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Hole scattering and optical transitions in wide-band-gap nitrides:
Wurtzite and zinc-blende structures
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The energy spectrum and transitions of valence-band carriers in wurtzite materials are studied theoretically
using cubic crystals for comparison. We correct the commonly used cubic approximation and propose nota-
tions for Luttinger-like parameters in wurtzite structures that simplify the cubic approximation tog1z5g1' ,
g2z5g2' , and g3z5g3' . We establish the relation between two recently proposed 333 matrix blocks
diagonalizing the full 636 Hamiltonian and provide geometric interpretation in three-dimensional Bloch
space. The formalism is used then to derive transition matrix elements for three types of processes:~i!
macrofield hole scattering, described by the Bloch overlap factor;~ii ! optical transitions between conduction
and valence bands; and~iii ! intervalence band optical transitions. Finally, we discuss the set of material
parameters for group-III nitrides and present the numerical results.@S0163-1829~97!08207-6#
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I. INTRODUCTION

Interest in the material properties and applications
wide-band-gap III-V semiconductors has grown rapidly
the past several years. Direct band group-III nitride semic
ductors, such as GaN, AlN, InN, and their alloys, poss
superior characteristics that should produce reliable, h
performance devices.1–4 Progress achieved in high-qualit
GaN growth on buffered sapphire substrates5 and p-type
doping6 has led to high-quality p-n homo- and
heterojunctions7 that are the basis for numerous optoele
tronic device applications~green to UV light-emitting
diodes,8 lasers,9 and solar-blind photodetectors10! as well as
high-power electronic devices.11

Despite technology advances and commercial appl
tions of group-III nitrides, many of the fundamental mater
properties are poorly understood and further experime
and theoretical studies are required. Major experimental
forts are devoted to the analysis of optical propertie12

defects,13 and transport phenomena14 in GaN-based materi
als. On the other hand, a number of empirical andab initio
methods have been applied for calculating the full Brillou
zone energy spectra, optical and structural properties
group-III nitrides and their alloys,15,16 as well as mobility17

and light emission18 in these materials. Although the wide
band-gap nitride materials are grown in both zinc-blen
~cubic! and wurtzite ~hexagonal! polytypes, the wurtzite
structure is predominant for the device applications.

As for other direct band-gap group-III-V compound
many important optical and transport properties of Ga
based materials are determined by carriers neark50 in the
small vicinity of the G point. Conduction-band states fo
small wave vectork are doubly degenerate with respect
spin and can be characterized by one or two~for cubic or
hexagonal symmetries! energy-independent effective masse
The valence-band spectrum near theG point is more compli-
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cated and originates from the sixfold degenerateG15 state
~see Fig. 1!. In zinc-blende structures, the spin-orbit intera
tion splits theG15 level atk50, forming the fourfold degen-
erateG8 ~heavy and light holes! and doubly degenerateG7
~spin split-off holes! levels. Joint action of the hexagona
component of crystal field and the spin-orbit interaction
wurtzite crystals leads to the formation of three distinct le
els: G9, upperG7, and lowerG7, which we denote as HH
~heavy holes!, LH ~light holes!, and SH~split-off holes!, re-
spectively. For normal valence-band order, as shown on
1, these states correspond to theA-, B-, andC-type exciton
lines in photoluminescence experiments.

The description of spectra and transitions in the vicin
of the G point involving three~doubly degenerate! valence
bands is conveniently achieved in an envelope-funct
formalism.19,20For cubicsymmetry, the spectrum and eige
states of holes in a strained crystal are determined b
636 matrix Luttinger-Kohn-Bir-Pikus19,21,22 ~LKBP!
Hamiltonian, and inhexagonalcrystals with theC6v point
symmetry group, the Rashba-Sheka-Pikus19,23,24 ~RSP!
636 matrix Hamiltonian should be utilized. The envelop

FIG. 1. Valence-band structure in zinc-blende and wurtzite cr
tals at theG point. In cubic materials levelsG8 andG7 are separated
due to the spin-orbit interaction. In wurtzite structures the lev
G9, G7u ~upper!, andG7l ~lower! are formed due to the action of th
spin-orbit interaction and the hexagonal component of crystal fi
4360 © 1997 The American Physical Society
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55 4361HOLE SCATTERING AND OPTICAL TRANSITIONS IN . . .
function method uses the most general form of the Ham
tonian allowed by the crystal symmetry, which depends o
number of empirical material constants. The LKBP cub
Hamiltonian is specified by 7 empirical constants: spin-or
splitting energyD so, Luttinger parametersg1,2,3, and defor-
mation potential constantsav , b, andd. However, for the
strained wurtzite crystal, as many as 16 independent c
stants are required for use of the RSP Hamiltonian:19 split-
ting energiesD1,2,3, band-curvature parametersA1–A6,
strain-related constantsD1–D6, and a factorA7 for the linear
in wave-vector term.

The cubic Hamiltonian has been applied extensively t
large number of problems involving holes in group-IV a
-III-V materials; yet, until recently, the RSP Hamiltonian h
been used mainly for describing excitons in group-II-VI he
agonal structures.25–30 Very recently, the RSP Hamiltonia
has been applied to analyze the valence-band spectra in
agonal GaN and related materials.31–36Using data from ex-
periments and from first-principles calculations, the hole
ergy spectrum in bulk GaN and other wurtzite materials w
obtained,31 including the effects of strain.34–36 Different di-
agonalization forms for the full 636 Hamiltonian have been
proposed32–34 and the results applied to calculate dispers
of holes in unstrained32 and strained33,36 Al xGa12xN/GaN
quantum wells. It was pointed out31–36 that the quasicubic
approximation for wurtzite structures19,26,37 is an important
tool for the estimation of experimentally unavailable para
eters.

In this paper we discuss properties of the RSP Ham
tonian, the quasicubic approximation, and we calculate
matrix elements for hole scattering and optical transitions
wurtzite materials, keeping close analogy to the cubic ca
In Sec. II we revisit the quasicubic approximation for wurt
ite materials and correct a mistake38 in its frequently used
form.19 The correction only changes signs of Bir and Piku
parametersA5 andA6; thus it does not affect any results fo
hole wave vectork either parallel or perpendicular to thec
axis. In view of the importance of analogy between cu
and wurtzite materials, we propose to use, instead of c
stantsA1–A6, the set Luttinger-like parameters with th
built-in quasicubic relation:g1z5g1' , g2z5g2' , and
g3z5g3' . Section III discusses the properties of tw
forms32–34proposed for 333 blocks of the RSP Hamiltonian
and shows that they are related by a simple rotation aro
the heavy-hole axis in the three-dimensional Bloch funct
space.

Section IV deals with the derivation of transition matr
elements for hole scattering and optical processes using
block-diagonalized forms of the RSP Hamiltonian f
strained wurtzite crystals. More specifically, Sec. IV A co
tains the calculation of Bloch overlap factor for holes sc
tered by a macrofield. In Sec. IV B the matrix elements
valence-band to conduction-band transitions are calculate
the dipole approximation for an arbitrary polarization
light. Section IV C describes intervalence-band optical tr
sitions in strained bulk wurtzite materials. As the limitin
cases, the corresponding expressions for the cubic cry
~with warping neglected! are reproduced. Finally, Sec. V
contains our conclusions and the Appendixes detail part
the calculations.
l-
a

it

n-

a

-

ex-

-
s

n

-

l-
e
n
e.

c
n-

d
n

he

-
-
f
in

-

tal

of

II. ZINC-BLENDE AND WURTZITE VALENCE-BAND
HAMILTONIANS

The envelope-function description of valence bands in
vicinity of the G point in cubic and hexagonal materials ca
be conveniently achieved within an invariant method22,24 for
construction of the hole HamiltonianH. In this method the
Hamiltonian is written in terms of combinations in differe
powers of hole wave-vector components and exter
perturbations19,26 ~strain, magnetic, and electric fields! al-
lowed by the crystal symmetry. A broad class of physic
problems of interest can be described by a Hamiltonian c
taining terms up to the second order in wave vectork and
linear in strain tensor«:

H~k,«!5H01Hk1H«1•••. ~1!

In both cubic and hexagonal materials the top six vale
bands originate fromp3 orbitals~corresponding to the vecto
representationG15; see Fig. 1! split by the spin-orbit inter-
action and/or hexagonal crystal field. Therefore, it is con
nient to express the corresponding 636 Hamiltonian in Eq.
~1! as a direct product of 333 matrices (Lx ,Ly ,Lz)[L of
angular momentum 1 and the 232 Pauli matrices39

(sx ,sy ,sz)[s of spin 1/2.

A. Cubic structures

The invariant form of the LKBP 636 Hamiltonian for
cubic crystals is given by Eq.~1! with19

H0
cub5

D so

3
~L•s!,

Hk
cub52~g114g2!k

216g2~L–k!216~g32g2!

3~2@LxLy#kxky1c.p.!, ~2!

H«
cub5~av12b!~«xx1«yy1«zz!2~3bLx

2«xx1c.p.!

2A3d~2@LxLy#«xy1c.p.!.

HereD so is the spin-orbit splitting energy,g1, g2, andg3 are
Luttinger parameters~for simplicity, we omitted factor
\2/2m0), av , b, andd are Bir-Pikus valence-band deforma
tion potential constants, and 2@LiL j #[LiL j1L jLi . Terms
not containing matricesL or s are assumed to be multiplie
by 333 or 232 unity matrices. The relations between p
rametersg1 ,g2 ,g3 ~deformation potentialsav ,b,d) and
other common sets are given in Appendix A.

B. Hexagonal structures

In wurtzite materials, the 636 matrix form of the RSP
Hamiltonian for the top valence bands is given by Eq.~1!
and19,24

H0
wur5D1Lz

21D2Lzsz1A2D3~L1s21L2s1!,

Hk
wur5A1kz

21A2k'
21~A3kz

21A4k'
2 !Lz

2

1A5~L1
2 k2

2 1L2
2 k1

2 !1A6kz~2@LzL1#k2

12@LzL2#k1!1 iA7~L1k22L2k1!,
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H«
wur5D1«zz1D2«'1~D3«zz1D4«'!Lz

2

1D5~L1
2 «21L2

2 «1!1D6~2@LzL1#«2z

12@LzL2#«1z!. ~3!

Here thez axis is chosen along the@0001# direction (c axis!;
k'
25kx

21ky
2 , k65kx6 iky , «'5«xx1«yy , «6z5«xz

6 i«yz , and «65«xx2«yy62i«xy . In Eq. ~3! we use the
notation of Pikus24,27 for the ladder operators40 L6 and
s6 ,

L65~Lx6 iL y!/A2, s65~sx6 isy!/2.

The RSP Hamiltonian in Eqs.~1! and~3! describes the top
valence bands in strained wurtzite materials with 16 emp
cal constants:D1–D3, A1–A7, andD1–D6. HereD1[D cr is
a splitting energy due to the hexagonal component of cry
field;37 D so

(z)[3D2 andD so
(')[3D3 are spin-orbit splitting en-

ergies forz and perpendicular directions.
ParametersA1–A6 determine~together with splitting en-

ergiesD i) direction-dependent effective masses in unstrai
crystals. To elucidate the analogy existing between vale
bands in cubic and hexagonal crystals and to facilitate
use of the cubic approximation for wurtzite structures,
introduce the set of Luttinger-like parametersg:

2A15g1z14g3z , 2A25g1'22g3' , A356g3z ,
~4!

2A453g3' , A55g2'12g3' , A65A2~2g2z1g3z!.

We omitted the factor\2/2m0 in Eq. ~4! to simplify the
relation between dimensionless constantsg and parameters
A. In a similar fashion, we define constantsd, related to
deformation potentialsD:

2D15d1z14d3z , 2D25d1'22d3' , D356d3z ,
~5!

2D453d3' , D55d2'12d3' , D65A2~2d2z1d3z!.

We note the following correspondence between terms
Hk andH« :

\2

2m0
g iz,'kakb ↔ d iz,'«ab . ~6!

Finally, the factor for the term linear ink' of Eq. ~3! can be
presented as

A75\2ks /m0 , ~7!

where ks characterizes the radius of the circular loop
valence-band maxima28 reached atkz50 and finitek' .

C. Cubic approximations

In contrast to zinc-blende materials where the descrip
of top valence bands requires four~seven in the case o
strain! empirical parameters, wurtzite structures are
scribed by ten~sixteen in the presence of strain! material
constants. Such a large number of material constants is
likely to be determined reliably from experiment alone; th
certain empirical relations such as quasicubic19,27,26,29,37or
spherical cubic33 approximations are required. The physic
background for the cubic approximation stems from
i-
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similar arrangements of neighboring atoms in cubic and h
agonal materials: the first coordination sphere in the wurt
lattice can be obtained from the cubic one by applying
relatively small deformation in the@111# direction.

A comparison of corresponding terms in Eq.~3! for
wurtzite structures and the cubic Hamiltonian in Eq.~2!,
transformed to the wurtzitelike coordinate frame, leads
several conditions, constituting thequasicubic approxima-
tion37,19 ~see Appendix B!. First, the longitudinal and trans
verse spin-orbit splitting parameters are equal and co
spond to the splitting energy for cubic crystals,

D25D3→D so/3. ~8!

Second, in the quasicubic approximation there exist o
three independent parameters in theg iz,' set, corresponding
to well-known Luttinger parametersg i for cubic structures
@cf. Eq. ~B6! for parametersA#:

g1z5g1'→g1 , g2z5g2'→g2 , g3z5g3'→g3 . ~9!

Similar relations hold between deformation potentialsd iz,'
and constants19 av , b, andd of cubic materials:

d1z5d1'→2av , d2z5d2'→2b/2,

d3z5d3'→2d/2A3. ~10!

Finally, the cubic valence-band Hamiltonian in Eq.~2! lacks
terms linear in the wave vector. Therefore, in the quasicu
approximation,

A7}ks→0 . ~11!

It should be noted that, since the wurtzite symmetry po
groupC6v is not a subgroup of the zinc-blende groupTd ,
there exist terms in the cubic Hamiltonian@see Eq.~B5! in
Appendix B# that do not have counterparts in the wurtz
Hamiltonian in Eq.~3!. Therefore the quasicubic approxima
tion for Luttinger-like parametersg and deformation poten
tial constantsd, given in Eqs.~9! and ~10!, should be con-
sidered as empirical relations only.19,26,27

The wurtzite invariant Hamiltonian in Eq.~3! can be re-
duced to the cubic invariant in Eq.~2! only if the warping
terms in Eq.~B5! are absent, i.e., ifg2'g3 andb'd/A3. In
the correspondingspherical cubic approximation33 two rela-
tions are added to Eqs.~9! and ~10! of the quasicubic ap-
proximation:

g2z5g2'5g3z5g3'→g2 , ~98!

d2z5d2'5d3z5d3'→2b/2. ~108!

Thus, in the spherical cubic approximation a physically re
sonable description of valence bands in strained wurt
crystals is achieved with just six parameters: crystal field a
spin-orbit splitting energies,D cr andD so, Luttinger-like pa-
rametersg1 and g2, as well as deformation potential con
stantsav andb.

D. Crystal field as additional strain

The cubic Hamiltonian in Eq.~2! lacks terms correspond
ing to crystal splitting, i.e.,D cr in Eq. ~3!. Therefore, strictly
speaking, in the cubic approximation the crystal field sp
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ting should be set to zero,D cr→0. However, this approxi-
mation is qualitatively wrong for the description of wurtzi
structures~e.g., it merges levelsG9 and G7u); thus finite
D cr is preserved to account for the deviation from cub
symmetry.

The effect of nonzero crystal splitting nevertheless can
introduced rigorously into the cubic approximation by mea
of an ‘‘additional’’ deformation, described by a strain tens
«add. Inspecting termsH0

wur andH«
wur of Eq. ~3!, proportional

to the matrix operatorLz
2 , we find that the crystal splitting

parameter can be accounted for by the combination

Dcr→D3«zz
add1D4«'

add'3b~«'
add/22«zz

add!. ~12!

Here thez axis corresponds to the@111# direction in cubic
crystals. On the right-hand side of Eq.~12! we used the
spherical cubic approximation for deformation potentialsD,
given by Eqs.~108) and ~5!.

Since the additional strain must not contribute to oth
terms in Eq.~3!, the tensor«[«addshould describe abiaxial
deformation with

«xx5«yy[«'/2, «xy5«yz5«xz50 . ~13!

The remaining part of the additional strain contribution
Eq. ~3!, (D1«zz

add1D2«'
add)I , leads to an overall shift of al

valence bands and can be eliminated by the choice of en
reference.

It is of interest to determine the condition under which t
‘‘internal’’ strain in Eq. ~12! can be represented as that in
layer pseudomorphically grown along thez axis. Substituting
the relation between strain components in wurtzite crys
~whereCi j is a stiffness tensor!,41

«zz52~C13/C33!«' , ~14!

into Eq. ~12!, we find

«xx
add 5«yy

add

2«zz
addJ 5

D cr

3b H C33

2C13
J Y ~C3312C13!. ~15!

Thus the correspondence between the hexagonal crystal
and additional strain established in Eq.~12! shows that
wurtzite crystals are already ‘‘prestrained’’ in comparison
cubic ones and the external strain leads mainly to quan
tive changes in the spectrum.

III. BLOCK-DIAGONAL HAMILTONIAN FORMS

Valence-band Hamiltonians for cubic and hexago
structures are presented in Eqs.~1!–~3! in invariant, operator
form. Using matrix representations of operators of angu
momenta 1 and 1/2,L ands, in their corresponding bases,40

one can obtain 636 matrix HamiltoniansH̄ for describing
three~doubly degenerate atk50) top valence bands.24,19,31,33

As shown by Broido and Sham,42 the 434 Luttinger-
Kohn Hamiltonian can be diagonalized, by means of a u
tary transformation, to two 232 nonzero blocks. This resu
has been subsequently generalized for a 636 LKBP cubic
Hamiltonian describing coupled heavy-, light-, and sp
split-off hole bands.43

Very recently, several different forms for the bloc
e
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gy
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eld
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diagonalized wurtzite valence-band Hamiltonians have b
proposed.32–34 For biaxial strain specified by Eq.~13!, the
full 636 RSP Hamiltonian can be transformed, by an app
priate choice of basis functions, to the form

H5~D11D2!I1FH1 0

0 H2
G . ~16!

The diagonal term (D11D2)I conveniently shifts to zero the
eigenenergies ofH6 , corresponding to heavy holes atk50
~i.e., levelG9).

In the following we demonstrate the correspondence
tween different representations33,34proposed for 333 blocks
H6 and provide an explicit form of rotation for the Bloc
function basis, which transforms one representation to
other. Though the two forms ofH6 are equivalent to each
other, one set of basis functions33 diagonalizes the spin-orbi
interaction~and should be used for comparison with cub
structures whereD cr→0), while another basis function
set32,34 diagonalizes the hexagonal crystal field~and is con-
venient for an analysis of the nonrelativistic limit!.

In the following we use the notationuJ,M & for Bloch
functions that behave, under symmetry operations of
point group, in the same way as eigenfunctions of an ang
momentumJ and its projectionM on thez axis. Since the
point group is only a subset of the full spherical symme
group, the functionsuJ,M & do not constitute a representatio
of the latter. For simplicity, the spin-1/2 eigenfunctions a
denoted by u↑& and u↓&, while the orbital part of the
conduction-band Bloch function is written asuS&.

A. Cubiclike Hamiltonian

It is well known19 that the basis function setu 32,6
3
2&,

u 32,6
1
2&, and u 12,6

1
2& diagonalizes the spin-orbit interactio

term in Eq.~2!. Thus it is convenient for the representatio
of the 636 Hamiltonian incubiccrystals. Therefore, to uti-
lize the analogy existing between zinc-blende and cu
structures, we define the block-diagonalizin
transformation33 in a manner similar to the cubic case:42,43

uu1 ,6&w5
1

A2
FU 32 , 32 L e23iw/27 iU 32 ,2 3

2 L e3iw/2G ,
uu2 ,6&w5

1

A2
F6 iU 32 , 12 L e2 iw/22U 32 ,2 1

2 L eiw/2G , ~17!

uu3 ,6&w5
1

A2
F6 iU 12 , 12 L e2 iw/21U 12 ,2 1

2 L eiw/2G .
Here six basis statesuui ,s& are numerated by symbolsu1,
u2, u3, and the ‘‘spin’’ variables56, assigning the state to
the Bloch subspace of 333 HamiltoniansH1 andH2 . The
variables does not correspond to the actual particle spin;
fact, the definition ofs[sw depends on the choice of bas
in Eq. ~17!. For a finite perpendicular component of wav
vector k' , the block-diagonalizing transformation in Eq
~17! depends on the anglew5wk[arctanky /kx .

By applying the unitary transformation in Eq.~17!, the
636 wurtzite Hamiltonian is presented in the block-diagon
form of Eq. ~16!. Denoting the terms linear ink' by H8, we
find the 333 upper and lower Hamiltonian blocks
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H656H823
P1Q R7 iS A2R6 iS/A2

R6 iS P2Q A2~Q1D8!6 iA3

2
S

A2R7 iS/A2 A2~Q1D8!7 iA3

2
S P1Dso

4
uu1 ,6&

uu2 ,6&

uu3 ,6&.

~18!
o
h

th

n-
r-
ma-
n
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e

e

B. Non-relativistic-like Hamiltonian

Consider the opposite case of fully diagonalized~at
k'50) crystal-field contribution and nondiagonalized spi
orbit interaction. Taking the product of eigenfunctions of o
bital momentum 1 and spin 1/2 as a basis in the transfor
tion similar to Eq. ~17! and using the Clebsch-Gorda
relations in Appendix C for the basis change, we find

uu1 ,6&5uv1 ,6&,

uu2 ,6&5
1

A3
uv2 ,6&2A2

3
uv3 ,6&,

uu3 ,6&5A2

3
uv2 ,6&1

1

A3
uv3 ,6&,

~20!

where the new basis setuv i ,s& is given by

uv1 ,6&w5
1

A2
@ u1,1&u↑&e23iw/27 i u1,21&u↓&e3iw/2],

uv2 ,6&w5
1

A2
@6 i u1,1&u↓&e2 iw/22u1,21&u↑&eiw/2], ~21!

uv3 ,6&w5
1

A2
@7 i u1,0&u↑&e2 iw/21u1,0&u↓&eiw/2].

Applying the unitary transformation specified by Eq.~20!
to the Hamiltonian in Eq.~18!, we find the 333 block
Hamiltonians in the basis of functionsuv i ,s&:
H6523
P1Q A3R 7T6 iA3

2
S

A3R P1Q12D2 A2D37T6 iA3

2
S

7T7 iA3

2
S A2D37T7 iA3

2
S P22Q2D212D3

4
uv1 ,6&

uv2 ,6&

uv3 ,6&.

~22!
Here

P5
D cr12D8

3
1g1zkz

21g1'k'
21d1z«zz1d1'«' ,

~19!

Q52
D cr12D8

3
22g3zkz

21g3'k'
222d3z«zz1d3'«' ,

R5A3ḡ'k'
2 , S52A3ḡzkzk' ,

where ḡ'[(g2'12g3')/35A5/3 and ḡz[(2g2z1g3z)/3
5A6/3A2; the isotropic spin-splitting energyD so5D2
12D3 and its trigonal component29 D85D22D3. As for
terms linear ink' , they are given by the matrix

H85
T

3F 0 2A6 A3
2A6 2A8 21

A3 21 A8
G ,

where

T5\2ksk' /m0 . ~198!

We note that the rotation of the basis in Eq.~17! is not the
only possible unitary transformation leading to block diag
nalization of the valence-band Hamiltonian. However, t
basisuui ,s& in Eq. ~17! leads to the form Eq.~18!, maxi-
mally close to the standard result for cubic structures.42,43 In
the absence of the hexagonal crystal field and strain,
matrix in Eq.~18! becomes diagonal atk50 and basis states
uu1 ,s&, uu2 ,s&, and uu3 ,s& coincide with the Bloch func-
tions for heavy, light, and split-off holes.
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Here the termsP,Q, R, S, andT are defined in Eqs.~19! and
~198!. The form ~22! generalizes the result of Chuang a
Chang34 by including termsT linear in wave vectork' .

At k'50, the only nondiagonal part of Hamiltonian~22!
is due to the spin-orbit splitting termD3. Thus, in the non-
relativistic approximation, the representation in Eqs.~21! and
~22! provides the most convenient description of valen
bands in wurtzite structures since the Bloch functions
heavy, light, and crystal-field split-off holes coincide wi
the basis vectorsuv1 ,s&, uv2 ,s&, anduv3 ,s& at k'50.

For the general case of a finite spin-orbit interaction a
hexagonal crystal field, there is no clear advantage of on
the forms in Eqs.~18! and~22! over the other. The cubiclike
Hamiltonian in Eq.~18! is more convenient for using a
analogy between cubic and wurtzite structures; however,
use of the non-relativistic-like Hamiltonian in Eq.~22! some-
times leads to simpler intermediate expressions. As will
demonstrated in Sec. III C, the two basis sets in Eqs.~17!
and ~21! are related to each other by a simple rotation
Bloch function space; thus they can be used interchangea

C. Spectrum and wave functions

The total carrier wave function can be presented as a
ear combination of plane waves with defined momentumk
and ‘‘spin’’ s. For j -type holes~where j denotes a HH, LH,
or SH! the total wave functionC jsk is equal to the produc
of the envelope exp(ik•r ) and a periodic Bloch function
Ujsk ,

C jsk~r !5eik•rUjsk~r !. ~23!

In the envelope function method, the hole Bloch functio
are presented, even at finite wave vectork, as a linear com-
bination of only sixG-point Bloch functions. The latter ca
be taken as a direct product of three eigenfunctions of orb
angular momentumL51 and two spinors. Thus the Bloc
functions used in the envelope-function method,^r u jsk&, are
the projections of the exact Bloch functionUjsk on the sub-
space of functions with special symmetry properties co
sponding to theG point. For finitek, the exact Bloch func-
tions deviate from theirG-subspace component by a ter
proportional to a small wave vectork:

Ujsk~r !5^r u jsk&1O~k!. ~24!

The contribution of this term becomes important, even in
vicinity of the G point, if the matrix elements taken wit
zeroth-order termsu jsk& vanish due to symmetrical prope
ties ~see, e.g., the case of intervalence-band optical tra
tions in Sec. IV C!.

Diagonalization of the valence-band Hamiltonian to tw
333 blocks~for holes with opposite ‘‘spin’’s56) simpli-
fies the calculations in many cases of interest. This proced
also provides means for interpreting the Bloch functio
u jsk& as vectors in three-dimensional Bloch spaces~see Fig.
2!, spanned on basis functions in Eqs.~17! and ~21!. Using
statesuui ,s& as a basis, the Bloch statesu jsk& can be written
as

u jsk&5ujks
~1! uu1 ,s&w1ujks

~2! uu2 ,s&w1ujks
~3! uu3 ,s&w

[uusk&
Tujks . ~25!
e
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Here the set of basis vectors is given byuusk&
T

5@ uu1 ,s&w ,uu2 ,s&w ,uu3 ,s&w], where the subscript
w5wk[arctan (ky /kx) shows explicitly that the basis state
uui ,s& depend on the direction of wave vectork.

The Bloch vectoru jks of the j -type hole with spins and
momentumk is specified by its three coordinates in the ba
uui ,s&. For the case where terms linear ink' can be ne-
glected, the Bloch vectors of the opposite spins are relate
ujk15ujk2* [ujk , i.e., the spin indexs can be dropped.

Normalizing vectoru jk to unity, one can write

ujk5F ujk~1!

ujk
~2!

ujk
~3!
G[F cosu jk

cosf jksinu jk

sinf jksinu jk

G . ~26!

The right-hand side of Eq.~26! defines complex spherica
coordinatesf andu of unit vectoru in the three-dimensiona
Bloch space spanned on the basis vectorsuui ,s&. Use of two
complex anglesf and u instead of three complex coord
nates eliminates the possibility of multiplyingu by an arbi-
trary complex constant and allows characterizing the co
plex ~real! Bloch vector by only four~two! real numbers
instead of six~three!. The Bloch vectors are real for the cas
of wave vectork directed along thez axis ~i.e., k'50).

In a similar fashion, the coordinate frame of basis vect
uv i ,s& is introduced. As follows from Eq.~20! and Fig. 2~b!,
the v frame coincides with theu frame after rotation of the

FIG. 2. Three-dimensional Bloch functions space.~a! Spherical
coordinatesu andf ~in general, complex! of the Bloch vectoru.
~b! Two coordinate framesu andv at an anglefuv from each other.
At k'50, Bloch vectors of heavy holes~light and split-off holes!
are real and directed along~perpendicular to! the axisu15v1.
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anglefuv5arctanA2'55° around the common axis 1. Co
ordinates of Bloch vectors in both representations are sim
related:

u~u!5u~v !, f~u!5f~v !1fuv . ~27!

For each value of wave vectork and spin indexs, the
333 matrix Hamiltonians in Eq.~18! or ~22! define three
mutually orthogonal vectorsu HH , u LH , and u SH, corre-
sponding to heavy, light, and split-off holes. For the arbitra
direction ofk, the calculation of the valence-band spectru
and Bloch vectors requires solution of a cubic equation.33

In the particular case of a wave vector parallel to thec
axis,k'50, the heavy-hole state is decoupled from the ot
states and the valence-band energies can be written as

E HH~kz,0!52D2~g1z22g3z!kz
2 ,

E LH,SH~kz,0!52D82~g1z1g3z!kz
2

6A~3g3zkz
21D9!212D3

2,

~28!

where D52(D11D2)1(d1z22d3z)«zz1(d1'1d3')«' ,
D85(D22D1)/21(d1z1d3z)«zz1(d1'2d3'/2)«' , and
D95(D12D2)/213d3z«zz2(3d3'/2)«' . As shown in Fig.
2~b!, the corresponding eigenvectors are real and given

u HH50, u LH,SH5p/2, f SH5f LH1p/2. ~29!

The anglef of light holesf LH
(v) in the basis of functions

uv i ,s& is given by

sin2f LH
~v ! 52

23/2D3

E LH2E SH
. ~30!

From Eqs.~29! and ~30! one can analyze the form of th
Bloch functions atk50 in two opposite limits of small and
large ratio D cr /D so. In the cubic case, i.e.,
E LH2E SH53D35D so, one hasf LH

(u) 5f LH
(v) 1fuv50, and

the basis vectorsuui ,s& in Eq. ~17! represent the pure Bloc
functions of heavy, light, and spin-orbit split-off holes. In th
nonrelativisticcase, i.e.,D350, we obtainf LH

(v) 50, and the
basis vectorsuv i ,s& of Eq. ~21! coincide with Bloch func-
tions of heavy, light, and crystal-field split-off holes. For th
general case of finiteD so andD cr , Fig. 2~b! shows that the
G-point Bloch function of heavy holes is still given by th
pure functionuu1 ,s&5uv1 ,s&, while that of light and split-
off holes are given by a mix of the limiting cubic and no
relativistic cases.

IV. TRANSITION MATRIX ELEMENTS

A. Hole scattering: Bloch overlap factor

Many important carrier scattering mechanisms involvi
interaction with a macrofield44 ~most notably, Coulomb im-
purity scattering and polar interaction with optical phonon!

are characterized by an interaction HamiltonianV̂int diagonal
in the Bloch function space. In this case the transition ma
element is factored into two parts: the envelope-function p
and an overlap integral of carrier Bloch functions@Eq. ~23!#:
ly

y

r

x
rt

z^C j 8s8k8uV̂intuC jsk& z2

5 z^eik8–ruV̂intueik–r& z2G~ jsk→ j 8s8k8!, ~31!

where the Bloch overlap factor45 is defined as

G~ jsk→ j 8s8k8!5 z^ j 8s8k8u jsk& z2. ~32!

Since the matrix element in Eq.~32! does not vanish identi-
cally due to symmetry properties, we neglect small mixtu
of states with different symmetry in Eq.~24!.

The Bloch factor for conduction electrons is given b
G(csk→cs8k8)5ds,s8 and the transition matrix elemen
in Eq. ~31! is determined solely by its envelope-functio
part. In general for holes, the Bloch factor~32! depends on
both the initial and the final particle wave vectors and do
not vanish for transitions between different valence band45

Thus the Bloch factor~as well as the complicated dispersio
law! is mainly responsible for the qualitative difference
electron and hole scattering processes.

For calculation of the Bloch factor in Eq.~32! we use the
vector representation of functionsu jsk& in Eq. ~25! together
with the definitions of basesuui ,s&w or uv i ,s&w in Eqs.~17!
and ~21!. The scalar product of basis functions depends
the difference in polar anglesw andw8 of initial and final
wave vectors, i.e.,

w8^un8,s8uun ,s&w5w8^vn8,s8uvn ,s&w

5dn,n8Rnss8~w2w8!.

Here the rotational functionR(w) is defined as

Rnss8~w!50^un ,s8uun ,s&w ~33!

and is found from Eq. ~17! or ~21!: R1115R122

5cos(3w/2), R1125R12152 isin(3w/2), R2115R222

5R3115R3225cos(w/2), and R2125R2215R312

5R3215 isin(w/2). Substituting Eqs.~25! and~33! into Eq.
~32!, we find the Bloch factor for ‘‘spin’’-conserving transi
tions

G~ jsk→ j 8sk8!5Uujks
~1! uj 8k8s

~1!* cos
3w

2
1~ujks

~2! uj 8k8s
~2!*

1ujks
~3! uj 8k8s

~3!* !cos
w

2 U
2

~34!

and for scattering with a ‘‘spin’’ flip, denoting by as̄
‘‘spin’’ opposite s,

G~ jsk→ j 8s̄k8!5Uujks
~1! uj 8k8s̄

~1!* sin
3w

2
2~ujks

~2! uj 8k8s̄
~2!*

1ujks
~3! uj 8k8s̄

~3!* !sin
w

2 U
2

, ~348!

wherew5wk2wk8 is the angle between projections of th
initial and final wave vectors on the lattice base plane.

Finally, the Bloch factor, averaged on nonpolarized init
and final states, is given by a noncoherent sum of Eqs.~34!
and ~348). Neglecting the linear ink' terms, we obtain
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G~ jk→ j 8k8!

[
1

2(
s,s8

G~ jsk→ j 8s8k8!

5Uujk~1!uj 8k8
~1!* cos

3w

2
1~ujk

~2!uj 8k8
~2!*1ujk

~3!uj 8k8
~3!* !cos

w

2 U
2

1Uujk~1!uj 8k8
~1! sin

3w

2
2~ujk

~2!uj 8k8
~2!

1ujk
~3!uj 8k8

~3!
!sin

w

2 U
2

.

~35!

To illustrate the use of Eq.~35! for the spin-averaged
Bloch factorG, let us consider the limiting case of heavy a
light holes in an unstrainedcubic crystal, neglecting effects
of warping. Applying the cubic approximation in Eqs.~8!
and~98) and settingD cr50, we find, from the Hamiltonian
in Eq. ~2!, the normalized eigenvectors of heavy and lig
holes:

uHH,k5F 12sinq2 icosq

2
A3
2
sinq

0

G ,
uLH,k5

1

A113cos2qF A3
2

~sin2q2 isin2q!

1

2
~113cos2q!

0

G ,
whereq5qk is the angle between the wave vectork and the
c axis.

Substitutingujk into Eq. ~35!, we recover the standar
expressions for Bloch factors in cubic materials,44 which de-
pend exclusively on the anglea between vectorsk andk8:

G~HH→ HH!5G~LH→LH!5
1

4
~113cos2a!,

G~HH→LH!5
3

4
sin2a. ~36!

B. Optical transitions: Valence to conduction bands

Consider the carrier interaction with an electromagne
wave specified by vector potentialA. For the plane wave
with mometumk and frequencyv the complex vector po-
tential has the formA(r ,t)5eA0exp(ik•r2 ivt), wheree is
a unit vector in the direction of vector potentialA and elec-
tric field E5( iv/c)A.

Applying the Coulomb gauge for the vector potent
¹•A50, the perturbation~to carrier Hamiltonian! due to in-
teraction with the electromagnetic wave can be written a

V̂ int5
e

m0c
SA•p̂1

e

2c
A2D , ~37!
t

c

l

wherep̂52 i\¹ is the momentum operator. The interactio
due to the second term in Eq.~37! is forbidden in many case
because of selection rules; otherwise it can be neglected
sufficiently small field intensity.

The time-independent matrix element for one photo
assisted transition between the initial stateC jsk and the final
stateC j 8s8k8 is written, using Eqs.~23! and ~37!, as

^C j 8s8k8uV̂intuC jsk&

5dk8,k1k

eA0
m0c

E d3rU j 8s8k1k
* @e•p̂1\k•e#Ujsk .

~38!

Below we use thedipole approximation, neglecting a small
photon wave vector,k '0. In this case the contribution o
the second term in square brackets in Eq.~38! vanishes for
transitions between different bands46 due to orthogonality of
corresponding Bloch functionsU. In this case the matrix
element in Eq.~38! is proportional to

M js→ j 8s8~k![E d3rU j 8s8k
* e•p̂ Ujsk . ~39!

Below we calculate the matrix element in Eq.~39! for
dipole optical transitions between conduction and vale
bands. The initial electron state belongs to a valence b
j , wherej denotes a HH, LH, or SH, and is characterized
a ‘‘spin’’ sv . The final state, corresponding to the condu
tion bandc and spinsc , is described by an orbital Bloch
function ^Su and spinor̂ scu5^↑u, ^↓u, corresponding to two
directions of electron spin 1/2. With the help of Eq.~24! one
can rewrite Eq.~39! as

M jsv→csc
~k!5^Su^scue•p̂u jsvk&. ~40!

Here we neglect the small contributions to the Bloch fun
tions in Eq.~24! with symmetry properties different from th
G point.

Using a vector representation of the Bloch function in E
~25!, we find

M jsv→csc
5(

i51

3

ujk
~ i !^Su^scue•p̂uui ,sv&

5(
i51

3

v jk
~ i !^Su^scue•p̂uv i ,sv&. ~41!

For simplicity we drop the spin indexsv from coordinates of
the Bloch vectorujksv

.
Since the interaction Hamiltonian in Eq.~37! is diagonal

in carrier spin, it is convenient to first calculate the mat
elements of momentum operatorp̂ in the valence-band basi
uv i ,s&. Because of symmetry properties of the Bloch fun
tions, the only nonzero matrix elements between the b
functions are given by~cf. Appendix C!

^Su p̂zu1,0&5Pz , ^Su p̂1u1,21&52^Su p̂2u1,1&5A2P' ,
~42!
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where p̂65 p̂x6 i p̂y ; two momentum matrix element con
stants can be defined asPz[^Su p̂zuZ& andP'[^Su p̂xuX&.

Due to cylindrical symmetry, the matrix element~40! de-
pends only on the differencew[wE2wk between base
plane-projected angles of vectorseiE and k. To simplify
calculations, we choosewk50 and denote the spherica
angles of vector e by w and q, i.e.,
e5(sinqcosw, sinqsinw, cosq). Applying Eq. ~42! and the
identity

e•p̂5
1

2
sinq~eiwp̂21e2 iwp̂1!1 p̂zcosq,

we obtain the matrix elements of the operatore•p̂ between
conduction-band states and the non-relativistic-like basis
uv i ,sv& listed in Table I. Using Eq.~20! to transform the se
uv i ,sv& to the cubiclike Bloch functions basisuui ,sv&, we
also obtain the matrix elements^Su^scue•p̂uuisvk& shown in
Table II. Finally, one can define47 the squared total matrix
element as a noncoherent sum ofuM u2 over four possible sets
of spin configurations:

uM j→c
tot u25 (

sc ,sv
uM jsv→csc

u2. ~43!

Consider the special case of a hole wave vector paralle
thec axis, i.e.,k'50. In this situation the anglewk is inde-
terminate and one can setw50 in Table I. Substituting Eqs
~26!, ~29!, and~41! into Eq. ~43!, we find

uMHH→c
tot u25uP'u2sin2q,

uMLH→c
tot u2

uMSH→c
tot u2J 5uP'u2sin2qH cos2fsin2f J 12uPzu2cos2qH sin2fcos2fJ ,

~44!

wheref5f LH
(v) is given by Eq.~30!.

TABLE I. Matrix elementŝ Su^scue•p̂uv i ,sv&, of optical tran-
sitions between conduction-band states and valence-band
states in Eq.~21!.

e•p̂ uv1 ,6& uv2 ,6& uv3 ,6&

^Su^↑u 2
1
2P'e

iwsinq 2
1
2P'e

2 iwsinq 7
i

A2
Pzcosq

^Su^↓u 7
i

2
P'e

2 iwsinq 7
i

2
P'e

iwsinq
1

A2
Pzcosq
et

to

In the limit of unstrained wurtzite crystals atk50, we
obtain sin2f5E LH

(0) /(ELH
(0)2E SH

(0) ), and Eq.~43! is reduced to
the well-known expression for transitions from the valenc
band edges.19 Furthermore, for cubic crystals
uPzu5uP'u→uPu and sin2f52/3, so that Eq.~43! reproduces
the results for optical transitions in cubic materials.47

The absolute values of constantsuPz,'u2 can be estimated
from experimentally measured conduction-band effect
massesmz,'

(c) using the result ofk•p theory:

m0

mz,x
~c! 511

2

m0
(
jÞc

z^cu p̂z,xu j & z2

Ec
~0!2Ej

~0! . ~45!

Neglecting the contribution tom(c) from all bandsj except
the three top valence bands~this is a less accurate approx
mation for GaN than for GaAs! and instead using the ga
valueEg for all energy differences in Eq.~45!, we find the
estimation for constantsPz,' ,

2uPz,'u2

m0
.EgS m0

mz,'
~c! 21D . ~46!

C. Inter-valence-band optical transitions

In this subsection we calculate the one-photon-assis
matrix element for transitions within valence bandsj , j 8,
which denote the HH, LH, and SH, using the dipole appro
mation in Eq.~40!. In this case it is not possible to substitu
the exact Bloch functions in Eq.~24!, Ujsk , by their com-
ponent withG-point symmetry properties,u jsk&. Unlike for
the transitions between the valence and conduction ban
Sec. IV B, the Bloch function contributions of zeroth ord
in k vanish due to symmetry properties~except the small par
proportional to the spin splitting constantks).

However, for intervalence-band transitions both the init
and final states are described by the envelope-func
Hamiltonian H, and one can use the followin
expressions48,49 for the momentum matrix element:

^Uj 8s8k8up̂uUjsk&5
m0

\
^UjskU ]H

]k UUjsk&

5
m0

\ 0^ j 8s8kU]H̄
]k Uu jsk&01O~k!.

~47!

The operator identity p̂5( im0 /\)@Hr2rH#5(m0 /
\)]H/]k was used in the first line of Eq.~47!, whereH is a

sis
and
TABLE II. Matrix elementŝ Su^scue•p̂uui ,su& of optical transitions between conduction-band states
valence-band basis states in Eq.~17!.

e•p̂ uu1 ,6& uu2 ,6& uu3 ,6&

^Su^↑u 2
1
2P'e

iwsinq 2
A3
6

@P'e
2 iwsinq72iPzcosq# 2

1

A6
@P'e

2 iwsinq6iPzcosq#

^Su^↓u 7
i

2
P'e

2 iwsinq
A3
6

@7 iP'e
iwsinq22Pzcosq#

1

A6
@7 iP'e

iwsinq1Pzcosq#
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full electron Hamiltonian. Replacement of the exact Ham
tonianH by its envelope-function counterpartH̄ was justi-
fied by Szmulowicz49 using the unitary transformation o
Bloch functions basis and diagonalizing the contribution
theG-like part ofH. HamiltonianH̄ in Eq. ~47! is not block
diagonal since it is defined with the fixed basis setu jsk&0
corresponding tow50.

The transfer to the block-diagonal form of the Ham
tonianH is achieved using relationsu jsk&w5Uwu jsk&0 and
H5UwH̄U2w , whereUw is a 636 unitary transformation
matrix specified by Eq.~17! or ~21!. Substituting the Bloch
function representation of Eq.~25! into Eq.~47!, we find the
matrix element for optical transitions from Eq.~39!,

M js→ j 8s8~k!

52\ (
i ,i 851

3

$ds8,s@Ks,i 8 i
~z! cosq1Ks,i 8 i

~' ! sinqcosw#

1Ks8s,i 8 i
~w! sinqsinw%v j 8ks8

~ i 8!* v jks
~ i ! . ~48!
n
om
re
en

a

a

ar
-

f

Herew5wE2wk , wherewE andq5qE are spherical angles
of the polarization vectoreiE. MatricesK have dimensions
of a wave vector and are defined as

K6
~z,' !52

m0

\2

]H6

]kz,'
, K ~w!52

m0

\2k'
FH,dUw

dw
U2wG .

~49!

Using the explicit Hamiltonian formH6 in Eq. ~22!, we
obtain

K ~z!53
~g1z22g3z!kz 0 6 i

3

A2
ḡzk'

0 ~g1z22g3z!kz 6 i
3

A2
ḡzk'

7 i
3

A2
ḡzk' 7 i

3

A2
ḡzk' ~g1z14g3z!kz

4
and
K ~' !53
~g1'1g3'!k' 3ḡ'k' 7ks6 i

3

A2
ḡzkz

3ḡ'k' ~g1'1g3'!k' 7ks6 i
3

A2
ḡzkz

7ks7 i
3

A2
ḡzkz 7ks7 i

3

A2
ḡzkz ~g1'22g3'!k'

4 .

s
ted
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Thus Eq.~48! expresses the matrix elements for optical tra
sitions between valence bands in terms of Bloch vector c
ponentsv jk of initial and final hole states. The total squa
matrix element is given by noncoherent sum over differ
spin configurations

uM j→ j 8
tot u25 (

s,s8
uM js→ js8u

2. ~50!

To illustrate the derived expressions, we consider the p
ticular case of a hole wave vector parallel to thec axis, i.e.,
k'50. Substituting Eqs.~26!, ~29!, and ~41! into Eqs.~48!
and~50!, we find the total squared matrix element for optic
transitions between different valence bands:

uM LH→ HH
tot u2/\2

uM SH→ HH
tot u2/\2J 5~9ḡz

2kz
212ks

2!H sin2fcos2fJ sin2q,
uM SH→ LH

tot u2/\25~9ḡz
2kz

212ks
2cos22f!sin2q

118g3z
2 kz

2sin22fcos2q.

~51!

Heref5f LH
(v) is given by Eq.~30!.

As seen from Eq.~51!, at k50 the transition matrix ele-
ments do not vanish identically as in cubic crystals, but
proportional to parameterks . The finite value of the spin-
-
-

t

r-

l

e

splitting constantks and violation of cubiclike selection rule
for intervalence-band optical transitions are directly rela
to the absence of a horizontal reflection plane in the wurt
point groupC6v ~cf. Appendix C!.

V. MATERIAL PARAMETERS
AND NUMERICAL RESULTS

Despite a number of experimental results for group-
nitride material properties, difficulties in fabrication of un
strained and sufficiently pure samples prohibit formulating
reliable and consistent set of experimental material par
eters. At present, the conduction- and valence-band par
eters, as well as deformation potential constants, are obta
from a comparison of experimental data with results ofab
initio calculations.

In Table III we present several sets of Luttinger-like p
rametersg and splitting energiesD for bulk GaN and AlN.
In the following calculations we use the material paramet
of GaN from the first line of the Table III. Luttinger-like
parameters are obtained using Eq.~A1! from the results ofab
initio calculations by Suzukiet al.,31 with the missing pa-
rameterg2z or A6 estimated from the quasicubic approxim
tion in Eq. ~9! or ~B6!.51 Constantks , responsible for the
removal of spin degeneracy, is neglected in the followi
calculations.
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TABLE III. Valence-band parameters set for wurtzite GaN and AlN. Dimensionless Luttinger-like
rameters are calculated from data presented in Ref. 31~the data of Ref. 35 are listed in parentheses!. Splitting
energiesD1,2,3 ~in meV! are derived from the experimental data presented in Ref. 50.

g1z g1' g2z g2' g3z g3' D1 D2'D3

GaN 2.47 2.85 'g2' 1.29 0.95 0.95 12.5 5.95
~2.57! ~2.66! ~1.0! ~0.95! ~0.97! 19.1a, 72.9b 7.0a, 5.2b

AlN 1.54 1.50 'g2' 0.78 0.63 0.62 2215a, 258.5b 6.3a, 6.8b

aReference 16.
bReference 31.
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Splitting energiesD1,2,3 and the deformation potentialb
are derived from the experimental data of Gilet al.50 on
transition energies ofA, B, andC excitons versus in-plane
biaxial residual strain in the hexagonal GaN epilayers. In
calculations we use Eqs.~14! and~28! together with the mos
recent experimental values of elasic constants52 C335398
GPa andC135106 GPa. Nonlinear fitting to strain-depende
transition energiesEc(0)2Ej (0) @see also Fig. 3~b!# results
in the following values of splitting energies:D1'12.5 meV,
D2'5.95 meV, andD3'5.94 meV, and, within the spherica
cubic approximation, a shear deformation potential value
b'21.67 eV. These values, deduced from the experime
data,50 are consistent with the first-principles calculations
Kim et al.;16 deformation potentialsd can be approximated
using Eq.~108). Finally, the valence-band hydrostatic defo
mation potential av is estimated from its gap valu
ag5ac2av'28.16 eV,50 using the empirical relation43

av'2ag/3.
Figure 3 demonstrates the effect of the in-plane biax

strain, specified by Eqs.~13! and ~14!, on hole eigenfunc-
tions and spectra in GaN atk50. In Fig. 3~b! we plot the
strain-induced change of the valence-band positions~relative
to the edge of the conduction band! calculated using Eq
~28!; Fig. 3~b! shows the anglef between the Bloch vector
of light holes in cubic and wurtzite crystals@cf. Fig. 2~b!#,
given by Eqs.~27! and~30!. For convenience, we choose th
top of the heavy-hole band in unstrained material as the
ergy reference.

In absence of deformation«50, the heavy- and light-hole
levels are split due to the hexagonal crystal field~vertical
solid line in Fig. 3!. Consider now the tensile biaxial stra
~dotted vertical line! with components«xx5«yy50.16% and
«zz520.085%, specified by the negative of«add in Eq. ~15!.
As discussed in Sec. II D, the effect of the finite hexago
crystal splitting termD cr can be substituted by the compre
sive ‘‘internal’’ deformation in Eq.~15!, corresponding to an
additional compressive biaxial strain«add. Applying the ten-
sile deformation2«add effectively cancels the contributio
D cr of the hexagonal component of the crystal field. Thus
valence-band eigenstates and spectrum in wurtzites bec
similar to those in cubic crystals: hole Bloch functions co
cide with their cubic counterparts@i.e., f50 in Fig. 3~a!#,
and degeneracy between heavy- and light-hole bands a
G point is restored.

The dashed vertical line in Fig. 3 corresponds
20.24% compressive strain in GaN lattice matched to
Al 0.1Ga0.9N alloy. As the magnitude of the compressiv
strain is increased, the Bloch vector angle approaches
r
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nonrelativistic limit off'55° ~see Sec. III C! and the split-
off hole band is further separated from the rest of the ban
while the distance between the heavy- and light-hole ba
saturates at the value ofE HH(0)2E LH(0)→(D113D2)/2
'15.2 meV.

Figure 4 presents the valence-band spectrum of unstra
~solid! and strained~dashed! GaN for wave vectork being
parallel ~left! or perpendicular~right! to the crystalc axis.
Strain parameters in Fig. 4 correspond to the vertical das
line in Fig. 3. As seen from Fig. 4, even in unstrained wur
ite material, the valence-band dispersion relations are hig
anisotropic and are characterized by an ‘‘anticrossing’’ b
havior due to a strong mixing of different hole bands. A
plying 20.24% compressive strain leads to some quant
tive changes in spectrum, while leaving the overall form
the dispersion curves intact. The absence of any profo
effect of biaxial strain on the valence-band spectrum can

FIG. 3. Effect of biaxial strain« on eigenfunctions and eigenen
ergies of heavy, light, and split-off holes atk50. ~a! Angle
f5fLH

(u) between the Bloch vector of the light holes and axisu1 in
Fig. 2 vs the strain component«xx5«'/2. ~b! Change in distance
between conduction and valence bands,d(Ec2Ej ), due to biaxial
strain.
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understood with the help of Fig. 3: even in the absence
external strain~solid vertical line!, wurtzite crystals are al-
ready prestrained due to an effective internal deformat
Therefore, finite external deformation in wurtzite structur
does not lead to qualitative changes in the hole spectrum
eigenstates, in contrast to the drastic effect of deformation
the degenerateG8 level in cubic crystals.

In Fig. 5 we plot the Bloch overlap factors, calculat
from Eq. ~35!, for elastic hole scattering between differe
valence bands versus the angleq between initial wave vecto
k and thec axis. The wave vector of the final statek8 is
chosen so that, despite the change in the direction ofk, initial
and final wave vectors remain orthogonal to each other
the limiting case of an unstrained cubic crystal, described
a spherical approximation to the 434 Luttinger-Kohn
Hamiltonian, substitutinga5p/2 into Eq.~36! would lead to
expressions, independent of q: G(HH→HH)
5G(LH→LH)51/4 andG(HH→LH)53/4. As seen from
Fig. 5, in wurtzite crystals the Bloch overlap factors depe
not only on the angle betweenk and k8, but also on the
directions of the initial and final wave vectors. The value
the Bloch overlap factor, given by Eq.~35!, is needed for the
calculation of hole scattering rates by Coulomb impuriti
polar optical phonons, and charged carriers.

In Figs. 6 and 7 we present the dimensionless total squ
matrix elements for the optical transition of a hole with
wave vector parallel to thec axis ~i.e., k'50). Matrix ele-
ments for transitions from valence to conduction bands~Fig.
6! are calculated using Eq.~44!, while those for intervalence
band transitions~Fig. 7! are obtained with the help of Eq
~51!. The cubic approximationPz5P' is used for the mo-
mentum matrix element constants. Figures 6~a! and 7~a!
show the polarization dependence of the optical transition
unstrained~solid! and strained~dashed! wurtzite GaN. In
agreement with Eq.~44!, the matrix elements of optical tran
sitions from any valence band to the conduction band
equal ~and independent of strain! at the polarization angle
q5arctanA2'55°.

In Figs. 6~b! and 7~b! we plotted the dependence of th

FIG. 4. Dispersion law of holes in unstrained~solid! and
strained~dashed! bulk GaN for different directions of the wav
vector. Biaxial strain with«xx520.242% corresponds to GaN la
tice matched to AlxGa12xN with x50.1.
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optical transition matrix elements on the in-plane biaxial
strain for the wave polarization parallel~solid! and perpen-
dicular ~dashed! to thec axis. As follows from Eqs.~44! and
~51!, the magnitude ofMHH→c

tot is not changed with strain.
The strain dependence for other transitions is specified by the
anglef5f LH

(v) given by Eq.~30!. The dotted vertical line in
Figs. 6~b! and 7~b! marks the intersection of several curves
and corresponds to the condition sin2f5cos2f satisfied at
f52p/4. Finally, we notice that the absolute magnitudes of
transition rates for the processes under consideration are pro
portional to the energy parameters 2uPu2/m0 and\2kz

2/2m0.
Using Eq. ~46!, numerical values1 m(c)50.19m0 and
Eg53.4 eV, and approximating the hole energy by the ther-
mal energy atT5300 K, we obtain the following estimates:
2uPu2/m0;15 eV and\2kz

2/2m0;25 meV. Thus the inten-
sity of the valence-band to conduction-band optical transi-
tions is substantially higher than the intensity of
intervalence-band optical transitions, since the latter are for-
bidden~to the lowest order ink) due to the selection rules.

VI. CONCLUSION

In this paper we have addressed several issues dealin
with the description of hole energy spectra and transitions in
wide-band-gap wurtzite materials within the envelope-

FIG. 5. Bloch overlap factorsG( jk→ j 8k8) for elastic hole scat-
tering between bandsj , j 8, which denote the HH, LH, and SH. The
hole energy is taken at 100 meV below levelG9. The wave vector
of the initial statek is specified by spherical anglesw50 and
0,q,p/2; for the final state the anglesw85q85p/2 are chosen.
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4372 55YU. M. SIRENKO et al.
function formalism. We have corrected the frequently us
quasicubic approximation for the wurtzite band-curvatu
parameters and deformation potential constants. The ana
between cubic and wurtzite valence-band Hamiltonians
elucidated by reformulating the latter in terms of Luttinge
like parametersg and establishing the connection, in E
~12!, between the hexagonal crystal splitting energy and
ditional, ‘‘built-in’’ strain in wurtzites.

In view of the importance of block diagonalization of th
full Hamiltonian for efficient band-structure and transitio
rate calculations, we have established a correspondenc
tween different proposed forms of 333 blocks and dis-
cussed their physical meanings. We demonstrated that t
forms correspond to different coordinate frames in the thr
dimensional Bloch space that can be transformed into
another by means of a rotation around the heavy-hole
~see Fig. 2!.

Finally, using a uniform approach based on bloc
diagonal forms of wurtzite Hamiltonian, we derived matr
elements for various transition processes involving valen
band carriers: scattering of holes, optical transitions from
valence band to the conduction band, and infrared transit
between the valence bands. Special attention was take
reproducing the corresponding results for cubic symme
~with warping neglected! as a special case of the wurtzi
parameter set. The numerical calculation of the transit
matrix elements has been performed using a set of mat
constants of GaN.
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APPENDIX A: COMPARISON OF NOTATIONS

Relations between different notations for valence-band
ciprocal mass parameters (g i , etc.! and deformation poten
tials (Di , etc.! in cubic materials are listed in Table IV~ex-
pressions in the same line are equal!. For simplicity, we set
\2/2m0→1. The parameterC of Refs. 21 and 53 is related t
parameters in Table IV byC25D223B2. Reciprocal mass
parameters and deformation potential constants of the s
vertical row in Table IV are related to each other accord
to Eq. ~6!.

In wurtzite materials, the Luttinger-like parametersg, in-

FIG. 7. Matrix element of optical transitions between valen
bands,uM j→ j 8

tot u2/\2kz
2 for bulk GaN andk'50. The rest of the

notations coincide with those in Fig. 6.

TABLE IV. Comparison of notations for the band curvature a
strain parameters in the valence bands of cubic materials.

Refs. 21,53,
Ref. 22 and 19 Ref. 53 Ref. 54

g1 2A 2(L12M )/3 2r 1 /A3
g2 2B/2 (M2L)/6 2r 3/2A3
g3 2D/2A3 2N/6 2r 5/2A6

Ref. 55 Ref. 19 Ref. 19 Ref. 54

2Dd
v 2av 2( l12m)/3 2d1 /A3

Du/3 2b/2 (m2 l )/6 2d3/2A3
Du8/3 2d/2A3 2n/6 2d5/2A6
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troduced in this paper, are related to parametersA of Bir and
Pikus19 in the following way:

g1z52A122A3/3, g2z5A6 /A82A3/12, g3z5A3/6,

g1'52A222A4/3, g2'52A4/31A5 , g3'52A4/3.
~A1!

The relation between deformation potentals can be obta
from the above formulas by changingA to D andg to d.

APPENDIX B: TRANSFORMATION
OF THE CUBIC HAMILTONIAN

Below we outline the derivation of the quasicubic a
proximation for wurtzite crystals and correct a mistake38 in
Ref. 19. We transform the cubic Hamiltonian in Eq.~2! to a
new coordinate frame with basis vectorsex8, ey8, andez8 di-
rected along@112̄#, @ 1̄10#, and@111#, correspondingly. The
transformation is specified by the rotation

F ex8ey8
ez8
G5

1

A6F 1 1 22

2A3 A3 0

A2 A2 A2
GF exey

ez
G . ~B1!

For simplicity we do not consider the strain partH« of the
Hamiltonian since it is directly related toHk by Eq. ~6!.

Thesphericalcomponents of Hamiltonian in Eq.~2!, pro-
portional to unity matrixI and scalar productsL•s and
(L–k)2, are invariant under rotation and should be expres
in terms of the ladder operators for the sake of compari
with Eq. ~3!:

L•s5Lzsz1A2~L1s21L2s1!, ~B2!

~L–k!25k'
21Lz

2~kz
22k'

2 /2!1~L1
2 k2

2 1L2
2 k1

2 !/2

1A2~@LzL1#kzk21@LzL2#kzk1!. ~B3!

Thewarping part of Eq.~2! is proportional to the combina
tion 6@LxLy#kxky1c.p., which under the rotation specifie
by Eq. ~B1! transforms to the sums

~22kz
21k'

2 !I13~kz
22k'

2 /2!Lz
21~L1

2 k2
2 1L2

2 k1
2 !

1A2~@LzL1#kzk21@LzL2#kzk1! ~B4!

and

A2~L1
2 kzk11L2

2 kzk2!1~@LzL1#k1
2 1@LzL2#k2

2 !.
~B5!

A comparison of terms in Eqs.~B2!–~B4! of the trans-
formed cubic equation with Eq.~3! for the wurtzite Hamil-
c

ed

d
n

tonian leads to the cubic approximation in Eqs.~8! and ~9!.
However, the warping terms in Eq.~B5!, proportional to the
differenceg22g3, do not have counterparts in the wurtzi
Hamiltonian since the groupC6v is not a subset of cubic
point groups.19,26

In the notations of Bir and Pikus, the quasicubic appro
mation for band-curvature parameters takes the form

A22A1522A45A3 , A354A52A2A6 . ~B6!

Equation ~B6! corrects the erroneous relation38

2A354A52A2A6 used in a number of publications.

APPENDIX C: BLOCH FUNCTIONS SETS

The products of basis functions of angular momenta 1
1/2 are related to the basis functions of momenta3

2 and
1
2 by

means of vector addition~Clebsch-Gordan! coefficients39

. ~C1!

Equation ~C1! provides relations between different Bloc
function sets, independent of their particular representat
If such representation is needed, the following form can
used for the functionsu1,m&:

u1,61&5~7uX&2 i uY&)/A2, u1,0&5uZ&, ~C2!

where uX&, uY&, and uZ&, are functions that transform asx,
y, and z under operations of the point group. Unlike fo
cubic symmetry, the point groupC6v does not contain a hori
zontal reflection plane and the functionuZ& is not odd inz.
However, the even part ofuZ& is proportional to a splitting
constantks[m0A7 /\

2 in Eq. ~3! that is usually small.
According to the Wigner-Eckard theorem,39 all matrix el-

ements of vectorp̂, ^L8,m8up̂uL,m&, calculated with different
eigenstates of angular momentaL andL8, can be expressed
in terms of a singlereducedmatrix element̂ L8uupuuL&. The
reduced matrix element for transitions between the eig
states ofL51 andL850 is related to the commonly use
quantity P[^ZupzuS& by the equality^1uupuu0&5A3P. In
this case all nonzero matrix elements are given by39

^Su p̂zu0&5P, ^Su p̂1u21&52^Su p̂2u1&5A2P.

The lowering of symmetry from the spherical to the ax
one leads to Eq.~42!.
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