattering in the higher subband, but substantially
and co-workers studied the effect of employing realistic selfshorter than that given by intrasubband scattering in the
consistent potentials, e.g., due to randomly positioned ionlower subband. Once the relaxation time for electrons at a
ized donors, on the quantized resistance in poingivenk value is estimated for each subband, the contribution
contacts-"8 The importance of correctly treating structural to the relaxation time at the Fermi energy can be evaluated
disorder in quantum-dot nanostructures was pointed out by solving for the subband energies and their fluctuations
Jovanovicet al® due to the disorder at the wire walls, and then finding the

Here we are interested primarily in finding the interfaceDOS for each subband using the Gaussian line shape with
roughness scattering rate, a task that has usually been accomidth SE.622 For an infinitely long wire in the absence of
plished using the first-order perturbation theory as embodietiroadening, the DOS in a 1D system follows the well-known
in the Born approximation. In calculating the scattering rateinverse square-root behavior with a singularity at the bottom
for electrons propagating along the wire axay(we will of the subband. The roughness-limited mobility at a finite
only be concerned with 1D quantum confinement along théemperature is then given hyr=e/m* (), where

y axis, i.e., the confinement in the growth directi@nis
afo(E)

assumed to be much stronger than alcingand does not (TR>ZJ E er{(E)DJ-(E)E

contribute fluctuations as a function of lateral position. This i JE

makes the problem computationally manageable without loss oto(E)

of generglity. Assuming that the roughness ir_l the wire of ><dE/ J' D D,(E)E 0 dE, 3)
width W is characterized by the fluctuation heightalong i JE

they axis and the lateral siz& along thez axis, Gaussian
roughness can be described by the following autocorrelatio
function:

where D;(E) is the density of states in subband and
?O(E) is the Fermi-Dirac distribution function.
Kawabat&® showed that whem k> 1, the second-order
|z—z’|2 contribution to the scattering rate obtained from perturbation
(A(z)A(z’))=A2ex;{ - ) (1) theory exceeds the lowest-order contribution represented by
Eqg. (2). This region, however, corresponds to the condition
The momentum relaxation rate within the Born approxima-Of very slow fluctuations of the potential barriers, for which
tion is proportional to the Fourier transform of the autocor-the adiabatic approximation is applicabfeThe main as-
relation function. If intrasubband scattering alone is signifi-Sumption of the adiabatic approximation is that the electron
cant, only backward scattering is allowed by momentumwave functionW(y,z) in the time-dependent 2D Schro
(k) conservation, and the relaxation rate takes the followinglinger equation:

form:
-2 # P  dV(y,zt)
1 2ymA(SE)2m* . 2 | ay?t a2 YR P2 =g
w0 T wk SRTAN, @ @

wherem* is the effective massJE is the fluctuation in the where the potentiaV(y,z) accounts for both the wire’s
quantization energy corresponding to the jump in the wireconfining potential, and the fluctuations in its width can
width (for an infinite barrier in one dimension be rewritten in terms of the local eigenfunction
SE=—m?n?h2A/m*W3), n=1,2,. .., and thefactor of 2 @n(Y,2): ¥ (Y,z,t) =Z,4(z,t) ¢n(Y,2), Which is the solution
accounts for the possibility of scattering from either of theof the following equatiorf*

two walls. It is implicitly assumed that the wire is suffi-

ciently wide for the fluctuations at both walls to have an —h? & _
additive effect on the scattering rate. This discussion neglects 2m* ay? TV(Y.2) |en(y,.2) =Un(D)en(y.2). (5

electron screening of the potential fluctuations, which war-
rants a separate investigation. Here U,(2) is the local energy eigenvalue for subbamd
If the Fermi energyEr=%2k?/2m* for a parabolic band The time-dependent Schdimger equation then takes on a
with an isotropic effective mass approaches or exceeds thgmplified 1D form for any given subband,
energy of a higher electron subband, an appreciable fraction

of the electrons comes to occupy the higher subband. The [—ﬁz 92 dP(z,t)

at

relaxation rate in the Born approximation for electrons start- om 92 T Un(2) |z ) =i ®

ing out in the lower subband is determined primarily by the

intersubband scattering rate. Both backward- and forwardFrom the many alternative approaches to solving this equa-
scattering processes are allowed, and must be weighted in thien for a given potential, in this paper we employ a numeri-
final sum by the (%k;/k;cosd) factor, whered== and cal solution based on a finite-difference expansion of the

0=0, respectivelyk; is the initial momentum, anH; is the  second-derivative terrft
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where Az is the position increment along the axis, and i 62 . -
y; represents the value of the eigenfunction at a point 1= | expi otV w/2h) iy m

z=jAz. In this approach, an implicit differencing scheme for

the effective HamiltoniarH = — (42/2m*) 92/ 922+ U ,(2) is 62 _ 1
used: =1+ ~ exp(—i otV wf2h)gj . (1D
iotH| .. iotH| The right-hand side of Eq10) can be immediately evalu-
I+ = == ¥ @  ated sincaj; , is known from either the initial conditions or

the previous iteration. The left-hand side represents a tria-

where 6t is the time incrementy" represents the value of digonal matrix in indices along theaxis, and can be readily
the eigenfunction at the current time step, apt"* the  solved using the Thomas algorittffhEquation(11) can be
eigenfunction value at the next time step. The latter can thenandled in a similar manner, multiplying the wave function
be found by inverting a tridiagonal matrix with position in- before and after the matrix inversion by exp@tV/24).
dices. For details of the solution method and expected accu- The finite-difference scheme given by Eq$0) and (11)
racy of the approximation, see Ref. 23. requires the initial condition at=0, as well as boundary
Since the explicit assumption of the adiabatic approximaconditions fory=0, z=0, Y=Y andz=2zy.. TO fix the
tion is that the electrons remain in the same subband, it is ngfoundary conditions, it is sufficient to assume that the wave
possible to incorporate intersubband scattering without steffunction goes to zero at the edges of the simulation region.
ping beyond the confines of the adiabatic approximataam  Since the potential fluctuations due to interface roughness
outline of how such a calculation can be performed in theare much smaller than the barrier potential, it is convenient
basis of adiabatic eigenstates can be found in Ref. 21 to start with the product of a 1D Gaussian wave packet with
the eigenfunction for a certain subban¢h the unperturbed

I1l. 2D NUMERICAL APPROACH quantum wire:
TO QUANTUM TRANSPORT va )
2 . (z=2p)

While the Born approximation offers a simple analytical \P(y,z,t=0)=¢i(y)(m) eXF{'kZ_ 2 } (12
solution and the adiabatic approximation provides at least
qualitatively reasonable results for intrasubband scatterin o o
under the conditions of interest for disordered wires, botﬁ1= necessary, a DOS-based combination of the initial subband
sacrifice details of what is fundamentally a 2D rather than 10°rofile can be included in place afi(y). However, it is
problem. Instead of making the adiabatic approximation an@asier to interpret the results in terms of a unique momentum
considering the electron propagation along the wire in termgelaxation time, if the entire wave packet is in the same sub-
of local eigenstates, we now discuss a more general approxpand. In a perfect quantum wire, this wave packet will propa-
mation of the full 2D Schidinger equatiofiEq. (4)]. Several ~9ate without scattering at a group velocity ok/m* from
techniques for computing the electron dynamics in multiplethe starting center positior,. It is important to choose the
dimensions have been reported in the literatdré®In our ~ Width of the wave packet probability density2, so that the
study, we will employ an approach that is analogous to thénomentum uncertainthk=o¢"* is much smaller than the
numerical calculation in the adiabatic approximatférOne initial momentumk. At some future timet, the unscattered
of the advantages of this scheme is the possibility of extendwave packet will be described by
ing it to include the effects of weak dissipati&halthough

this extension is beyond the scope of this work. Making use V(y.2t) = '(y)(z;;z) 1a e
of the implicit differencing schemgEq. (7)] that preserves HEH T @ (o*+4h2%t% m* %) 14
the unitarity of the evolution operator, we can bring the 2D Bt )2
equation into the following form: Xex;{ikz— (22_ _t m*) } (19
o+ 2iAtIm* |’
P Q2 Q2
(1_ ﬂ) 1— 1% expli StV; /2h) gt where ¢=—(tan ! 24t/m* ¢?)/2—#k?t/2m*. Therefore,
A A b J.m the simulation region must be made sufficiently large so that
i 52 .2 after the largest tim_e of interesgax it easily acc_ommodates
=14+ 2|14+ exp(—i 0tV m/20) Y7 1, the necessary multipléypically, 4-9 of the width of the
A A ' b broadened wave packetr(2)\/1+ 4% 2t5 ,/m* 20 following

(9)  propagation to the center positidirkty,/m* + 2z,

The foregoing equations are applicable to any 2D poten-
where\ =4m* /4.2 6t. The key simplification comes from in- tial profile. For simplicity, the barrier potential is taken to be
troducing an intermediate valu:;s'}‘,,*nl’2 for mathematical of the same magnitude everywhere. To preserve the stability
convenience. The intermediate value has no separate physif the finite-difference scheme and allow for
cal significance but allows the complex 2D problgBg. (9)]  Ax, Ay=10A, so that the discretization error does not ac-
to be split into two tractable locally 1D equations: cumulate with the passage of tifie?’ it is convenient to
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chooseV,=0.25 eV. This potential is high enough to pre- Because of this requirement and due to the large number
vent electrons with the Fermi energies considered here fromf consecutive simulations necessary to obtain a converging
escaping from the quantum wire. The mesh point separatiorsverage value of the momentum relaxation time, the 2D
have been chosen to assure the convergence of the results &mulation usually followed the wave packet for only
the relaxation time, and to reproduce adequately the correla~500 fs. However, in cases, where convergence could not
tion length for the potential fluctuations along the wire axis.be achieved by that point, it was followed for as long as it
For simplicity we will also assume binary interface fluctua- was necessary to recover converging results. The extracted
tions, such that the position of each wall can be onlyrelaxation times nearly always increased gradually at first,
Y(2)=Yo+A/2 or Y(2)=Y,—A/2, whereY, is the unper- and then saturated at some level. The initial scattering rate is
turbed value, and V(y,zZ)=0 for |y|<Y(z) and greater because the profile assumed for the starting wave

V(y,z)=V, for |y|>Y(2). Thus, in order to obtain numeri- packet along they axis [Eq. (12)] does not represent an
cally a disordered profile with correlation length it is suf-  eigenstate for any particular point along the wire, but rather
ficient to select a random number from a uniform distributionan averaged distribution for the entire wire length. In cases
between—1 and 1 independently for each point along thewhere multiple subbands are occupied in equilibrium, our
wire axis, and to perform a convolution of the resulting ran-assumption that all electrons being in the lowest subband
dom profile with a Gaussian line of width. If the resulting-  also leads initially to an artificially high scattering rate.
real number associated with each point along zhexis is Since the relaxation times obtained for most of the cases
positive, aY,+ A/2 fluctuation is taken; otherwise, the wall reported in this paper are significantly greater than 500 fs,
position become¥ y—A/2. The same procedure is repeatedstrictly speaking our results should be viewed in terms of a
for the second wall, and wires with different potential pro- scattering rate for the wave packet with a given initial mo-
files are obtained by generating distinct quasirandom numbanentum, rather than as a true relaxation time applying to
sequences. In our approach, resembling a Monte Carlo-typéime scales on the order of the momentum decay constant.
simulation, we perform the same calculation for a large numBy the time the initial momentum has decayed appreciably,
ber of wires with different randomly generated disorderedsecondary scattering of those portions of the wave packet
potential profiles in order to extract a realistic average valughat have already been scattered at least once plays a signifi-
of the momentum relaxation time. The technique could becant role. This does not limit our testing of the accuracy of
straightforwardly extended to arbitrary fluctuations of thethe Born and adiabatic approximations, since both can simi-
wire walls, be they discrete or continuous in the magnituddarly be used to generate scattering rates. It should also be
of the potentiaM(y,z) or in the wire width 2¥(z). Further-  emphasized that it is straightforward to obtain a true relax-
more, arbitrary shapes, e.g., in corporating bends, branchestion time using our technique as long as one is willing to
or T stubs, are easily accommodated, primarily at the exeommit the somewhat greater computational resources that
pense of larger matrices and longer computation times.  would be required. We also note that whereas the various
The outlined numerical generation of disordered potentiakubbands are decoupled in the adiabatic approximation, the
profiles is particularly convenient in the present case, sincéntersubband interactions arise automatically in the 2D cal-
for the same series of randomly generated wires it permits aulation.
direct comparison between results of the 2D and adiabatic
1D calculations. In the latter, the potential prof¢y,z) can
be converted into the adiabatic eigenvalugg(z) corre-

sponding to different subbandasby solving for the quanti- We first consider a GaAs wire of widtiW=100 A, for
zation energies of the potential at each pairis shown by  which the energy separation between the first and second
Eq. (6). Then the relaxation time for both 2D and 1D calcu- subbands is=93.0 meV. The disorder correlation length is
lations can be obtained by following the evolution of the assumed to ba =30 A, and the penetration depth is taken to
electron wave packet, performing Fourier transforms of thepe A=10 A, which yields fluctuations in the quantization
spatial distribution of the probability density at arbitrary in- energy for the first and second subbands of 4.9 and 17.5
tervals, and recording the value of the average momentunneV, respectively. This test case, with a valueAothat is
Assuming an exponential decay of the average momentum asly 10% of the wire width, is more indicative of future

a function of time, it is possible to recover an averaged valugrends than current technology, since recent experimental
of the relaxation time from the simulation results. One musistudies of quantum wires fabricated by electron-beam lithog-
be careful to follow the evolution only so long as scatteringraphy and wet chemical etching have reported fluctuations of
from the hard interfaces at the edges of the simulation regiogp to =30 A in wires with widths as narrow as 100°A.

along thez axis is negligible, so that spurious contributions ~Momentum relaxation times for the full 2D simulation,
from elastic reflections may be avoided. Reflections from thexdiabatic approximation, and Born approximatione curve
edge of the simulation region toward which the electronincluding only intrasubband scattering and the other both
wave packet is moving can be eliminated by translating théntrasubband and intersubband proces$aselectron ener-
boundary of the simulation frame forward at the velocity gies not too far away from the bottom of the lowest subband
corresponding to the center momentum of the wave packegre presented in Fig. 1. Results for the numerical 2D and 1D
since scattering due to interface roughness is rarely into ealculations are not extended to very low Fermi energies,
significantly greater forward momentum. On the other handsince the low momenta involved necessitate very broad wave
since there is significant backward scattering, reflectionpackets, which in turn require substantially increased simu-
from the back edge can be eliminated only by extending thdation times and larger spatial regions to obtain a reliable
length of the simulation region. estimate of the relaxation time. Also, parts of the electron

IV. RESULTS
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tion of electron energy as measured from the bottom of the first

subband for a quantum wire with a 100-A width and a 10-A-thick £ 2. Relaxation times for the lower three subbands as a func-

disordered layer with a 30-A correlation length. Results are divelion of electron energy as measured from the bottom of the first

for the 2D calculation(solid curves, the 1D adiabatic approxima- g hhand for a quantum wire with a 200-A width and a 20-A-thick
tion (dashed curvesand the Born approximatiootted curves  gisordered layer with a correlation length of 30 A, for the 2D cal-

In the case of the Born approximation for the first subband, scatter,|ation (solid), 1D adiabatic approximatioidashed, and Born
ing rates both with and without intersubband scattering Processesgnproximation(dotted.

are shown.

sponding calculation for electrons initially in the second sub-

wave packet tend to become localized at very low energiediand, the adiabatic approximation yields excellent agreement
as discussed in connection with Fig. 6. The jagged appeawith the 2D results, while the Born approximation again pro-
ance of the 2D curve for energies below 60 meV is an arti-duces an underestimate for the relaxation tigsee the
fact due to uncertainties in estimating the saturation value focurves forr, in the lower-right-hand-side corner of Fig).1
the relaxation time, since there is a relatively narrow tempoWe find that as long as intersubband scattering is incorpo-
ral window between the onset of saturation and the onset afated, the Born approximation reproduces the correct quali-
distortion due to secondary scattering. In this energy rangetive features for both subbands, even though there is a fac-
the adiabatic approximation for the first subband shows a&or of 1.5-5 of quantitative discrepancy at all energies.
very good agreement with the 2D simulation. The Born ap- While the quantum wire with a lateral width of 100 A is
proximation result also has a slope close to that of the 2Dparticularly well suited for studying 1D quantum effects,
curve, although its magnitude is too small by a factor ofsince its first-to-second subband separation is much greater
~2.2. This disagreement does not appear to be a cons#ian the thermal energy at room temperature, at present such
quence of assuming that the scattering from the two-wirdateral dimensions are rather difficult to realize experimen-
interface is additive, since the ratio of the relaxation timestally. To provide a better illustration of a more accessible
obtained assuming disorder along one interface only prostructure in which multiple subbands come into play over
duces a similar discrepancy. most of the energy range of interest, Fig. 2 shows analogous

The reduction in the relaxation time at energies aboveesults for a 200-A-wide quantum wire with the same corre-
~60 meV for the 2D simulation with electrons starting out lation length and boundary fluctuations still equal to 10% of
in the first subband, as well as for the Born approximationits width. Here the separations between the first and second
including intersubband scattering, corresponds to the onsethd the first and third subbands are 30.9 and 81.0 meV,
of scattering to states in the second subband with a bangkspectively, and, foA=20 A, the fluctuations in the quan-
minimum of ~93 meV (indicated by an arrow in Fig.)l tization energy are 1.8, 7.0, and 15.2 meV, respectively. The
which in the 2D simulation is broadened automatically bygeneral trends are similar to those in Fig. 1. Note that the
the potential fluctuations. Scattering to the second subbaneklaxation times for electrons starting in the first three sub-
dominatesr; at higher energies due to both the higher DOSbands are shown for all methods of calculation. The adia-
and the larger scattering rdte.g., see Eq2)] at the bottom  batic approximation is again within 10% of the 2D results for
of that subband. Note also that after an intersubband scattethe first subband, until the onset of intersubband scattering,
ing process, electrons may continue to move forward, as digwhich occurs at much smaller energies, while relaxation
cussed for ionized impurity scattering in quantum pointtimes obtained with the Born approximation are a factor of
contacts® The adiabatic approximation fails in the regime 1.9 smaller. At any given energy, the relaxation times are
by producing scattering rates for electrons in single nonintersomewhat longer than in Fig. 1, since the fluctuations in the
acting subbands. The top end of the energy range is limiteduantization energy are weaker in the wider wire. Further-
at 110 meV in order to minimize the probability of electrons more, scattering to the third subband at 81.0 meV now pro-
escaping the walls of the quantum wire into the higher-duces a second dip in the relaxation time. The behavior of
potential barrier region in the 2D calculation. In the corre-the curve for electrons in the second subband is similar to
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FIG. 3. Relaxation times for the lower two subbands as a func-  F|G, 4. Relaxation times as a function of disorder correlation
tion of electron energy as measured from the bottom of the firsfangth for a quantum wire with a 100-A width and a 10-A-thick
subband for a quantum wire with a 200-A width and a 20-A-thick gisordered layer. Results are shown for an electron Fermi energy of
disordered layer with a correlation length of 100 A, for the 2D 42 mev using the 2D calculatiofsolid), 1D adiabatic approxima-
calculation(solid), 1D adiabatic approximatiofdashed, and Born  tjon (dashed, and Born approximatiofdotted.
approximation(dotted.

wire axis reproduces the correlation length accurately in the
that for the first, although the numerical value of the relax-discretized version of the potential profile, since very small
ation time is smaller due to the increased magnitude of théslands require very long simulation times. From Fig. 4, it
potential fluctuations. can be observed that the adiabatic approximation agrees with

Figure 3 shows the effects of increasing the correlatiorthe 2D results to within 50% for the entire range of correla-
length toA =100 A, while holding the other parameters the tion lengths considered, and in some regions the agreement
same as in Fig. 2. The slope of each curve near the bottom d§ much better. For correlation lengths between 20 and 50 A,
a subband increases, as should be expected fromi tHe-  the relaxation time obtained within the Born approximation
pendence of the scattering rate exponent. For scattering is too low by a substantial factéas much as 2)5however,
the first subband, the adiabatic approximation again give# cannot be ruled out that the agreement is much better for
excellent agreement with the 2D results, while the Born apuncorrelated disorder X\—0). At very small correlation
proximation results are smaller by a factor-eR.2. The 2D  lengths, the Born approximation relaxation time increases
curve for the first subband remains almost flat beyertb  due to domination by the lineak term in the expression for
meV, whereas the relaxation time for the second subbanthe relaxation rate. The 2D and 1D adiabatic results show a
drops substantially to indicate the onset of scattering to theimilar relaxation time minimum at smaM, which is, how-
third subband. While the Born approximation is usuallyever, not as deep as the minimum predicted by the Born
thought of as predicting a substantial increase of the relaxapproximation. In the opposite limit of long correlation
ation time at higher energies due to an exponential deperiengths, the Born relaxation time increases exponentially,
dence on thekA product[see Eq.(2)], we find that this reaching 360 ps af =100 A. However, the more reliable
enhancement does not materialize when the effects of thaD and adiabatic results indicate that this is unphysical, since
higher subbands are properly accounted for. higher-order scattering processes domifat&éhe 2D and

In all of the cases considered above, the 1D adiabatiadiabatic results agree well in this regime, as expected from
calculation produced a reasonably good approximation of théhe definition of the adiabatic approximation; however, accu-
full 2D results as long as the electron energy was low enoughate numerical results are more difficult to recover since av-
that higher-subband processes could be ignored. Since tlegages over longer disordered potential patterns are required.
reduction of the computational approach to 1D yields a sub- For fixed correlation lengths of 30 and 100 A and the
stantial savings in the computer time, it is of great interest tame wire width(100 A) and electron energi#2 me\) as in
determine whether that agreement extends to other values bfg. 4, momentum relaxation times in the various approxi-
correlation length and disorder penetration depth. To assum@ations are shown in Fig. 5 as a function of disorder pen-
that only intrasubband processes are operative, we considetration depth. While it should be clear from the discussion
the 100-A-wide wire and a fixed Fermi energy of 42 meV.following Eq. (2) that the relaxation time in the Born ap-
This energy is well below the onset of scattering to the secproximation is inversely proportional th? when the barriers
ond subband, yet large enough to facilitate convergence dire infinite, the dependence is slightly subquadratic for the
the numerical results for simulations with different randompresent case of high yet finite barriers. The slope as a func-
potential profiles. For a fixed disorder penetration depth otion of A for the Born approximation is nearly identical to
10 A, the momentum relaxation times as a function of cor-that for the adiabatic and 2D results presented in Fig. 5.
relation length for the 2D, adiabatic, and Born calculationsHowever, for A=30 A, the Born approximation result is
are shown in Fig. 4. The smallest correlation length of 15 Asmaller than that from either numerical approach by a factor
is limited by the requirement that the island size along thedecreasing from 2.7 & =2.5 A to 1.9 at 20 A. On the other
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FIG. 5. Relaxation times as a function of disorder depth for a FIG. 6. Probability density as a function of position along the
quantum wire with a 100-A width and a 30-A disorder correlation axis of a 100-A-wide quantum wire for the injected wave packet
length. Results are shown for an electron Fermi energy of 42 meWwith an energy of 6 me\{dashed curve and its remainder after 20
using the 2D calculation(solid), 1D adiabatic approximation Ps (solid curve. The disorder penetration depth is 20 A, and the
(dasheg] and Born approximatiofdotted. correlation length is 30 A. Also shown is the deviation of the quan-
tization energy from its value in a perfect wire averaged over 200-A
intervals. The absorbing edges of the simulation region are located
between 0 and 100 nm and 1100 and 1200 nm along the horizontal
is.

hand, for A=100 A, the Born approximation yields an
order-of-magnitudeverestimateof the relaxation time ow-
ing to the neglect of higher-order scattering processes, a
shown in Fig. 4. The adiabatic approximation yields excel-

lent agreement with the 2D result far=30 A, while it over- ~ time the total probability in the effective potential well de-
estimates the relaxation time At=100 A by 25-50 %. In  c@ys due to tunneling through the potential barriers. In ob-
both cases, the discrepancy is nearly independent. of taining Fig. 6, the parts of the wave packet penetrating to
An additional advantage of the 2D approach is that jtdistances<100 nm and>1100 nm have been gradually
allows us to probe the region where the electron kinetic en€liminated by introducing a gently graded exponential reduc-
ergy is smaller than the fluctuations in the quantization enfion of the probability with timg(absorbing boundary condi-

ergy. Under those conditions the wave packet cannot propdlons-
gate freely along the wire axis, but instead tends to become
confined to spatial regions with low potential energy. This
case corresponds to the well-known class of localization
phenomend'®? The distinguishing characteristic of the  We have performed a parametric study of quantum trans-
wave function associated with a localized electronic state igort in disordered quantum wires using a 2D simulator of
its exponential decay with distance from the probability electronic wave-packet propagation. Momentum relaxation
maximum. Localized and extended stationary states are sept@mes obtained from this quite general formulation have been
rated in energy by the mobility edge, below which electronscompared to results from the Born and adiabatic approxima-
are confined by reflections from potential fluctuations withtions in order to assess the reliability of those less computa-
higher energie® The localized states in quantum wires with tionally intensive approaches under a variety of conditions.
a finite length can readily be determined from a multidimen-Localization of portions of the wave packet has also been
sional finite-difference solution of the time-independentsimulated for energies below the mobility edge.

Schralinger equatiort® In the time-domain approach of this For intrasubband roughness scattering, we find that the
paper, localization can be observed as a function of tim&orn approximation tends to underestimate the relaxation
after the injection of the wave packet. In Fig. 6, the probabil-time by about a factor of 2 for correlation lengths less than
ity density at injection and at 20 ps after injection are showrn30—40 A, and to overestimate it by orders of magnitude for
for a 100-A-wide quantum wire with a disorder correlation correlation lengths greater than 70 A. On the other hand, in
length of 30 A and a disorder penetration depth of 20 A. Forthat regime, the adiabatic approximation reproduces the re-
comparison, the effective potential profile due to fluctuationssults of the full 2D calculation to within 50% for a wide

of the quantization energy in the same disordered wire is alscange of wire sizes and disorder parameters. However, at
shown. It can be seen that the potential maxima at approxienergies large enough that intersubband processes play a
mately 500 and 750 nm both exceed the wave-packet energgle, neither approximation yields satisfactory quantitative
of 6 meV. This causes a large portion of the wave packetagreement with the more general 2D results. Since the adia-
which is not able to tunnel through the barrier~a?50 nm, batic approximation does not incorporate the effects of inter-
to undergo multiple reflections from the effective potentialsubband scattering, its predictions for higher electron ener-
barriers at these points, and become localized for a substagies result in a substantial overestimate of the momentum
tial period of time &40% of the original probability re- relaxation time.

mains in the simulation region after 20)psiowever, over In the present analysis, our 2D calculation was performed

V. DISCUSSION
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for the case of a quantum wire with strong confinement andh technique may be used to extend the calculations of polar-
no thickness fluctuations in the third dimension. Howeveroptical phonon-scattering rates, which have already been dis-
the conclusions of this work may have implications for in- cussed in the literature for perfect rectangular quantum
terface roughness scattering in other quantum structures. Faiires 6" as well as for wires with interface roughness and
example, our finding that the Born approximation routinelyfor arbitrary three-dimensional geometfe® to situations
underestimates the momentum relaxation time in disorderedthere Matthiesen’s rule and the relaxation-time approxima-
wires by about a factor of 2 whenevieA <1 suggests that tion are inadequate. A different approach to this problem
the common use of the Born approximation to calculatestarting with the time-domain calculation of this paper is to
interface-roughness-limited mobilities in quantum wells mayinclude weak dissipation by phonon scattering via Monte
be inadequate if a precise quantitative result is needed. I8arlo sampling of the electron-phonon-coupled potentfals.
particular, if the same correction factor is assumed to applyit should also be noted that another important mechanism is
it may account for the fact that the interface roughness corscattering by randomly positioned ionized impurities, which
relation lengths extracted from a comparison of experimentatan be treated using the approach presented in this paper
low-temperature mobility data for GaAsi&a, _,As quan- once the self-consistent potential due to the scatterers is
tum wells with Born approximation predictions~(70A)  determined?®
(Ref. 39 tend to exceed the estimates based on photolumi- It should finally be noted by way of comparison that
nescence excitation spectroscopy30 A).%® While a direct  Wigner function models, which were used some time ago to
verification of this using a 3D finite-difference approach calculate the characteristics of resonant-tunneling didd&s,
analogous to the 2D formulation adopted here would be quit@re attractive, since dissipative phonon scattering can be
challenging from a computational standpoint, a 2D adiabatistraightforwardly incorporated(using, for example, a
approximation analogous to the 1D formulation discussedveighted Monte Carlo techniqi®. However, the need to
above might be relatively accurate as long as the energies perform computations in momentum as well as real space
interest are low enough that intersubband processes may benders the possibility of useful calculations for arbitrary 2D
ignored. geometries unlikely in the absence of supercomputer re-
We emphasize again the generality of our basic approaclsources. Another approach is to include the electron-phonon
which may be applied to time-dependent quantum transpoititeraction into the treatment of quantum transport nonper-
or localization in structures with any in-plane geometry, adurbatively using numerical real-time path-integral
long as the required grid size and time step are compatiblealculationé2 However, even for an oversimplified para-
with the available computational resources. For example, thbolic confinement potential, the calculations tend to be quite
response of mesoscopic electronic devices with large electricomplex?® and an extension to arbitrary potentials may
fields could be modeled. The method could also be generaprove to require computational resources that are consider-
ized to treat magnetotransport and edge states in structurably greater than those used in this work.
with high magnetic fields and arbitrary geometries. A sepa-
rate Work will discuss the devglo_pment of a _method fqr solv- ACKNOWLEDGMENTS
ing the time-dependent 2D Scldinger equation for a time-
varying Hamiltonian. This allows the treatment of time- This work was supported by the Office of Naval Re-
varying fields as well as the inclusion of a harmonic potentialsearch, and was performed while one of the autlibké)
to enable the modeling of phonon-scattering processes thaeld a National Research Council-Naval Research Labora-
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