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From Landau levels to universal fluctuations: Level statistics for lateral superlattices
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We study the energy-level statistics for electrons in a lateral two-dimensional superlattice in dependence on
the strength of the modulation potential at a given perpendicular magnetic fieldht€hminibandstatistics at
some selected point in the magnetic Brillouin zone shows a transition from degenerate Landau levels to
universal spectral correlations while the corresponding classical dynamics displays a crossover from regular
cyclotron orbits to chaotic motion. In terms of the nearest-neighbor spacing distribution, we observe the
occurrence of level repulsion fail nonzero modulation amplitudes, which indicates a discontinuous transition
to universal fluctuations for the smallest level spacings when the rotational invariance of the system is broken
by a finite superlattice potential. In order to test the universality of the transition on larger scales, we propose
a random matrix model with one transition parameter for comparison. Confirmed by two different types of
potential shapes, we detect an explicit influence of the potential shape on the level spacing distributions, which
hence cannot be described by the one-parameter model. Using the spectral rigidity, however, universal long-
range fluctuations in the regime of negligible Landau-level mixing are found, in agreement with our random
matrix model.[S0163-18287)09907-4

[. INTRODUCTION excluded from regions near the modulation maxima. The lo-
cal spectral fluctuations should reflect the change of the clas-
Ever since the advent of quantum mechanics, importansical dynamics from regular cyclotron orbifi® the limit of
efforts have been undertaken to understand the connectia@ero modulatiopto chaotic motion. As already demonstrated
between classical systems and their quantized versions. Ugsewheré the chaotic limit translates intoniversalspectral
to now, the question of how the classical phase-space strucorrelations that can be reproduced by simple Gaussian ran-
ture translates into the quantum system is still under livelydom matrices.
discussion. One important approach to identify the type of Unlike generic systems with regular classical dynamics,
classical dynamics is to analyze the statistical properties diowever, the homogeneous 2DES exhibits a highly uniform
the quantum-mechanical energy spectrum. It is a well-knowi€nergy spectrum of degenerate Landau levels. Whereas in
empirical finding that energetically local correlations be-9eneric regular systems of at least two degrees of freedom,
tween the energy levels of classically chaotic systems are igémiclassical quantization results in the superposition o_f in-
many cases universal, and can be describecabyom ma- dependent, uncorrelated subspectra — leading to Poisson
trix theory.! Traditionally, one has considered finite systems,StatIStICS in the I'.m.'t of mﬁmtely many SU(.:h subspectra —
e.g., billiards with hard walls, which provide discrete energyOur system exhibits nongeneric correlations between the

. : . energy-level positions analogous to a harmonic-oscillator
spectra and, in certain cases, allow analytical approaches; 9y b 9

As was demonstrated previousK/the universal behavior of system. To the best of our knowledge, no previous research

. : . . has been devoted to level statistics in the transition from
spectral correlations is also present in extended systems I'l??egenerate Landau levels to universal correlations. This is
antidot superlattices, which resemble Sinai billidrds-

Lo the aim of our present work.
tended to an infinite plane. _ Continuous spectra of extended systems impose difficul-
Lateral superlattices, fabricated on the basis of GaAsjies onto the task to define reasonable correlation functions
(Al \Ga;_4)As heterostructures, have become intensely infor intra bandstatistics(one way to obtain discrete spectra is
vestigated with respect to magnetotransport propetfié®y  the restriction to a finite system size, cf. Ref. B contrast
consist of a two-dimensional electron systeDES in the (g crystalline solids, however, the comparatively large super-
X-y plane, subject to a perpendicular magnetic fiBldBz lattice constanfof the order of several hundred nanometers
(parallel to the epitaxial growth directipand modulated by leads tomany relevantminibandsnear the Fermi energy,
an electrostatic lateral periodic potenfifx,y). A variety of ~ which makes the evaluation d@fiterminibandstatistics use-
experiments have been undertaken to study the dependenite. Nevertheless, we emphasize that for practical purposes
of magnetotransport properties of lateral superlattices on theve have to average over a considerable energy range. The
modulation strength. dependence of the classical phase space on energy due to the
Transport phenomena are decisively related to the energypagnetic field and the smooth potential is not negligible in
spectrum near the Fermi energy. Therefore it is worthwhilethis range, in contrast to billiard systems with hard walls and
to study spectral correlations with respect to a transition fronin zero magnetic field, for instance. Therefore, for a given set
weak to strong potential modulation compared to the Fermof parameters there is no fixed structure of the classical phase
energy. The latter case is often referred to as an antidot laspace as a reference in our céisecontrast to billiards This
tice, because the electrons at the Fermi surface are classicallyeans that the level statistics obtained from a larger energy
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interval corresponds to a mixture of different classical phasematrices one expects to obsete®el repulsionwithin each
space structures, which makes a direct mapping impossiblélock, i.e., the distribution of nearest-neighbor level spacings
For the sake of dealing with realistic systems, we refrainS is
from the possibility to enforce the semiclassical limit
(5—0) by unnaturally large lattice constants. The influence P(S)S# when S—0. S

of this averaging over a broad energy range instead of pefFhe exponenp in this expression depends on the symmetry
forming genuinely local statistics around a certain energyf the block under consideratiorB=1 for time-reversal

will be discussed at a later point in this paper. ~ symmetric blocks(and those with some generalized time-
We restrict ourselves to a noninteracting 2DES describedeversal symmetry which involves additional geometric op-
by the Hamiltonian eration3, 8= 2 for blocks with broken time-reversal symme-
1 try, and B=4 in some systems with Kramers degeneracy
H= 5 [p+eA(x,y)]2+V(xy), (1) (not relevant in our spinless systenfror greater detail con-

cerning this classification, we refer again to Ref. 1.

wherem*=0.067n, is the effective electron mass of GaAs, Since the submz_itricelsi(_@) for_ a fixed magneti_c wave

A= L(—By,Bx) the vector potential in the symmetric vector are already irreducible @ is an unsymmetric point
=2(-By, P i Sy of the MBZ, we may detect the mentioned characteristics of

gauge, and/(x,y) the superlattice potential. Spin degrees ofp(s) for the interminibandsequenceE,,(®) with fixed ©.

freedom are neglected. It is the interplay of the quantizingye have to bear in mind though, that fdg=0 the system

V(X:Y) =VO

magnetic field and the formation of a band structure causef || rotationally invariant. This leaves us with degenerate
by the periodic potential that determines the electronic en 5nqau levels, which is certainly no generic limit. How the
ergy spectrum. _ _ _ spectral correlations change when this symmetry is broken
In the following we consider mainly a potential of the by the modulation is by no means obvious.
form In order to obtain significant statistics, we average the
- - ]2 local spectral correlations over an energy range containing
Cog<_x cos{—y , 2) 1500-2000 energy levels. The classical dynamics in this en-
a a ergy range displays a crossover from regular orbits extended
with perioda and a steepness given lay With regard to  OVer several Iatt.ice_ cells to chaoFic motic_m when the modu-
experimental activitied,we will focus our attention on the lation strength is increased. This transition should be re-
dependence of the energy spectrum on the modulatioflected in the observed level statistics.
strength i.e., the potential amplitud®,. The role of the Figure 1 shows the evolution f(S) for different modu-
shapeof the applied potential will also prove to be impor- lation amplitudes at some unsymmet@cpoint where time-
tant. Yet before we proceed with our statistical approach, wéeversal symmetry is already broken due to the presence of
will make a few general remarks about the properties of thigh® magnetic field. For the unmodulated systafgs=0, the

spectrum. density of states reads

The calculation of the magnetic band structure is compli- 1 =
cated and highly sensitive to a change of the nunmeiof D(E)= _22 SE—(m+ Hiw], (4
magnetic flux quantahle) threading the unit cell of the 2w/ =0

superlattic€. For weak modulation amplitudes one may ig- where fw,=%eB/m* is the cyclotron energy, and

nore coupli'ng. between different Landau levels to obtain g _ %cl(eB) is the magnetic length. According to the Lan-
spectrum similar to the well-known Hofsta;dter butterfly, dau counting of states there arg=a?/(27/2) energy lev-
which is the solution of the Harper equattdfifor electrons els per® point in the MBZ(excluding spin degeneracyThe

in a magnetic field within the tight-binding approximatibh. unfolded sequence of levefwith mean level spacing equal
In general, if the number of flux quanta per unit cell is to unity) gives the spacing distribution

p/q, there arep energy bands per Landau level. For irratio-
nal ng the spectrum becomes a fractal object, a so-called 1

Cantor set? Since those aspects have already been studied P(S)= n_[(n<1>_1)5(5)+ 8(S—ng)]. ®)
previously>®121% we will restrict the discussion in the _ ®

present paper to an integer number of flux quanta per unifh€ unfolding procedure maps the cyclotron enefgy.,
cell. In this case, the magnetic translations of theSeparating adjacent Landau levelsntp, which is equal to
superlattic®® are isomorphic to the conventional lattice the Landau-level degeneracy. Note that this yields
translations, and one obtains a magnetic band structurboSP(S)dS=1.

E.(®) characterized by a miniband indexand the mag- For weak modulation the5 peaks broaden and move
netic wave vecto®, which is restricted to a magnetic Bril- closer according to the splitting of the Landau levels. Finally
louin zone(MBZ).° — in the regime of strong potential modulatie— a single-
peak structure emerges which turns out to match the univer-
Il. SHORT-RANGE FLUCTUATIONS sal distribution curve for the Gaussian unitary ensemble

(GUE, B=2) as predicted by random matrix theory for
In order to observe the universal fluctuations in the energyHamilton matrices with broken time-reversal symmetry. This
spectrum it is necessary to decompose the Hamiltonian intis typical for classically chaotic systems.
irreducible blocks, which means that only one good quan-  The result of our analysis is that level repulsion can be
tum number varies in such a block. For generic Hamiltondetected even for the smallest modulation amplitudes. It is
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FIG. 1. Nearest-neighbor spacing distributi®(S) of the unfolded sequence of roughly 1800 energy lefg(®) (from 1 to 38 meV
at the unsymmetric poir®= 7(0.4,0.7) in the MBZ(markedK in the MBZ sketch at the bottom right=or different modulation amplitudes
V, the remaining parameters have been chosensas5, a=600 nm (iw.=0.1 meVj, and =4 [cf. EqQ. (2)]. The insets show the
integrated spacing distributioR;(S) in the region of level repulsion ne&=0. The smooth curves in the insets are least-mean-square-
deviation fits for linear(thin) and quadraticthick) level repulsion as discussed in the text. The dashed curves correspond to GUE.

demonstrated by the insets of Fig. 1: Here we compare theegular and chaotic classical orbits. The Berry-Robnik-
integrated spacing distribution function formulas hold rigorously only in the semiclassical limit; non-
semiclassical deviations have been found in several works
including ones by the authors themselv&s.

Instantaneous level repulsion is consistent with theoretical
investigations by Pandeéy who argued that the transition of
with least-mean-square-deviation fits of the fo@yS? and  spectral correlations in random matrix ensembles due to the
C,S® over a suitable range from 0 t8,,.,. The latter is loss of good quantum numbers, whose corresponding sub-
limited by the position of the maximum &f(S), which is at  spectra are independently superimposed, is discontinuous on
Sy~0.86 for the GUE but goes to zero wh#fy vanishes. small scales when the matrix dimension becomes infinitely
Since ever fewer spacings are located in this relevant in- large. Then the small-scale fluctuations should be those of
terval, our numerics is not significant enough to distinguishthe symmetry-breaking ensemble. In our case this transition
between linear and quadratic level repulsion for the smallesit accomplished by breaking the rotational invariance with
V, (cf. Fig. 1). Yet we are able to rule odével clustering  respect to the axis, which results in the splitting of degen-
i.e., Pin(S)=CyS+0O(S?) with C,>0, which is typical of erate Landau levels. As already mentioned, the scale of level
systems with regular classical dynamics. This is in contrastepulsion differs drastically for small and large modulation
to results by Berry and Robni¥,who found persistent level amplitudes, and shrinks to zero fof,—0. Ignoring inter-
clustering for a mixed classical phase space with coexistingandau-level coupling, one may argue that the splitting of

S
Pl S)= fo P(t)dt ®)
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FIG. 2. Nearest-neighbor spacing statistics for the proposed random matrix modalywith andN =50 averaged over 100 matrices of
type (7). Pi(S) (insed clearly exhibits quadratic level repulsion for alt>0; like in Fig. 1, fits for linear(thin curve and quadratic level
repulsion(thick curve, as well as the GUE spacing distributiémiashed cunjeare added.

the Landau levels is proportional . As long as this as- vectors® are still reducible, the universal level repulsion
sumption holds one expec8,,< V. This is approximately may be masked by the superposition of two or more inde-
confirmed by our results in Fig. 1, where the appropriatependent spectra.

scalesS,, can be seen in the insets. Nevertheless the abso-

lute scale of repulsion is dependent on the lattice parameters . RANDOM MATRIX MODEL

and the magnetic fieldor ng,, respectively. For a given number of flux quanta per unit cell both limits
At this point we want to stress that, is a fundamental ot yanishing and very strong modulation strength are univer-
parameter which cannot be eliminated by any transformatiogy) that is, independent @, «, and any other parameters
with the aim to unite the quantitiesa, Vo, and  specifying the potential shape. With this in mind, one may
B=ngh/(ea”). Classical dynamics does allow such awonder whether the transition as a whole is — in any sense
transformatiorf’ At fixed energyE=E/V, it yields for a — universal.
given potential shapea dependence on only one parameter, Many attempts have been presented to describe spectral
namely, y=eaB/(47Jm*Vy). Quantum mechanics, how- correlation functions for broken symmetries theoretically by

ever, introduces an explicit dependence rop. Therefore ~ Means of random matrices. Analytical expressionsH(§)
the Hamilton operatoﬁ in units of V, is determined by have been developed in the case of transitions from Poisson

= —— : . _ spectra (entirely uncorrelated energy eigenvalues all
= Ngh/(4maymVy) and ny independently. In the discus Gaussian ensemble speéfras well as transitions between
sion about the crossover from Landau levels to quantu

. Mhose ensembles. But none of these cases is appropriate for
chaos, we thus have to specify the number of flux quanta pghqqeling the transition from Landau levels to Gaussian en-
unit cell ng,, which is evident in the resultingq-specific  semples. A general approach for a weakly broken symmetry
nearest-neighbor statistics, cf. E(@. Since any_change in by Leyvraz and Seligmaf?, modeled asH=Ho+\H,,

a can be absorbed in an appropriate modulation amplltud@vhereHo belongs to some known ensemble, add, is a
Vo by keepingy constant,a will remain unaltered in the small perturbation, proves on a second-order perturbation
studies presented in this paper. level in\ that forS— 0 the nearest-neighbor statistics exhib-
Finally we remark that if the energy spectrum of someits the level repulsion of the perturbing ensemble. The
symmetric point of the MBZ is analyzed, one is able to sedatter is one of the Gaussian ensembles GOE, GUE, or GSE,
linear level repulsion(connected with some generalized the Gaussian symplectic ensemble. Withbeing a Landau-
time-reversal symmetjy For largeV, the statistics of the level matrix, their method is not easily applicable because of
Gaussian orthogonal ensembl€OE) evolves. However, the pathological level densiti4). Furthermore, we are also
this needs a decomposition of the spectrum into independeirterested in the behavior on larger scalest only S—0)
subsets. Otherwise, as blocks for certain symmetric waveand for stronger symmetry breaking «).



4490 O. STEFFENS, M. SUHRKE, AND P. ROTTER 55

& 001| A=0.027

= 0.012 0.6 é
a- 0008 ) :
0.004 S a < osfi Potential Eq. (2)
0 a.01 s 002 0.03 0 004 OSOB 0.12 o.

_A-E_ Potential Eq. (11)

0.04

500 =030 0.3}
Zooz ;
ﬂ'0.01 0'21‘

. "‘ s 0 0.1 SO,Z 0.3 0.1

0

0 1 2 38 4 5 6 00 1 ) 3 4 5 6

S
FIG. 3. Integrated spacing distributid®(S) with a close-up FIG. 4. Integrated spacing distributid®,(S) of two different

nearS=0 (insets for different modulation amplitudes. The solid modulation potential shapes as indicated by line styles. The solid
curvesa—d correspond t6/o=0.5, 1.0, 2.0, and 10.0 meV, respec- cyrvesa—d correspond t&/,=0.5, 1.0, 2.0, and 10.0 meV, respec-
tively (with the remaining parameters as in Fig. The dashed tjyely, A—E (dashedl correspond td/,=0.01, 0.05, 0.1, 0.2, and
curves are determined by the random matrix model for diffekent 5 meV. The remaining parameters are as in Fig. 1. The lowest
[in the main graphP,in(S) has been drawn for values affrom 1800 energy levels of each spectrum were used for the analysis.
0.05 to 0.5 in steps of 0.05

a given\ converge forN>ng . In the caseng, =5, for ex-

In order to address the question of universality via a nuymple N=50 is sufficient to achieve practical independence
merical approach we therefore propose the followimgdom ¢ N .

matrix modeland concentrate on the case of broken time- Eigyre 2 shows nearest-neighbor spacing distributions

reversal invariance: Ldd;| be aNxXN dia_gonal matrix \_/vith P,(S) for some values ok. Clearly one can make out the
ne-fold degenerate Landau levelsL) with a (dimension-  ¢rossover from LL statistics to GUE statistics. In the inte-
less distanceE, andH e @ member of the Gaussian unitary grated distributiorP;(S) level repulsion again shows up —
matrix ensemble of dimensioNxN. The matrixH, con-  here the fit for quadratic level repulsion is significant in con-
sists ofH,; and an admixture ofige, trast to the one for linear level repulsion. Concerning level
spacings in this range far below the cyclotron energy, it turns
(Hy +MHoup). 7) out that the prefactor iR;,(S) =QZS3 fitting_ the distributipn
JI+az cu P,in(S) nearS=0 when\<1 is proportional to\ "2; in

~__other words, we find a scaling law
The prefactor ensures that the energy range remains finite

H)\:

throughout the transitioff and we have Ho=H,,, 2 s
H.=Hgue. Since there ar& =N/ng degenerate blocks in Pr(S)| 1] +O(S) for A<1; (10)
H._, the level density becomegsaking M to be even and o o )
shifting the energy by- E;M/2) a similar law forVo whenC, is fitted to the physical system
could not be established.
M2=1 Comparison of the intermediate distributioRg(S) with
pLL(E):m EM/Z Ng S E—(m+ 3)E]. (8)  the ones of the physical syste(fig. 3) reveals that the tran-

sition does not occur in the same way. This suggests that
For the GUE with Gaussian distributed real and complexthere might be an explicit dependence of the distribution
parts Re/Int {); of the matrix elements as defined in Ref. 1 Curves on theshapeof the modulation potential. In order to
with  variance Va{‘Re/erngU)E}Il-i- 5; (note that confirm this conjecture, we compare the integrated spacing
|mHgBE= 0) Wigner's semicircle la## holds for the en- distributions of the potential2) with some of the additive

semble averaged spectral density potential
1 Y iy 2 N 2 ”
Peue(E)=2—‘/4N—EZ for |E|$2\/ﬁ_ (9) (x,y)=Vo| co ?x co ?y . (11

a
As a result(cf. Fig. 4, we find a pronounced difference
If we also want to placeN levels within the interval petween the transitions of these systems: The distribution
[-2yN,2yN] in the LL limit, we must choose curves intersect each other several times and do not seem to
E.=4ny /N so that the mean density in this range becomesollow any universal pattern valid for both transitions
JN/4. equally. Note that no assumption whatsoever has been made
Our numerical studies of this model yield that the levelabout the relation between the modulation amplitudes of the
spacing distributionsin units of the mean level spacinfpr  systems.
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We believe the reason for this behavior to be the highly
energy-dependent phase space, which is determined by the
potential modulation shape and amplitude. As we have al-
ready pointed out, the classical phase space can be uniquely
characterized by two independent parameters: the energy in
units of the modulation potential amplitude, and
y=eaB/(47mym*V,); this requires, however, a fixed poten- g y
tial shape€®® Changing the shape of the potential also changes @1r Vi oo oo oaa ot 31
the classical phase-space structure. Therefore an energeti- 4 § T T oo T T
cally local statistical analysis performed for a semiclassical § g i
spectrum with a high density of energy levels is expected to ’ e oo 0 0 00 o
yield an equally nonuniversal crossover of the spacing dis- s e 4=0% 2013ey
tributions as for our distribution curves obtained from aver- o K " GUE limit_\=0.50 100mev |
aging over a finite-energy range. A practically local analysis 0 5 L ° 15
in the semiclassical regime lies beyond our numerical ca-
pacities, though, since an enlargement of the lattice constant g\ 5. spectral rigidityA4(L) for different modulation ampli-
requires also a high-energy regime, hence enormous Hamifgges (the remaining parameters have been chosen as in Fig. 1

ton matrices, in order to stay in the domain (elentually  curves for the physical systefuircles are compared with theoreti-
chaotig classical motion extended over several lattice cells.cal curves for fivefold-degenerate Landau levils , (L), equidis-

To summarize, in spite of the fact that we observen&  tantly split levelsA;,(L) (dashed lines with the values e, and
versal level repulsion exponefitere=2) the transition on the GUE(labeled GUR The inset at the left displays schematically
scales up to the order of the cyclotron enefgyng , respec- the spectral rigidityAs, (L) for the random matrix model with dif-
tively) is not independent of the chosen system and thugerent valuesn from 0 (LL limit) to 0.5 (approaching the GUE
cannot be generally matched by a random matrix model witfimit). Suitable curvegsolid lines with values of\) have been
only one transition parameter. drawn in the main graph for comparison.

It should be mentioned that even the level statistics on the
smallest scales is influenced by the explicit shape of th@nd theoretical curves farg-fold degenerate Landau levels
modulation potential. Consider again the additive potentiaRre also shown.

(11), which vyields an integrable Hamilton function for infi- ~ The theoretical curves were obtained by using the relation
nitely smallV,. This is connected with a Poisson-like level betweenA;(L) and the number variancg?(L), which de-
spacing distribution, i.e.P;(S)=S for S—0. Features of scribes the fluctuations of the number of levelsvithin a
level clustering are indeed found for sufficiently small modu-spectral range of length:*

lation amplitudegof the order of one tenth of the cyclotron 2 L

energy with parameters like in Fig).1Here level repulsion Ag(L)= _J (L3=2L2r+r3)32(r)dr. (14)
cannot be resolved in our analysis, since the relevant range 3 L*Jo

nearS=0 is too small and hence does not contain enoug
level spacings in order to yield a useful statistics.

random matrix model

115

0.5

rft is easily shown that, fong degenerate Landau levels,

32 (L)=(ng—L)L for 0<L<ng, (15)
IV. LONG-RANGE FLUCTUATIONS ) 5 _ S
and> [ (L+ng)=2; (L). This periodicity eventually leads

While the nearest-neighbor spacing distribution measureg a convergence ok, (L) for L—o since the kernel in
short-range correlations of the energy levels, the spectral rigq. (14) becomes smoother and the integral tends to average
gidity A5(L) (first introduced by Dyson and Mefiachar-  gver more and more periods af?, (L). Replacing=? (L)

a_lcterizes fluctuations over a Ionggr spectral range. It is de(—,y its average over one period, nameriﬁ,/G, yields
fined as the mean-square deviation of the integrated level

density or “spectral staircase™N(e) (e denoting the un- 2

n
folded sequence of levels in units of the mean level spacing limAsz, (L)= 1—2 (16)
: ; o Lo
from its best linear approximatioAe+B over a spectral
distancel, FurthermoreA; (L) =ngL/15 if L<ng . The saturation of
1 fegtl the spectral rigidity on large scales reflects the fact that there
As(L)= <EJ ° [N(e)—Ae— B]Zde> , (120  are no more fluctuations on scales beyond the cyclotron en-
eo e ergy.

For weak potential modulatiofi;(L) is well described by
where (), symbolizes averaging over the whole spectrum.a simple model of equidistantly split levelgus incorporat-
In Fig. 5 our numerical results for different modulation am- ing the observation of level repulsipwhose separatios is
plitudes are displayed. For comparison, curves for the Gausstill much smaller than 1[so that (g—1)e<<ng, the
ian unitary ensemble spectra with the asymptdtics Landau-level distandeln this situation one can as well de-
L rive an expression foEﬁ(L) and obtainA; (L) by integra-
. 1 tion. Taking the parameter to be the mean intra-Landau-
AseueL) = 52lIn(27L) —0.672 78 ... ]+ O(L ), level spacing from the numerical data of the physical system
(13 (in units of the overall mean level spacjnghis model is
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able to describe the spectral rigidity for surprisingly lagge 0.3
(cf. Fig. 5. The reason for this model being appropriate is
that A3(L) measures long-range fluctuations rather than
short-ranged details of the level distribution. Therefore more
sophisticated models are not required as long as the intra-
Landau-level separation does not affect scales comparable to __
the cyclotron energy. =
The results for the random matrix model are also included <’
in Fig. 5. The inset shows the development for selected val- GUE limit
ues ofA. Comparison of suitable curves;, (L) with those i
of our physical system demonstrates a very good agreement
for modulation amplitudes up to 0.5 meV. Deviations for
higher amplitudes will be discussed toward the end of this
section. % 5 . 15
If we deal with a small perturbation of the Landau levels, L
we may assume for the mean intra-Landau-level spaging
«Vq. This is well reflected in Fig. 5, which includes the  FIG. 6. Spectral rigidity A;(L) for the additive potential
numerically determined values af for the two smallest v(x,y)=V,[cos(2mx/a)+cos(2ry/a)] for Vo=0.5 meV (with
modulation amplitudes. For the random matrix model, wea=600 nm,n,=5, energy range 1—38 mgVThe physical system
may argue that in the case of the inter-Landau-level couplingcircles is compared with the random matrix modgblid curve
being negligible, we basically superposengxXng matrix  for A=0.3. One can see the saturation/dof(L) as a consequence

H) over each Landau level where the energy correction8f the classical phase-space structure.

are distributed according to Wigner's semicircle 168y with o

N—ng . Note that in this regime the unfolding procedure iswhered=ng, /(% w,) is the meanphysica) level density in
still barely affected by the Landau-level splitting, so that thethe system, and,,,,, the shortest period. The latter can be
eigenvalues of\Hg]S’é are rescaled by a constant factor givenestimated by regular cyclotron orbits, which yields
by the mean level spacing of the unperturbed systentma~Ng . The actual orbits are, however, distorted cyclo-
Sy=E./ny . This leads to a mean intra-Landau-level spac-tron orbits” and strongly dependent on the applied modula-
ing ). For the parameters we have chosen in this papeiion potential. B _
(=5, N=50, S,=0.57) the mean spacing between the Obviously, the specific phase space structure plays an im-

cigenvalues of Hg’&E is S=2.34+0.01, which gives portant role on Iarge scale quctuatlons: As_ can be seen in
— C Fig. 6, the saturation of the spectral rigidity is especially
e=\SISy;=4.11\, thus VyxA. This is in excellent agree- pronounced for the additive potential V(x,y)

ment with the values in Fig. 5. It shows that the assumptiorL ,, [cos(2mx/a)+cos(2ryla)], which has saddle points be-
of no Landau-level mixing is still reasonable for the physicaltwegn its maxima. our random matrix model can certainly

system wherV=0.5 meV. Nevertheless, the deviations of ot 4ccount for such a saturation because it legdsefini-
our simplified form forAs,(L) from the numerical values on to the pure GUE limit.

are obvious. Remember that a proportionality betweemd

Vq could not be established on small scales. This discrep-
ancy, which is evident when Fig. 3 is compared with Fig. 5,
can be attributed to our averaging over a large energy range.
This certainly influences the observed scales of quadratic In summary, our investigations have led to the conclusion
level repulsion and is affected by the specific lattice shapethat the transition from degenerate Landau levels to a spec-
Concerning long-range fluctuations£ng,), Vo< is, how-  trum with universal fluctuations of the Gaussian ensemble
ever, a good approximation because only #veragelevel  type displays features of universality, which are, however,
splitting ¢ is relevant, and it does not matter hgeciselyit  restricted to the smallest scales. On those scales, which de-
is achieved. This indicates only a weak dependence on theend on the modulation strengths, we observe quadratic level
specific modulation potential as long as the Landau-levetepulsion that indicates the broken time-reversal invariance
mixing may be ignored. of the system.

An important aspect, which we have not yet discussed at On energy scales of the order of the cyclotron energy, the
length, is thesaturationof A3(L) for L>L,~Ng. In the transition appears to be well described by a random matrix
case of the LL limit we have already mentioned that this is anodel with one parameter as long as Landau-level mixing is
consequence of the uniform Landau-level spectrum, leadingegligible. Fluctuations on intermediate scales smaller than
to the saturation value given by E@L6). But even in the the cyclotron energy have been found to be nonuniversal, as
strongly modulated system one observes a saturation beyomgmonstrated in terms of the nearest-neighbor spacing statis-
the cyclotron energy. By means of periodic orbit theory fortics. The transition rather depends explicitly on the modula-
finite systems, Berry has shown that,, is connected with tion potential shape, which is in accordance to its influence

V. CONCLUSION

the shortest classical periodic orbifs: on the classical phase-space structure. It is very unlikely that
— a change of the potential shape could be canceled by some
Lo = hd 17) appropriate scaling of the independent parameters

max 1

min vy=ngh/(4maym*Vy) andE/Vo (while ng, remains fixed
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given the various ways one could construct a lattice periodithe theory of a universal transition parameterA

function. «[ a/S(E)]? as introduced by Frenait al % for the breaking
The long-range fluctuations, too, show a dependence 08f a good symmetry, for instance, rotational invariance, in
the physical realization of the transition, which can be veri-random matrix models. Herer is the mean symmetry-
fied by studying different types of potentials, e.g., alternareaking matrix elementorresponding td/, or A, respec-
tively to Eq. (2), the potential V(x,y)=Vo[cos(2rx/a)  iyely), whereasS(E) is thelocal mean level spacing at en-
+cos(Zry/a)]. This should be related to the shortest closedgrgy E. |n any case, such an analysis would require
cIassicaIGOrbits as was pointed out by Berry for ﬁ”ite'Sizeextremely large Hamilton matrices beyond our present pos-
systems'! | | sibilities.
We want to emphasize that in order to keep close to ex-
perimental parameters, we did not attempt to approach the
semiclassical limit where truly energeticallycal level sta-
tistics can be performed. The classical dynamics undergoes a
transition from regular cyclotron orbits to chaotic trajectories We would like to thank Professor Ulrich Rsler for many
that strongly depends on the shape of the modulation poterruitful discussions, and his invaluable support of this work.
tial and on the energy. Hence it is most doubtful that everFinancial support by the Deutsche Forschungsgemeinschaft
energetically local level statistics in the semiclassical limit(SFB 348 is also gratefully acknowledged. The calculations
could be described by one-parameter random matrix modelfiave been carried out on Cray Y-MP supercomputers at the
This, however, is a necessary condition to make contact tbeibniz Rechenzentrum in Munich.
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