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Theory of acceptor-ground-state description and hot photoluminescence in cubic semiconductors
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An approach to the theory of the acceptor ground state in cubic semiconductors is presented. The model has
been developed within the framework of the four-band effective Luttinger Hamiltonian and is applicable for
both Coulomb and non-Coulomb acceptors. The system of integral equations for the ground-state wave func-
tions has been derived and its solution has been numerically computed. We present the general form of the
acceptor-ground-state wave function. The wave functions for a set of acceptor dopants in GaAs are calculated
with an accuracy of 2%. The obtained wave functions have been used for qualitative and quantitative analysis
of the hot photoluminescendélPL) spectra and linear polarization in GaAs crystals. Analytical expressions
for the line shape and anisotropy of the linear polarization degree have been derived. The dependencies of the
HPL characteristics on the excitation energy as well as on the acceptor binding energy have been analyzed. The
HPL theory presented allows us to describe the wide spectrum of available experimental data.
[S0163-18207)07904-9

I. INTRODUCTION very high electron energies corresponding to excitation ener-
gies higher than that studied in the known experiments.
Investigation of hot photoluminescen@dPL) is impor- At considerably smaller excitation energies the wave-

tant for understanding the behavior of hot charge carriers thiength of a hot electron is of the order of a heavy hole Bohr
energy of which is many times higher than thermal kineticradius (. =ag). The acceptor wave functions for correspond-
energy'~® In recent years the HPL lineshape, dependencietng wave vector values were calculated numerically for a
of HPL polarization characteristics on excitation energy, andCoulomt® and a non-Coulomb acceptor’in spherical ap-

depolarization of HPL in magnetic field have been studied improximation. The implementation of the spherical acceptor
order to determine the times of energy and momentum relaxtunctions limits the application of the results to the descrip-
ation for hot carrier$;*-8the position of energy bands,the  tion of experimental data on the linear polarization anisot-
effect of the higher energy band states on the selection rula®py of the HPL. In particular, it does not clarify the question

of optical transition$;> and so on. of how the acceptor-ground-state anisotropy influences the
At low temperatures HPL is mostly determined by theHPL polarization characteristics.
recombination of photoexcited carriefslectrons or holes Unexpected results were obtained in Refs. 6—8. The au-

with the intrinsic carriers localized at impurity centers. Ma- thors of these papers apply the simplest hydrogenlike model
trix element of such optical transition is determined by Fou-in the effective mass approximation for the description of the
rier image of the impurity state wave function at the spatialHPL intensity spectra and the determination of the electron
frequency corresponding to the carrier wave ve&orhus, intra- and intervalley scattering times in GaAs. It turns out
one has to know the wave function of the localized carrierghat the simple hydrogenlike wave function describes the ex-
in the momentum representation for the theoretical descripperimental data obtained in Refs. 6,8 better than the spherical
tion of the available experimental data and the evaluation ofvave function which has been numerically calculated for
hot carriers parameters. GaAs:Zn in Refs. 15,17. The inadequacy of the matrix ele-
The relatively simple case of a donor center in diamond-ments calculated by Dymnikov, Perel, and Polupdhder
like semiconductors is well studied for Coulomb binding describing the data from Refs. 6,8 might have resulted from
potentiat® as well as for a more complicated potential giventhe neglect of a cubic symmetry of the crystal lattice. Be-
by a sum of the Coulomb term and a short-range potetitial. sides, these functions were calculated for Zn-acceptor
A similar calculation for the localized hole meets essentialwhereas the experiment was carried out for GaAs:Be. How-
difficulties resulting from the complexity of the valence bandever, in the present paper we show that the hydrogenlike
structure and cubic symmetry of the crystal latilté?>=2° model does not provide good agreement with experimental
That is why up to the present time the HPL characteristics irdata if the effect of the absorption of the luminescence ra-
p-type A3;Bs semiconductors have been calculated only ordiation in the sample is taken into account.
the basis of simplified models of the acceptor ground It follows from the brief review of experimental and theo-
state?4-6817.21 retical papers presented above that for quantitative descrip-
A theoretical description of the HPL at high excitation tion of the HPL in diamondlike semiconductors one has to
energies was performed in Refs. 2,4,5 by using the asymgknow accurate acceptor wave functions in the wide range of
totic expressions for an acceptor wave function. Such an apghe wave vectors. The warping of the valence band and the
proximation is valid when the electron wavelength is manydeviation of binding potential from the Coulomb form are
times smaller than the Bohr radius of the heavy hole at thessential for such a description.
acceptor level X<ag). This condition takes place only for Recently a method of calculation of a Coulotiland a
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non-CoulomB® acceptor ground state wave functighwas

reported. Its main advantage is that a simple analytical de- ‘I’(k)zf d¥rexd —ikr JW(r),

pendence of the wave function on the direction of wave vec-

tor k with respect to the crystallographic axes has been ob-

tained for all wave vector values. Therefore, the wave V(k):f d3rexd —ikrV(r). 2
functions can be applied for a qualitative description and

quantitative analysis of the HPL characteristics in a considy (k) is a four-component column written in the basis of
erably wide range of excitation energies. Analytical expresgioch functions of the valence band tap, (u==*3/2,
sions for the HPL line shape, linear polarization degree, and- 1/2). The second term on the left side Of‘fﬂ]) describes

its anisotropy in cubic semiconductors were derived in Refihe Coulomb attraction of a hole to an acceptor core. The
21. These expressions contain numerical coefficients whickhirq one describes the action of non-Coulomb part of the
depend on the acceptor-ground-state wave function. Thgotential.

Coulomb acceptor functions, numerica_lly calculated in Ref.  The ground state of an acceptor in cubic semiconductors
19, were used to study the dependencies of the HPL charags fourfold degenerate and has the symmetry of the top of the

. - - . . 1
teristics on the excitation energywe,. in GaAs crystals: valence band? The wave function for the four sublevels can
In this paper we present a complete theory of both thg)e found in the form

Coulomb and the non-Coulomb acceptor ground state in dia-
mondlike semiconductors with large spin-orbit coupling. The
theory is applied for the studying of the hot photolumines-

cence characteristics. a . . .
. . where the operatoP(k) is invariant under transformations
The paper is organized as follows. In Sec. Il the model of P (k)

; . .~ of the cubic symmetry of the crystal. We will seek the op-
the acceptor ground state is described. The model takes into B in th yf I .y I%‘ h f thi P
account the complex structure of the valence band of cubi@r"’m_)r In t e_llobowmg gensrla ornithe error of this ap-
semiconductors as well as a deviation of an impurity potenProximation will be estimated later

tial from Coulomb form. A general form of the acceptor-

Yy (K)=P(Kuy, (M==*+3/2+1/2), 3)

ground-state wave functio® is found on the basis of the P(K)=[fn(k) An(k)+f(K) A (K)T, 4
model. The system of integral equations for the wave func-
tion is derived in momentum representation. In Sec. Ill the i _|:||_(k)—Eh 1(K)

®

method of numerical solution of the system is described. The
results of numerical calculations of the acceptor-ground-state

wave functions and acceptor eigenenergfes Coulomb ac-  \heref,, (k) are some cubic symmetric functions depending

ceptors for different semiconductors and acceptors are prebmy on wave vectok. The operatorssA\'*“ are the projection

senteq and discus_sed. In Sec. IV th? general_ gnallytical ?)Sperators on the light- and heavy-hole subband states with
pressions for matrix elements of optical transition in CUb'Cdispersion laws, ;:

semiconductors are derived. In Sec. V the HPL characteris-

T B -E(K)

tics in GaAs crystals are calculated and compared with avail- 72K2 m
able experimental and theoretical data. The brief summary of Ep=c—-, muk= -0 (6)
. . . . I,h 2 k)’ I,h( +2 K)’
the results obtained is given in Sec. VI. My n(K) v1£27a(K)
Il. THEORY OF ACCEPTOR GROUND STATE a(k):ﬁ?koz_[a(k) —En(K)]
IN CUBIC SEMICONDUCTORS Y2
In this section we consider the model of the acceptor kZkg+ koks+ koks
A - - - =/1+3v 12— @)
ground state in diamondlike semiconductor with a large - v K4 g

value of spin-orbit splitting. The binding potential is pre-

sented as the sum of a Coulomb potential and a short-rangehere y;, 7, and y; are Luttinger parameters and
one. The cubic symmetry of the crystal lattice is taken intov = (35— y5)/v3 is the warping parameter of the valence
account. band.

The Schrdinger equation for a hole bound to an acceptor The cubic symmetric functiorr(k) plays an important
impurity can be written in a momentum representation asole in the further analysis of the dependencies of the func-
follows: tions f, | on the wave vector direction and for the analytical

description of hot photoluminescence. This function depends
- e? d3q only on thek orientation with respect to crystallographic
H,_(k)\lf(k)—mj W‘P(Q) axes and takes the value between the unitkfgrarallel to
[001]-direction and1+uv=y3/y, for k parallel to the
[1171] direction.

The square modules of the functiori§(k) and f2(k)

A present the distribution of the bound hole state over the states
whereH, (k) is the four-band Luttinger Hamiltonia,E, is  of free holes in the valence band. For the wave functiom

a binding energy¥ (k) andV(k) are Fourier images of the the form(3, 4 the normalization condition givdshe crystal
wave functionW (r) and short-range potenti®(r): volume is (27)3]:

—f d*qV(k—a)¥(q)=E, ¥ (k), oY)



4390 A. V. MALYSHEYV, I. A. MERKULOV, AND A. V. RODINA 55

1 o re2 ) band of thel'g type. The warping of the isoenergy surfaces
Ej d k[ (k) +fi(k)]=1. (8) as well as the deviation of the acceptor binding potential
from Coulomb form are taken into account.
Let us substitute the functiodr in the form(3, 4) into the The shallow acceptor state can be described in the frame-

Schrainger equation(1). The explicit form of a non- work of the Coulomb model by homogeneous system result-

Coulomb part of the acceptor binding potential is unknown.ng from (1O)CW'Ith bCO”St""_”tAEO- Its solution gives the
Assuming the short-range potenti(r) to have the symme- €igenenergye;***"™ and eigenfunction of the Coulomb ac-
try of the crystal cell and the potential raditigto be con-  ceptor. The deep acceptor states witfe-ES*"°™ can be
siderably less than the acceptor-ground-state radjusso  described by the implementation of a short-range potential

that the valuekro<1), one can rewrite the non-Coulomb model?* Then the Coulomb integral terms in systéh0) are
integral term in the following way: neglected. In this case the wave functions of the acceptor

state with a given binding energy can be obtained in an ana-

lytical form:
f dsQV(k_Q)P(Q)ZJdareX[{—ikr]V(r) ytical form

x | daexdiorip(a) =g o & Ay

3 3 ) where the constath=A(E,) comes from the normalization
~| d*q| d°rexdiqr]V(r)P(q) condition (8).

The complete solution of the systeifiO) gives the

=Al, (9)  acceptor-ground-state wave functiofyg (k) in all range of
- . . ) the directions and values of the wave vector. It can be easily
wherel is a unit matrix andA is some constant. seen from(10) that the contribution from heavy- and light-

It is readily seen that both operatsif (k)P(k) and non-  hole states are equal at sméllvalues:f;(0)=f(0). The
Coulomb integral ternt9) can be exactly expanded in terms asymptotic expressions for the functiohg,(k) follow from
of AM(k). Thus the error of approximatiof#) arises only ~ (10): f h(k)om, (k)/k®. They are different from those
due to the fact that the Coulomb integral operatorknown for Coulomb acceptdf:? f, (k) om ,(Kk)/k®.
fd3a/(k—q)2P(q) has no precise expansion in terms of In the following we use dimensionless units and func-
AM(k). The error of such an expansion was shown to beions:
about 2% [It is noteworthy that in the framework of

spherical approximation the solutidd) is the exact ong. E, ~ e~ A
Operating on Eq(1) by the projection operatoi®) one can &= T gL p=kag, fn=fyag™, A= E.ad?
obtain the system of equations for the functidipgék) and B BB
fi(k) with an accuracy of 2%the detailed description of this
procedure can be found in Ref.)20 E e“mﬂ ah? 0 mg
B~ a2’ ag=—35 105, M= “2
[En(k)—Ealfn(k) =72 k=q)? n(Q) +m
_ 2y,+3y3
e? d3q =— 5 (12
T J =gz
L(k,q) I a(p)—fi(p)
1———"7 =f +f,(p), =—F (13
[ 2K a(q) 91(P)=fn(P)+fi(p),  92(p) (D) (13

+ALE () —Ea)fi(K)] Herem! is heavy-hole(HH) mass in the spherical approxi-

e? d3q L(k,q) mation, Eg is HH Bohr energy, anég is HH Bohr radius.
Z%J th(Q)[l—m For the new functions and units the system takes the form
2 3
Lo f 4 [£4(P)+£191(P) — a*(P)e2(P) G2(P)
47%e) (k—q)%" L a%
L(K, :7J ——201(q) +2A,
X 1+a(l§)—a%)}+A' (10 mJ (p~q)
—a?(p)e2(p)gs(p) + a®(p)Le1(p) +£192(P)
where L(k,q)2=2 Pz(c_os(a)) + 3v(kkyaxay + kyk,0,0; 1 q3
+k_zkxqqu)/ (k“g®), 0 is an.angle betweek and g, and — _ZJ q 502(L(p,q), (14)
P, is the Legendre polynomial. mJ (p—q)

The system(10) describes the ground state of a hole
bound at an acceptor center in a fourfold degenerate valencghere
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1+ 1-8 5 gent iteration method in a order to get an accurate solution in
eq(p)= sz' ex(p)= 25 p2, a wide range of the wave vector values.
2+3J1+v Presenting the systefd4) in the operator form
. L~ 91(p) 2
Yi—2v G(e)g=Kg+Ab, g=( ) =( . (17
= . 15 0
B=2 52y (15 92(p)

here G is the operator of the left part dfl4), K is the
tegral operator fron(14), we derive the iteration expres-
sion for the functiong=g/A:

As it has been mentioned above the non-Coulomb part oﬁ
the potential and then the constanis unknown. We assume
that the real acceptor binding energy is known from the
experiment and use it as the given parameter in order to TG RGN+ G 1
obtain the acceptor-ground-state wave functions. Let us seek 9 G 7Kg G, (18
the rea' acceptor functions in the forgl 2:'~A"§12’ Where Whel’en iS the number Of iteration. Let us Seek the ZerOth-
the functionsg, , satisfy the system(14) with constant order approximatiorg® in the form of the expansion into
A=1 and can be computed numerically. The consfagan  Cubic harmonics up to the harmonic of the fourth order:
be calculated by using the normalization condition: ~ ~

y using G2 To(Qp) + TP Ta(Qp)

SO —
A:A(S)ZZU Fp[GEp) +a(PTAP)]| - (16 92(P)To( Q)+ G2(P)Ta((2p)
where ), is solid angle, To({),), T4(},) are cubic

So,A plays the role of a normalization constant, although itharmonics?*
contains information about the short-range potential and dif-

(19

fers for different dopants. To(Qp) =Yoo Qp) =——,
2w
Ill. CALCULATION METHODS AND RESULTS
In this section we present the calculation methods which T4(Qp)=%\/g[Y4_4(Qp)+Y44(Qp)]
have been used for solving Ed.4) and discuss the obtained
results. Since the functiorfs,| and theng, , are cubic sca- 1 7
lars, they can be expanded into cubic harmoficghis + E\@Ym(ﬂp), (20

method allows us to derive the dependence of the wave func-
tion on wave vector direction analytically, but it convergeswhere Y,,(€},) are spherical harmonics. The functions

slowly at large values of. We will combine the method of g g’;g(p) depend only on wave vector module and are the

expansion into cubic harmonics together with a fast conversolutions of the following system:

J
[£1(p) +2]G1(P) —b1e2(P)T3(P) +bae2(P)T5(P)
= %foqudqMl(p,q)ﬁ‘l’(q)+4ﬁbssz(p)§8(p)
+[e1(p)+e]g1(p)—b2e2(P)T5(P)
= % J:qquw(p,q)@';‘(q)—blsz<p>§ 2(p)+bie1(p) +£]G5(P) +bae2(P)G1(P) —bsle(p) +£1G5(p)

2 0 _ o0 . .
= ;[bljo qquMz(p,q)gg(q)—bsjo adaMz(p,a)g5(q) [bae2(P)G ()
—bg[e1(p)+e]g2(p)—byea(p)G1(P) +bales(p) + ]G 3(p)
2 F 2 ~0 * ~4
= —baf q quz(p,q)gz(qu q°dgM,(p,a)g () |, (21
0 0

where 1 p2+q2 p2+q2
Ma(p,a)= —
b,=(1+0.&), b (1+ 321 ) b L2 (22) 4 2,02\ 60 24 2
= . 1 = p— H :_l + +

1 2 718 P g v _Qz(p a’|, 80, (Ptd

pq| 35 2pq 847 2pq

1 p2+q2 415 p2+q2
Ml,z,&p.Q)—ﬁQo,z,a(z—pq : +F73Q6 Zpq )| (23
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TABLE |. Valence band parameters and acceptor binding energies in diamondlike semiconductors.

Semicond.  aRef. 13 y, (Ref. 13  y, (Ref. 13  y; (Ref. 13  ES™°™(meV)  E, (meV) (Ref. 25 A

Ge 15.36 13.35 4.25 5.69 10.36 10B 5.74 %1073

InSb 17.9 35.08 15.64 16.91 9.26 9.85e) 7.92x107°

InP 12.4 6.28 2.08 2.76 37.81 41(B) 1.23x1072

GaP 10.75 4.20 0.98 1.66 50.63 5403 8.65x10°3

GaAs 12.56 7.65 2.41 3.28 27.35 2710 1.72x107°
28.0(Be) 3.17x10°3
29.0(Mg) 8.05x10° 3
31.0(zn) 1.77 X 10 2
40.0(Ge) 5.84 X102

where P, is Legendre polynomial, an@@, are Legendre Mo

functions of the second type. This system is self-consistentfn, (k)= fp(k, a(k))=fp, k.m[EKk)—Eh(k)] :

and can be solved numerically. Calculating the consfant 27)

with the help of(16) one can obtain the normalized zeroth-

order approximation of the wave function. . This fact appears to be very helpful in deriving the expres-
Our analysis shows that the error of this approximationgigns for matrix elements of optical transitions.

grows withp. It is less than 2% in the regiop=<pc~ Ve, Table | shows Coulomb acceptors-ground-state eigenen-

and is about 10% fop>p. On the other hand, the integral ggiesECoulom nymerically calculated for different semicon-

values such as the normalization constanir eigenenergies duyctors. The sets of Luttinger parameters used and experi-

of Coulomb acceptor can be calculated with an accuracy ofnental values of the acceptor binding enerdigsare also

about 2% in the zeroth-order approximation. As a matter okhown. The energies calculated with cubic symmetry of the

fact the region of the maximum error makes a small contri-crystal lattice taken into account differ from those obtained

bution to the corresponding integrals as the absolute value @} the framework of spherical approximatidri? by 6—8 %.

the wave function is very small. . The results agree well with calculations of Ref. 16. One can
To get a more accurate solution for the wave function letsge from Table | that in the cases of Ge, InSb, and GaAs the

us make the first iteration according to E#8). The system  model of Coulomb acceptor provides good agreement for

(21) can be conveniently written in the operator form: shallow acceptors(such as Ge:B, InSh:Ge, GaAs:C,
. . GaAs:Be. In the cases of InP and GaP the discrepancy may
Gog¥=Kg? +b. (24 be due to both the large central cell corrections and the im-

) ) g perfection of the present model that assumes a large spin-
The error connected with the expansion of the t® it splitting of the valence band. In the case of GaAs the
into cubic harmonicgo andT4 appeared to be less than 2%. difference for deeper acceptern, Ge is due to the con-
This makes it possible to simplify the expression for thesiderable central cell corrections. The last column of Table |
first-order approximation. If one putkg®=K,g® and  presents the values of the dimensionless consiamalcu-
substitutesK ,g () into (18) a very simple expression for the lated from(16) for the acceptors presented. This parameter

first-order approximation can be obtained: contains information on the short-range potential.
The acceptor-ground-state distribution functiofﬁ(k)
JV=6G"1G,g". (25)  for the Coulomb acceptdupper setand the non-Coulomb

_ o ~ Zn acceptoflower se} in GaAs are displayed in Fig. 1. Pairs
The accuracy of this approximation is about 2% for all di- of solid lines in each set correspondff(k) (upper curve in
rections and values gf. There is no need to continue the the paijy and f2(k) (lower curve in the pajrfor the [111]
iterations because the error connected with the influence Qfjrection while dashed lines correspond [@01] direction.

the split-off band usually exceeds several percent. The functionf? is very anisotropic whilg? is nearly spheri-
Thus, we obtained the solution of syste(0) for the cal. The ratio of the functionsﬁﬁ for directions[111] and

acceptor-ground-state wave function with an accuracy of 2%[001] atk~a=T is about 2.4. The same ratio of the functions
The dependence of the wave functidng on the wave vec- B o

2 .
tor direction is derived analytically and can be expressed irTI s close to 1.2. It can be seen from. Fig. 1 that. even for the
terms of To(k), T4(k), and a(K). It is noteworthy that the shallow Zn acceptor the wave functions are different from
function (k) can be expressed in terms of cubic harmonicsco.uIomb ones at small values of wave vector k. T_he.asymp-
T, and T, exactly: totic behavior of Coulomb and non-Coulomb distribution

0 4 ' functions atk>a3’l is also different. Figure 2 presents the
az(k):2\/;b1TO(Qk)_2b3T4(Qk)- (26) functionsfﬁJ(k) (with k parallel to[011] direction for a
number of acceptors in GaAs. These functions differ strongly
It allows us to conclude that the cubic anisotropy of theat small values ofk and are very close in the region
functionsfy, (k) is defined by the anisotropy of the valence k%aB_l that is the most important for the description of the

band also with an accuracy of a 2%: HPL process.
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A If totally polarized exciting light and detected radiation
propagate along thg001] direction the degree of linear po-
larization p, has the fornf

g
=)

N
o

-------- KI[1100]
——Kll[111]

g
=3

_IH_IL_d+C+d_CA 4 29

N
=)

wherel andl, are the luminescence intensities polarized
parallel and perpendicular to the polarization vectgy. of
the exciting light, ande is the angle betweer,,. and

o
tn

Distribution functions 2, (a3)
o

0 o4 o6 o8 1o [100]. The coefficientsa, ¢, andd can be derived from
Wave vector (ag) components of the tensok: a=A1+ A, C=Aut+ A7,
and d=A;;—Aj,. The value {=p4s/po=p(ml4)/p(0)
FIG. 1. Acceptor-ground-state distribution functioffg (k) in =d/c characterizes the anisotropy of the HPL linear polar-

the Coulomb modelset A) and in the non-Coulomb modéset ization.

B) for GaAs:Zn. The upper curve of each pair corresponds to The process of hot photoluminescence consists of two
f2(k); the lower curve corresponds fd(k). Hereafter, the values steps. At the first step an electron transits from valence band
of k are given inag® and the values ofi, are ina3, where to conduction band, and at the second the electron recom-

ag=11.8 A. bines optically with a hole bound to an acceptor center. If the
electron is not scattered by phonons, the final wave vector is
IV. THEORY OE THE HPL IN CUBIC SEMICONDUCTORS equal to the initial one. In this case one can derive the com-

. . eponents of the tensdk in the form
The implementation of the acceptor-ground-state wav

functions obtained in the previous section allows us to cal-
culate the components of the fourth-rank tengomhich hi_ hl _ _
gives the most general relationship between polarizations of An= | Aka(K) o7 oum = Eq T Ea=Eo(K)]

the exciting light and the recombination luminescence:
><6[ﬁ(")exc_ Eg_Ec(k)_Eh,l(k)]dgka (30)

[F=E A expexk ~
<EiEJ )=Aijkn(ECER ), (28) where the tensoA(k) characterizes the recombination of

electron at wave vectok, E4 is the band gapE, is the
whereE® andE} are components of the electric field vectors acceptor binding energyE.(k) =7%%k*/2m. is the electron
of laser and luminescence, respectively. The angle brackegnergy in the conduction band with effective masg,
mean a time average. One has to know the teﬁ\soompo— En. (k) is the energy of a heavy or light ho!e in the valence
nents for a theoretical description of the line shéipe de- band(6). Indgxesh and| correspond to excitation from Fhe '
pendence of the total detected intensityon HPL energy hea\_/y- and Ilght-hole; subbands, respectively. Integration is
fionm) and HPL polarization characteristics. In cubic crystal carried out over all directions of the wave vector

only four components of the tensér are linearly indepen-  Integral(30) with integrandA,,(Gk), whereG s the ar-
dent. They areAy;=Ay, Ayj=As>, Ajij=As, and pnrary transform{:\uon of thg pqmt group of the crystal lattice
Ajjji =Aq47, Wherei,j=x,y,z andi # . All other components 1S €qual to the integral with integranél,(k) due to the
are equal to zero. cubic invariance of the tens@x in cubic semiconductors. It
can be easily seen that valugg,(k) =% A,,(Gk)/N, where

the summation is carried out over @&l cubic transforma-
tions, are cubic scalars in the cubic semiconductors. Thus,
the components of the tensarcan be derived by evaluating
the integrals of the fornt30) with the cubic invariant inte-
grandA,,(k), which is more convenient.

Using the general form of the acceptor-ground-state wave
functions(3), (4) found in Sec. Il we can derive components
of the tensorA(k). Here we present the results of such a
derivation for  the values a(k)=A;y(k)+AxK),

C(K) = Agq(k) +Age(k), andd(k) =Aq(k) — Ag(K):

3.0

—_ - N N
o [4)] o [6,]
" 1

o
o

Distribution functions 2, (a3?)

1 R ———
00 0.2 04 06 08 1.0 — 8 2 2
Wave vector (ag) ah,l(k)_g[fh(k)+f|(k)]

_ 2
FIG. 2. Acceptor-ground-state distribution functioffs (k) for +U+l a“(k)

V7R oy g2
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_ 2(v+1)[a?(k)—1 ;
Gl == gv[az(f() Uz - f2aon, "
8.
— vtl-a®(k)_, )
i (K) = =g 2 — LT~ fF(K). ol —0
g | HtV(1+v)
By substituting these functions int@0) we find the quanti- >
tiesa, ¢, andd. In expressiong31) all cubic scalar coeffi- £ 4
cients are expressed in terms of the functidik). The plus -
and minus signs correspond to the excitation from the heavy- 21
hole and light-hole subband, respectively. Hereinafter we
concentrate on describing the first nonphonon peak in the 0
HPL spectra that corresponds to the excitation from the 0.00 0.25 0.50 075 1.00
heavy-hole subband. The high-frequency edg* and the Parameter t (arb. units)

low-frequency edga){‘l]im” of this peak are associated with the

recomb'.natlo.n of electrons witk parallel_to the] 111] anq the HPL line(solid curve and the distribution of the linear polar-
[100] directions, respectlvc_ely._ The width of HPL line ization anisotropy over the HPL ling(t) divided by (1+v)
A% w,,, depends on the excitation enerly. (dashed curve

It is clear that for a fixed excitation energywe,. the
nonzero contributions to the integréd0) at the lumines-
cence energyiw,, come only from those directions and
magnitudes of the wave vecthmwhich lie at the intersection
of the excitation surface).,. defined by the equation

fiweyc—Eg—Ec(k) —Ep (k)=0 and the luminescence =y
sphere of the radiusko=[2me(% wym—E JrE)/f'zz]l/2 difference ~ Spectra |(soo 1)~ 1. = (&d[100)  and

Thus, the modulus of the wave vector and the functlonl(‘ij,lim&;H T#:;éf"ﬁﬂ?;?;) :rgedeetr?ézﬁgr?desét(;ﬁ%rr?iigrs
a(k) take the definite values at the integration contdult. bindi pd P d gg,
has been shown in Sec. Ill that in our model the distribution acceptor binding energy, and semiconductor parameters, but
its main features are determined by the funcfidi,,): the
functionsf,, (k) depend only on the modulus of the wave d hiah-f d h db f
vectork and the functione(k) with an accuracy of 2%. In ow- and high-frequency edges are characterized by steps o

this case integrand@1) remain constant along the integra- different height while the pointe,=3/4 is characterized by

the divergence of the spectra. Maxima of the spectra corre-
tion contour and can be factored out from the integral. So, an

spond, in particular, to the recombination of electrons with
integral of type(30) can be simplified:

k parallel to[011] direction. It is noteworthy that no such
spectral features are observed in reality due to spectra broad-

FIG. 3. The functionT(t) which determines the main features of

T(1)=2. It is very important to note here that although the
function diverges at.,.—3/4 the integral of the function
over[0;1] is finite.

The HPL intensity spectruml=I+1,*xa and the

X=X(ko, dexd Wit oum), - X=a,¢,d, (32) ening caused by different mechanisms such as the finite hot
where Uexc= Y1272~ [(hwexc— Eg)/ (hwym— Eq+E,)  electron lifetime or acceptor-ground-state energy level
—1]my/2y,m,, and functionW is the density of states inte- broadening. These mechanisms lead to a smoothing of the
grated over the contour: spectra singularities and to a shift of the spectra maximums.

Expressions for the HPL polarization follow fro(@1,32:
Wk 01ym) Ao T(tex
) = ’ 3(1—t k o
) e E T En)/(2my) ex po(tad = (1—=texd Bo(Kog, atexo)
8(Vlexct 1)+ (1 —teyd Bo(Ko, aexd) |
2
Qo™ 1
texc™ ) (33 2(v+ 1)teyBo(Ko, aexod
v p45(tex<‘) = _ k ’ (35)
B(vlexct 1) + (1 —texd Bo(Ko, exd
T(H)= = ax (ko) — (ko)
7 J o) J(t—3x2+ 3x%) (3l4—t + 3/X2— 9/4x") Bo(Ko, Xexd) = Bo(Ko) =
(34) fr(ko) + 11 (ko)
Here the functiorG(t) is the intersection of the line segment For= m (36)

[0;1] with the region in which the integrand is defined. The

value of the parametet,,. varies from zero at the low- here the functionBy(k,) characterizes the difference be-
frequency edge dym= wm'm) to unity at the high-frequency tween the relative contributions of the heavy- and light-hole
edge @um=ona). The functionT is independent of exci- states to the acceptor-ground-state wave function. One can
tation energy as well as of semiconductor parameters. Itsee from(35) that linear polarization degre®, vanishes at
main features are as follow(see solid curve at Fig.)3the  the high-frequency edged,=1), while p,5 vanishes at the
function diverges logarithmically at...—3/4 and remains low-frequency edget{,.=0). The dependencies of the de-
finite at all other values of the parametgf.. The values of gree of linear polarization on the excitation energy and ac-
T(teyd at the edges of thp0;1] segment ard(0)=1 and ceptor binding energy are determined by the funciiin
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TABLE Il. Experimental data and calculated values of the linear polarization degge@s and p,s (b)
and anisotropy of linear polarizatiah (c) at the maximum of the HPL line. Brackets with indexdenote
values averaged over the broadened acceptor ite, € 13 me\).

@

fiwey (€V) pg® (Refs. 4 and b Po {(po)a {po)a (Ref. 4

1.65 0.07 0.051 0.069 0.08

1.92 0.04 0.053 0.052 0.03
(b)

hwey (€V) pss (Refs. 4 and b Pas (Pas)a (Pas)a (Ref. 4

1.65 0.18 0.189 0.182 0.19

1.92 0.26 0.198 0.199 0.26
©

fwey (€V) {7 (Refs. 4 and b { (Da (0)a (Ref. 4

1.65 2.57 3.75 2.64 2.36

1.92 6.50 3.75 3.85 8.67

We point out here that for the wave vectors involved toDashed curve at Fig. 3 presents the functign)/(1+v)
the HPL procesge.g. k= 0.6an1 for GaAs the contribution  which does not depend on the semiconductor parameters. We
from the light-hole states to the shallow acceptor wave funcemphasize thaf depends neither on excitation energy nor on

tion is small. In the casgf,(k)/f,(k)]?<1 the function the acceptor distribution functions. The anisotropy of the lin-
ear polarization appears only due to the valence band warp-

fi(k)]? ing and its value contains no information about the anisot-

Bo(k)~1-2 k) ropy of the acceptor-ground-state distribution functions. The

account of broadening mechanisms leads only to a weak de-

is nearly isotropic. Consequently the degree of HPL lineaPendence of{ on the excitation energy and the acceptor
polarization weakly depends on the cubic anisotropy of acbinding energy. _
ceptor distribution function$?, (k) and can be calculated to ~ The essential features of the HPL spectrum, described

within a 5% error by using the spherical distribution func- above, are universal for diamond-like semiconductors with a

tions. This fact was demonstrated for high excitation enerlarge value of spin-orbit splitting. At high excitation energies

gies in Ref. 4 by numerical calculations carried out withthe effect of the spin-orbit split-off band cannot be neglected

asymptotic anisotropic and isotropic distribution functions. @nd leads to qualitative changes in the spectra features as
On the other hand, the value of the functigg(k) for well as to a considerable increase of the linear polarization

H 5
shallow acceptors deviates from its asymptotic value anisotropy’

_ mi (k) —mj (k) V. THE HPL CHARACTERISTICS FOR GAAS

The HPL linear polarization and its anisotropy were ex-

by less than 5% when the contribution from light-hole stategP€rimentally studied in Refs. 4,5 for two excitation energies
is small. It is noteworthy that the asymptotic functifn has 7 @exc=1.65 and 1.92 eV* The experiment was carried out
the same form in any model of the acceptor impurity potenfor GaAs crystal doped with Zn acceptors. The theoretical
tial and does not depend on the module of wave vect&or poIanzayon characteristics of. the HPL in GaAs:Zn are pre-
this reason any type of distribution function is applicable forSented in Table Il together with experimental data. The de-
evaluating the linear polarization degree to within a 5% erroidre€es of linear polarizatiop, andp4s and anisotropy param-

at high excitation energies. Using the asymptotic functioneter{ are calculated at the HPL line maximum. To obtain a
B..(K) in expressiong35) one can calculate the asymptotic More accurate comparison with the experlmentgl data the
value of the HPL linear polarization degree analytically. ~ corresponding values averaged over the broadening acceptor

The degree of linear polarization anisotropy of the HPL!€Vvel have been calculategee the values in angle brackets
= pas!po=Io11/| ooy Varies over the luminescence line The acceptor linewidtlithe full width at half maximum of

from zero at the low-frequency edge of the HPL peak toth€ acceptor lingis taken asAE,=13 meV according to

infinity at the high-frequency edge and depends only on th&ef. 5. The distribution of acceptors over the energy Ievel_s
valence band warping parameter are supposed to be Gaussian. The other possible mechanism

of the spectrum broadening connected with fluctuations of

2(1+0)t 2 the band gap width has also been considered, but was found
TN Tlexe v= 7_3 (37)  to produce no noticeable corrections to the polarization char-

{(texd = :
T 3(1-texd Y2 acteristics. One can see from Table Il that the present model
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FIG. 4. HPL characteristics calculated withaat and with (b)

account for the acceptor level broadenidg=,=13 meV for (Da=(Pas)al{po)a= {1100 a’{I (100 a

GaAs:Zn ath wey=1.65 eV. o
depends weakly on the excitation energy and the acceptor

binding energy. This dependence is more pronounced at low

provides excellent agreement with the experimental data axcitation energies, when the acceptor linewidi&, is of
excitation energyi we,.= 1.65 eV. Table Il presents also the the same order of magnitude as the HPL linewidts,, .
HPL characteristics numerically calculated in Ref. 4 by using The anisotropy of the HPL linear polarization degree and
the asymptotic expressions for the acceptor wave functiondts dependence on excitation energy was also experimentally
The model developed in Ref. 4 takes into account the effecstudied in Ref. 8. The difference spectfg,, andl ;o were
of the spin-orbit split-off band. It allows us to describe the presented for excitation energyiwe,=1.5978 eV for
increase in the degree of linear polarization anisotropy aGaAs:C. The maximum of thk, difference spectrum was
high excitation energy we,.=1.92 eV. noticed to be at a lower energy than the maximum of the

The HPL line shape and distribution of the linear polar-|;, , spectrum. The intensity ratio of difference spectra was
ization degree over the luminescence line, calculated withijetected to be about 4vhich gives the degree of linear
the model presented for GaAs:Zn #itv,.=1.65 €V, are polarization anisotropy This ratio increases up to about 6 as
shown at Fig. &). Figure 4b) presents the line shape and the laser energy increases to 1.7510 eV. In the framework of
degree of the linear polarization averaged over a broadenagie present theory the line shapes of the difference spectra
acceptor level. are determined by the functioh. As a result the spectra

The dependencies of the linear polarization degigand  have their maxima at the same point determined by the value
pas at the HPL spectra maximum on the excitation energy fot_ = 3/4. The degree of linear polarization anisotropy varies
GaAs:Zn and GaAs:Ge are shown in Fig. 5. It illustrates alsgjong the line and is equal to 3.75 at the point of the spectra
the functionsBy(ko) for ko parallel to the[110] direction.  maximum which is independent of excitation energy. The
One can see that the qualitative behavior of the linear polarshift of the difference spectra maxima may appear due to
ization degree is determined by the behavior of the funCtiOI’gome broadening mechanism. Figure 6 illustrates, for ex-
Bo. For wave vector k~0.6ag" (it corresponds to ample, the difference spectra calculated for GaAs:C at
hwey~1.65 eV}, the contribution of the light-hole subband # w.,.~1.5978 eV with acceptor level broadeniad,=5
states to the shallow acceptor wave function is small. ThusneV. Such broadening leads to a maxima shift of 2.5 meV
the deviation of, as well as the degree of linear polariza- corresponding to the data of Ref. 8. As was mentioned
tion from its asymptotic value is less than 5%. As the exci-above, the increase of the anisotropy degree is connected
tation energy decreases ¢..~1.65 e\) the contribution of  with the effect of the spin-orbit split-off band and cannot be
light-hole states to the acceptor wave function increaseslescribed in our model.
That leads to a decrease of the linear polarization degree. At The dependence of the integrated intensity of the first
the same time the degree of anisotrafyy pss/po remains  HPL peak on the excitation energy was measured and ana-
constant independently of an admixture of the light-holelyzed in Refs. 6,8 in order to estimate the intervalley electron
states. At the line maximum it is equal to scattering time in GaAs. The experiment was carried out for
{=2(v+ 1):27§/y§ = 3.75(see the parameters of GaAs in several GaAs samples doped with different shallow accep-
Table ). The degree of anisotropy defined by an averagdors(C, Be, Mg, Zn). The intensities were compared pairwise
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FIG. 6. Difference spectra calculated taking into account the FIG. 7. The dependence of the HPL intenditytegrated area
acceptor level broadeningAE,=5 meV for GaAs:C at on the excitation energy for GaAs:Be calculated with@alid and
hwey=1.5978 eV. dashed curvesand with(dotted and dot-dashed curyescount for

the reabsorption effect in the hydrogenli@VA) model(solid and
as the laser energy was changed over the region 1.6—2.0 eWbtted curves and the present modeldashed and dot-dashed
The comparison showed no difference from the experimenturves. All curves are scaled to pass through the same data at
to within the =5% error® Our calculations of the integrated 7 ®ex=1.88 €V.
intensity show the difference for shallow acceptors in GaAs . o o
less than 10% in good agreement with the experimental dat®e shown by straightforward calculatiofits description is
Such small difference between the curves is due to the fadteyond the scope of this papehat the effect of reabsorp-
that the wave functions of different acceptors are very clos#on, for instance, plays an important role. This effect re-
to each other in the region of wave vectors corresponding t§luces the number of detected photons and is essential at high
these excitation energidsee Fig. 2 ak~ag?). A straight-  €xcitation energies when the free path of hot electrons be-

forward calculation shows that for deeper acceptor GaAs:GEOMeS the same order as the absorption depth. Figure 7 pre-
the difference increases. sents the dependencies of the integrated HPL intensity on the
According to Refs. 6,8 the experimental dependence megXcitation energy, calculated within the hydrogenlike EMA
sured for GaAs:Be can be approximated by the function model (solid and dotted curvesand our modeldashed and
dot-dashed curvéswithout (solid and dashed curvesind

loc| M (K)|27n, with (dotted and dot-dashed curyeke effect of reabsorp-
tion (the influence of the Coulomb interaction between a hot

wheren is the probability that an electron is actually born in electron and a hole on the absorption depth is also taken into
the conduction band by the absorption of a photon with enaccount. As was indicated in Ref. 6, the solid curve de-
ergy fiweye, 7 1S an electron lifetime which is considered to scribes well the experimental data below the intervalley scat-
be independent of excitation energy below fhd. scatter- tering threshold corresponding to 1.88 eV. At the same time
ing threshold(i.e., for i we<1.88 €\). The acceptor wave the exact calculation for GaAs:Bdashed curve(as well as
function is defined in the hydrogenlike model by the result of calculations performed with spherical acceptor
distribution functions for GaAs:2ndiffers significantly. As
is evident from Fig. 7, this situation changes when the effect
of the reabsorption is taken into account: the difference be-
tween EMA model(dotted curve and experiment datén-
wherem, is a hole mass in the effective mass approximatiordicated by a solid curyeincreases while the exact calcula-
(EMA) [m,=0.31Imy, E,=27 meV in GaAs(Ref. §]. On  tion (dot-dashed curyeprovides a good description at
the other hand, the alternative expression|fdi(k)|, based excitation energies 1.7—-1.88 eV.
on spherical acceptor wave functions for GaAs:Zn, numeri- Thus, the proper description of the HPL experimental data
cally calculated by Dymnikov, Perel’, and Poluparfdwyas  demands taking into account a complex structure of the va-
reported to be in bad agreement with the experimentalence band when calculating the acceptor ground state wave
data®® functions. The admixture of the light hole states to the ac-

It should be noted that the good agreement of the hydroeeptor wave function is more essential for the region of low
genlike EMA model(38) of the HPL intensity dependence excitation energies, while at high excitation energies the
on excitation energy is just an accidental coincidence. As &eavy-hole states contribution dominates. As a result one can
matter of fact, this dependence is affected by a lot of suppleuse the asymptotic distribution functions for evaluating the
mentary factorgsuch as the absorption of the luminescencedegree of linear polarization at high excitation energies but
radiation in the sample, the Coulomb interaction betweemot for the description of the HPL spectra. The cubic anisot-
electrons and hole¥, the effect of the higher energy band ropy of the acceptor distribution functions is essential for
states on the selection rules of optical transitibtnghe  detailed description of the HPL spectra. However, it does not
changing of the absorption depth with excitation energy, andffect the anisotropy of the linear polarization. In the range
otherg that were not taken into account in Refs. 6,8. It canof wave vectors involved in the HPL process the model of a

Mk« 2E,m,

ﬁ2k2 -2
1+ ) , (39)
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Coulomb acceptor as well as a short-range potential centef(k), they can be obtained at the spectra maximum by
can provide a good agreement with the experimental datawvaluating the matrix elements of optical transitions for all
Thus, the present model is a more general one than the prequivalent(011) directions only.(B) The dependence of the

vious model$'"**and allows us to describe properly a finear polarization degree on the excitation energy and ac-
wide spectrum of the available experimental dats ceptor binding energy is determined by the functifp

which characterizes the difference between the relative con-

VI. CONCLUSION tribution of the heavy- and light-hole subband states to the

cceptor wave function. At high excitation energies, when
he contribution of the light-hole states is negligible, the val-
paper. . . .
(1) We obtained ticall 4 solved icall ues of linear polarization degree are independent of the ex-
€ obtainéd analytically and solved numerically a qi.qiq, energy and the acceptor binding energy. For lower

system of '”teQFa' equations for the groundjstat.e wave fl.mcénergies admixture of the light-hole states leads to a decrease
tions of a cubic non-Coulomb acceptor in diamond-like

conduct A | f £ th ; f the linear polarization degre€C) The anisotropy of linear
semiconductors. general form 0 € accep or'grouncgolarization degree is determined solely by valence band

state-wave function has been found and the wave functiog&

Let us summarize now the main results of the presen

f t of tor d s in GaAs h b lculat arping and contains no information about the anisotropy of
o.r;ha Set ot accep ?rzo/opan S In &ans have been calculalep acceptor distribution functions. In the framework of the
with an accuracy ot 270. . resent model its valug does not depend on excitation en-

. (2).The dependence of the acqeptorwave functions on th rgy. However, such a dependence occurs due to an addi-
d|rect|_on of the wave vect_ok with respect to crystallo— tional mechanism of spectra broadening and the effect of the
graphic axes has been derived analytically for arbitrary Val'spin-orbit split-off band
ues ofk and an ac<_:ep.tor pmdmg energy. It has be_en shown (4) Quantitative characteristics of the HPL mGaAs
that the acceptor distribution functiofi (k) are cubic sca- crystals calculated in the framework of the present model are
lars and depend with an accuracy of 2% on the value of wavenown to be in good agreement with the available experi-
vector modulus and cubic scalar functior(k) which de-  antal datzRefs. 4-6,8

termines the cubic anisotropy of the valence band dispersion
En,i(K).
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larization anisotropy of the HPL has been developed. The
principal futures of the HPL spectrum are found to be uni- We would like to thank B.P. Zacharchenya, V.I. Perel,
versal for cubic semiconductors with large spin-orbit split-D.N. Mirlin, and I.I. Reshina for helpful discussions. The
ting: (A) A maximum of the first nonphonon peak, resulting research described in this publication was made possible in
from excitation from the heavy-hole subband, correspondspart by Grant No. JF2100 from International Science Foun-
in particular, to the recombination of the electron with wavedation and Russian Government and by Grant No.
vectork parallel to[011] direction. As far as the HPL po- 950204055 from Russian Foundation of Fundamental Inves-
larization characteristics are determined by the functiortigation.

ID. N. Mirlin and I. I. Reshina, Zh. Eksp. Teor. FiZ3, 859 2191(1979 [Sov. Phys. Semicond, 1905(1972].
(1977 [Sov. Phys. JETR6, 451 (1977)]. 13, Balderesci and N. O. Lipari, Phys. Rev.8 2697(1973.
2V. D. Dymnikov, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, Fiz. *A. Balderesci and N. J. Lipari, Phys. Rev.931525(1974).
Tverd. Tela(Leningrad 20, 2165(1978 [Sov. Phys. Solid State  °Sh. M. Kogan and A. F. Polupanov, Fiz. Tekh. Poluprovat).

20, 1250(1978]. 2338(1979 [Sov. Phys. Semicond.3, 1368(1979].
SB. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, = Polupanov and R. Taskinboev, Fiz. Tekh. Poluprov@.
Usp. Fiz. Nauk.136, 459 (1982 [Sov. Phys. Usp25, 143 112(1988 [Sov. Phys. Semicon@2, 68 (1988].
(1982]. 17v. D. Dymnikov, V. I. Perel’, and A. F. Polupanov, Fiz. Tekh.
4M. A. Alekseev et al, Fiz. Tverd. Tela(Leningrad 27, 2650 Poluprovodn.16, 235 (1982 [Sov. Phys. Semicondl6, 148
(1985 [Sov. Phys. Solid Stat27, 1589(1985]. (1982].
5M. A. Alekseevet al, Phys. LettA 127, 373(1988. 188, L. Gel'mont and A. V. Rodina, Fiz. Tekh. Poluprovodb,
5R. G. Ulbrich, J. A. Kash, and J. C. Tsang, Phys. Rev. L62f. 2189(199)) [Sov. Phys. Semicon@5, 1319(1991)].
949 (1989. 191, A. Merkulov and A. V. Rodina, Fiz. Tekh. Poluprovod®s,
7J. A. Kash, Phys. Rev. B0, 3455(1989. 321 (1994 [Sov. Phys. Semicon@8, 195 (1994].
8J. A. Kash, Phys. Rev. B7, 1221(1993. 20A. V. Malyshev, I. A. Merkulov, and A. V. Rodina, Fiz. Tekh.
9M. Zachau, J. A. Kash, and W. T. Masselink, Phys. RevA83 Poluprovodn.30, 159 (1996 [Sov. Phys. Semicond30, 91
4048(199). (1996)].
10G, L. Bir and G. E. PikusSymmetry and Strain-Induced Effects 2%I. A. Merkulov and A. V. Rodina, Fiz. Tekh. Poluprovods,
in Semiconductor¢Halsted, Jerusalem, 19174 1268(1994 [Sov. Phys. Semicon@8, 720(1994].
11| D. Landau and E. M. LifshitzQuantum Mechanic€ergamon  22J. M. Luttinger, Phys. Rev102, 1030(1956.
Press, New York, 1989 23y |. Perel’ and I. N. Yassievich, Zh. Eksp. Teor. FB2, 237

2B, L. Ge'mont and M. I. Dyakonov, Fiz. Tekh. Poluprovods). (1982 [Sov. Phys. JETB5, 143(1982)].



55 THEORY OF ACCEPTOR-GROUND-STATE DESCRIPTION ... 4399

24D. T. Sviridov and Yu. F. SmirnovThe Theory of the OptiC&' vector may Correspond to the same value of the funmdn)
Spectra of Transition MetaléNauka, Moscow, 19797 In other wordsa(k) does not unambiguously define the direc-
ZPhysics of Group IV Elements and 1I-V Compupeslited by tion of the wave vector.
K.-H. Hellwege and O. Madelung, Landolt-Bstein, New Se- 27| - \erkulov, Fiz. Tekh. Poluprovodn25, 351 (1991 [Sov.
ries, Group Ill, Vol. 17, Pt. dSpringer-Verlag, Berlin, 1982 Phys. Semicond25, 214 (1991)].

26\We would like to note here that several directions of the wave



