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The energy spectrum and transitions of valence-band carriers in wurtzite materials are studied theoretically
using cubic crystals for comparison. We correct the commonly used cubic approximation and propose nota-
tions for Luttinger-like parameters in wurtzite structures that simplify the cubic approximatigp, toy,, ,
v2,= Y2, , and y3,=7v3, . We establish the relation between two recently propos&® 3matrix blocks
diagonalizing the full <6 Hamiltonian and provide geometric interpretation in three-dimensional Bloch
space. The formalism is used then to derive transition matrix elements for three types of pro@gsses:
macrofield hole scattering, described by the Bloch overlap faigroptical transitions between conduction
and valence bands; andi) intervalence band optical transitions. Finally, we discuss the set of material
parameters for group-IIl nitrides and present the numerical re$6ii4.63-182807)08207-4

I. INTRODUCTION cated and originates from the sixfold degenerBie state
(see Fig. L In zinc-blende structures, the spin-orbit interac-
Interest in the material properties and applications oftion splits thel";5 level atk=0, forming the fourfold degen-
wide-band-gap 1lI-V semiconductors has grown rapidly ineratel’s (heavy and light holgsand doubly degenerate;
the past several years. Direct band group-Iil nitride semicontspin split-off holeg levels. Joint action of the hexagonal
ductors, such as GaN, AIN, InN, and their alloys, posses§omponent of crystal field and the spin-orbit interaction in
superior characteristics that should produce reliable, highwurtzite crystals leads to the forma’Fion of three distinct lev-
performance devices? Progress achieved in high-quality €!s: I's, upperI';, and lowerT';, which we denote as HH
GaN growth on buffered sapphire substritesd p-type ~ (heavy holes LH (light holes, and SH(split-off holes, re-
dopin@ has led to high-quality p-n homo- and spectively. For normal valence-band order, as shown_ on Fig.
heterojunction$ that are the basis for numerous optoelec-i‘ thgse states cqrrespond to me_B-, andC-type exciton
tronic device applications(green to UV light-emitting N€S in photoluminescence experiments.

diodes® lasers’ and solar-blind photodetectdfs as well as The description of spectra and transitions in the vicinity
: i X of the I point involving three(doubly degenerajevalence
high-power electronic devicés.

. . . _bands is conveniently achieved in an envelope-function
Despite technology advances and commercial app"caforma|ism19v20|:orcubicsymmetry the spectrum and eigen-
tions of group-IIl nitrides, many of the fundamental material oo of .holes in a strained cr,ystal are determined by a
properties are poorly understood and further experiment X6 matrix Luttinger-Kohn-Bir-Piku®222 (LKBP)
and theoretical studies are requw_ed. Major_ experimental efHamiItonian, and irhexagonalcrystals with theCg, point
forts are devoted to the analysis of optical propertfes, symmetry group, the Rashba-Sheka-PIRG3%* (RSP
defects.® and transport phenometfan GaN-based materi- g6 matrix Hamiltonian should be utilized. The envelope-
als. On the other hand, a number of empirical adinitio
methods have been applied for calculating the full Brillouin ZINCBLENDE WURTZITE
zone energy spectra, optical and structural properties of
group-llI nitrides and their alloys'® as well as mobility” T I HH.A)
and light emissiotf in these materials. Although the wide- T 6—<i so
band-gap nitride materials are grown in both zinc-blende — L;, (LH.B)

(cubig and wurtzite (hexagondl polytypes, the wurtzite s0 cr
structure is predominant for the device applications.

As for other direct band-gap group-lll-V compounds, L —
many important optical and transport properties of GaN- F‘_\_ L, (SH,0)
based materials are determined by carriers kea® in the
small vicinity of the " point. Conduction-band states for  FG. 1. valence-band structure in zinc-blende and wurtzite crys-
small wave vectok are doubly degenerate with respect t0tas at thel” point. In cubic materials levelEg andT'; are separated
spin and can be characterized by one or iffay cubic or  due to the spin-orbit interaction. In wurtzite structures the levels
hexagonal symmetrigenergy-independent effective masses.I'y, I';, (upped, andI';, (lowen are formed due to the action of the
The valence-band spectrum near theoint is more compli-  spin-orbit interaction and the hexagonal component of crystal field.
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function method uses the most general form of the Hamil- Il. ZINC-BLENDE AND WURTZITE VALENCE-BAND
tonian allowed by the crystal symmetry, which depends on a HAMILTONIANS
number of empirical material constants. The LKBP cubic
Harnﬁltonian is specified.by 7 empirical constants: Spin'Orbit\/icinity of the I" point in cubic and hexagonal materials can
splitting energyA o, Luttinger parameters, , s, and defor-  po conveniently achieved within an invariant met#cd for
mation potential constant, , b, andd. However, for the  construction of the hole Hamiltoniad. In this method the
strained wurtzite crystal, as many as 16 independent congamijltonian is written in terms of combinations in different
stants are required for use of the RSP Hamiltorifasplit-  powers of hole wave-vector components and external
ting energiesA;,3, band-curvature parameter&;—As,  perturbation¥?® (strain, magnetic, and electric fie)dsl-
strain-related constani®, —Dg, and a factoA; for the linear  lowed by the crystal symmetry. A broad class of physical
in wave-vector term. problems of interest can be described by a Hamiltonian con-

The cubic Hamiltonian has been applied extensively to aaining terms up to the second order in wave ve&tand
large number of problems involving holes in group-1V and linear in strain tensog:
-IlI-V materials; yet, until recently, the RSP Hamiltonian has
been used mainly f% describing excitons in group-II-VI hex- H(k,e)=Ho+HitH,+---. @
agonal structu_re%s. very recently, the RSP Hamllton!an In both cubic and hexagonal materials the top six valence
has been applied to analyze the valence-band spectra in hex- - 3 ;
agonal GaN and related materidls® Using data from ex- ands originate fr.orp orbitals(corresponding to the vector

: . o . representation’;5; see Fig. 1 split by the spin-orbit inter-
periments and from first-principles calculations, the hole en

ergy spectrum in bulk GaN and other wurtzite materials Wa%ction and/or hexagonal crystal field. Therefore, it is conve-
. . . : : ; ient to express the corresponding 6 Hamiltonian in Eqg.
obtained including the effects of straiff: Different di- P P ¥ g

o o (1) as a direct product of 83 matrices [,,L,,L,)=L of
agonalization forms for the full 86 Hamiltonian have been angular momentum 1 and the x2 Pauli matrice®

proposed®>*and the results applied to calculate dispersion
of holes in unstrained and strainet® Al ,Ga,_,N/GaN
quantum wells. It was pointed otit*® that the quasicubic
approximation for wurtzite structur€s?®*’is an important o o
tool for the estimation of experimentally unavailable param-  The invariant form of the LKBP &6 Hamiltonian for

The envelope-function description of valence bands in the

(ox,0y,0,)= 0 of spin 1/2.

A. Cubic structures

oters. cubic crystals is given by Ed1) with!®
In this paper we discuss properties of the RSP Hamil- A
tonian, the quasicubic approximation, and we calculate the ngb:_so(L o),
matrix elements for hole scattering and optical transitions in 3
wurtzite materials, keeping close analogy to the cubic case. cub ) )
In Sec. Il we revisit the quasicubic approximation for wurtz- Hi = = (y1+4y2)k“+6y,(L -K)“+6(y3—72)

ite materials and correct a mistaRen its frequently used

form.X® The correction only changes signs of Bir and Pikus’s

parameterd\s; andAg; thus it does not affect any results for

hole wave vectok either parallel or perpendicular to tlwe

axis. In view of the importance of analogy between cubic - \/§d(2[LXLy]8Xy+ c.p).

and wurtzite materials, we propose to use, instead of con-

stants A;—Ag, the set Luttinger-like parameters with the HereA g, is the spin-orbit splitting energy,, y,, andy; are

built-in quasicubic relation: y;,= 1, , 7¥2,=7v,, , and Luttinger parameters(for simplicity, we omitted factor

ys,=va, . Section Il discusses the properties of two #%/2mg), a,, b, andd are Bir-Pikus valence-band deforma-

forms>2~3*proposed for X 3 blocks of the RSP Hamiltonian tion potential constants, and 2L;]=L;L;+L;L;. Terms

and shows that they are related by a simple rotation arounfiot containing matricek or o are assumed to be multiplied

the heavy-hole axis in the three-dimensional Bloch functiorby 3% 3 or 2X2 unity matrices. The relations between pa-

space. rameters y;,v»,v3 (deformation potentialsa,,b,d) and
Section IV deals with the derivation of transition matrix other common sets are given in Appendix A.

elements for hole scattering and optical processes using the

block-diagonalized forms of the RSP Hamiltonian for B. Hexagonal structures

stralned wurtzite _crystals. More specifically, Sec. IV A con- In wurtzite materials, the 86 matrix form of the RSP

tains the calculation of Bloch overlap factor for holes Scat'HamiItonian for the top valence bands is given by ED

tered by a macrofield. In Sec. IV B the matrix elements Ofandlg*z“ )

valence-band to conduction-band transitions are calculated in

the dipole approximation for an arbitrary polarization of wur_ 2

light. Section IV C describes intervalence-band optical tran- Ho =A1li+ Aok 00t \/EA:*’(L“TJLL’U*)’

sitions in strained bulk wurtzite materials. As the limitin wur 2 2 2 201 2

cases, the corresponding expressions for the cubic crygstal H™=Askz + Ak + (Agkz + Agki)L7

(with _warping negle(_:te)d are reproduced. .Finally, Sec. \% +A5(Lik2,+ L%ki)+A5kz(2[LzL+]k,

contains our conclusions and the Appendixes detail parts of

the calculations. +2[L,L_ Tk )+iAs(L k_—L_k;),

X(2[LyLylkeky+c.p), 2

HEY = (@, +2b) (£ 4ut £yy+ £, — (3bL2e+ C.p)
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HY'=D,e,,+Dye, +(Dse,+ D48L)L§ similar arrangements of neighboring atoms in cubic and hex-
agonal materials: the first coordination sphere in the wurtzite
+Dg(L2e_+L%e, )+ Dg(2[L,L e, lattice can be obtained from the cubic one by applying a
relatively small deformation in thgl11] direction.
+2[LoL Jesy). 3 !

A comparison of corresponding terms in E) for
Here thez axis is chosen along tH@001] direction ( axis; ~ wurtzite structures and the cubic Hamiltonian in Eg),

k2 =k2+ ki, ke=keEiky, & =exntey, €x7=Ex transformed to the wurtzitelike coordinate frame, leads to
*iey,, andes=g,—e,y*2iey,. IN EQ. (3) we use the s_ev%ril) conditions, constituting thguasicubic approxima-
notation of Piku& %’ for the ladder operatof$ L. and tion”"™ (see Appendix B First, the longitudinal and trans-

- verse spin-orbit splitting parameters are equal and corre-
spond to the splitting energy for cubic crystals,

Ar,=A3—A 3. (8)
The RSP Hamiltonian in Eq$l) and(3) describes the top Second

| bands i ined ; als with 16 . in the quasicubic approximation there exist only
valence bands in strained wurtzite materials wit eMPirithree independent parameters in the, set, corresponding

cal constantsA;—As, A;—A;, andD;—Ds. HereA,=A o is well-known Luttinger parameterg; for cubic structures
a splitting energy due to the hexagonal component of cryst . Eq. (B6) for parametera\]:

field;>” A@=3A, andA})=3A, are spin-orbit splitting en-
ergies forz and perpendicular directions. Y1ir=Y1— Y1, Yor=Y2.— Y2, Y3:=VYaL—7VY3- (9
Parameterd\,—Ag determine(together with splitting en-
ergiesA;) direction-dependent effective masses in unstraine
crystals. To elucidate the analogy existing between valenc

O+,

L.=(LFil)N2, o.=(ox*ioy)/2.

(§imilar relations hold between deformation potentials,
gnd constantg a,, b, andd of cubic materials:

bands in cubic.and hex:_igon_al crystals apd to facilitate the 81,= 01, ——a,, 8sy= 35y ——bl2,
use of the cubic approximation for wurtzite structures, we
introduce the set of Luttinger-like parameters Say= 83, — —d/2/3. (10)
—A1=v1,;748y3,, —Ar=7y1 —2v3, Az=6v3,, Finally, the cubic valence-band Hamiltonian in Ef) lacks
(4)  terms linear in the wave vector. Therefore, in the quasicubic
—A4=3y3, As=v2 +2v3. Ac=V2(2y2+73,).  approximation,
We omitted the factori?/2m, in Eg. (4) to simplify the A,ocke—0 . (12)
relation between dimensionless constaptand parameters
A. In a similar fashion, we define constanis related to It should be noted that, since the wurtzite symmetry point
deformation potential®: group Cg, is not a subgroup of the zinc-blende group,
there exist terms in the cubic Hamiltonigsee Eq.(B5) in
—Dy=081,+483,, —Dy=81,-283, D3=68, Appendix B] that do not have counterparts in the wurtzite
Hamiltonian in Eq«(3). Therefore the quasicubic approxima-
—D,=383,, Dg=6,,+283, Dg=12(28,,+63,). tion for Luttinger-like parameters and deformation poten-
We note the following correspondence between terms ifidl constantss, given in Eqs.(9) anz%(z%O), should be con-
H, andH, : sidered as empirical relations orf§/?®:
¢ The wurtzite invariant Hamiltonian in Eq43) can be re-
#2 duced to the cubic invariant in E42) only if the warping
Z_mO'}/iZ,Lkak,B < Oiz18ap- ©)  termsin Eq.(B5) are absent, i.e., if,~ y3 andb~d/+/3. In

_ _ _ the correspondingpherical cubic approximatioh two rela-
Finally, the factor for the term linear ik, of Eq.(3) can be tions are added to Eq$9) and (10) of the quasicubic ap-
presented as proximation:

A;=1ks/mg, (7) Y2z= Y21 = Y3z= Y3L V2, 99

where ks characterizes the radius of the circular loop of s _s _ _ ,
valence-band maxim@reached ak,=0 and finitek, . 022= 521 = 63,= 03, — ~bI2. (10
Thus, in the spherical cubic approximation a physically rea-
C. Cubic approximations sonable description of valence bands in strained wurtzite
) ) .. crystals is achieved with just six parameters: crystal field and
In contrast to zinc-blende materials where the desc”pt'o%pin-orbit splitting energiesy ., andA ,, Luttinger-like pa-

of top valence bands requires fotseven in the case of | ametersy, and y,, as well as deformation potential con-
strain empirical parameters, wurtzite structures are degianisa andb,

scribed by ten(sixteen in the presence of straimaterial
constants. Such a large number of material constants is un-
likely to be determined reliably from experiment alone; thus
certain empirical relations such as quasictibté262%37gr The cubic Hamiltonian in Eq(2) lacks terms correspond-
spherical cubit® approximations are required. The physicaling to crystal splitting, i.e.A , in Eq. (3). Therefore, strictly
background for the cubic approximation stems from thespeaking, in the cubic approximation the crystal field split-

D. Crystal field as additional strain
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ting should be set to zerdy ,— 0. However, this approxi- diagonalized wurtzite valence-band Hamiltonians have been

mation is qualitatively wrong for the description of wurtzite Proposed”—** For biaxial strain specified by Eq13), the

structures(e.g., it merges leveld'y and I';,); thus finite  full 6 X6 RSP Hamiltonian can be transformed, by an appro-

A, is preserved to account for the deviation from cubicPriate choice of basis functions, to the form

symmetry. H.,
The effect of nonzero crystal splitting nevertheless can be H=(A;+A)I+ ,

introduced rigorously into the cubic approximation by means 0 H-

of an “additional” deformation, described by a strain tensor The diagonal term4;+ A,)| conveniently shifts to zero the

£294 Inspecting term#d " andH""" of Eq. (3), proportional  eigenenergies ofl . , corresponding to heavy holes ka0

to the matrix operatot?, we find that the crystal splitting (i.e., levell'y).

parameter can be accounted for by the combination In the following we demonstrate the correspondence be-

tween different representatiolis*proposed for X 3 blocks

H. and provide an explicit form of rotation for the Bloch

function basis, which transforms one representation to an-

other. Though the two forms dfi. are equivalent to each

other, one set of basis functicfisliagonalizes the spin-orbit

interaction(and should be used for comparison with cubic

(16)

Ay—D3s29% D 2% 3b(s2992— 299, (12

Here thez axis corresponds to thel11] direction in cubic
crystals. On the right-hand side of E¢l2) we used the
spherical cubic approximation for deformation potentials

given by Eqs.(10’) and(5).

Since the additional strain must not contribute to other
should describe hiaxial

terms in Eq.(3), the tensog =¢34

structures whereA ,—0), while another basis function
sef?3 diagonalizes the hexagonal crystal figkhd is con-
venient for an analysis of the nonrelativistic lipmit

deformation with

Exx=Eyy=¢€12, exy=ey,=84,=0. (13

In the following we use the notatiofJ,M) for Bloch

functions that behave, under symmetry operations of the
point group, in the same way as eigenfunctions of an angular

The remaining part of the additional strain contribution inmomentumJ and its projectiorM on thez axis. Since the

Eq (3)1 (Dlsadd

zzZ

+Dzafd°)l, leads to an overall shift of all point group is only a subset of the full spherical symmetry

valence bands and can be eliminated by the choice of energyoup, the function§],M) do not constitute a representation

reference.

of the latter. For simplicity, the spin-1/2 eigenfunctions are

It is of interest to determine the condition under which thedenoted by|7) and ||), while the orbital part of the
“internal” strain in Eqg. (12) can be represented as that in a conduction-band Bloch function is written §S).

layer pseudomorphically grown along thexis. Substituting
the relation between strain components in wurtzite crystals
(whereCj; is a stiffness tenspf!

£,,= —(C13/Cgy)e

(14
into EqQ. (12), we find

A. Cubiclike Hamiltonian

It is well known'® that the basis function sdg,+3),

3,=3), and
term in Eq.(2). Thus it is convenient for the representation
of the 6X 6 Hamiltonian incubic crystals. Therefore, to uti-

1
s

3) diagonalizes the spin-orbit interaction

lize the analogy existing between zinc-blende and cubic

add

8XX

:S;a’()j’ A cr C33

_ggtziz] ~3p {2(:13} / (Cg3+2Cy3). (19
Thus the correspondence between the hexagonal crystal field
and additional strain established in E@2) shows that
wurtzite crystals are already “prestrained” in comparison to
cubic ones and the external strain leads mainly to quantita-
tive changes in the spectrum.

Ill. BLOCK-DIAGONAL HAMILTONIAN FORMS

Valence-band Hamiltonians for cubic and hexagonal
structures are presented in E¢B—(3) in invariant, operator

structures,
transformatiof® in a manner similar to the cubic ca%e*®

we

define the block-diagonalizing

b=rlem 51272 27 2 ’
1] 31 ' 3 1\ .
lup, +),= 5 *i §,§>e"”/2—‘§, §>€"¢/2, (17)
1] |11\ 1 1\
+\ — il - = —i@l2 - _ - ipl2
luz, *), —_2__|‘2,2>e 5 2>e .

Here six basis statdsi; o) are numerated by symbols,,

form. Using matrix representations of operators of angulau,, u,, and the “spin” variables= =, assigning the state to

momenta 1 and 1/2, and o, in their corresponding basé$,
one can obtain &6 matrix HamiltoniandH for describing
three(doubly degenerate &t=0) top valence band¥:°-3133

As shown by Broido and Shaff,the 4x4 Luttinger-

the Bloch subspace of*83 HamiltoniansH ;. andH _ . The

variableo does not correspond to the actual particle spin; in
fact, the definition ofoc=o, depends on the choice of basis
in Eq. (17). For a finite perpendicular component of wave

Kohn Hamiltonian can be diagonalized, by means of a univector k, , the block-diagonalizing transformation in Eq.
tary transformation, to two 22 nonzero blocks. This result (17) depends on the angle= ¢, =arctark, /K.

By applying the unitary transformation in E¢L7), the
Hamiltonian describing coupled heavy-, light-, and spin6Xx6 wurtzite Hamiltonian is presented in the block-diagonal

has been subsequently generalized for>a66LKBP cubic

split-off hole band$?

form of Eq.(16). Denoting the terms linear ik, by H’, we

Very recently, several different forms for the block- find the 3X3 upper and lower Hamiltonian blocks:
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[ P+Q RTiS J2R+iS/4/2 lug, =)
RxiS P-Q \/§(Q+A’)+i\ﬁ8 luy, *)

H,=*H'— — V2 2= (18)

Here
A o+2A7 2 2
pP= T + 'ylzkz-l— YlLkL + 81,8, 0118,
(19
A ot 277 2 2
Q=- T_zyszkz+ V3 Kl =203,8,7t 83,81,
R=V37. K%, S=2\3ykpk,,

where y, =(y2. +2v3,)/3=As/3 and y,=(2y2,+ v3,)/3
=A6/3\/§; the isotropic spin-splitting energy\ ;.=A,
+2A; and its trigonal componeft A’=A,—A;. As for
terms linear ink, , they are given by the matrix

0 -6 V3
H=z| —V6 —B 1],
V3 -1 8

where

T=%2kk, /my. (19)

We note that the rotation of the basis in E4j7) is not the
only possible unitary transformation leading to block diago-
nalization of the valence-band Hamiltonian. However, the

basis|u;,o) in Eq. (17) leads to the form Eq(18), maxi-
mally close to the standard result for cubic structdféS.In

the absence of the hexagonal crystal field and strain, the
matrix in Eq.(18) becomes diagonal &t= 0 and basis states
|uy,0), |us,a), and|usz,o) coincide with the Bloch func-

tions for heavy, light, and split-off holes.

V2RFiS/2  2(Q+A")Fi \[gs

P+Ag lus, =).

B. Non-relativistic-like Hamiltonian

Consider the opposite case of fully diagonalizéat
k, =0) crystal-field contribution and nondiagonalized spin-
orbit interaction. Taking the product of eigenfunctions of or-
bital momentum 1 and spin 1/2 as a basis in the transforma-
tion similar to Eq. (17) and using the Clebsch-Gordan
relations in Appendix C for the basis change, we find

lup, *)=lvy,*),

2
|U2:i>:%|vz,i>_ \[§|03ai>’

(20)
+ —\/E +\+ 1 +
lug, =)= §|v2,_> ﬁ|03=—>7

where the new basis sht; o) is given by

1 —3ipl2—; 3i /2
|v11i>¢=ﬁ[|1.1>|T>e FEFIL-1)]] e,

1 , :
Ivz,t>¢=ﬁ[ti|1,1>|i>e*'¢’2—|1,—1>|T>e'*”’2], (2D

1
|U3 = >¢:E
Applying the unitary transformation specified by E80)

[Fi[1.01)e "*2+[1,0]1)e'*"].

to the Hamiltonian in Eq.18), we find the 3x3 block
Hamiltonians in the basis of functions; ,o):

. =
P+Q V3R ITii\[ES lv1, %)
3
Ho=— J3R P+Q+2A, \/EASITti\[ES vy, %) (22
.3 . /3
:T:u\és ﬁAgiTm\és P—2Q-A,+2A3| |vg,*).
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Here the term®, Q, R, S, andT are defined in Eqg19) and ",
(19'). The form (22) generalizes the result of Chuang and (@)
Chang* by including termsT linear in wave vectok, . u
At k, =0, the only nondiagonal part of Hamiltonid22) |
is due to the spin-orbit splitting terv;. Thus, in the non- .
relativistic approximation, the representation in E@4) and I
(22) provides the most convenient description of valence :
bands in wurtzite structures since the Bloch functions of !
heavy, light, and crystal-field split-off holes coincide with 6 :
the basis vector1,0), |v,,0), and|vs,o) atk, =0. |
For the general case of a finite spin-orbit interaction and 10,
hexagonal crystal field, there is no clear advantage of one of
the forms in Eqs(18) and(22) over the other. The cubiclike
Hamiltonian in Eq.(18) is more convenient for using an
analogy between cubic and wurtzite structures; however, the
use of the non-relativistic-like Hamiltonian in E@®2) some- .
times leads to simpler intermediate expressions. As will be
demonstrated in Sec. Il C, the two basis sets in Ef3) Vs
and (21) are related to each other by a simple rotation in
Bloch function space; thus they can be used interchangeably. Ush

U,y

(b)

C. Spectrum and wave functions

The total carrier wave function can be presented as a lin- U i Uy
ear combination of plane waves with defined momentum
and “spin” o. For j-type holeswherej denotes a HH, LH,
or SH) the total wave functionV;,, is equal to the product
of the envelope ex{-r) and a periodic Bloch function
Uju’k )

FIG. 2. Three-dimensional Bloch functions spa@.Spherical
coordinatesd and ¢ (in general, complexof the Bloch vectom.
(b) Two coordinate frames andv at an anglep,,, from each other.

_ aiker At k, =0, Bloch vectors of heavy holgdight and split-off hole
PN =€7Ujoilr)- 23 are rleal and directed alor(gerper?/diculirg',[bthe axispu1=vl. ’

In the envelope function method, the hole Bloch functions
are presented, even at finite wave vedtpas a linear com- Here the set of basis vectors is given By o) "
bination of only sixI"-point Bloch functions. The latter can =[|uy,0),,|Uz,0),,|uz,0),], where the subscript
be taken as a direct product of three eigenfunctions of orbitap = ¢, =arctan k, /k,) shows explicitly that the basis states
angular momentunh =1 and two spinors. Thus the Bloch |u;,o) depend on the direction of wave vector
functions used in the envelope-function meth@dij ok), are The Bloch vectou ., of the j-type hole with spinor- and
the projections of the exact Bloch functidfy, on the sub- momentunk is specified by its three coordinates in the basis
space of functions with special symmetry properties correju;,o). For the case where terms linear kn can be ne-
sponding to thd” point. For finitek, the exact Bloch func- glected, the Bloch vectors of the opposite spins are related as
tions deviate from theil’-subspace component by a term u;,, =uj,_=u;y, i.e., the spin indexr can be dropped.

proportional to a small wave vectér Normalizing vectoruj, to unity, one can write
Ujo(r)=(r|jok)+O(k). (24)
UJ(&) Cowjk
The contribution of this term becomes important, even in the ) )
vicinity of the I' point, if the matrix elements taken with Ujk=| Ujic | =| COSpjkSINbjyc | . (26)
zeroth-order term§j ok) vanish due to symmetrical proper- Ufﬁ) Sing;Singjy.

ties (see, e.g., the case of intervalence-band optical transi-

tions in Sec. IV G. The right-hand side of Eq26) defines complex spherical

Diagonalization of the valence-band Hamiltonian to two di dé of uni in the th di ional
3x 3 blocks(for holes with opposite “spin”o—=+) simpli- coordinatesp and 6 of unit vectoru in the three-dimensiona
. . . . . Bloch space spanned on the basis vedtorso). Use of two
fies the calculations in many cases of interest. This procedure . .

. " . . complex anglesp and @ instead of three complex coordi-
also provides means for interpreting the Bloch functions - o S )
) . . ) : ; nates eliminates the possibility of multiplyingby an arbi-
| ok) as vectors in three-dimensional Bloch sp Fig. trary complex constant and allows characterizing the com-
2), spanned on basis functions in Eq$7) and (21). Using Y P 9

_ X ; . plex (rea) Bloch vector by only four(two) real numbers
;tsateQU, o) as a basis, the Bloch statgsk) can be written instead of sixthred. The Bloch vectors are real for the case

of wave vectork directed along the axis (i.e., k, =0).

In a similar fashion, the coordinate frame of basis vectors
lvi,o) is introduced. As follows from E¢20) and Fig. 2b),
E|uUk>Tujk0_. (250 thev frame coincides with the frame after rotation of the

|J O'k> = Uﬁm u; !O-><p+ Uj(m U2,0'><P+ Uﬁ“usﬂ%p
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angle ¢, =arctan/2~55° around the common axis 1. Co-
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K oricr| Vied P i) [P

ordinates of Bloch vectors in both representations are simply

related:

oW = g(v), (27)

$= "+ by,

For each value of wave vectdr and spin indexo, the
3% 3 matrix Hamiltonians in Eq(18) or (22) define three
mutually orthogonal vectorsi yy, Uy, and ugy, corre-
sponding to heavy, light, and split-off holes. For the arbitrary
direction ofk, the calculation of the valence-band spectrum
and Bloch vectors requires solution of a cubic equation.

In the particular case of a wave vector parallel to the
axis,k, =0, the heavy-
states and the valence-band energies can be written as

E tr(Kz,0) = = D— (y1,— 273,)KZ,

E thsi(kp0=—D' = (y1,+ y3)K: (28)
+\(3y5 K +D")2+ 245,
Where D:_(A1+A2)+(5lZ_263Z)8ZZ+(51L+53L)8L1
=(A—=A1)/24 (61,F 63) 8, (01 — 93, /2)e,,  and
D'=(A1—A5)I12+3683,6,,— (363, /2)e, . As shown in Fig.

2(b), the corresponding eigenvectors are real and given by

01n=0, dsp=Putm2. (29

The angle¢ of light holes qs(f,ﬂ in the basis of functions
lvi,o) is given by

O Lh,sH= /2,

23/2A3

sin2¢'%,=— =
L

. 30
Eon (30

From Egs.(29) and(30) one can analyze the form of the
Bloch functions ak=0 in two opposite limits of small and
large ratio A/Ag. In the cubic case, e,
Ei—Esi=3A3=A, one hasp(),= {1+ ¢,,=0, and
the basis vectorgy; ,a) in Eq. (17) represent the pure Bloch
functions of heavy, light, and spin-orbit split-off holes. In the
nonrelativisticcase, i.e.A;=0, we obtaing{’,=0, and the
basis vectorgv; o) of Eqg. (21) coincide with Bloch func-
tions of heavy, light, and crystal-field split-off holes. For the
general case of finitd i, andA ., Fig. 2b) shows that the
I'-point Bloch function of heavy holes is still given by the
pure function|u1,a> |v1,0') while that of light and split-
off holes are given by a mix of the limiting cubic and non-
relativistic cases.

IV. TRANSITION MATRIX ELEMENTS
A. Hole scattering: Bloch overlap factor

Many important carrier scattering mechanisms involving
interaction with a macrofiefd (most notably, Coulomb im-
purity scattering and polar interaction with optical phonons

are characterized by an interaction Hamiltorligy diagonal

=™ Vinle* DPG(jok—j a'k’), (31)
where the Bloch overlap factbris defined as
G(jok—]j'a'k")=[(j' o'k |jak)*. (32)

Since the matrix element in E¢32) does not vanish identi-
cally due to symmetry properties, we neglect small mixture
of states with different symmetry in EqR4).

The Bloch factor for conduction electrons is given by
G(Cok—>CO' k')=46,, and the transition matrix element

n Eq. (31 is determined solely by its envelope-function
'bart In general for holes, the Bloch fact®2) depends on
both the initial and the final particle wave vectors and does
not vanish for transitions between different valence b4nds.
Thus the Bloch factotas well as the complicated dispersion
law) is mainly responsible for the qualitative difference in
electron and hole scattering processes.

For calculation of the Bloch factor in E¢32) we use the
vector representation of functiohjsok) in Eqg. (25) together
with the definitions of basdsi; o), or |v;,07),, in Eqs.(17)
and (21). The scalar product of basis functions depends on
the difference in polar angleg and ¢’ of initial and final
wave vectors, i.e.,

0J|unva->tp:qo’<vn’1a-’|vn10->tp
:5n,n'anr’(‘P_(P,)-

Here the rotational functioR(¢) is defined as

o{Unr,

Rnoa’(¢)20<un10—’|un10—>¢ (33)

and is found from Egq.(17) or (21):
=c0s(3p/2), Ri;i_=Rqi_,=—isin(3p/2), Ryy =Ro__
:R3++:R3__:COS(QD/2), and R2+_:R2_+:R3+_
=TR4_, =isin(¢/2). Substituting Eqs(25) and(33) into Eq.
(32), we find the Bloch factor for “spin”-conserving transi-
tions

Ri++=Ri--

()
Jka’ J’k’

L%

3¢
G(jok—|j'ok')= cos—+(quU iK'

2
(3) (3)*

%
+Ujiu l,k,(r)cos— (39

and for scattering with a “spin” flip, denoting by ar
“spin” opposite o,

_ 3¢
. . 1)% 2
G(jok—j ok’ =|ufi,uisins- — (Ui uifrs-
2
3)* ’
PR sing | | (34)
where o= ¢, — ¢y is the angle between projections of the

initial and final wave vectors on the lattice base plane.

in the Bloch function space. In this case the transition matrix Finally, the Bloch factor, averaged on nonpolarized initial
element is factored into two parts: the envelope-function parand final states, is given by a noncoherent sum of E3f$.

and an overlap integral of carrier Bloch functidrisy. (23)]:

and(34'). Neglecting the linear ik, terms, we obtain
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G(jk—j'k") wheresz —iaV is the momentum operator. The interaction
due to the second term in E@7) is forbidden in many cases
— _Z G(jok—j'a'k") becf':u_Jse of selectipn r'ules; cherwise it can be neglected for
25 sufficiently small field intensity.
5 The time-independent matrix element for one photon-

(1),(L)x (3),(3)%

3¢ ® . o " .
= ufPuly Cos—+(qu ul ,k, +qu o )cos— assisted transition between the initial st#tg,, and the final

stateW¥/ . is written, using Eqs(23) and(37), as

(1),(1)

3¢ .
2 3
+| i uj,k,sm— (uifu <,l)<,+u(3) (,f(,)sm— (W ok [ Vind ¥k

eA N
(35 =B ke g fd3rU o s [€PHAK-€]U o

To illustrate the use of Eq(35) for the spin-averaged (39)
Bloch factorG, let us consider the limiting case of heavy and

light holes in an unstrainedubic crystal, neglecting effects Below we use thalipole approximationneglecting a small

of warping. Applying the cubic approximation in Eq8)  photon wave vectori ~0. In this case the contribution of

and(9') and settingA =0, we find, from the Hamiltonian the second term in square brackets in BBf) vanishes for

in Eq. (2), the normalized eigenvectors of heavy and lighttransitions between different bafffislue to orthogonality of

holes: corresponding Bloch functiont). In this case the matrix
element in Eq(38) is proportional to

1'19 icosy
=SInYy—1CO
2 “
Mioiror (0= [ FHUT,00h U (39)
HH = —Esinﬁ ’
2

Below we calculate the matrix element in EQ9) for
0 dipole optical transitions between conduction and valence
bands. The initial electron state belongs to a valence band

[ ] o i, wherej denotes a HH, LH, or SH, and is characterized by
7(3'”2'9_'5'”20) a “spin” o, . The final state, corresponding to the conduc-
1 L tion bandc and spino., is described by an orbital Bloch
ULH, k= , function(S| and spinofo.|=(1|, (||, corresponding to two
N = (1+3cogd c ASdL
1+3cosd 2( ) directions of electron spin 1/2. With the help of E84) one
0 can rewrite Eq(39) as
whered = ¥, is the angle between the wave vedtoand the Mio —co (K)=(S|(0¢|e- pljo,k). (40)

C axis.

Substitutingu; into Eq. (35), we recover the standard Here we neglect the small contributions to the Bloch func-
expressions for Bloch factors in cubic materitiisvhich de-  tjons in Eq.(24) with symmetry properties different from the

pend exclusively on the angle between vectork andk’: T point.
1 Using a vector representation of the Bloch function in Eq.
G(HH— HH)=G(LH—LH)= 7 (1+3coda), (29), we find
3
3 —co, SO'e-AU-,O'U
G(HH—LH) = Zsira. (36) Mio,—c 2 K(Si(ocle-pluroy)
= (1) .olo:
B. Optical transitions: Valence to conduction bands _i; viK(Sl(ocle-plvi, o). (41)

Consider the carrier interaction with an electromagnetlcF imolici d h inindex. f di f
wave specified by vector potentidl. For the plane wave or simplicity we drop the spin index, from coordinates o

with mometums and frequencyw the complex vector po- the Bloch vectoujy, .

tential has the formA(r,t) =eAqjexplx-r —iot), whereeis Sinqe the_intgrgction Hamiltoniar] in E(B7) is diagonal .
a unit vector in the direction of vector potent'ﬁ'and elec- In carrier spin, it is convenient to first calculate the matrix
tric field E= (i w/C)A. elements of momentum operafoin the valence-band basis

Applying the Coulomb gauge for the vector potential |v;,o). Because of symmetry properties of the Bloch func-
V.A=0, the perturbatioifto carrier Hamiltoniandue to in-  tions, the only nonzero matrix elements between the basis
teraction with the electromagnetic wave can be written as functions are given bycf. Appendix Q

V= 2 SIBJLO=P,. (SIp.|1—1)=—(Sp_|L 1= 2P,
V'mmc(Ap AZ) @7 (SIPLO < )=~ =2
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TABLE |. Matrix elements(S|(o¢|e-p|v; o), of optical tran- In the limit of unstrained wurtzite crystals &t=0, we
sitions between conduction-band states and valence-band basibtain sif¢=E)/(EL)—EQ), and Eq.(43) is reduced to
states in Eq(21). the well-known expression for transitions from the valence-

band edge¥ Furthermore, for cubic crystals
ep o1, %) lv2, %) v, %) |P,|=|P,|—|P| and sif¢=2/3, so that Eq(43) reproduces
i the results for optical transitions in cubic materidis.
(ST ~3P. e¥sing  —3P e ¢sing IEPZCO&‘} The absolute values of constahi, , |? can be estimated

from experimentally measured conduction-band effective

i . i ©) e _ .
(S/(1] F5P.eivsing Ty evsing Pcosd massesn; " using the result ok-p theory:

1
ﬁ

Mo 2 < Kelpaali)P
0 + 2 z,X

— =14 — ), ——, 45
m.5) moi7e EY —E[ 49

where p. =p,*ip,; two momentum matrix element con-

stants can be defined &=(S|p,|Z) andP, =(S|p,|X). Neglecting the contribution ten(® from all bandsj except
Due to cylindrical symmetry, the matrix eleme#0) de-  {he three top valence bandsis is a less accurate approxi-
pends only on the difference=¢e— ¢, between base- mation for GaN than for GaAsand instead using the gap

plane-projected angles of vectogE and k. To simplify  yajye E, for all energy differences in Eq45), we find the
calculations, we choosg,=0 and denote the spherical gstimation for constant®

angles of wvector e by ¢ and 9, ie, ahe

e= (sindcosp, sin Ising, cos). Applying Eq. (42) and the 2P, |2 Mo

identity = :Eg(m(c)—l). (46)
0 7,1

~ 1 A Coa A
e p= zsind(e'’p_+e '¢p, )+ p,cosd,
P 2 (ep P+)* P C. Inter-valence-band optical transitions
we obtain the matrix elements of the operagop between In this subsection we calculate the one-photon-assisted
conduction-band states and the non-relativistic-like basis séf@trix element for transitions within valence bangly’,
|vi,a,) listed in Table I. Using Eq(20) to transform the set Which denote the HH, LH, and SH, using the dipole approxi-
lvi,0,) to the cubiclike Bloch functions basisi;,c,), we mation in Eq.(40). In this case it is not possible to substitute

also obtain the matrix elements|( e p|u;o, k) shown in the exact Bloch functions in Eq24), Ujq, by their com-
Table Il. Finally, one can defiﬁ%thce squaltré}d total matrix ponent withl"-point symmetry properties] ok). Unlike for

2 . the transitions between the valence and conduction band in
elem_ent asa nongohgrent sunildf* over four possible sets Sec. IV B, the Bloch function contributions of zeroth order
of spin configurations: in k vanish due to symmetry propertiésxcept the small part
proportional to the spin splitting constaky).
|MJF<£C|2= 2 ||\/|].U Cco |2_ (43 However, for intervalence-band transitions both the initial

0c.Ty v and final states are described by the envelope-function

, , Hamiltonian H, and one can use the following
Consider the special case of a hole wave vector parallel t@xpression‘?"‘g for the momentum matrix element:

thec axis, i.e.,k;, =0. In this situation the angle, is inde-
terminate and one can set=0 in Table |. Substituting Egs.

: , - m IH
(26), (29), and(41) into Eq.(43), we find <Uj'a'k'|p|Ujok>:70<Ujok ﬂ_k’UjUk>
Mg o[?= P |*sir?®, my Ml
of 12 2 2 =7 oli’o'k— [jok)o+O(K).

MG ] o el €54 ap peoze] Y

IMS 2 sir'e ; cog¢)’ (47
44 ~
“4 The operator identity p=(img/A)[Hr—rH]=(my/

where ¢= ¢, is given by Eq.(30). #)oHI 3k was used in the first line of E¢47), whereH is a

TABLE II. Matrix elements(S|(a¢|e- p|u; ,a,) of optical transitions between conduction-band states and
valence-band basis states in Efj7).

ep lug, =) lup, =) lus, =)
_1p diegi 3 . 1 .

(sl(11 2P, €'“sind - \/F—[Ple"“’sinﬁiZichow] - %[PLe"ﬁpsinﬁticho&‘}]
i - 3 . 1 _

(si{L *5 P, e '?sind \/?—[IiPle""sint)—Zcho&f}] —[FiP  e'¢sind+P,cosY]

NG
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full electron Hamiltonian. Replacement of the exact Hamil-Here o= ¢— ¢\, Wheregg andd= 9 are spherical angles
tonian M by its envelope-function counterpart was justi- ~ of the polarization vectog|E. MatricesK have dimensions
fied by Szmulowic® using the unitary transformation of of a wave vector and are defined as

Bloch functions basis and diagonalizing the contribution of

theTI-like part of H. HamiltonianH in Eq. (47) is not block Kz = — 229 oH . K@=— Mo H,dU<PU7w ]
diagonal since it is defined with the fixed basis Hetk), B he 0Ky, A%k, | de
corresponding tap=0. (49

The transfer to the block-diagonal form of the Hamil- ysing the explicit Hamiltonian formH. in Eq. (22), we
tonianH is achieved using relatioigok),=U |jok)g and  gbtain -
H=U,HU__, whereU, is a 6xX6 unitary transformation
matrix specified by Eq(17) or (21). Substituting the Bloch .3
function representation of ER5) into Eq. (47), we find the (712 27370k, 0 i E vk,
matrix element for optical transitions from E9),

Moo (K) K®?= 0 (7127 2v3)k,  Zi—=vk,
\ V2
=—h 8, K2, coss+K™) sindco _. 3 _. 3
i’izzl{ ol ol ot S - +|E’yzkl +IE’YZ|(L (712+473z)kz-
+ KET(P’)O',I ,iSinﬁSin¢}v}|,;<):,v](L)g. (48) and
(v +y30ke 3y.k, + ks ETZKZ
Kb = 3y, k, (yitvys)ki  Fkexi EZKZ
.3 3
- +KsFi E?’zkz FKFi E)’Zkz (71¢_27’3¢)k¢-

Thus Eq.(48) expresses the matrix elements for optical tran-splitting constanks and violation of cubiclike selection rules
sitions between valence bands in terms of Bloch vector comfor intervalence-band optical transitions are directly related
ponentsv;, of initial and final hole states. The total square to the absence of a horizontal reflection plane in the wurtzite
matrix element is given by noncoherent sum over differenfoint groupCg, (cf. Appendix Q.
spin configurations
V. MATERIAL PARAMETERS
|M}(ij’|2: E, |Mj(r_)j0,|2 (50) AND NUMERICAL RESULTS
@ Despite a number of experimental results for group-lli
To illustrate the derived expressions, we consider the paitride material properties, difficulties in fabrication of un-
ticular case of a hole wave vector parallel to thexis, i.e., Strained and sufficiently pure samples prohibit formulating a
k, =0. Substituting Eqs(26), (29), and (41) into Eqgs.(48) reliable and consistent set of _expenmental material param-
and (50), we find the total squared matrix element for optical €€rS. At present, the conduction- and valence-band param-
transitions between different valence bands: eters, as well as deformation potential constants, are obtained
from a comparison of experimental data with resultsabf
sirf¢ initio calculations.
J=(9;§k§+ 2k§)[ 2 }Sinzﬁ‘, In Table Ill we present several sets of Luttinger-like pa-
cos'¢ 51) rametersy and splitting energied for bulk GaN and AIN.
tot — 5 2 . In the following calculations we use the material parameters
MG Ll /%= (97K; + 2kscos 2¢)sir? of GaN from ?he first line of the Table Il Luttiﬁger—like

M /52

tot 2132
IM 8.l /1

+ 187§Zk§sin22 Hco. parameters are obtained using qu,ll) fr_om the re_sul_ts oéb
initio calculations by Suzuket al.,”* with the missing pa-
Here ¢= ¢}, is given by Eq.(30). rametery,, or A estimated from the quasicubic approxima-

As seen from Eq(51), atk=0 the transition matrix ele- tion in Eq. (9) or (B6).>! Constantks, responsible for the
ments do not vanish identically as in cubic crystals, but areemoval of spin degeneracy, is neglected in the following
proportional to parametdts. The finite value of the spin- calculations.
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TABLE Ill. Valence-band parameters set for wurtzite GaN and AIN. Dimensionless Luttinger-like pa-
rameters are calculated from data presented in Refth&ldata of Ref. 35 are listed in parenthgs&gplitting
energiesA; , 3 (in meV) are derived from the experimental data presented in Ref. 50.

Y1z Y1iL Y2z YL Y3z V3L Ay Ay~Ag

GaN 2.47 285 =~y 1.29 0.95 0.95 12.5 5.95
(259 (2.6 (1.0 (099  (0.97 19.82 72.9 7.0 5.2

AIN 1.54 150 ~y,  0.78 0.63 062 -218 -588 6.3 6.8

%Reference 16.
bReference 31.

Splitting energies\, , 3 and the deformation potentidl  nonrelativistic limit of $~55° (see Sec. lll ¢and the split-
are derived from the experimental data of @il al®® on  off hole band is further separated from the rest of the bands,
transition energies of\, B, and C excitons versus in-plane while the distance between the heavy- and light-hole bands
biaxial residual strain in the hexagonal GaN epilayers. In ousaturates at the value & 4(0)—E 4(0)—(A;+3A5)/2
calculations we use Eqgél4) and(28) together with the most ~15.2 meV.
recent experimental values of elasic const¥n@,;=398 Figure 4 presents the valence-band spectrum of unstrained
GPa andC,5= 106 GPa. Nonlinear fitting to strain-dependent (solid) and straineddashedl GaN for wave vectok being
transition energie& (0)—E;(0) [see also Fig. ®)] results  parallel (left) or perpendicularright) to the crystalc axis.
in the following values of splitting energied;~12.5 meV, Strain parameters in Fig. 4 correspond to the vertical dashed
A,~5.95 meV, and\;~5.94 meV, and, within the spherical line in Fig. 3. As seen from Fig. 4, even in unstrained wurtz-
cubic approximation, a shear deformation potential value ofte material, the valence-band dispersion relations are highly
b~ —1.67 eV. These values, deduced from the experimentanisotropic and are characterized by an “anticrossing” be-
data®® are consistent with the first-principles calculations byhavior due to a strong mixing of different hole bands. Ap-
Kim et al;'® deformation potential$ can be approximated plying —0.24% compressive strain leads to some quantita-
using Eq.(10"). Finally, the valence-band hydrostatic defor- tive changes in spectrum, while leaving the overall form of
mation potential a, is estimated from its gap value the dispersion curves intact. The absence of any profound
ag=a;—a,~—8.16 eV using the empirical relatidd  effect of biaxial strain on the valence-band spectrum can be
a,~ —ay/3.
Figure 3 demonstrates the effect of the in-plane biaxial

strain, specified by Eq€13) and (14), on hole eigenfunc- a0 | !
tions and spectra in GaN &t=0. In Fig. 3b) we plot the |
strain-induced change of the valence-band positiogiative |
to the edge of the conduction bandalculated using Eq. !
(28); Fig. 3(b) shows the angle between the Bloch vectors |
of light holes in cubic and wurtzite crystalsf. Fig. 2b)], !
given by Eqgs(27) and(30). For convenience, we choose the -20 1 !
top of the heavy-hole band in unstrained material as the en- |
ergy reference. I LH

|

|

|

|

|

|

|

|

|

¢ (deg)

In absence of deformatics=0, the heavy- and light-hole
levels are split due to the hexagonal crystal fiélertical 50 ¢
solid line in Fig. 3. Consider now the tensile biaxial strain
(dotted vertical ling with components:,,=¢,,=0.16% and
&,,~ —0.085%, specified by the negativestin Eq. (15).

As discussed in Sec. Il D, the effect of the finite hexagonal
crystal splitting termA , can be substituted by the compres-
sive “internal” deformation in Eq(15), corresponding to an
additional compressive biaxial straii®® Applying the ten-
sile deformation— 2% effectively cancels the contribution
A ., of the hexagonal component of the crystal field. Thus the
valence-band eigenstates and spectrum in wurtzites become ~0.01 0 0.01
similar to those in cubic crystals: hole Bloch functions coin- 8

cide with their cubic counterparfs.e., =0 in Fig. 3a)], *

and degeneracy between heavy- and light-hole bands at the |G, 3. Effect of biaxial strair: on eigenfunctions and eigenen-
I' point is restored. ergies of heavy, light, and split-off holes &=0. (a) Angle

The dashed vertical line in Fig. 3 corresponds 104 ¢{4) between the Bloch vector of the light holes and axisn
—0.24% compressive strain in GaN lattice matched to therig. 2 vs the strain componest,=¢, /2. (b) Change in distance

Alo1GaggN alloy. As the magnitude of the compressive between conduction and valence bandié.—E;), due to biaxial
strain is increased, the Bloch vector angle approaches itsrain.

3(EE,) (meV)

» / SH
™~
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o

unstrained
——=- strained

10 5

10
K, (10°%cm™) k, (10%m™) LH-HH !
1
FIG. 4. Dispersion law of holes in unstraingdolid and // S

(<)
[

I

/

Bloch overlap factor, G
&

strained (dashed bulk GaN for different directions of the wave
vector. Biaxial strain withe,,= —0.242% corresponds to GaN lat- S~
tice matched to AlGa; _,N with x=0.1. SH-LH >~

understood with the help of Fig. 3: even in the absence of 05
external strain(solid vertical ling, wurtzite crystals are al-
ready prestrained due to an effective internal deformation.
Therefore, finite external deformation in wurtzite structures
does not lead to qualitative changes in the hole spectrum or 0 bmsme
eigenstates, in contrast to the drastic effect of deformation on 0
the degeneratEg level in cubic crystals.

In Fig. 5 we plot the Bloch overlap factors, calculated
from Eq. (35), for elastic hole scattering between different ~ FIG. 5. Bloch overlap factor&(jk—j’k’) for elastic hole scat-
valence bands versus the angléetween initial wave vector t€ring between bandsj’, which denote the HH, LH, and SH. The
k and thec axis. The wave vector of the final staké is hole energy is taken at 100 meV below le¥&). The wave vector
chosen so that, despite the change in the directidn ifitial ~ ©f ("€ nitial statek is specified by spherical angles=0 and
and final wave vectors remain orthogonal to each other. == 7/2; for the final state the angles =" = /2 are chosen.

the limiting case of an unstrained cubic crystal, described by . | . o el he in-pl biaxial
a spherical approximation to the x4 Luttinger-Kohn optical transition matrix elements on the in-plane biaxia

Hamiltonian, substitutinge= 7/2 into Eq.(36) would lead to s;rain for the wave polari;ation paraligdolid) and perpen-
expressions, independent  of o: G(HH—HH) dlcular(dasheai.to thec a>t<0|ts. Ag follows from Eqs§44) anq
—G(LH—LH) =1/4 andG(HH—LH) =3/4. As seen from (5D, the_ magnitude oM. is not c_hang(_ad W|th_ _stram.
Fig. 5, in wurtzite crystals the Bloch overlap factors dependThe strain depepdence for other transitions is specn‘l.ed py the
not only on the angle betweeh andk’, but also on the angle¢= ¢ given by Eq.(30). The dotted vertical line in
directions of the initial and final wave vectors. The value ofFigs. @b) and qb) marks the intersection of several curves
the Bloch overlap factor, given by EB5), is needed for the and corresponds to the condition Bir-coS'¢ satisfied at
calculation of hole scattering rates by Coulomb impurities,®= — /4. Finally, we notice that the absolute magnitudes of
polar optical phonons, and charged carriers. transition rates for the processes under consideration are pro-
In Figs. 6 and 7 we present the dimensionless total squareortional to the energy parametertP#*/m, and72kZ/2m.
matrix elements for the optical transition of a hole with aUsing Eq. (46), numerical values m(®=0.19n, and
wave vector parallel to the axis (i.e., k, =0). Matrix ele- E;=3.4 eV, and approximating the hole energy by the ther-
ments for transitions from valence to conduction batkig. mal energy afl =300 K, we obtain the following estimates:
6) are calculated using E¢44), while those for intervalence- 2|P|?/mo~15 eV and#?k2/2my~25 meV. Thus the inten-
band transitiongFig. 7) are obtained with the help of Eq. sity of the valence-band to conduction-band optical transi-
(51). The cubic approximatiof?,=P, is used for the mo- tions is substantially higher than the intensity of
mentum matrix element constants. Figureg) 6and 7a) intervalence-band optical transitions, since the latter are for-
show the polarization dependence of the optical transitions ibidden(to the lowest order ifk) due to the selection rules.
unstrained(solid) and strained(dashed wurtzite GaN. In
agreement with Eq44), the matrix elements of optical tran-
sitions from any valence band to the conduction band are
equal (and independent of strgirat the polarization angle In this paper we have addressed several issues dealing
9=arctany2~55°. with the description of hole energy spectra and transitions in
In Figs. €b) and 7b) we plotted the dependence of the wide-band-gap wurtzite materials within the envelope-

SH-SH

45
Angle 9 (deg)

VI. CONCLUSION
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FIG. 6. Matrix elementttofzoptigal transitions between valence FIG. 7. Matrix element of optical transitions between valence
. o . .
and conduction band$M;~ |*/|P|?, for unstrained(solid) and  pands,|M'® ,|2/2k? for bulk GaN andk, =0. The rest of the

strained(dashed bulk GaN atk=0. The biaxial strain is the same npotations jgc;ihcide with those in Fig. 6.
as in Fig. 4.(a) Dependence on the angl& between the light

polarization vector and the axis. (b) Dependence on biaxial strain. coauthors in Ref. 16 for making their results available to us

function formalism. We have corrected the frequently usedprior to publication. This study was supported by the U.S.
guasicubic approximation for the wurtzite band-curvatureArmy Research Office and the Office of Naval Research.
parameters and deformation potential constants. The analogy
between cubic and wurtzite valence-band Hamiltonians was
elucidated by reformulating the latter in terms of Luttinger- APPENDIX A: COMPARISON OF NOTATIONS
like parametersy and establishing the connection, in Eg. . . .
(12),pbetween the hexagonal crys?al splitting energy and gd-_ Relations between different notations for valgnce-band re-
ditional, “built-in” strain in wurtzites. ciprocal mass parametery;(, etc) and deformation poten-

In view of the importance of block diagonalization of the ti2ls (Di, etc) in cubic materials are listed in Table Iéx-
full Hamiltonian for efficient band-structure and transition Pressions in the same line are equébor simplicity, we set
rate calculations, we have established a correspondence He2my— 1. The parameteC of Refs. 21 and 53 is related to
tween different proposed forms ofx@ blocks and dis- Pparameters in Table IV bg?=D?—3B? Reciprocal mass
cussed their physical meanings. We demonstrated that theparameters and deformation potential constants of the same
forms correspond to different coordinate frames in the threevertical row in Table 1V are related to each other according
dimensional Bloch space that can be transformed into onto Eg. (6).
another by means of a rotation around the heavy-hole axis In wurtzite materials, the Luttinger-like parametersin-
(see Fig. 2.

. Finally, using a unllform approach based. on bloc'k- TABLE IV. Comparison of notations for the band curvature and
diagonal forms O.f Wurtthe_ Hamlltonlan, we derlyed MANX girain parameters in the valence bands of cubic materials.
elements for various transition processes involving valence-
band carriers: scattering of holes, optical transitions from the

. . .\ Refs. 21,53,
valence band to the conduction band, and mfrared transitiong ¢ 5, and 19 Ref. 53 Ref. 54
between the valence bands. Special attention was taken far
reproducing the corresponding results for cubic symmetryy, -A —(L+2M)/3 —r./\3
(with warping neglectedas a special case of the wurtzite y, —-B/2 (M-L)/6 —ryf2y3
parameter set. The numerical calculation of the transition,, —D/2\3 —N/6 —rs/2\6
matrix elements has been performed using a set of material
constants of GaN. Ref. 55 Ref. 19 Ref. 19 Ref. 54
ACKNOWLEDGMENTS —Dq & —(I+2m)/3 —di/\3
D,/3 —b/2 (m—1)/6 —da/2y3
The authors acknowledge many helpful discussions wittp /3 —di2\3 —n/6 —ds/2\/6
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troduced in this paper, are related to parameted$ Bir and  tonian leads to the cubic approximation in E(®). and(9).

Pikus® in the following way: However, the warping terms in EEB5), proportional to the
differencey,— v, do not have counterparts in the wurtzite
Y1i2= —A1=2A413,  y2,=Ag/\B—AY12, y3,=A4l6, Hamiltonian since the grougs, is not a subset of cubic
point groups->2
Y=~ A= 2A43,  y2  =2A43+ A5, y3 = — A4l In the notations of Bir and Pikus, the quasicubic approxi-

(A1) mation for band-curvature parameters takes the form
The relation between deformation potentals can be obtained
from the above formulas by changidgto D and y to §. A,—A1=—2A4=A3, Az=4A5— \/EAG. (B6)

Equation (B6) corrects the erroneous relatin

APPENDIX B: TRANSFORMATION . o
—As=4As—2As used in a number of publications.

OF THE CUBIC HAMILTONIAN

Below we outline the derivation of the quasicubic ap- APPENDIX C: BLOCH EUNCTIONS SETS
proximation for wurtzite crystals and correct a mistikia
Ref. 19. We transform the cubic Hamiltonian in Eg) to a The products of basis functions of angular momenta 1 and
new coordinate frame with basis vectas €], ande, di- 1/2 are related to the basis functions of momehtand3 by

rected along 112], [110], and[111], correspondingly. The Means of vector additioriClebsch-Gordan coefficients®
transformation is specified by the rotation

e L1 2. 2571 I R I R NV
G- F & ollel ey |BEDIZ|0 & Vil [ILAD) | e
© 2 2 zlle EE LRV = I MR

For simplicity we do not consider the strain p&tt of the
Hamiltonian since it is directly related td, by Eq. (6).

The sphericalcomponents of Hamiltonian in E€R), pro-
portional to unity matrixl and scalar products - o and
(L -k)?, are invariant under rotation and should be expresse

in terms of the ladder operators for the sake of comparison _ .
with Eq. (3); L) =(FX)-ilY))\2, [1,0=[Z), (2

Equation (C1) provides relations between different Bloch
function sets, independent of their particular representation.
If such representation is needed, the following form can be
ysed for the functiongl m:

where|X), |Y), and|Z), are functions that transform as
y, and z under operations of the point group. Unlike for
V2 12 ] 2012 12 212 .22 cubic symmetry, the point groups, does not contain a hori-
(Lk) =kl Lyl ki /2 +(Lik=+Lok)/2 zontal reflection plane and the functi¢s) is not odd inz.
+ \/5([LZL+]ka—+[LZL—]ka+)' (B3) However, the even part dZ) is proportional to a splitting
constantks=myA,/#2 in Eq. (3) that is usually small.
According to the Wigner-Eckard theorethall matrix el-

ements of vectop, (L',m’|p|L,m), calculated with different
eigenstates of angular momeritaandL’, can be expressed

L-o=L,0,+\2(L,o_+L_o,), (B2)

The warping part of Eq.(2) is proportional to the combina-
tion 6[L,L,]k.k,+c.p., which under the rotation specified
by Eq.(B1) transforms to the sums

(—2Kk2+K2) 1 +3(K2—K2/2)L2+ (L2 K2 +L2K?) in terms of a singleeducedmatrix element{L’||p||L). The
reduced matrix element for transitions between the eigen-
+ \/5([LZL+]ka,+[LZL,]ka+) (B4) states ofL=1 andL’=0 is related to the commonly used

quantity P=(Z|p,|S) by the equality(1||p||0)=y3P. In

and . . X
this case all nhonzero matrix elements are giverr by

V(L2 Kk L2k )+ ([Lok L RS HLLTKP). ) A A
(B5) (Slp|0)=P, (SIp+|-1)=—(Slp_|1)=12P.

A comparison of terms in Eq¥B2)—(B4) of the trans- The lowering of symmetry from the spherical to the axial
formed cubic equation with Eq3) for the wurtzite Hamil-  one leads to Eq42).
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