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From Landau levels to universal fluctuations: Level statistics for lateral superlattices

O. Steffens, M. Suhrke, and P. Rotter
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 12 September 1996; revised manuscript received 18 October 1996!

We study the energy-level statistics for electrons in a lateral two-dimensional superlattice in dependence on
the strength of the modulation potential at a given perpendicular magnetic field. Theinterminibandstatistics at
some selected point in the magnetic Brillouin zone shows a transition from degenerate Landau levels to
universal spectral correlations while the corresponding classical dynamics displays a crossover from regular
cyclotron orbits to chaotic motion. In terms of the nearest-neighbor spacing distribution, we observe the
occurrence of level repulsion forall nonzero modulation amplitudes, which indicates a discontinuous transition
to universal fluctuations for the smallest level spacings when the rotational invariance of the system is broken
by a finite superlattice potential. In order to test the universality of the transition on larger scales, we propose
a random matrix model with one transition parameter for comparison. Confirmed by two different types of
potential shapes, we detect an explicit influence of the potential shape on the level spacing distributions, which
hence cannot be described by the one-parameter model. Using the spectral rigidity, however, universal long-
range fluctuations in the regime of negligible Landau-level mixing are found, in agreement with our random
matrix model.@S0163-1829~97!09907-4#
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I. INTRODUCTION

Ever since the advent of quantum mechanics, impor
efforts have been undertaken to understand the conne
between classical systems and their quantized versions
to now, the question of how the classical phase-space s
ture translates into the quantum system is still under liv
discussion. One important approach to identify the type
classical dynamics is to analyze the statistical propertie
the quantum-mechanical energy spectrum. It is a well-kno
empirical finding that energetically local correlations b
tween the energy levels of classically chaotic systems ar
many cases universal, and can be described byrandom ma-
trix theory.1 Traditionally, one has considered finite system
e.g., billiards with hard walls, which provide discrete ener
spectra and, in certain cases, allow analytical approach2

As was demonstrated previously,3,4 the universal behavior o
spectral correlations is also present in extended systems
antidot superlattices, which resemble Sinai billiards5 ex-
tended to an infinite plane.

Lateral superlattices, fabricated on the basis of Ga
~Al xGa12x)As heterostructures, have become intensely
vestigated with respect to magnetotransport properties.6 They
consist of a two-dimensional electron system~2DES! in the
x-y plane, subject to a perpendicular magnetic fieldB5Bẑ
~parallel to the epitaxial growth direction! and modulated by
an electrostatic lateral periodic potentialV(x,y). A variety of
experiments have been undertaken to study the depend
of magnetotransport properties of lateral superlattices on
modulation strength.7

Transport phenomena are decisively related to the en
spectrum near the Fermi energy. Therefore it is worthwh
to study spectral correlations with respect to a transition fr
weak to strong potential modulation compared to the Fe
energy. The latter case is often referred to as an antidot
tice, because the electrons at the Fermi surface are class
550163-1829/97/55~7!/4486~8!/$10.00
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excluded from regions near the modulation maxima. The
cal spectral fluctuations should reflect the change of the c
sical dynamics from regular cyclotron orbits~in the limit of
zero modulation! to chaotic motion. As already demonstrate
elsewhere,3 the chaotic limit translates intouniversalspectral
correlations that can be reproduced by simple Gaussian
dom matrices.

Unlike generic systems with regular classical dynami
however, the homogeneous 2DES exhibits a highly unifo
energy spectrum of degenerate Landau levels. Wherea
generic regular systems of at least two degrees of freed
semiclassical quantization results in the superposition of
dependent, uncorrelated subspectra — leading to Pois
statistics in the limit of infinitely many such subspectra
our system exhibits nongeneric correlations between
energy-level positions analogous to a harmonic-oscilla
system. To the best of our knowledge, no previous resea
has been devoted to level statistics in the transition fr
degenerate Landau levels to universal correlations. Thi
the aim of our present work.

Continuous spectra of extended systems impose diffi
ties onto the task to define reasonable correlation functi
for intra bandstatistics~one way to obtain discrete spectra
the restriction to a finite system size, cf. Ref. 8!. In contrast
to crystalline solids, however, the comparatively large sup
lattice constant~of the order of several hundred nanomete!
leads tomany relevantminibandsnear the Fermi energy
which makes the evaluation ofinterminibandstatistics use-
ful. Nevertheless, we emphasize that for practical purpo
we have to average over a considerable energy range.
dependence of the classical phase space on energy due
magnetic field and the smooth potential is not negligible
this range, in contrast to billiard systems with hard walls a
in zero magnetic field, for instance. Therefore, for a given
of parameters there is no fixed structure of the classical ph
space as a reference in our case~in contrast to billiards!. This
means that the level statistics obtained from a larger ene
4486 © 1997 The American Physical Society
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55 4487FROM LANDAU LEVELS TO UNIVERSAL . . .
interval corresponds to a mixture of different classical pha
space structures, which makes a direct mapping imposs
For the sake of dealing with realistic systems, we refr
from the possibility to enforce the semiclassical lim
(\→0) by unnaturally large lattice constants. The influen
of this averaging over a broad energy range instead of
forming genuinely local statistics around a certain ene
will be discussed at a later point in this paper.

We restrict ourselves to a noninteracting 2DES descri
by the Hamiltonian

H5
1

2m! @p1eA~x,y!#21V~x,y!, ~1!

wherem!50.067me is the effective electron mass of GaA

A5 1
2 (2By,Bx) the vector potential in the symmetri

gauge, andV(x,y) the superlattice potential. Spin degrees
freedom are neglected. It is the interplay of the quantiz
magnetic field and the formation of a band structure cau
by the periodic potential that determines the electronic
ergy spectrum.

In the following we consider mainly a potential of th
form

V~x,y!5V0FcosS p

a
xD cosS p

a
yD G2a

, ~2!

with period a and a steepness given bya. With regard to
experimental activities,7 we will focus our attention on the
dependence of the energy spectrum on the modula
strength, i.e., the potential amplitudeV0. The role of the
shapeof the applied potential will also prove to be impo
tant. Yet before we proceed with our statistical approach,
will make a few general remarks about the properties of
spectrum.

The calculation of the magnetic band structure is com
cated and highly sensitive to a change of the numbernF of
magnetic flux quanta (h/e) threading the unit cell of the
superlattice.9 For weak modulation amplitudes one may i
nore coupling between different Landau levels to obtain
spectrum similar to the well-known Hofstadter butterfly10

which is the solution of the Harper equation11,12for electrons
in a magnetic field within the tight-binding approximation.13

In general, if the number of flux quanta per unit cell
p/q, there arep energy bands per Landau level. For irrati
nal nF the spectrum becomes a fractal object, a so-ca
Cantor set.14 Since those aspects have already been stu
previously,3,9,12,15 we will restrict the discussion in the
present paper to an integer number of flux quanta per
cell. In this case, the magnetic translations of t
superlattice16 are isomorphic to the conventional lattic
translations, and one obtains a magnetic band struc
En(Q) characterized by a miniband indexn and the mag-
netic wave vectorQ, which is restricted to a magnetic Bril
louin zone~MBZ!.9

II. SHORT-RANGE FLUCTUATIONS

In order to observe the universal fluctuations in the ene
spectrum it is necessary to decompose the Hamiltonian
irreducible blocks,1 which means that only one good qua
tum number varies in such a block. For generic Hamilt
e-
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matrices one expects to observelevel repulsionwithin each
block, i.e., the distribution of nearest-neighbor level spacin
S is

P~S!}Sb when S→0. ~3!

The exponentb in this expression depends on the symme
of the block under consideration:b51 for time-reversal
symmetric blocks~and those with some generalized tim
reversal symmetry which involves additional geometric o
erations!, b52 for blocks with broken time-reversal symme
try, and b54 in some systems with Kramers degenera
~not relevant in our spinless system!. For greater detail con-
cerning this classification, we refer again to Ref. 1.

Since the submatricesH(Q) for a fixed magnetic wave
vector are already irreducible ifQ is an unsymmetric point
of the MBZ, we may detect the mentioned characteristics
P(S) for the interminibandsequenceEn(Q) with fixed Q.
We have to bear in mind, though, that forV050 the system
is still rotationally invariant. This leaves us with degenera
Landau levels, which is certainly no generic limit. How th
spectral correlations change when this symmetry is bro
by the modulation is by no means obvious.

In order to obtain significant statistics, we average
local spectral correlations over an energy range contain
1500–2000 energy levels. The classical dynamics in this
ergy range displays a crossover from regular orbits exten
over several lattice cells to chaotic motion when the mo
lation strength is increased. This transition should be
flected in the observed level statistics.

Figure 1 shows the evolution ofP(S) for different modu-
lation amplitudes at some unsymmetricQ point where time-
reversal symmetry is already broken due to the presenc
the magnetic field. For the unmodulated system,V050, the
density of states reads

D~E!5
1

2pl 2 (
m50

`

d@E2~m1 1
2 !\vc#, ~4!

where \vc5\eB/m! is the cyclotron energy, and
l5A\c/(eB) is the magnetic length. According to the Lan
dau counting of states there arenF[a2/(2pl 2) energy lev-
els perQ point in the MBZ~excluding spin degeneracy!. The
unfolded sequence of levels~with mean level spacing equa
to unity! gives the spacing distribution

P~S!5
1

nF
@~nF21!d~S!1d~S2nF!#. ~5!

The unfolding procedure maps the cyclotron energy\vc ,
separating adjacent Landau levels, tonF , which is equal to
the Landau-level degeneracy. Note that this yie
*0

`SP(S)dS51.
For weak modulation thed peaks broaden and mov

closer according to the splitting of the Landau levels. Fina
— in the regime of strong potential modulation — a single-
peak structure emerges which turns out to match the uni
sal distribution curve for the Gaussian unitary ensem
~GUE, b52) as predicted by random matrix theory fo
Hamilton matrices with broken time-reversal symmetry. Th
is typical for classically chaotic systems.

The result of our analysis is that level repulsion can
detected even for the smallest modulation amplitudes. I
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FIG. 1. Nearest-neighbor spacing distributionP(S) of the unfolded sequence of roughly 1800 energy levelsEn(Q) ~from 1 to 38 meV!
at the unsymmetric pointQ5p(0.4,0.7) in the MBZ~markedK in the MBZ sketch at the bottom right!. For different modulation amplitudes
V0 the remaining parameters have been chosen asnF55, a5600 nm (\vc50.1 meV!, and a54 @cf. Eq. ~2!#. The insets show the
integrated spacing distributionPint(S) in the region of level repulsion nearS50. The smooth curves in the insets are least-mean-squ
deviation fits for linear~thin! and quadratic~thick! level repulsion as discussed in the text. The dashed curves correspond to GUE.
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demonstrated by the insets of Fig. 1: Here we compare
integrated spacing distribution function

Pint~S!5E
0

S

P~ t !dt ~6!

with least-mean-square-deviation fits of the formC1S
2 and

C2S
3 over a suitable range from 0 toSmax. The latter is

limited by the position of the maximum ofP(S), which is at
S0'0.86 for the GUE but goes to zero whenV0 vanishes.
Since ever fewer spacingsS are located in this relevant in
terval, our numerics is not significant enough to distingu
between linear and quadratic level repulsion for the smal
V0 ~cf. Fig. 1!. Yet we are able to rule outlevel clustering,
i.e., Pint(S)5C0S1O(S2) with C0.0, which is typical of
systems with regular classical dynamics. This is in contr
to results by Berry and Robnik,17 who found persistent leve
clustering for a mixed classical phase space with coexis
e

h
st

st

g

regular and chaotic classical orbits. The Berry-Robn
formulas hold rigorously only in the semiclassical limit; no
semiclassical deviations have been found in several wo
including ones by the authors themselves.18

Instantaneous level repulsion is consistent with theoret
investigations by Pandey,19 who argued that the transition o
spectral correlations in random matrix ensembles due to
loss of good quantum numbers, whose corresponding s
spectra are independently superimposed, is discontinuou
small scales when the matrix dimension becomes infinit
large. Then the small-scale fluctuations should be those
the symmetry-breaking ensemble. In our case this transi
is accomplished by breaking the rotational invariance w
respect to thez axis, which results in the splitting of degen
erate Landau levels. As already mentioned, the scale of l
repulsion differs drastically for small and large modulati
amplitudes, and shrinks to zero forV0→0. Ignoring inter-
Landau-level coupling, one may argue that the splitting
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FIG. 2. Nearest-neighbor spacing statistics for the proposed random matrix model withnF55 andN550 averaged over 100 matrices o
type ~7!. Pint(S) ~inset! clearly exhibits quadratic level repulsion for alll.0; like in Fig. 1, fits for linear~thin curve! and quadratic level
repulsion~thick curve!, as well as the GUE spacing distribution~dashed curve! are added.
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the Landau levels is proportional toV0. As long as this as-
sumption holds one expectsSmax}V0. This is approximately
confirmed by our results in Fig. 1, where the appropri
scalesSmax can be seen in the insets. Nevertheless the a
lute scale of repulsion is dependent on the lattice parame
and the magnetic field~or nF , respectively!.

At this point we want to stress thatnF is a fundamental
parameter which cannot be eliminated by any transforma
with the aim to unite the quantitiesa, V0, and
B5nFh/(ea

2). Classical dynamics does allow such
transformation.20 At fixed energyẼ5E/V0 it yields for a
given potential shapea dependence on only one paramet
namely, g5eaB/(4pAm!V0). Quantum mechanics, how
ever, introduces an explicit dependence onnF . Therefore
the Hamilton operatorH̃ in units of V0 is determined by
g5nFh/(4paAm!V0) and nF independently. In the discus
sion about the crossover from Landau levels to quan
chaos, we thus have to specify the number of flux quanta
unit cell nF , which is evident in the resultingnF-specific
nearest-neighbor statistics, cf. Eq.~5!. Since any change in
a can be absorbed in an appropriate modulation amplit
V0 by keepingg constant,a will remain unaltered in the
studies presented in this paper.

Finally we remark that if the energy spectrum of som
symmetric point of the MBZ is analyzed, one is able to s
linear level repulsion~connected with some generalize
time-reversal symmetry!. For largeV0 the statistics of the
Gaussian orthogonal ensemble~GOE! evolves. However,
this needs a decomposition of the spectrum into indepen
subsets. Otherwise, as blocks for certain symmetric w
e
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vectorsQ are still reducible, the universal level repulsio
may be masked by the superposition of two or more in
pendent spectra.3

III. RANDOM MATRIX MODEL

For a given number of flux quanta per unit cell both lim
of vanishing and very strong modulation strength are univ
sal, that is, independent ofa, a, and any other parameter
specifying the potential shape. With this in mind, one m
wonder whether the transition as a whole is — in any se
— universal.

Many attempts have been presented to describe spe
correlation functions for broken symmetries theoretically
means of random matrices. Analytical expressions forP(S)
have been developed in the case of transitions from Pois
spectra ~entirely uncorrelated energy eigenvalues! to all
Gaussian ensemble spectra21 as well as transitions betwee
those ensembles. But none of these cases is appropriat
modeling the transition from Landau levels to Gaussian
sembles. A general approach for a weakly broken symm
by Leyvraz and Seligman,22 modeled asH5H01lHk,
whereH0 belongs to some known ensemble, andlHk is a
small perturbation, proves on a second-order perturbat
level inl that forS→0 the nearest-neighbor statistics exhi
its the level repulsion of the perturbing ensembleHk. The
latter is one of the Gaussian ensembles GOE, GUE, or G
the Gaussian symplectic ensemble. WithH0 being a Landau-
level matrix, their method is not easily applicable because
the pathological level density~4!. Furthermore, we are als
interested in the behavior on larger scales~not only S→0)
and for stronger symmetry breaking (l→`).
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4490 55O. STEFFENS, M. SUHRKE, AND P. ROTTER
In order to address the question of universality via a
merical approach we therefore propose the followingrandom
matrix modeland concentrate on the case of broken tim
reversal invariance: LetHLL be aN3N diagonal matrix with
nF-fold degenerate Landau levels~LL ! with a ~dimension-
less! distanceEc andHGUE a member of the Gaussian unita
matrix ensemble of dimensionN3N. The matrixHl con-
sists ofHLL and an admixture ofHGUE,

Hl5
1

A11l2
~HLL1lHGUE!. ~7!

The prefactor ensures that the energy range remains fi
throughout the transition,23 and we have H0[HLL ,
H`[HGUE. Since there areM5N/nF degenerate blocks in
HLL , the level density becomes~taking M to be even and
shifting the energy by2EcM /2)

rLL~E!5 (
m52M /2

M /221

nFd@E2~m1 1
2 !Ec#. ~8!

For the GUE with Gaussian distributed real and comp
parts Re/ImHGUE

( i j ) of the matrix elements as defined in Ref.
with variance Var$Re/ImHGUE

( i j ) %511d i j ~note that
ImHGUE

( i i ) 50) Wigner’s semicircle law24 holds for the en-
semble averaged spectral density

rGUE~E!5
1

2p
A4N2E2 for uEu<2AN. ~9!

If we also want to placeN levels within the interval
@22AN,2AN# in the LL limit, we must choose
Ec54nF /AN so that the mean density in this range becom
AN/4.

Our numerical studies of this model yield that the lev
spacing distributions~in units of the mean level spacing! for

FIG. 3. Integrated spacing distributionPint(S) with a close-up
nearS50 ~insets! for different modulation amplitudes. The soli
curvesa–d correspond toV050.5, 1.0, 2.0, and 10.0 meV, respe
tively ~with the remaining parameters as in Fig. 1!. The dashed
curves are determined by the random matrix model for differenl
@in the main graph,Pl int(S) has been drawn for values ofl from
0.05 to 0.5 in steps of 0.05#.
-

-

ite

x

s

l

a givenl converge forN@nF . In the casenF55, for ex-
ample,N>50 is sufficient to achieve practical independen
of N.

Figure 2 shows nearest-neighbor spacing distributi
Pl(S) for some values ofl. Clearly one can make out th
crossover from LL statistics to GUE statistics. In the int
grated distributionPint(S) level repulsion again shows up —
here the fit for quadratic level repulsion is significant in co
trast to the one for linear level repulsion. Concerning le
spacings in this range far below the cyclotron energy, it tu
out that the prefactor inPint(S)5C2S

3 fitting the distribution
Pl int(S) nearS50 when l!1 is proportional tol22; in
other words, we find a scaling law

Pl~S!}S Sl D 21O~S3! for l!1; ~10!

a similar law forV0 whenC2 is fitted to the physical system
could not be established.

Comparison of the intermediate distributionsPl(S) with
the ones of the physical system~Fig. 3! reveals that the tran
sition does not occur in the same way. This suggests
there might be an explicit dependence of the distribut
curves on theshapeof the modulation potential. In order to
confirm this conjecture, we compare the integrated spac
distributions of the potential~2! with some of the additive
potential

V~x,y!5V0FcosS 2p

a
xD1cosS 2p

a
yD G . ~11!

As a result~cf. Fig. 4!, we find a pronounced differenc
between the transitions of these systems: The distribu
curves intersect each other several times and do not see
follow any universal pattern valid for both transition
equally. Note that no assumption whatsoever has been m
about the relation between the modulation amplitudes of
systems.

FIG. 4. Integrated spacing distributionPint(S) of two different
modulation potential shapes as indicated by line styles. The s
curvesa–d correspond toV050.5, 1.0, 2.0, and 10.0 meV, respe
tively, A–E ~dashed! correspond toV050.01, 0.05, 0.1, 0.2, and
0.5 meV. The remaining parameters are as in Fig. 1. The low
1800 energy levels of each spectrum were used for the analys
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55 4491FROM LANDAU LEVELS TO UNIVERSAL . . .
We believe the reason for this behavior to be the hig
energy-dependent phase space, which is determined by
potential modulation shape and amplitude. As we have
ready pointed out, the classical phase space can be uniq
characterized by two independent parameters: the energ
units of the modulation potential amplitude, an
g5eaB/(4pAm!V0); this requires, however, a fixed pote
tial shape.20 Changing the shape of the potential also chan
the classical phase-space structure. Therefore an ene
cally local statistical analysis performed for a semiclass
spectrum with a high density of energy levels is expected
yield an equally nonuniversal crossover of the spacing
tributions as for our distribution curves obtained from av
aging over a finite-energy range. A practically local analy
in the semiclassical regime lies beyond our numerical
pacities, though, since an enlargement of the lattice cons
requires also a high-energy regime, hence enormous Ha
ton matrices, in order to stay in the domain of~eventually
chaotic! classical motion extended over several lattice ce

To summarize, in spite of the fact that we observe auni-
versal level repulsion exponent~hereb52) the transition on
scales up to the order of the cyclotron energy~or nF , respec-
tively! is not independent of the chosen system and t
cannot be generally matched by a random matrix model w
only one transition parameter.

It should be mentioned that even the level statistics on
smallest scales is influenced by the explicit shape of
modulation potential. Consider again the additive poten
~11!, which yields an integrable Hamilton function for infi
nitely smallV0. This is connected with a Poisson-like lev
spacing distribution, i.e.,Pint(S)}S for S→0. Features of
level clustering are indeed found for sufficiently small mod
lation amplitudes~of the order of one tenth of the cyclotro
energy with parameters like in Fig. 1!. Here level repulsion
cannot be resolved in our analysis, since the relevant ra
nearS50 is too small and hence does not contain enou
level spacings in order to yield a useful statistics.

IV. LONG-RANGE FLUCTUATIONS

While the nearest-neighbor spacing distribution measu
short-range correlations of the energy levels, the spectra
gidity D3(L) ~first introduced by Dyson and Mehta25! char-
acterizes fluctuations over a longer spectral range. It is
fined as the mean-square deviation of the integrated l
density or ‘‘spectral staircase’’N(e) (e denoting the un-
folded sequence of levels in units of the mean level spac!
from its best linear approximationAe1B over a spectral
distanceL,

D3~L !5K 1LEe0e01L

@N~e!2Ae2B#2deL
e0

, ~12!

where ^&e0 symbolizes averaging over the whole spectru
In Fig. 5 our numerical results for different modulation am
plitudes are displayed. For comparison, curves for the Ga
ian unitary ensemble spectra with the asymptotics1

D3 GUE~L !5
1

2p2 @ ln~2pL !20.672 784 . . . #1O~L21!,

~13!
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and theoretical curves fornF-fold degenerate Landau leve
are also shown.

The theoretical curves were obtained by using the rela
betweenD3(L) and the number varianceS2(L), which de-
scribes the fluctuations of the number of levelse within a
spectral range of lengthL:1

D3~L !5
2

L4E0
L

~L322L2r1r 3!S2~r !dr. ~14!

It is easily shown that, fornF degenerate Landau levels,

SLL
2 ~L !5~nF2L !L for 0<L,nF , ~15!

andSLL
2 (L1nF)5SLL

2 (L). This periodicity eventually leads
to a convergence ofD3 LL(L) for L→` since the kernel in
Eq. ~14! becomes smoother and the integral tends to aver
over more and more periods ofSLL

2 (L). ReplacingSLL
2 (L)

by its average over one period, namely,nF
2 /6, yields

lim
L→`

D3 LL~L !5
nF
2

12
. ~16!

Furthermore,D3 LL(L)5nFL/15 if L<nF . The saturation of
the spectral rigidity on large scales reflects the fact that th
are no more fluctuations on scales beyond the cyclotron
ergy.

For weak potential modulationD3(L) is well described by
a simple model of equidistantly split levels~thus incorporat-
ing the observation of level repulsion! whose separation« is
still much smaller than 1@so that (nF21)«!nF , the
Landau-level distance#. In this situation one can as well de
rive an expression forS«

2(L) and obtainD3 «(L) by integra-
tion. Taking the parameter« to be the mean intra-Landau
level spacing from the numerical data of the physical syst
~in units of the overall mean level spacing!, this model is

FIG. 5. Spectral rigidityD3(L) for different modulation ampli-
tudes ~the remaining parameters have been chosen as in Fig!:
Curves for the physical system~circles! are compared with theoreti
cal curves for fivefold-degenerate Landau levelsD3 LL(L), equidis-
tantly split levelsD3 «(L) ~dashed lines with the values of«), and
the GUE~labeled GUE!. The inset at the left displays schematical
the spectral rigidityD3 l(L) for the random matrix model with dif-
ferent valuesl from 0 ~LL limit ! to 0.5 ~approaching the GUE
limit !. Suitable curves~solid lines with values ofl) have been
drawn in the main graph for comparison.



is
a
or
tr
le

e
va

e
or
hi

ls
g
e

w
lin

on

is
he
en
te
c
p
he

-
io
a
of

e
5
ng
at
p

t
ve

s
in

yo
fo

e
s
lo-
la-

im-
n in
lly

-
nly

ion
ec-
ble
er,
de-
evel
nce

the
trix
g is
han
l, as
atis-
la-
ce
that
ome
ters

e

4492 55O. STEFFENS, M. SUHRKE, AND P. ROTTER
able to describe the spectral rigidity for surprisingly large«
~cf. Fig. 5!. The reason for this model being appropriate
that D3(L) measures long-range fluctuations rather th
short-ranged details of the level distribution. Therefore m
sophisticated models are not required as long as the in
Landau-level separation does not affect scales comparab
the cyclotron energy.

The results for the random matrix model are also includ
in Fig. 5. The inset shows the development for selected
ues ofl. Comparison of suitable curvesD3 l(L) with those
of our physical system demonstrates a very good agreem
for modulation amplitudes up to 0.5 meV. Deviations f
higher amplitudes will be discussed toward the end of t
section.

If we deal with a small perturbation of the Landau leve
we may assume for the mean intra-Landau-level spacin«
}V0. This is well reflected in Fig. 5, which includes th
numerically determined values of« for the two smallest
modulation amplitudes. For the random matrix model,
may argue that in the case of the inter-Landau-level coup
being negligible, we basically superpose anF3nF matrix
HGUE
(nF) over each Landau level where the energy correcti

are distributed according to Wigner’s semicircle law~9! with
N→nF . Note that in this regime the unfolding procedure
still barely affected by the Landau-level splitting, so that t
eigenvalues oflHGUE

(nF) are rescaled by a constant factor giv
by the mean level spacing of the unperturbed sys
S̄05Ec /nF . This leads to a mean intra-Landau-level spa
ing «}l. For the parameters we have chosen in this pa
(nF55, N550, S̄050.57) the mean spacing between t
eigenvalues of HGUE

(5) is S̄52.3460.01, which gives
«5lS̄/S̄054.11l, thus V0}l. This is in excellent agree
ment with the values in Fig. 5. It shows that the assumpt
of no Landau-level mixing is still reasonable for the physic
system whenV0&0.5 meV. Nevertheless, the deviations
our simplified form forD3 «(L) from the numerical values
are obvious. Remember that a proportionality betweenl and
V0 could not be established on small scales. This discr
ancy, which is evident when Fig. 3 is compared with Fig.
can be attributed to our averaging over a large energy ra
This certainly influences the observed scales of quadr
level repulsion and is affected by the specific lattice sha
Concerning long-range fluctuations (L*nF), V0}l is, how-
ever, a good approximation because only theaveragelevel
splitting « is relevant, and it does not matter howpreciselyit
is achieved. This indicates only a weak dependence on
specific modulation potential as long as the Landau-le
mixing may be ignored.

An important aspect, which we have not yet discussed
length, is thesaturationof D3(L) for L.Lmax'nF . In the
case of the LL limit we have already mentioned that this i
consequence of the uniform Landau-level spectrum, lead
to the saturation value given by Eq.~16!. But even in the
strongly modulated system one observes a saturation be
the cyclotron energy. By means of periodic orbit theory
finite systems, Berry has shown thatLmax is connected with
the shortest classical periodic orbits:26

Lmax5
hd̄

Tmin
, ~17!
n
e
a-
to

d
l-

nt

s

,

e
g

s

m
-
er

n
l

p-
,
e.
ic
e.

he
l

at

a
g

nd
r

whered̄5nF /(\vc) is the mean~physical! level density in
the system, andTmin the shortest period. The latter can b
estimated by regular cyclotron orbits, which yield
Lmax'nF . The actual orbits are, however, distorted cyc
tron orbits27 and strongly dependent on the applied modu
tion potential.

Obviously, the specific phase space structure plays an
portant role on large scale fluctuations. As can be see
Fig. 6, the saturation of the spectral rigidity is especia
pronounced for the additive potential V(x,y)
5V0@cos(2px/a)1cos(2py/a)#, which has saddle points be
tween its maxima. Our random matrix model can certai
not account for such a saturation because it leadsby defini-
tion to the pure GUE limit.

V. CONCLUSION

In summary, our investigations have led to the conclus
that the transition from degenerate Landau levels to a sp
trum with universal fluctuations of the Gaussian ensem
type displays features of universality, which are, howev
restricted to the smallest scales. On those scales, which
pend on the modulation strengths, we observe quadratic l
repulsion that indicates the broken time-reversal invaria
of the system.

On energy scales of the order of the cyclotron energy,
transition appears to be well described by a random ma
model with one parameter as long as Landau-level mixin
negligible. Fluctuations on intermediate scales smaller t
the cyclotron energy have been found to be nonuniversa
demonstrated in terms of the nearest-neighbor spacing st
tics. The transition rather depends explicitly on the modu
tion potential shape, which is in accordance to its influen
on the classical phase-space structure. It is very unlikely
a change of the potential shape could be canceled by s
appropriate scaling of the independent parame
g5nFh/(4paAm!V0) and Ẽ/V0 ~while nF remains fixed!

FIG. 6. Spectral rigidityD3(L) for the additive potential
V(x,y)5V0@cos(2px/a)1cos(2py/a)# for V050.5 meV ~with
a5600 nm,nF55, energy range 1–38 meV!. The physical system
~circles! is compared with the random matrix model~solid curve!
for l50.3. One can see the saturation ofD3(L) as a consequenc
of the classical phase-space structure.
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given the various ways one could construct a lattice perio
function.

The long-range fluctuations, too, show a dependence
the physical realization of the transition, which can be ve
fied by studying different types of potentials, e.g., altern
tively to Eq. ~2!, the potential V(x,y)5V0@cos(2px/a)
1cos(2py/a)]. This should be related to the shortest clos
classical orbits as was pointed out by Berry for finite-s
systems.26

We want to emphasize that in order to keep close to
perimental parameters, we did not attempt to approach
semiclassical limit where truly energeticallylocal level sta-
tistics can be performed. The classical dynamics undergo
transition from regular cyclotron orbits to chaotic trajector
that strongly depends on the shape of the modulation po
tial and on the energy. Hence it is most doubtful that ev
energetically local level statistics in the semiclassical lim
could be described by one-parameter random matrix mod
This, however, is a necessary condition to make contac
.
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the theory of a universal transition parameterL
}@a/S̄(E)#2 as introduced by Frenchet al.28 for the breaking
of a good symmetry, for instance, rotational invariance,
random matrix models. Herea is the mean symmetry
breaking matrix element~corresponding toV0 or l, respec-
tively!, whereasS̄(E) is the local mean level spacing at en
ergy E. In any case, such an analysis would requ
extremely large Hamilton matrices beyond our present p
sibilities.
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