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Theory of acceptor-ground-state description and hot photoluminescence in cubic semiconductor

A. V. Malyshev, I. A. Merkulov, and A. V. Rodina
A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

~Received 3 June 1996!

An approach to the theory of the acceptor ground state in cubic semiconductors is presented. The model has
been developed within the framework of the four-band effective Luttinger Hamiltonian and is applicable for
both Coulomb and non-Coulomb acceptors. The system of integral equations for the ground-state wave func-
tions has been derived and its solution has been numerically computed. We present the general form of the
acceptor-ground-state wave function. The wave functions for a set of acceptor dopants in GaAs are calculated
with an accuracy of 2%. The obtained wave functions have been used for qualitative and quantitative analysis
of the hot photoluminescence~HPL! spectra and linear polarization in GaAs crystals. Analytical expressions
for the line shape and anisotropy of the linear polarization degree have been derived. The dependencies of the
HPL characteristics on the excitation energy as well as on the acceptor binding energy have been analyzed. The
HPL theory presented allows us to describe the wide spectrum of available experimental data.
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I. INTRODUCTION

Investigation of hot photoluminescence~HPL! is impor-
tant for understanding the behavior of hot charge carriers
energy of which is many times higher than thermal kine
energy.1–9 In recent years the HPL lineshape, dependenc
of HPL polarization characteristics on excitation energy, a
depolarization of HPL in magnetic field have been studied
order to determine the times of energy and momentum re
ation for hot carriers,3,6–8 the position of energy bands,8,9 the
effect of the higher energy band states on the selection r
of optical transitions,4,5 and so on.

At low temperatures HPL is mostly determined by t
recombination of photoexcited carriers~electrons or holes!
with the intrinsic carriers localized at impurity centers. M
trix element of such optical transition is determined by Fo
rier image of the impurity state wave function at the spa
frequency corresponding to the carrier wave vectork. Thus,
one has to know the wave function of the localized carri
in the momentum representation for the theoretical desc
tion of the available experimental data and the evaluation
hot carriers parameters.

The relatively simple case of a donor center in diamo
like semiconductors is well studied for Coulomb bindin
potential10 as well as for a more complicated potential giv
by a sum of the Coulomb term and a short-range potentia11

A similar calculation for the localized hole meets essen
difficulties resulting from the complexity of the valence ba
structure and cubic symmetry of the crystal lattice.10,12–20

That is why up to the present time the HPL characteristic
p-type A3B5 semiconductors have been calculated only
the basis of simplified models of the acceptor grou
state.2,4–6,8,17,21

A theoretical description of the HPL at high excitatio
energies was performed in Refs. 2,4,5 by using the asy
totic expressions for an acceptor wave function. Such an
proximation is valid when the electron wavelength is ma
times smaller than the Bohr radius of the heavy hole at
acceptor level (l!aB). This condition takes place only fo
550163-1829/97/55~7!/4388~12!/$10.00
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very high electron energies corresponding to excitation en
gies higher than that studied in the known experiments.

At considerably smaller excitation energies the wav
length of a hot electron is of the order of a heavy hole Bo
radius (l>aB). The acceptor wave functions for correspon
ing wave vector values were calculated numerically for
Coulomb18 and a non-Coulomb acceptor15,17 in spherical ap-
proximation. The implementation of the spherical accep
functions limits the application of the results to the descr
tion of experimental data on the linear polarization anis
ropy of the HPL. In particular, it does not clarify the questio
of how the acceptor-ground-state anisotropy influences
HPL polarization characteristics.

Unexpected results were obtained in Refs. 6–8. The
thors of these papers apply the simplest hydrogenlike mo
in the effective mass approximation for the description of
HPL intensity spectra and the determination of the elect
intra- and intervalley scattering times in GaAs. It turns o
that the simple hydrogenlike wave function describes the
perimental data obtained in Refs. 6,8 better than the sphe
wave function which has been numerically calculated
GaAs:Zn in Refs. 15,17. The inadequacy of the matrix e
ments calculated by Dymnikov, Perel, and Polupanov17 for
describing the data from Refs. 6,8 might have resulted fr
the neglect of a cubic symmetry of the crystal lattice. B
sides, these functions were calculated for Zn-accep
whereas the experiment was carried out for GaAs:Be. Ho
ever, in the present paper we show that the hydrogen
model does not provide good agreement with experime
data if the effect of the absorption of the luminescence
diation in the sample is taken into account.

It follows from the brief review of experimental and theo
retical papers presented above that for quantitative desc
tion of the HPL in diamondlike semiconductors one has
know accurate acceptor wave functions in the wide range
the wave vectors. The warping of the valence band and
deviation of binding potential from the Coulomb form a
essential for such a description.

Recently a method of calculation of a Coulomb19 and a
4388 © 1997 The American Physical Society
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55 4389THEORY OF ACCEPTOR-GROUND-STATE DESCRIPTION . . .
non-Coulomb20 acceptor ground state wave functionC was
reported. Its main advantage is that a simple analytical
pendence of the wave function on the direction of wave v
tor k with respect to the crystallographic axes has been
tained for all wave vector values. Therefore, the wa
functions can be applied for a qualitative description a
quantitative analysis of the HPL characteristics in a cons
erably wide range of excitation energies. Analytical expr
sions for the HPL line shape, linear polarization degree,
its anisotropy in cubic semiconductors were derived in R
21. These expressions contain numerical coefficients wh
depend on the acceptor-ground-state wave function.
Coulomb acceptor functions, numerically calculated in R
19, were used to study the dependencies of the HPL cha
teristics on the excitation energy\vexc in GaAs crystals.21

In this paper we present a complete theory of both
Coulomb and the non-Coulomb acceptor ground state in
mondlike semiconductors with large spin-orbit coupling. T
theory is applied for the studying of the hot photolumine
cence characteristics.

The paper is organized as follows. In Sec. II the mode
the acceptor ground state is described. The model takes
account the complex structure of the valence band of cu
semiconductors as well as a deviation of an impurity pot
tial from Coulomb form. A general form of the accepto
ground-state wave functionC is found on the basis of the
model. The system of integral equations for the wave fu
tion is derived in momentum representation. In Sec. III
method of numerical solution of the system is described. T
results of numerical calculations of the acceptor-ground-s
wave functions and acceptor eigenenergies~for Coulomb ac-
ceptors! for different semiconductors and acceptors are p
sented and discussed. In Sec. IV the general analytical
pressions for matrix elements of optical transition in cu
semiconductors are derived. In Sec. V the HPL characte
tics in GaAs crystals are calculated and compared with av
able experimental and theoretical data. The brief summar
the results obtained is given in Sec. VI.

II. THEORY OF ACCEPTOR GROUND STATE
IN CUBIC SEMICONDUCTORS

In this section we consider the model of the accep
ground state in diamondlike semiconductor with a lar
value of spin-orbit splitting. The binding potential is pr
sented as the sum of a Coulomb potential and a short-ra
one. The cubic symmetry of the crystal lattice is taken in
account.

The Schro¨dinger equation for a hole bound to an accep
impurity can be written in a momentum representation
follows:

ĤL~k!C~k!2
e2

2p2æE d 3q

~k2q!2
C~q!

2E d 3qV~k2q!C~q!5EaC~k!, ~1!

whereĤL(k) is the four-band Luttinger Hamiltonian,
22 Ea is

a binding energy,C(k) andV(k) are Fourier images of the
wave functionC(r ) and short-range potentialV(r ):
e-
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C~k!5E d 3rexp@2 ikr #C~r !,

V~k!5E d 3rexp@2 ikr #V~r !. ~2!

C(k) is a four-component column written in the basis
Bloch functions of the valence band topum (m563/2,
61/2). The second term on the left side of Eq.~1! describes
the Coulomb attraction of a hole to an acceptor core. T
third one describes the action of non-Coulomb part of
potential.

The ground state of an acceptor in cubic semiconduc
is fourfold degenerate and has the symmetry of the top of
valence band.10 The wave function for the four sublevels ca
be found in the form

CM~k!5 P̂~k!uM , ~M563/2,61/2!, ~3!

where the operatorP̂(k) is invariant under transformation
of the cubic symmetry of the crystal. We will seek the o
eratorP̂ in the following general form~the error of this ap-
proximation will be estimated later!:

P̂~k!5@ f h~k!L̂h~k!1 f l~k!L̂l~k!#, ~4!

L̂l ,h57
ĤL~k!2Eh,l~k!

Eh~k!2El~k!
, ~5!

wheref h,l(k) are some cubic symmetric functions dependi
only on wave vectork. The operatorsL̂l ,h are the projection
operators on the light- and heavy-hole subband states
dispersion lawsEl ,h :

El ,h5
\2k2

2ml ,h~k!
, ml ,h~k!5

m0

g162g2a~k!
, ~6!

a~k!5
m0

2\2k2g2
@El~k!2Eh~k!#

5A113v
kx
2ky

21ky
2kz

21kz
2kx

2

k4
, ~7!

where g1, g2, and g3 are Luttinger parameters22 and
v5(g3

22g2
2)/g2

2 is the warping parameter of the valenc
band.

The cubic symmetric functiona(k) plays an important
role in the further analysis of the dependencies of the fu
tions f h,l on the wave vector direction and for the analytic
description of hot photoluminescence. This function depe
only on thek orientation with respect to crystallograph
axes and takes the value between the unit fork parallel to
@001#-direction andA11v5g3 /g2 for k parallel to the
@111# direction.

The square modules of the functionsf h
2(k) and f l

2(k)
present the distribution of the bound hole state over the st
of free holes in the valence band. For the wave functionC in
the form~3, 4! the normalization condition gives@the crystal
volume is (2p)3#:
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1

2E d 3k@ f h
2~k!1 f l

2~k!#51. ~8!

Let us substitute the functionC in the form~3, 4! into the
Schrödinger equation~1!. The explicit form of a non-
Coulomb part of the acceptor binding potential is unknow
Assuming the short-range potentialV(r ) to have the symme
try of the crystal cell and the potential radiusr 0 to be con-
siderably less than the acceptor-ground-state radiusr a ~so
that the valuekr0!1), one can rewrite the non-Coulom
integral term in the following way:

E d 3qV~k2q!P~q!5E d 3rexp@2 ikr #V~r !

3E d 3qexp@ iqr #P~q!

'E d 3qE d 3rexp@ iqr #V~r !P~q!

5AÎ, ~9!

where Î is a unit matrix andA is some constant.

It is readily seen that both operatorĤL(k)P(k) and non-
Coulomb integral term~9! can be exactly expanded in term
of L̂h,l(k). Thus the error of approximation~4! arises only
due to the fact that the Coulomb integral opera
*d3q/(k2q)2P(q) has no precise expansion in terms
L̂h,l(k). The error of such an expansion was shown to
about 2%.19 @It is noteworthy that in the framework o
spherical approximation the solution~4! is the exact one.#
Operating on Eq.~1! by the projection operators~5! one can
obtain the system of equations for the functionsf h(k) and
f l(k) with an accuracy of 2%~the detailed description of thi
procedure can be found in Ref. 20!:

@Eh~k!2Ea# f h~k!5
e2

4p2æE d 3q

~k2q!2
f h~q!F11

L~k,q!

a~k!a~q!G
1

e2

4p2æE d 3q

~k2q!2
f l~q!

3F12
L~k,q!

a~k!a~q!G
1A@El~k!2Ea! f l~k!]

5
e2

4p2æE d 3q

~k2q!2
f h~q!F12

L~k,q!

a~k!a~q!G
1

e2

4p2æE d 3q

~k2q!2
f l~q!

3F11
L~k,q!

a~k!a~q!G1A. ~10!

where L(k,q) 5 P2„cos(u)… 1 3v(kxkyqxqy 1 kykzqyqz
1kzkxqzqx)/ (k

2q2), u is an angle betweenk and q, and
P2 is the Legendre polynomial.

The system~10! describes the ground state of a ho
bound at an acceptor center in a fourfold degenerate vale
.

r

e

ce

band of theG8 type. The warping of the isoenergy surfac
as well as the deviation of the acceptor binding poten
from Coulomb form are taken into account.

The shallow acceptor state can be described in the fra
work of the Coulomb model by homogeneous system res
ing from ~10! with constantA[0. Its solution gives the
eigenenergyEa

Coulomb and eigenfunction of the Coulomb ac
ceptor. The deep acceptor states withEa@Ea

Coulomb can be
described by the implementation of a short-range poten
model.23 Then the Coulomb integral terms in system~10! are
neglected. In this case the wave functions of the acce
state with a given binding energy can be obtained in an a
lytical form:

f l ,h~k!5
A

El ,h~k!2Ea
, ~11!

where the constantA5A(Ea) comes from the normalization
condition ~8!.

The complete solution of the system~10! gives the
acceptor-ground-state wave functionsf h,l(k) in all range of
the directions and values of the wave vector. It can be ea
seen from~10! that the contribution from heavy- and ligh
hole states are equal at smallk values: f l(0)5 f h(0). The
asymptotic expressions for the functionsf l ,h(k) follow from
~10!: f l ,h(k)}ml ,h(k)/k

2. They are different from those
known for Coulomb acceptor:19,2 f l ,h(k)}ml ,h(k)/k

4.
In the following we use dimensionless units and fun

tions:

«52
Ea

EB
, p5kaB , f̃ h,l5 f h,laB

23/2, Ã5
A

EBaB
3/2

EB5
e4mh

0

2æ\2 , aB5
æ\2

e2mh
0 , mh

05
m0

g122 g
,

g5
2g213g3

5
, ~12!

g1~p!5 f̃ h~p!1 f̃ l~p!, g2~p!5
f̃ h~p!2 f̃ l~p!

a~p!
. ~13!

Heremh
0 is heavy-hole~HH! mass in the spherical approx

mation,EB is HH Bohr energy, andaB is HH Bohr radius.
For the new functions and units the system takes the for

@«1~p!1«#g1~p!2a2~p!«2~p!g2~p!

5
1

p2E d 3q

~p2q!2
g1~q!12 Ã,

2a2~p!«2~p!g1~p!1a2~p!@«1~p!1«#g2~p!

5
1

p2E d 3q

~p2q!2
g2~q!L~p,q!, ~14!

where
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«1~p!5
11b

2 b
p2, «2~p!5

12b

2 b

5

213A11v
p2,

b5
g122 g

g112 g
. ~15!

As it has been mentioned above the non-Coulomb par
the potential and then the constantA is unknown. We assume
that the real acceptor binding energyEa is known from the
experiment and use it as the given parameter in orde
obtain the acceptor-ground-state wave functions. Let us s
the real acceptor functions in the formg1,25Ãg̃1,2, where
the functions g̃1,2 satisfy the system~14! with constant
Ã51 and can be computed numerically. The constantÃ can
be calculated by using the normalization condition:

Ã5Ã~«!5
1

4 S E d3p@ g̃1
2~p!1a2~p!g̃2

2~p!# D 21/2

. ~16!

So, Ã plays the role of a normalization constant, although
contains information about the short-range potential and
fers for different dopants.

III. CALCULATION METHODS AND RESULTS

In this section we present the calculation methods wh
have been used for solving Eq.~14! and discuss the obtaine
results. Since the functionsf h,l and theng1,2 are cubic sca-
lars, they can be expanded into cubic harmonics.19 This
method allows us to derive the dependence of the wave fu
tion on wave vector direction analytically, but it converg
slowly at large values ofp. We will combine the method o
expansion into cubic harmonics together with a fast conv
of

to
ek

t
f-

h

c-

r-

gent iteration method in a order to get an accurate solutio
a wide range of the wave vector values.

Presenting the system~14! in the operator form

Ĝ~«!g5K̂g1Ãb, g5S g1~p!

g2~p!
D , b5S 20D , ~17!

where Ĝ is the operator of the left part of~14!, K̂ is the
integral operator from~14!, we derive the iteration expres
sion for the functionsg̃5g/Ã:

g̃~n11!5Ĝ21K̂g̃~n!1Ĝ21b, ~18!

wheren is the number of iteration. Let us seek the zero
order approximationg̃(0) in the form of the expansion into
cubic harmonics up to the harmonic of the fourth order:

g̃„0…5S g̃ 1
0~p!T0~Vp!1g̃ 1

4~p!T4~Vp!

g̃ 2
0~p!T0~Vp!1g̃ 2

4~p!T4~Vp!
D , ~19!

where Vp is solid angle, T0(Vp), T4(Vp) are cubic
harmonics:24

T0~Vp!5Y00~Vp!5
1

2Ap
,

T4~Vp!5
1

2
A5

6
@Y424~Vp!1Y44~Vp!#

1
1

2
A7

3
Y40~Vp!, ~20!

where Ylm(Vp) are spherical harmonics. The function
g̃ 1,2

0,4(p) depend only on wave vector module and are
solutions of the following system:
@«1~p!1«#g̃ 1
0~p!2b1«2~p!g̃ 2

0~p!1b3«2~p!g̃ 2
4~p!

5
2

pE0
`

q2dqM1~p,q!g̃ 1
0~q!14Apb3«2~p!g̃ 2

0~p!

1@«1~p!1«#g̃ 1
4~p!2b2«2~p!g̃ 2

4~p!

5
2

pE0
`

q2dqM3~p,q!g̃ 1
4~q!2b1«2~p!g̃ 1

0~p!1b1@«1~p!1«#g̃ 2
0~p!1b3«2~p!g̃ 1

4~p!2b3@«1~p!1«#g̃ 2
4~p!

5
2

p Fb1E
0

`

q2dqM2~p,q!g̃ 2
0~q!2b3E

0

`

q2dqM2~p,q!g̃ 2
4~q!Gb3«2~p!g̃ 1

0~p!

2b3@«1~p!1«#g̃ 2
0~p!2b2«2~p!g̃ 1

4~p!1b2@«1~p!1«#g̃ 2
4~p!

5
2

p F2b3E
0

`

q2dqM2~p,q!g̃ 2
0~q!1E

0

`

q2dqM4~p,q!g̃ 2
4~q!G , ~21!
where

b15~110.6v !, b25S 11
321

715
v D , b35

1.2v

A21
, ~22!

M1,2,3~p,q!5
1

pq
Q0,2,4S p21q2

2 pq D ,
M4~p,q!5
1

pq
Q4S p21q2

2 pq DP2S p21q2

2 pq D
1

v
pq F 435Q2S p21q2

2 pq D1
60

847
Q4S p21q2

2 pq D
1
415

1573
Q6S p21q2

2 pq D G , ~23!
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TABLE I. Valence band parameters and acceptor binding energies in diamondlike semiconductors.

Semicond. æ~Ref. 13! g1 ~Ref. 13! g2 ~Ref. 13! g3 ~Ref. 13! Ea
Coulomb ~meV! Ea ~meV! ~Ref. 25! Ã

Ge 15.36 13.35 4.25 5.69 10.36 10.8~B! 5.7431023

InSb 17.9 35.08 15.64 16.91 9.26 9.25~Ge! 7.9231025

InP 12.4 6.28 2.08 2.76 37.81 41.3~C! 1.2331022

GaP 10.75 4.20 0.98 1.66 50.63 54.3~C! 8.6531023

GaAs 12.56 7.65 2.41 3.28 27.35 27.0~C! 1.7231023

28.0 ~Be! 3.1731023

29.0 ~Mg! 8.0531023

31.0 ~Zn! 1.7731022

40.0 ~Ge! 5.8431022
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where P2 is Legendre polynomial, andQl are Legendre
functions of the second type. This system is self-consis
and can be solved numerically. Calculating the constanÃ
with the help of~16! one can obtain the normalized zerot
order approximation of the wave function.

Our analysis shows that the error of this approximat
grows with p. It is less than 2% in the regionp<pc;A«,
and is about 10% forp@pc . On the other hand, the integra
values such as the normalization constantÃ or eigenenergies
of Coulomb acceptor can be calculated with an accuracy
about 2% in the zeroth-order approximation. As a matter
fact the region of the maximum error makes a small con
bution to the corresponding integrals as the absolute valu
the wave function is very small.

To get a more accurate solution for the wave function
us make the first iteration according to Eq.~18!. The system
~21! can be conveniently written in the operator form:

Ĝ0g̃
~0!5K̂0g̃

~0!1b. ~24!

The error connected with the expansion of the termK̂g̃ (0)

into cubic harmonicsT0 andT4 appeared to be less than 2%
This makes it possible to simplify the expression for t
first-order approximation. If one putsK̂g̃ (0)5K̂0g̃

(0) and
substitutesK̂0g̃

(0) into ~18! a very simple expression for th
first-order approximation can be obtained:

g̃~1!5Ĝ21Ĝ0g̃
~0!. ~25!

The accuracy of this approximation is about 2% for all
rections and values ofp. There is no need to continue th
iterations because the error connected with the influenc
the split-off band usually exceeds several percent.

Thus, we obtained the solution of system~10! for the
acceptor-ground-state wave function with an accuracy of 2
The dependence of the wave functionsf h,l on the wave vec-
tor direction is derived analytically and can be expressed
terms ofT0(k), T4(k), anda(k). It is noteworthy that the
functiona2(k) can be expressed in terms of cubic harmon
T0 andT4 exactly:

a2~k!52Apb1T0~Vk!22b3T4~Vk!. ~26!

It allows us to conclude that the cubic anisotropy of t
functions f h,l(k) is defined by the anisotropy of the valen
band also with an accuracy of a 2%:
nt

n

of
f
i-
of

t

of

.

in

s

f h,l~k!5 f h,l„k,a~k!…5 f h,l S k, m0

2\2k2g2
@El~k!2Eh~k!# D .

~27!

This fact appears to be very helpful in deriving the expr
sions for matrix elements of optical transitions.

Table I shows Coulomb acceptors-ground-state eigen
ergiesEa

Coulombnumerically calculated for different semicon
ductors. The sets of Luttinger parameters used and exp
mental values of the acceptor binding energiesEa are also
shown. The energies calculated with cubic symmetry of
crystal lattice taken into account differ from those obtain
in the framework of spherical approximation13,12 by 6–8 %.
The results agree well with calculations of Ref. 16. One c
see from Table I that in the cases of Ge, InSb, and GaAs
model of Coulomb acceptor provides good agreement
shallow acceptors~such as Ge:B, InSb:Ge, GaAs:C
GaAs:Be!. In the cases of InP and GaP the discrepancy m
be due to both the large central cell corrections and the
perfection of the present model that assumes a large s
orbit splitting of the valence band. In the case of GaAs
difference for deeper acceptors~Zn, Ge! is due to the con-
siderable central cell corrections. The last column of Tab
presents the values of the dimensionless constantÃ, calcu-
lated from~16! for the acceptors presented. This parame
contains information on the short-range potential.

The acceptor-ground-state distribution functionsf h,l
2 (k)

for the Coulomb acceptor~upper set! and the non-Coulomb
Zn acceptor~lower set! in GaAs are displayed in Fig. 1. Pair
of solid lines in each set correspond tof h

2(k) ~upper curve in
the pair! and f l

2(k) ~lower curve in the pair! for the @111#
direction while dashed lines correspond to@001# direction.
The functionf h

2 is very anisotropic whilef l
2 is nearly spheri-

cal. The ratio of the functionsf h
2 for directions @111# and

@001# at k'aB
21 is about 2.4. The same ratio of the functio

f l
2 is close to 1.2. It can be seen from Fig. 1 that even for
shallow Zn acceptor the wave functions are different fro
Coulomb ones at small values of wave vector k. The asym
totic behavior of Coulomb and non-Coulomb distributio
functions atk@aB

21 is also different. Figure 2 presents th
functions f h,l

2 (k) ~with k parallel to @011# direction! for a
number of acceptors in GaAs. These functions differ stron
at small values ofk and are very close in the regio
k'aB

21 that is the most important for the description of th
HPL process.



av
a

s

rs
ke

ta

n
-

ed

ar-

two
and
om-
the
r is
m-

of

ce
e
is

ce

t

us,
g

ave
ts
a

t

55 4393THEORY OF ACCEPTOR-GROUND-STATE DESCRIPTION . . .
IV. THEORY OF THE HPL IN CUBIC SEMICONDUCTORS

The implementation of the acceptor-ground-state w
functions obtained in the previous section allows us to c
culate the components of the fourth-rank tensorÂ which
gives the most general relationship between polarization
the exciting light and the recombination luminescence:

^Ei
lEj

l* &5Ai jkn^Ek
exEn

ex* &, ~28!

whereEi
ex andEi

l are components of the electric field vecto
of laser and luminescence, respectively. The angle brac
mean a time average. One has to know the tensorÂ compo-
nents for a theoretical description of the line shape~the de-
pendence of the total detected intensityI on HPL energy
\v lum) and HPL polarization characteristics. In cubic crys
only four components of the tensorÂ are linearly indepen-
dent. They areAiiii 5A11, Aii j j 5A12, Ai ji j 5A44, and
Ai j j i 5A47, wherei , j5x,y,z andiÞ j . All other components
are equal to zero.

FIG. 1. Acceptor-ground-state distribution functionsf h,l
2 (k) in

the Coulomb model~set A) and in the non-Coulomb model~set
B) for GaAs:Zn. The upper curve of each pair corresponds
f h
2(k); the lower curve corresponds tof l

2(k). Hereafter, the values
of k are given inaB

21 and the values off h,l
2 are in aB

3 , where
aB511.8 Å.

FIG. 2. Acceptor-ground-state distribution functionsf h,l
2 (k) for

the @011# direction in GaAs.
e
l-

of

ts

l

If totally polarized exciting light and detected radiatio
propagate along the@001# direction the degree of linear po
larizationr l has the form:4

r~w!5
I i2I'
I i1I'

5
d1c

2a
1
d2c

2a
cos~4w!, ~29!

where I i and I' are the luminescence intensities polariz
parallel and perpendicular to the polarization vectoreexc of
the exciting light, andw is the angle betweeneexc and
@100#. The coefficientsa, c, and d can be derived from
components of the tensorÂ: a5A111A12, c5A441A47,
and d5A112A12. The value z5r45/r05r(p/4)/r(0)
5d/c characterizes the anisotropy of the HPL linear pol
ization.

The process of hot photoluminescence consists of
steps. At the first step an electron transits from valence b
to conduction band, and at the second the electron rec
bines optically with a hole bound to an acceptor center. If
electron is not scattered by phonons, the final wave vecto
equal to the initial one. In this case one can derive the co
ponents of the tensorÂ in the form

Akn
h,l5E Akn

h,l~k!d@\v lum2Eg1Ea2Ec~k!#

3d@\vexc2Eg2Ec~k!2Eh,l~k!#d3k, ~30!

where the tensorÂ(k) characterizes the recombination
electron at wave vectork, Eg is the band gap,Ea is the
acceptor binding energy,Ec(k)5\2k2/2me is the electron
energy in the conduction band with effective massme ,
Eh,l(k) is the energy of a heavy or light hole in the valen
band~6!. Indexesh and l correspond to excitation from th
heavy- and light-hole subbands, respectively. Integration
carried out over all directions of the wave vectork.

Integral~30! with integrandAkn(Ĝk), whereĜ is the ar-
bitrary transformation of the point group of the crystal latti
is equal to the integral with integrandAkn(k) due to the
cubic invariance of the tensorÂ in cubic semiconductors. I
can be easily seen that valuesĀkn(k)5SAkn(Ĝk)/N, where
the summation is carried out over allN cubic transforma-
tions, are cubic scalars in the cubic semiconductors. Th
the components of the tensorÂ can be derived by evaluatin
the integrals of the form~30! with the cubic invariant inte-
grandĀkn(k), which is more convenient.

Using the general form of the acceptor-ground-state w
functions~3!, ~4! found in Sec. II we can derive componen
of the tensorÂ(k). Here we present the results of such
derivation for the values ā(k)5Ā11(k)1Ā12(k),
c̄(k)5Ā44(k)1Ā47(k), andd̄(k)5Ā11(k)2Ā12(k):

āh,l~k!5
8

9
@ f h

2~k!1 f l
2~k!#

6
v112a2~k!

9va2~k!
@ f h

2~k!2 f l
2~k!#, ~31!

o
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c̄h,l~k!56
2~v11!@a2~k!21#

9va2~k!
@ f h

2~k!2 f l
2~k!#,

d̄h,l~k!56
v112a2~k!

9va2~k!
@ f h

2~k!2 f l
2~k!#.

By substituting these functions into~30! we find the quanti-
ties a, c, andd. In expressions~31! all cubic scalar coeffi-
cients are expressed in terms of the functiona(k). The plus
and minus signs correspond to the excitation from the hea
hole and light-hole subband, respectively. Hereinafter
concentrate on describing the first nonphonon peak in
HPL spectra that corresponds to the excitation from
heavy-hole subband. The high-frequency edgev lum

max and the
low-frequency edgev lum

min of this peak are associated with th
recombination of electrons withk parallel to the@111# and
@100# directions, respectively. The width of HPL lin
D\v lum depends on the excitation energy.4

It is clear that for a fixed excitation energy\vexc the
nonzero contributions to the integral~30! at the lumines-
cence energy\v lum come only from those directions an
magnitudes of the wave vectork which lie at the intersection
of the excitation surfaceVexc defined by the equation
\vexc2Eg2Ec(k)2Eh,l(k)50 and the luminescenc
sphere of the radiusk05@2me(\v lum2Eg1Ea)/\

2#1/2.
Thus, the modulus of the wave vector and the funct
a(k) take the definite values at the integration contour.26 It
has been shown in Sec. III that in our model the distribut
functions f h,l(k) depend only on the modulus of the wav
vectork and the functiona(k) with an accuracy of 2%. In
this case integrands~31! remain constant along the integr
tion contour and can be factored out from the integral. So
integral of type~30! can be simplified:

X5X̄~k0 ,aexc!W~\v lum!, X5a,c,d, ~32!

where aexc5g1/2g22@(\vexc2Eg)/(\v lum2Eg1Ea)
21#m0/2g2me , and functionW is the density of states inte
grated over the contour:

W~\v lum!5
4paexc

g2vA~\v lum2Eg1Ea!/~2me!
T~ texc!,

texc5
aexc
2 21

v
, ~33!

T~ t !5
1

pEG~ t !

dx

A~ t23x213x4!~3/42t13/2x229/4x4!
.

~34!

Here the functionG(t) is the intersection of the line segme
@0;1# with the region in which the integrand is defined. T
value of the parametertexc varies from zero at the low
frequency edge (v lum5v lum

min) to unity at the high-frequency
edge (v lum5v lum

max). The functionT is independent of exci-
tation energy as well as of semiconductor parameters
main features are as follows~see solid curve at Fig. 3!: the
function diverges logarithmically attexc→3/4 and remains
finite at all other values of the parametertexc. The values of
T(texc) at the edges of the@0;1# segment areT(0)51 and
y-
e
e
e

n

n

n

ts

T(1)52. It is very important to note here that although t
function diverges attexc→3/4 the integral of the function
over @0;1# is finite.

The HPL intensity spectrumI5I i1I'}a and the
difference spectra I [100]

2 5I i2I'}d (eexci@100#) and
I [110]

2 5I i2I'}c (eexci@110#) are determined by expression
~31–33!. The HPL line shape depends on excitation ener
acceptor binding energy, and semiconductor parameters
its main features are determined by the functionT(texc): the
low- and high-frequency edges are characterized by step
different height while the pointtexc53/4 is characterized by
the divergence of the spectra. Maxima of the spectra co
spond, in particular, to the recombination of electrons w
k parallel to @011# direction. It is noteworthy that no suc
spectral features are observed in reality due to spectra br
ening caused by different mechanisms such as the finite
electron lifetime or acceptor-ground-state energy le
broadening. These mechanisms lead to a smoothing of
spectra singularities and to a shift of the spectra maximu

Expressions for the HPL polarization follow from~31,32!:

r0~ texc!5
3~12texc!b0~k0 ,aexc!

8~vtexc11!1~12texc!b0~k0 ,aexc!
,

r45~ texc!5
2~v11!texcb0~k0 ,aexc!

8~vtexc11!1~12texc!b0~k0 ,aexc!
, ~35!

b0~k0 ,aexc!5b0~k0!5
f h
2~k0!2 f l

2~k0!

f h
2~k0!1 f l

2~k0!
,

aexc5A11vtexc, ~36!

here the functionb0(k0) characterizes the difference be
tween the relative contributions of the heavy- and light-h
states to the acceptor-ground-state wave function. One
see from~35! that linear polarization degreer0 vanishes at
the high-frequency edge (texc51), while r45 vanishes at the
low-frequency edge (texc50). The dependencies of the de
gree of linear polarization on the excitation energy and
ceptor binding energy are determined by the functionb0.

FIG. 3. The functionT(t) which determines the main features
the HPL line~solid curve! and the distribution of the linear polar
ization anisotropy over the HPL linez(t) divided by (11v)
~dashed curve!.
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TABLE II. Experimental data and calculated values of the linear polarization degreesr0 ~a! andr45 ~b!
and anisotropy of linear polarizationz ~c! at the maximum of the HPL line. Brackets with indexa denote
values averaged over the broadened acceptor line (DEa513 meV!.

~a!
\vex ~eV! r0

exp ~Refs. 4 and 5! r0 ^r0&a ^r0&a ~Ref. 4!

1.65 0.07 0.051 0.069 0.08
1.92 0.04 0.053 0.052 0.03

~b!

\vex ~eV! r45
exp ~Refs. 4 and 5! r45 ^r45&a ^r45&a ~Ref. 4!

1.65 0.18 0.189 0.182 0.19
1.92 0.26 0.198 0.199 0.26

~c!
\vex ~eV! zexp ~Refs. 4 and 5! z ^z&a ^z&a ~Ref. 4!

1.65 2.57 3.75 2.64 2.36
1.92 6.50 3.75 3.85 8.67
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We point out here that for the wave vectors involved
the HPL process~e.g.,k>0.6aB

21 for GaAs! the contribution
from the light-hole states to the shallow acceptor wave fu
tion is small. In the case@ f l(k)/ f h(k)#

2!1 the function

b0~k!'122F f l~k!

f h~k!G
2

is nearly isotropic. Consequently the degree of HPL lin
polarization weakly depends on the cubic anisotropy of
ceptor distribution functionsf l ,h

2 (k) and can be calculated t
within a 5% error by using the spherical distribution fun
tions. This fact was demonstrated for high excitation en
gies in Ref. 4 by numerical calculations carried out w
asymptotic anisotropic and isotropic distribution functions

On the other hand, the value of the functionb0(k) for
shallow acceptors deviates from its asymptotic value

b`~k!5
mh
2~k!2ml

2~k!

mh
2~k!1ml

2~k!

by less than 5% when the contribution from light-hole sta
is small. It is noteworthy that the asymptotic functionb` has
the same form in any model of the acceptor impurity pot
tial and does not depend on the module of wave vectork. For
this reason any type of distribution function is applicable
evaluating the linear polarization degree to within a 5% er
at high excitation energies. Using the asymptotic funct
b`(k) in expressions~35! one can calculate the asymptot
value of the HPL linear polarization degree analytically.

The degree of linear polarization anisotropy of the H
z5r45/r0[I [011]

2 /I [001]
2 varies over the luminescence lin

from zero at the low-frequency edge of the HPL peak
infinity at the high-frequency edge and depends only on
valence band warping parameterv:

z~ texc!5
2~11v !texc
3~12texc!

, 11v[
g3
2

g2
2 . ~37!
-

r
-

r-

s

-

r
r
n

e

Dashed curve at Fig. 3 presents the functionz(t)/(11v)
which does not depend on the semiconductor parameters
emphasize thatz depends neither on excitation energy nor
the acceptor distribution functions. The anisotropy of the l
ear polarization appears only due to the valence band w
ing and its value contains no information about the anis
ropy of the acceptor-ground-state distribution functions. T
account of broadening mechanisms leads only to a weak
pendence ofz on the excitation energy and the accep
binding energy.

The essential features of the HPL spectrum, descri
above, are universal for diamond-like semiconductors wit
large value of spin-orbit splitting. At high excitation energi
the effect of the spin-orbit split-off band cannot be neglec
and leads to qualitative changes in the spectra feature
well as to a considerable increase of the linear polariza
anisotropy.4,5

V. THE HPL CHARACTERISTICS FOR GAAS

The HPL linear polarization and its anisotropy were e
perimentally studied in Refs. 4,5 for two excitation energ
\vexc51.65 and 1.92 eV.4,5 The experiment was carried ou
for GaAs crystal doped with Zn acceptors. The theoreti
polarization characteristics of the HPL in GaAs:Zn are p
sented in Table II together with experimental data. The
grees of linear polarizationr0 andr45 and anisotropy param
eterz are calculated at the HPL line maximum. To obtain
more accurate comparison with the experimental data
corresponding values averaged over the broadening acce
level have been calculated~see the values in angle brackets!.
The acceptor linewidth~the full width at half maximum of
the acceptor line! is taken asDEa513 meV according to
Ref. 5. The distribution of acceptors over the energy lev
are supposed to be Gaussian. The other possible mecha
of the spectrum broadening connected with fluctuations
the band gap width has also been considered, but was fo
to produce no noticeable corrections to the polarization ch
acteristics. One can see from Table II that the present mo
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provides excellent agreement with the experimental dat
excitation energy\vexc51.65 eV. Table II presents also th
HPL characteristics numerically calculated in Ref. 4 by us
the asymptotic expressions for the acceptor wave functio
The model developed in Ref. 4 takes into account the ef
of the spin-orbit split-off band. It allows us to describe t
increase in the degree of linear polarization anisotropy
high excitation energy\vexc51.92 eV.

The HPL line shape and distribution of the linear pola
ization degree over the luminescence line, calculated wi
the model presented for GaAs:Zn at\vexc51.65 eV, are
shown at Fig. 4~a!. Figure 4~b! presents the line shape an
degree of the linear polarization averaged over a broade
acceptor level.

The dependencies of the linear polarization degreer0 and
r45 at the HPL spectra maximum on the excitation energy
GaAs:Zn and GaAs:Ge are shown in Fig. 5. It illustrates a
the functionsb0(k0) for k0 parallel to the@110# direction.
One can see that the qualitative behavior of the linear po
ization degree is determined by the behavior of the funct
b0. For wave vector k'0.6aB

21 ~it corresponds to
\vexc'1.65 eV!, the contribution of the light-hole subban
states to the shallow acceptor wave function is small. T
the deviation ofb0 as well as the degree of linear polariz
tion from its asymptotic value is less than 5%. As the ex
tation energy decreases (\vexc<1.65 eV! the contribution of
light-hole states to the acceptor wave function increas
That leads to a decrease of the linear polarization degree
the same time the degree of anisotropyz5r45/r0 remains
constant independently of an admixture of the light-h
states. At the line maximum it is equal t
z52(y11)52g3

2/g2
2 5 3.75~see the parameters of GaAs

Table I!. The degree of anisotropy defined by an avera

FIG. 4. HPL characteristics calculated without~a! and with ~b!
account for the acceptor level broadeningDEa513 meV for
GaAs:Zn at\vexc51.65 eV.
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over the broadened acceptor line intensities

^z&a5^r45&a /^r0&a5^I [110]
2 &a /^I [100]

2 &a

depends weakly on the excitation energy and the acce
binding energy. This dependence is more pronounced at
excitation energies, when the acceptor linewidthDEa is of
the same order of magnitude as the HPL linewidthDElum .

The anisotropy of the HPL linear polarization degree a
its dependence on excitation energy was also experimen
studied in Ref. 8. The difference spectraI [100]

2 andI [110]
2 were

presented for excitation energy\vexc51.5978 eV for
GaAs:C. The maximum of theI [100]

2 difference spectrum was
noticed to be at a lower energy than the maximum of
I [110]

2 spectrum. The intensity ratio of difference spectra w
detected to be about 4~which gives the degree of linea
polarization anisotropy!. This ratio increases up to about 6 a
the laser energy increases to 1.7510 eV. In the framewor
the present theory the line shapes of the difference spe
are determined by the functionT. As a result the spectra
have their maxima at the same point determined by the va
texc53/4. The degree of linear polarization anisotropy var
along the line and is equal to 3.75 at the point of the spe
maximum which is independent of excitation energy. T
shift of the difference spectra maxima may appear due
some broadening mechanism. Figure 6 illustrates, for
ample, the difference spectra calculated for GaAs:C
\vexc51.5978 eV with acceptor level broadeningDEa55
meV. Such broadening leads to a maxima shift of 2.5 m
corresponding to the data of Ref. 8. As was mention
above, the increase of the anisotropy degree is conne
with the effect of the spin-orbit split-off band and cannot
described in our model.

The dependence of the integrated intensity of the fi
HPL peak on the excitation energy was measured and
lyzed in Refs. 6,8 in order to estimate the intervalley elect
scattering time in GaAs. The experiment was carried out
several GaAs samples doped with different shallow acc
tors~C, Be, Mg, Zn!. The intensities were compared pairwis

FIG. 5. Dependence of functionb(k0) for the @011# direction
and degrees of linear polarizationr45 and r0 at the HPL spectra
maximum on excitation energy for GaAs:Zn~solid curves! and
GaAs:Ge~dashed curves!.
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55 4397THEORY OF ACCEPTOR-GROUND-STATE DESCRIPTION . . .
as the laser energy was changed over the region 1.6–2.0
The comparison showed no difference from the experim
to within the65% error.8 Our calculations of the integrate
intensity show the difference for shallow acceptors in Ga
less than 10% in good agreement with the experimental d
Such small difference between the curves is due to the
that the wave functions of different acceptors are very cl
to each other in the region of wave vectors correspondin
these excitation energies~see Fig. 2 atk;aB

21). A straight-
forward calculation shows that for deeper acceptor GaAs
the difference increases.

According to Refs. 6,8 the experimental dependence m
sured for GaAs:Be can be approximated by the function

I}uM ~k!u2tn,

wheren is the probability that an electron is actually born
the conduction band by the absorption of a photon with
ergy\vexc, t is an electron lifetime which is considered
be independent of excitation energy below theG-L scatter-
ing threshold~i.e., for \vexc<1.88 eV!. The acceptor wave
function is defined in the hydrogenlike model by

uM ~k!u}S 11
\2k2

2Eama
D 22

, ~38!

wherema is a hole mass in the effective mass approximat
~EMA! @ma50.31m0, Ea527 meV in GaAs~Ref. 6!#. On
the other hand, the alternative expression foruM (k)u, based
on spherical acceptor wave functions for GaAs:Zn, num
cally calculated by Dymnikov, Perel’, and Polupanov,17 was
reported to be in bad agreement with the experime
data.6,8

It should be noted that the good agreement of the hyd
genlike EMA model~38! of the HPL intensity dependenc
on excitation energy is just an accidental coincidence. A
matter of fact, this dependence is affected by a lot of sup
mentary factors~such as the absorption of the luminescen
radiation in the sample, the Coulomb interaction betwe
electrons and holes,27 the effect of the higher energy ban
states on the selection rules of optical transitions,4,5 the
changing of the absorption depth with excitation energy, a
others! that were not taken into account in Refs. 6,8. It c

FIG. 6. Difference spectra calculated taking into account
acceptor level broadeningDEa55 meV for GaAs:C at
\vexc51.5978 eV.
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be shown by straightforward calculations~its description is
beyond the scope of this paper! that the effect of reabsorp
tion, for instance, plays an important role. This effect r
duces the number of detected photons and is essential at
excitation energies when the free path of hot electrons
comes the same order as the absorption depth. Figure 7
sents the dependencies of the integrated HPL intensity on
excitation energy, calculated within the hydrogenlike EM
model ~solid and dotted curves! and our model~dashed and
dot-dashed curves! without ~solid and dashed curves! and
with ~dotted and dot-dashed curves! the effect of reabsorp-
tion ~the influence of the Coulomb interaction between a
electron and a hole on the absorption depth is also taken
account!. As was indicated in Ref. 6, the solid curve d
scribes well the experimental data below the intervalley sc
tering threshold corresponding to 1.88 eV. At the same ti
the exact calculation for GaAs:Be~dashed curve! ~as well as
the result of calculations performed with spherical accep
distribution functions for GaAs:Zn! differs significantly. As
is evident from Fig. 7, this situation changes when the eff
of the reabsorption is taken into account: the difference
tween EMA model~dotted curve! and experiment data~in-
dicated by a solid curve! increases while the exact calcula
tion ~dot-dashed curve! provides a good description a
excitation energies 1.7–1.88 eV.

Thus, the proper description of the HPL experimental d
demands taking into account a complex structure of the
lence band when calculating the acceptor ground state w
functions. The admixture of the light hole states to the
ceptor wave function is more essential for the region of l
excitation energies, while at high excitation energies
heavy-hole states contribution dominates. As a result one
use the asymptotic distribution functions for evaluating t
degree of linear polarization at high excitation energies
not for the description of the HPL spectra. The cubic anis
ropy of the acceptor distribution functions is essential
detailed description of the HPL spectra. However, it does
affect the anisotropy of the linear polarization. In the ran
of wave vectors involved in the HPL process the model o

e FIG. 7. The dependence of the HPL intensity~integrated area!
on the excitation energy for GaAs:Be calculated without~solid and
dashed curves! and with~dotted and dot-dashed curves! account for
the reabsorption effect in the hydrogenlike~EMA! model~solid and
dotted curves! and the present model~dashed and dot-dashe
curves!. All curves are scaled to pass through the same dat
\vexc51.88 eV.
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4398 55A. V. MALYSHEV, I. A. MERKULOV, AND A. V. RODINA
Coulomb acceptor as well as a short-range potential ce
can provide a good agreement with the experimental d
Thus, the present model is a more general one than the
vious models2,17,4,19 and allows us to describe properly
wide spectrum of the available experimental data.4–6,8

VI. CONCLUSION

Let us summarize now the main results of the pres
paper.

~1! We obtained analytically and solved numerically
system of integral equations for the ground-state wave fu
tions of a cubic non-Coulomb acceptor in diamond-li
semiconductors. A general form of the acceptor-grou
state-wave function has been found and the wave funct
for a set of acceptor dopants in GaAs have been calcul
with an accuracy of 2%.

~2! The dependence of the acceptor wave functions on
direction of the wave vectork with respect to crystallo-
graphic axes has been derived analytically for arbitrary v
ues ofk and an acceptor binding energy. It has been sho
that the acceptor distribution functionsf h,l

2 (k) are cubic sca-
lars and depend with an accuracy of 2% on the value of w
vector modulusk and cubic scalar functiona(k) which de-
termines the cubic anisotropy of the valence band disper
Eh,l(k).

~3! The analytical theory of the line shape and linear p
larization anisotropy of the HPL has been developed. T
principal futures of the HPL spectrum are found to be u
versal for cubic semiconductors with large spin-orbit sp
ting: ~A! A maximum of the first nonphonon peak, resultin
from excitation from the heavy-hole subband, correspon
in particular, to the recombination of the electron with wa
vector k parallel to@011# direction. As far as the HPL po
larization characteristics are determined by the funct
.
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s,

n

a(k), they can be obtained at the spectra maximum
evaluating the matrix elements of optical transitions for
equivalent̂ 011& directions only.~B! The dependence of th
linear polarization degree on the excitation energy and
ceptor binding energy is determined by the functionb0
which characterizes the difference between the relative c
tribution of the heavy- and light-hole subband states to
acceptor wave function. At high excitation energies, wh
the contribution of the light-hole states is negligible, the v
ues of linear polarization degree are independent of the
citation energy and the acceptor binding energy. For low
energies admixture of the light-hole states leads to a decr
of the linear polarization degree.~C! The anisotropy of linear
polarization degree is determined solely by valence b
warping and contains no information about the anisotropy
the acceptor distribution functions. In the framework of t
present model its valuez does not depend on excitation e
ergy. However, such a dependence occurs due to an a
tional mechanism of spectra broadening and the effect of
spin-orbit split-off band.

~4! Quantitative characteristics of the HPL inp-GaAs
crystals calculated in the framework of the present model
shown to be in good agreement with the available exp
mental data~Refs. 4–6,8!.
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