
PHYSICAL REVIEW B 15 FEBRUARY 1997-IVOLUME 55, NUMBER 7
Generalized two-dimensional mesoscopic quantum transport:
Application to disordered quantum wires
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A two-dimensional~2D! finite-difference time-domain model based on wave-packet propagation has been
formulated. This method, which is capable of treating arbitrary potential profiles, is applied to the problem of
finding the momentum (k) relaxation rates for each subband due to interface roughness scattering in disordered
quantum wires as a function of wire width, electron energy, disorder correlation length (L), and disorder
penetration depth. Results from the general 2D numerical approach are compared with those from 1D calcu-
lations based on the adiabatic approximation and the Born approximation. The error introduced by the Born
approximation is found to be as much as a factor of 2.5 for small correlation lengths (Lk,1), and becomes
significantly greater for large correlation lengths (Lk@1) owing to the predominance of higher-order scatter-
ing processes. If only intrasubband scattering is effective, the adiabatic approximation agrees to within 50%
with the more general 2D results for a wide range of disorder parameters. However, the relaxation time
decreases significantly at higher energies with the onset of scattering to higher electron subbands, which the
adiabatic approximation is incapable of treating. For electron energies lower than the average disorder-induced
potential barriers, the electron wave packet becomes localized with slow probability density decay due to
tunneling.@S0163-1829~97!09107-8#
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I. INTRODUCTION

The recent progress in nanofabrication techniques has
ated interesting opportunities for studying quantum transp
phenomena in semiconductor mesoscopic systems. In v
of the increasing complexity of nanostructures now be
fabricated, analytic modeling approaches based on ideal
geometries have become inadequate, and more general
retical methods are needed. As a step toward this goal,
we discuss the development of a quantum transport calc
tion based on a numerical solution of the time-depend
two-dimensional~2D! Schrödinger equation, which can in
principle be applied to mesoscopic device structures w
arbitrary lateral geometries.

To illustrate its application, we will calculate momentu
relaxation times for quantum wires with randomly fluctua
ing widths. Although the lateral substructure is unintentio
in this example, nonetheless it will be seen that for m
conditions of interest it is important to treat the transport i
fully two-dimensional context rather than as a perturbed o
dimensional problem. The potentially interesting carr
transport properties in quantum wires were first noted so
time ago with the prediction that ionized impurity scatteri
in quantum wires can be dramatically suppressed owing
the reduction to one electronic degree of freedom.1 There-
fore, at low temperatures electrons in quantum wires coul
principle exhibit very high mobilities, which would ulti
mately be limited by scattering from fluctuations in the p
sition of the potential barrier interfaces. Since then a num
of approaches to fabricating quantum wires with heterostr
ture barrier confinement has been developed. Among
most important are lateral patterning,2–5 and growth on
vicinal6,7 and patterned nonplanar substrates,8,9 which yield
differing degrees of interface quality. The importance of
550163-1829/97/55~7!/4494~9!/$10.00
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terface roughness scattering in quantum wires has rece
been confirmed experimentally.4,10

The roughness-limited mobility in quantum wires h
most often been studied within the Born approximation11 by
analogy with the treatment of this scattering mechanism
quantum wells.12 However, it has been pointed out recent
that for carrier densities greater than'106 cm21, the Born
approximation can underestimate the scattering rate by m
orders of magnitude, because the contribution of high
order scattering processes becomes dominant.13 Furthermore,
even for those regions where higher-order processes are
prominent, there have been no detailed assessments o
accuracy of the Born approximation as a function of relev
disorder parameters such as the penetration depth of the
tential fluctuations and their correlation length along the w
axis. While the adiabatic approximation14 is expected to have
somewhat broader applicability so long as intersubband s
tering processes can be neglected, the reliability of that
proach in a wide variety of conditions occurring in diso
dered quantum wires has not been critically tested eith
Insofar as interface roughness scattering will ultimately g
ern the low-temperature mobilities attainable in quant
wires, a more careful examination of this issue seems w
ranted. It will be seen that our investigation of a system w
fewer degrees of freedom also provides useful insights
the nature of the interface roughness scattering process
the case of narrow quantum wells, since thus far even
problem has not been treated in full generality. The imp
tant role of multisubband transport will be particularly em
phasized, and we also demonstrate that our approach
vides a useful means for examining localization phenome

II. BORN AND ADIABATIC APPROXIMATIONS

Before proceeding to describe our basic approach to
transport, let us briefly review the most common existi
4494 © 1997 The American Physical Society
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55 4495GENERALIZED TWO-DIMENSIONAL MESOSCOPIC . . .
methods for calculating momentum relaxation for electro
in disordered quantum wires. The stationary states of di
dered wires have been studied by Tayloret al.15 and Singh,16

who concluded that a moderate amount of lateral disor
does not alter the qualitative characteristics of the densit
states~DOS! profile for the lower electron subbands. Nixo
and co-workers studied the effect of employing realistic s
consistent potentials, e.g., due to randomly positioned
ized donors, on the quantized resistance in po
contacts.17,18 The importance of correctly treating structur
disorder in quantum-dot nanostructures was pointed ou
Jovanovicet al.19

Here we are interested primarily in finding the interfa
roughness scattering rate, a task that has usually been ac
plished using the first-order perturbation theory as embod
in the Born approximation. In calculating the scattering r
for electrons propagating along the wire axis (ẑ), we will
only be concerned with 1D quantum confinement along
ŷ axis, i.e., the confinement in the growth directionx̂ is
assumed to be much stronger than alongŷ, and does not
contribute fluctuations as a function of lateral position. T
makes the problem computationally manageable without
of generality. Assuming that the roughness in the wire
width W is characterized by the fluctuation heightD along
the ŷ axis and the lateral sizeL along theẑ axis, Gaussian
roughness can be described by the following autocorrela
function:

^D~z!D~z8!&5D2expS 2
uz2z8u2

L2 D . ~1!

The momentum relaxation rate within the Born approxim
tion is proportional to the Fourier transform of the autoc
relation function. If intrasubband scattering alone is sign
cant, only backward scattering is allowed by moment
(k) conservation, and the relaxation rate takes the follow
form:

1

tR~k!
5
2ApL~dE!2m*

\3k
exp~2L2k2!, ~2!

wherem* is the effective mass,dE is the fluctuation in the
quantization energy corresponding to the jump in the w
width ~for an infinite barrier in one dimensio
dE52p2n2\2D/m*W3), n51,2, . . . , and thefactor of 2
accounts for the possibility of scattering from either of t
two walls. It is implicitly assumed that the wire is suffi
ciently wide for the fluctuations at both walls to have
additive effect on the scattering rate. This discussion negl
electron screening of the potential fluctuations, which w
rants a separate investigation.

If the Fermi energyEF5\2k2/2m* for a parabolic band
with an isotropic effective mass approaches or exceeds
energy of a higher electron subband, an appreciable frac
of the electrons comes to occupy the higher subband.
relaxation rate in the Born approximation for electrons sta
ing out in the lower subband is determined primarily by t
intersubband scattering rate. Both backward- and forwa
scattering processes are allowed, and must be weighted i
final sum by the (12kf /kicosu) factor, whereu5p and
u50, respectively,ki is the initial momentum, andkf is the
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final momentum. The expression for the relaxation rate
similar to Eq.~2!, apart from using the product of the energ
fluctuations in the two subbands in the numerator a
ki2kf instead of 2k in the exponent.

20,21The relaxation time
calculated in this fashion is longer than that given by int
subband scattering in the higher subband, but substant
shorter than that given by intrasubband scattering in
lower subband. Once the relaxation time for electrons a
givenk value is estimated for each subband, the contribut
to the relaxation time at the Fermi energy can be evalua
by solving for the subband energies and their fluctuatio
due to the disorder at the wire walls, and then finding
DOS for each subband using the Gaussian line shape
width dE.16,22 For an infinitely long wire in the absence o
broadening, the DOS in a 1D system follows the well-know
inverse square-root behavior with a singularity at the bott
of the subband. The roughness-limited mobility at a fin
temperature is then given bym IR5e/m* ^tR&, where

^tR&5E (
j

tR
j ~E!Dj~E!E

] f 0~E!

]E

3dEY E (
j
D j~E!E

] f 0~E!

]E
dE, ~3!

where Dj (E) is the density of states in subbandj , and
f 0(E) is the Fermi-Dirac distribution function.
Kawabata13 showed that whenLk@1, the second-orde

contribution to the scattering rate obtained from perturbat
theory exceeds the lowest-order contribution represented
Eq. ~2!. This region, however, corresponds to the conditi
of very slow fluctuations of the potential barriers, for whic
the adiabatic approximation is applicable.14 The main as-
sumption of the adiabatic approximation is that the elect
wave functionC(y,z) in the time-dependent 2D Schro¨-
dinger equation:

F2\2

2m* S ]2

]y2
1

]2

]z2D1V~y,z!GC~y,z,t !5 i\
]C~y,z,t !

]t
,

~4!

where the potentialV(y,z) accounts for both the wire’s
confining potential, and the fluctuations in its width ca
be rewritten in terms of the local eigenfunctio
wn(y,z):C(y,z,t)5Snc(z,t)wn(y,z), which is the solution
of the following equation:21

F2\2

2m*
]2

]y2
1V~y,z!Gwn~y,z!5Un~z!wn~y,z!. ~5!

HereUn(z) is the local energy eigenvalue for subbandn.
The time-dependent Schro¨dinger equation then takes on
simplified 1D form for any given subband,

F2\2

2m*
]2

]z2
1Un~z!Gc~z,t !5 i\

]c~z,t !

]t
. ~6!

From the many alternative approaches to solving this eq
tion for a given potential, in this paper we employ a nume
cal solution based on a finite-difference expansion of
second-derivative term:23
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]2c

]z2
→dz

2c j5
c j1122c j1c j21

~Dz!2
, ~7!

whereDz is the position increment along theẑ axis, and
c j represents the value of the eigenfunction at a po
z5 jDz. In this approach, an implicit differencing scheme f
the effective HamiltonianH52(\2/2m* )]2/]z21Un(z) is
used:

S 11
idtH

2\ Dc j
n115S 12

idtH

2\ Dc j
n , ~8!

wheredt is the time increment,cn represents the value o
the eigenfunction at the current time step, andcn11 the
eigenfunction value at the next time step. The latter can t
be found by inverting a tridiagonal matrix with position in
dices. For details of the solution method and expected a
racy of the approximation, see Ref. 23.

Since the explicit assumption of the adiabatic approxim
tion is that the electrons remain in the same subband, it is
possible to incorporate intersubband scattering without s
ping beyond the confines of the adiabatic approximation~an
outline of how such a calculation can be performed in
basis of adiabatic eigenstates can be found in Ref. 21!.

III. 2D NUMERICAL APPROACH
TO QUANTUM TRANSPORT

While the Born approximation offers a simple analytic
solution and the adiabatic approximation provides at le
qualitatively reasonable results for intrasubband scatter
under the conditions of interest for disordered wires, b
sacrifice details of what is fundamentally a 2D rather than
problem. Instead of making the adiabatic approximation a
considering the electron propagation along the wire in te
of local eigenstates, we now discuss a more general app
mation of the full 2D Schro¨dinger equation@Eq. ~4!#. Several
techniques for computing the electron dynamics in multi
dimensions have been reported in the literature.24–26 In our
study, we will employ an approach that is analogous to
numerical calculation in the adiabatic approximation.27 One
of the advantages of this scheme is the possibility of exte
ing it to include the effects of weak dissipation,28 although
this extension is beyond the scope of this work. Making u
of the implicit differencing scheme@Eq. ~7!# that preserves
the unitarity of the evolution operator, we can bring the 2
equation into the following form:

S 12
idy

2

l D S 12
idz

2

l Dexp~ idtVj ,m/2\!c j ,m
n11

5S 11
idy

2

l D S 11
idz

2

l Dexp~2 idtVj ,m/2\!c j ,m
n ,

~9!

wherel54m* /\2dt. The key simplification comes from in
troducing an intermediate valuec j ,m

n11/2 for mathematical
convenience. The intermediate value has no separate p
cal significance but allows the complex 2D problem@Eq. ~9!#
to be split into two tractable locally 1D equations:
t
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S 12
idy

2

l Dc j ,m
n11/25S 11

idz
2

l Dc j ,m
n , ~10!

S 12
idz

2

l Dexp~ idtVj ,m/2\!c j ,m
n11

5S 11
idy

2

l Dexp~2 idtVj ,m/2\!c j ,m
n11/2. ~11!

The right-hand side of Eq.~10! can be immediately evalu
ated sincec j ,m

n is known from either the initial conditions o
the previous iteration. The left-hand side represents a t
digonal matrix in indices along theŷ axis, and can be readily
solved using the Thomas algorithm.29 Equation~11! can be
handled in a similar manner, multiplying the wave functio
before and after the matrix inversion by exp(2idtV/2\).

The finite-difference scheme given by Eqs.~10! and ~11!
requires the initial condition att50, as well as boundary
conditions fory50, z50, y5ymax, andz5zmax. To fix the
boundary conditions, it is sufficient to assume that the wa
function goes to zero at the edges of the simulation reg
Since the potential fluctuations due to interface roughn
are much smaller than the barrier potential, it is conveni
to start with the product of a 1D Gaussian wave packet w
the eigenfunction for a certain subbandi in the unperturbed
quantum wire:

C~y,z,t50!5w i~y!S 2

ps2D 1/4expF ikz2
~z2z0!

2

s2 G . ~12!

If necessary, a DOS-based combination of the initial subb
profile can be included in place ofw i(y). However, it is
easier to interpret the results in terms of a unique momen
relaxation time, if the entire wave packet is in the same s
band. In a perfect quantum wire, this wave packet will prop
gate without scattering at a group velocity of\k/m* from
the starting center positionz0. It is important to choose the
width of the wave packet probability densitys/2, so that the
momentum uncertaintyDk5s21 is much smaller than the
initial momentumk. At some future timet, the unscattered
wave packet will be described by

C~y,z,t !5w i~y!S 2s2

p D 1/4 eif

~s414\2t2/m* 2!1/4

3expF ikz2
~z2\kt/m* !2

s212i\t/m* G , ~13!

where f52(tan21 2\t/m*s2)/22\k2t/2m* . Therefore,
the simulation region must be made sufficiently large so t
after the largest time of interesttmax it easily accommodates
the necessary multiple~typically, 4–5! of the width of the
broadened wave packet (s/2)A114\2tmax

2 /m*2s4 following
propagation to the center position\ktmax/m*1z0.

The foregoing equations are applicable to any 2D pot
tial profile. For simplicity, the barrier potential is taken to b
of the same magnitude everywhere. To preserve the stab
of the finite-difference scheme and allow fo
Dx, Dy510 Å, so that the discretization error does not a
cumulate with the passage of time,23,27 it is convenient to
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chooseV050.25 eV. This potential is high enough to pr
vent electrons with the Fermi energies considered here f
escaping from the quantum wire. The mesh point separat
have been chosen to assure the convergence of the resu
the relaxation time, and to reproduce adequately the corr
tion length for the potential fluctuations along the wire ax
For simplicity we will also assume binary interface fluctu
tions, such that the position of each wall can be o
Y(z)5Y01D/2 or Y(z)5Y02D/2, whereY0 is the unper-
turbed value, and V(y,z)50 for uyu<Y(z) and
V(y,z)5V0 for uyu.Y(z). Thus, in order to obtain numeri
cally a disordered profile with correlation lengthL, it is suf-
ficient to select a random number from a uniform distributi
between21 and 1 independently for each point along t
wire axis, and to perform a convolution of the resulting ra
dom profile with a Gaussian line of widthL. If the resulting-
real number associated with each point along thez axis is
positive, aY01D/2 fluctuation is taken; otherwise, the wa
position becomesY02D/2. The same procedure is repeat
for the second wall, and wires with different potential pr
files are obtained by generating distinct quasirandom num
sequences. In our approach, resembling a Monte Carlo-
simulation, we perform the same calculation for a large nu
ber of wires with different randomly generated disorder
potential profiles in order to extract a realistic average va
of the momentum relaxation time. The technique could
straightforwardly extended to arbitrary fluctuations of t
wire walls, be they discrete or continuous in the magnitu
of the potentialV(y,z) or in the wire width 2Y(z). Further-
more, arbitrary shapes, e.g., in corporating bends, branc
or T stubs, are easily accommodated, primarily at the
pense of larger matrices and longer computation times.

The outlined numerical generation of disordered poten
profiles is particularly convenient in the present case, si
for the same series of randomly generated wires it permi
direct comparison between results of the 2D and adiab
1D calculations. In the latter, the potential profileV(y,z) can
be converted into the adiabatic eigenvaluesUn(z) corre-
sponding to different subbandsn by solving for the quanti-
zation energies of the potential at each pointz as shown by
Eq. ~6!. Then the relaxation time for both 2D and 1D calc
lations can be obtained by following the evolution of t
electron wave packet, performing Fourier transforms of
spatial distribution of the probability density at arbitrary i
tervals, and recording the value of the average moment
Assuming an exponential decay of the average momentum
a function of time, it is possible to recover an averaged va
of the relaxation time from the simulation results. One m
be careful to follow the evolution only so long as scatteri
from the hard interfaces at the edges of the simulation reg
along theẑ axis is negligible, so that spurious contributio
from elastic reflections may be avoided. Reflections from
edge of the simulation region toward which the electr
wave packet is moving can be eliminated by translating
boundary of the simulation frame forward at the veloc
corresponding to the center momentum of the wave pac
since scattering due to interface roughness is rarely in
significantly greater forward momentum. On the other ha
since there is significant backward scattering, reflecti
from the back edge can be eliminated only by extending
length of the simulation region.
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Because of this requirement and due to the large num
of consecutive simulations necessary to obtain a converg
average value of the momentum relaxation time, the
simulation usually followed the wave packet for on
'500 fs. However, in cases, where convergence could
be achieved by that point, it was followed for as long as
was necessary to recover converging results. The extra
relaxation times nearly always increased gradually at fi
and then saturated at some level. The initial scattering ra
greater because the profile assumed for the starting w
packet along theŷ axis @Eq. ~12!# does not represent a
eigenstate for any particular point along the wire, but rat
an averaged distribution for the entire wire length. In ca
where multiple subbands are occupied in equilibrium, o
assumption that all electrons being in the lowest subb
also leads initially to an artificially high scattering rate.

Since the relaxation times obtained for most of the ca
reported in this paper are significantly greater than 500
strictly speaking our results should be viewed in terms o
scattering rate for the wave packet with a given initial m
mentum, rather than as a true relaxation time applying
time scales on the order of the momentum decay const
By the time the initial momentum has decayed appreciab
secondary scattering of those portions of the wave pac
that have already been scattered at least once plays a si
cant role. This does not limit our testing of the accuracy
the Born and adiabatic approximations, since both can s
larly be used to generate scattering rates. It should also
emphasized that it is straightforward to obtain a true rel
ation time using our technique as long as one is willing
commit the somewhat greater computational resources
would be required. We also note that whereas the vari
subbands are decoupled in the adiabatic approximation,
intersubband interactions arise automatically in the 2D c
culation.

IV. RESULTS

We first consider a GaAs wire of widthW5100 Å, for
which the energy separation between the first and sec
subbands is'93.0 meV. The disorder correlation length
assumed to beL530 Å, and the penetration depth is taken
be D510 Å, which yields fluctuations in the quantizatio
energy for the first and second subbands of 4.9 and 1
meV, respectively. This test case, with a value ofD that is
only 10% of the wire width, is more indicative of futur
trends than current technology, since recent experime
studies of quantum wires fabricated by electron-beam lith
raphy and wet chemical etching have reported fluctuation
up to630 Å in wires with widths as narrow as 100 Å.5

Momentum relaxation times for the full 2D simulation
adiabatic approximation, and Born approximation~one curve
including only intrasubband scattering and the other b
intrasubband and intersubband processes! for electron ener-
gies not too far away from the bottom of the lowest subba
are presented in Fig. 1. Results for the numerical 2D and
calculations are not extended to very low Fermi energ
since the low momenta involved necessitate very broad w
packets, which in turn require substantially increased sim
lation times and larger spatial regions to obtain a relia
estimate of the relaxation time. Also, parts of the electr
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4498 55I. VURGAFTMAN AND J. R. MEYER
wave packet tend to become localized at very low energ
as discussed in connection with Fig. 6. The jagged app
ance of the 2D curve for energies below 60 meV is an a
fact due to uncertainties in estimating the saturation value
the relaxation time, since there is a relatively narrow tem
ral window between the onset of saturation and the onse
distortion due to secondary scattering. In this energy ra
the adiabatic approximation for the first subband show
very good agreement with the 2D simulation. The Born a
proximation result also has a slope close to that of the
curve, although its magnitude is too small by a factor
'2.2. This disagreement does not appear to be a co
quence of assuming that the scattering from the two-w
interface is additive, since the ratio of the relaxation tim
obtained assuming disorder along one interface only p
duces a similar discrepancy.

The reduction in the relaxation time at energies abo
'60 meV for the 2D simulation with electrons starting o
in the first subband, as well as for the Born approximat
including intersubband scattering, corresponds to the o
of scattering to states in the second subband with a b
minimum of '93 meV ~indicated by an arrow in Fig. 1!,
which in the 2D simulation is broadened automatically
the potential fluctuations. Scattering to the second subb
dominatest1 at higher energies due to both the higher DO
and the larger scattering rate@e.g., see Eq.~2!# at the bottom
of that subband. Note also that after an intersubband sca
ing process, electrons may continue to move forward, as
cussed for ionized impurity scattering in quantum po
contacts.30 The adiabatic approximation fails in the regim
by producing scattering rates for electrons in single nonin
acting subbands. The top end of the energy range is lim
at 110 meV in order to minimize the probability of electro
escaping the walls of the quantum wire into the high
potential barrier region in the 2D calculation. In the corr

FIG. 1. Relaxation times for the lower two subbands as a fu
tion of electron energy as measured from the bottom of the
subband for a quantum wire with a 100-Å width and a 10-Å-th
disordered layer with a 30-Å correlation length. Results are gi
for the 2D calculation~solid curves!, the 1D adiabatic approxima
tion ~dashed curves!, and the Born approximation~dotted curves!.
In the case of the Born approximation for the first subband, sca
ing rates both with and without intersubband scattering proce
are shown.
s,
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sponding calculation for electrons initially in the second su
band, the adiabatic approximation yields excellent agreem
with the 2D results, while the Born approximation again pr
duces an underestimate for the relaxation time~see the
curves fort2 in the lower-right-hand-side corner of Fig. 1!.
We find that as long as intersubband scattering is incor
rated, the Born approximation reproduces the correct qu
tative features for both subbands, even though there is a
tor of 1.5–5 of quantitative discrepancy at all energies.

While the quantum wire with a lateral width of 100 Å i
particularly well suited for studying 1D quantum effect
since its first-to-second subband separation is much gre
than the thermal energy at room temperature, at present
lateral dimensions are rather difficult to realize experime
tally. To provide a better illustration of a more accessib
structure in which multiple subbands come into play ov
most of the energy range of interest, Fig. 2 shows analog
results for a 200-Å-wide quantum wire with the same cor
lation length and boundary fluctuations still equal to 10%
its width. Here the separations between the first and sec
and the first and third subbands are 30.9 and 81.0 m
respectively, and, forD520 Å, the fluctuations in the quan
tization energy are 1.8, 7.0, and 15.2 meV, respectively. T
general trends are similar to those in Fig. 1. Note that
relaxation times for electrons starting in the first three s
bands are shown for all methods of calculation. The ad
batic approximation is again within 10% of the 2D results f
the first subband, until the onset of intersubband scatter
which occurs at much smaller energies, while relaxat
times obtained with the Born approximation are a factor
1.9 smaller. At any given energy, the relaxation times
somewhat longer than in Fig. 1, since the fluctuations in
quantization energy are weaker in the wider wire. Furth
more, scattering to the third subband at 81.0 meV now p
duces a second dip in the relaxation time. The behavio
the curve for electrons in the second subband is simila
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FIG. 2. Relaxation times for the lower three subbands as a fu
tion of electron energy as measured from the bottom of the
subband for a quantum wire with a 200-Å width and a 20-Å-thi
disordered layer with a correlation length of 30 Å, for the 2D c
culation ~solid!, 1D adiabatic approximation~dashed!, and Born
approximation~dotted!.
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that for the first, although the numerical value of the rela
ation time is smaller due to the increased magnitude of
potential fluctuations.

Figure 3 shows the effects of increasing the correlat
length toL5100 Å, while holding the other parameters th
same as in Fig. 2. The slope of each curve near the botto
a subband increases, as should be expected from theL de-
pendence of the scattering rate exponent. For scatterin
the first subband, the adiabatic approximation again gi
excellent agreement with the 2D results, while the Born
proximation results are smaller by a factor of'2.2. The 2D
curve for the first subband remains almost flat beyond'45
meV, whereas the relaxation time for the second subb
drops substantially to indicate the onset of scattering to
third subband. While the Born approximation is usua
thought of as predicting a substantial increase of the re
ation time at higher energies due to an exponential dep
dence on thekL product @see Eq.~2!#, we find that this
enhancement does not materialize when the effects of
higher subbands are properly accounted for.

In all of the cases considered above, the 1D adiab
calculation produced a reasonably good approximation of
full 2D results as long as the electron energy was low eno
that higher-subband processes could be ignored. Since
reduction of the computational approach to 1D yields a s
stantial savings in the computer time, it is of great interes
determine whether that agreement extends to other value
correlation length and disorder penetration depth. To as
that only intrasubband processes are operative, we con
the 100-Å-wide wire and a fixed Fermi energy of 42 me
This energy is well below the onset of scattering to the s
ond subband, yet large enough to facilitate convergenc
the numerical results for simulations with different rando
potential profiles. For a fixed disorder penetration depth
10 Å, the momentum relaxation times as a function of c
relation length for the 2D, adiabatic, and Born calculatio
are shown in Fig. 4. The smallest correlation length of 15
is limited by the requirement that the island size along

FIG. 3. Relaxation times for the lower two subbands as a fu
tion of electron energy as measured from the bottom of the
subband for a quantum wire with a 200-Å width and a 20-Å-th
disordered layer with a correlation length of 100 Å, for the 2
calculation~solid!, 1D adiabatic approximation~dashed!, and Born
approximation~dotted!.
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wire axis reproduces the correlation length accurately in
discretized version of the potential profile, since very sm
islands require very long simulation times. From Fig. 4,
can be observed that the adiabatic approximation agrees
the 2D results to within 50% for the entire range of corre
tion lengths considered, and in some regions the agreem
is much better. For correlation lengths between 20 and 50
the relaxation time obtained within the Born approximati
is too low by a substantial factor~as much as 2.5!; however,
it cannot be ruled out that the agreement is much better
uncorrelated disorder (L→0). At very small correlation
lengths, the Born approximation relaxation time increa
due to domination by the linearL term in the expression fo
the relaxation rate. The 2D and 1D adiabatic results sho
similar relaxation time minimum at smallL, which is, how-
ever, not as deep as the minimum predicted by the B
approximation. In the opposite limit of long correlatio
lengths, the Born relaxation time increases exponentia
reaching 360 ps atL5100 Å. However, the more reliable
2D and adiabatic results indicate that this is unphysical, si
higher-order scattering processes dominate.13 The 2D and
adiabatic results agree well in this regime, as expected f
the definition of the adiabatic approximation; however, ac
rate numerical results are more difficult to recover since
erages over longer disordered potential patterns are requ

For fixed correlation lengths of 30 and 100 Å and t
same wire width~100 Å! and electron energy~42 meV! as in
Fig. 4, momentum relaxation times in the various appro
mations are shown in Fig. 5 as a function of disorder p
etration depth. While it should be clear from the discuss
following Eq. ~2! that the relaxation time in the Born ap
proximation is inversely proportional toD2 when the barriers
are infinite, the dependence is slightly subquadratic for
present case of high yet finite barriers. The slope as a fu
tion of D for the Born approximation is nearly identical t
that for the adiabatic and 2D results presented in Fig.
However, forL530 Å, the Born approximation result i
smaller than that from either numerical approach by a fac
decreasing from 2.7 atD52.5 Å to 1.9 at 20 Å. On the othe

-
st

FIG. 4. Relaxation times as a function of disorder correlat
length for a quantum wire with a 100-Å width and a 10-Å-thic
disordered layer. Results are shown for an electron Fermi energ
42 meV using the 2D calculation~solid!, 1D adiabatic approxima-
tion ~dashed!, and Born approximation~dotted!.
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hand, for L5100 Å, the Born approximation yields a
order-of-magnitudeoverestimateof the relaxation time ow-
ing to the neglect of higher-order scattering processes
shown in Fig. 4. The adiabatic approximation yields exc
lent agreement with the 2D result forL530 Å, while it over-
estimates the relaxation time atL5100 Å by 25–50 %. In
both cases, the discrepancy is nearly independent ofD.

An additional advantage of the 2D approach is tha
allows us to probe the region where the electron kinetic
ergy is smaller than the fluctuations in the quantization
ergy. Under those conditions the wave packet cannot pro
gate freely along the wire axis, but instead tends to beco
confined to spatial regions with low potential energy. Th
case corresponds to the well-known class of localizat
phenomena.31,32 The distinguishing characteristic of th
wave function associated with a localized electronic stat
its exponential decay with distance from the probabil
maximum. Localized and extended stationary states are s
rated in energy by the mobility edge, below which electro
are confined by reflections from potential fluctuations w
higher energies.33 The localized states in quantum wires wi
a finite length can readily be determined from a multidime
sional finite-difference solution of the time-independe
Schrödinger equation.16 In the time-domain approach of thi
paper, localization can be observed as a function of t
after the injection of the wave packet. In Fig. 6, the probab
ity density at injection and at 20 ps after injection are sho
for a 100-Å-wide quantum wire with a disorder correlatio
length of 30 Å and a disorder penetration depth of 20 Å. F
comparison, the effective potential profile due to fluctuatio
of the quantization energy in the same disordered wire is
shown. It can be seen that the potential maxima at appr
mately 500 and 750 nm both exceed the wave-packet en
of 6 meV. This causes a large portion of the wave pac
which is not able to tunnel through the barrier at'750 nm,
to undergo multiple reflections from the effective potent
barriers at these points, and become localized for a subs
tial period of time ('40% of the original probability re-
mains in the simulation region after 20 ps!. However, over

FIG. 5. Relaxation times as a function of disorder depth fo
quantum wire with a 100-Å width and a 30-Å disorder correlati
length. Results are shown for an electron Fermi energy of 42 m
using the 2D calculation~solid!, 1D adiabatic approximation
~dashed!, and Born approximation~dotted!.
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time the total probability in the effective potential well de
cays due to tunneling through the potential barriers. In
taining Fig. 6, the parts of the wave packet penetrating
distances,100 nm and.1100 nm have been graduall
eliminated by introducing a gently graded exponential red
tion of the probability with time~absorbing boundary condi
tions!.

V. DISCUSSION

We have performed a parametric study of quantum tra
port in disordered quantum wires using a 2D simulator
electronic wave-packet propagation. Momentum relaxat
times obtained from this quite general formulation have be
compared to results from the Born and adiabatic approxim
tions in order to assess the reliability of those less comp
tionally intensive approaches under a variety of conditio
Localization of portions of the wave packet has also be
simulated for energies below the mobility edge.

For intrasubband roughness scattering, we find that
Born approximation tends to underestimate the relaxa
time by about a factor of 2 for correlation lengths less th
30–40 Å, and to overestimate it by orders of magnitude
correlation lengths greater than 70 Å. On the other hand
that regime, the adiabatic approximation reproduces the
sults of the full 2D calculation to within 50% for a wid
range of wire sizes and disorder parameters. However
energies large enough that intersubband processes pl
role, neither approximation yields satisfactory quantitat
agreement with the more general 2D results. Since the a
batic approximation does not incorporate the effects of in
subband scattering, its predictions for higher electron en
gies result in a substantial overestimate of the momen
relaxation time.

In the present analysis, our 2D calculation was perform

a

V

FIG. 6. Probability density as a function of position along t
axis of a 100-Å-wide quantum wire for the injected wave pac
with an energy of 6 meV~dashed curve!, and its remainder after 20
ps ~solid curve!. The disorder penetration depth is 20 Å, and t
correlation length is 30 Å. Also shown is the deviation of the qua
tization energy from its value in a perfect wire averaged over 200
intervals. The absorbing edges of the simulation region are loc
between 0 and 100 nm and 1100 and 1200 nm along the horizo
axis.
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for the case of a quantum wire with strong confinement a
no thickness fluctuations in the third dimension. Howev
the conclusions of this work may have implications for i
terface roughness scattering in other quantum structures
example, our finding that the Born approximation routine
underestimates the momentum relaxation time in disorde
wires by about a factor of 2 wheneverkL,1 suggests tha
the common use of the Born approximation to calcul
interface-roughness-limited mobilities in quantum wells m
be inadequate if a precise quantitative result is needed
particular, if the same correction factor is assumed to ap
it may account for the fact that the interface roughness c
relation lengths extracted from a comparison of experime
low-temperature mobility data for GaAs/AlxGa12xAs quan-
tum wells with Born approximation predictions ('70 Å!
~Ref. 34! tend to exceed the estimates based on photolu
nescence excitation spectroscopy (,30 Å!.35 While a direct
verification of this using a 3D finite-difference approa
analogous to the 2D formulation adopted here would be q
challenging from a computational standpoint, a 2D adiab
approximation analogous to the 1D formulation discus
above might be relatively accurate as long as the energie
interest are low enough that intersubband processes ma
ignored.

We emphasize again the generality of our basic appro
which may be applied to time-dependent quantum trans
or localization in structures with any in-plane geometry,
long as the required grid size and time step are compa
with the available computational resources. For example,
response of mesoscopic electronic devices with large ele
fields could be modeled. The method could also be gene
ized to treat magnetotransport and edge states in struc
with high magnetic fields and arbitrary geometries. A se
rate work will discuss the development of a method for so
ing the time-dependent 2D Schro¨dinger equation for a time
varying Hamiltonian. This allows the treatment of tim
varying fields as well as the inclusion of a harmonic poten
to enable the modeling of phonon-scattering processes
dominate the electron transport at higher temperatures. S
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a technique may be used to extend the calculations of po
optical phonon-scattering rates, which have already been
cussed in the literature for perfect rectangular quant
wires,36,37 as well as for wires with interface roughness a
for arbitrary three-dimensional geometries22,38 to situations
where Matthiesen’s rule and the relaxation-time approxim
tion are inadequate. A different approach to this probl
starting with the time-domain calculation of this paper is
include weak dissipation by phonon scattering via Mon
Carlo sampling of the electron-phonon-coupled potential28

It should also be noted that another important mechanism
scattering by randomly positioned ionized impurities, whi
can be treated using the approach presented in this p
once the self-consistent potential due to the scatterer
determined.18

It should finally be noted by way of comparison th
Wigner function models, which were used some time ago
calculate the characteristics of resonant-tunneling diodes,39,40

are attractive, since dissipative phonon scattering can
straightforwardly incorporated~using, for example, a
weighted Monte Carlo technique.41! However, the need to
perform computations in momentum as well as real sp
renders the possibility of useful calculations for arbitrary 2
geometries unlikely in the absence of supercomputer
sources. Another approach is to include the electron-pho
interaction into the treatment of quantum transport nonp
turbatively using numerical real-time path-integr
calculations.42 However, even for an oversimplified para
bolic confinement potential, the calculations tend to be qu
complex,43 and an extension to arbitrary potentials m
prove to require computational resources that are consi
ably greater than those used in this work.
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