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Exact parameter relations and effective masses withisp® zinc-blende tight-binding models
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Working within the next-nearest-neighbsp® zinc-blende model, we restrict the number of free tight-
binding parameters from 23 to 8 by directly inverting fhe X-, andL-point energy expressions. In addition,
we solve for the parameter dependence of @@l conduction- and valence-band masses and present opti-
mized parameter sets for GaAs, GaSb, AlAs, InAs, and InSb. The optimal parameters are incorporated in
energy-gap calculations for InAs{@a, _,Sb superlatticed.S50163-1827)07607-4

I. INTRODUCTION spinlesssp® zinc-blende next-nearest-neighbor tight-binding
model and derive the exact dependence of (&) zone-

Until fast first-principles band-structure algorithms center conduction- and valence-band masses on the tight-
emerge providing energies and wave functions accura’[bindil’lg parameters. This allows us to reduce the number of
enough for semiconductor device calculations, we must reilndependent empirical parameters from 23 to 8, and we
sort to semiempirical models such as tight bindifigor ~ €xploit the reduction to optimize the tight-binding param-
k-p.*%In these approaches we model the Hamiltonian matrixéters for many Ill-V compounds. The new parameters repro-
by introducing some set of unknown parameters, diagonaliz8uce the electron and heavy-hole masses, as well as the
the matrix at various critical points or along particular direc-Critical point energies at th, X, andL points. We incor-
tions, and selectively compare the results with experimentdporate these parameters in band-gap calculations for
data to determineonstraint equationgor the empirical pa-  NAs/In,Ga, _,Sb superlattices.
rameters. Naturally there is an inherent trade-off between
model complexity—measured by the number of parameters Il. FITTING PROCEDURE
and the dimension of the Hamiltonian matrix—and the num-
ber of constraints that can be satisfied. For quantum-well and
superlattice device calculatidch it is most important to re- Notations for the critical points, definitions of the empiri-
produce the zone-center carrier masses and band gaps andF@d parameters, and matrix elements of the tight-binding
address real-space effects such as electric fields, strain, aht#miltonian have been given previously in Ref. 11, subject
interface bonding. The tight-binding ané-p models to the corrections in our Appendix. Closed-form expressions
complement each other in treating these problems. for manyT’, X, andL energies also have been given and are

In k-p models the carrier masses are simple functions ofépeated below for convenience:
the empirical parameters, spin-orbit effects are relatively

A. Critical point energies

— 2
easy to incorporate, and closed-form expressions exist for aff(I' <) =2(A+B) = VI(A-B)/2]*+Pg, 1)
parameters. But the models are only valid near the zone
center—compromising their accuracy when applied to shortE(I" ¢)=1(C+D)+\[(C—D)/2]?+ PZ, 2
period superlattices—and, in most incarnations, include only 1o
the fcclattice symmetry and cannot reveal the richer zinc- E(X ¢)=(E+F)+ [(E—F)/212+ P2 3
blendecrystal structure. Tight-binding models, by contrast, ( 3v) 2( )= /2] ' &

embed the full zinc-blende lattice symmetry in the solutions

and are valid throughout the Brillouin zone. The constraintE(X,¢)=3(G+H)= VI(G—H)/2]?+Pg, (4)
equations relating the band energiesl'atX, andL to the
overlap integrals take a simple form, but heretofore theyE(ng):%(HJ)i V(1= 3)/2]%+ P§, (5)

have not been inverted. If spin-orbit effects are introduced, in

order to accurately describe the valence band, the constraip | =1k )+ [(K=L)/2P+[(Pat Pa)/2]2 6
equations become more complicated. Perhaps the great(;EstS 35) 2( A 2]+ [(Pgt Po)i2]". ©
impediment to successful tight-binding device calculations isqere the uppetiower) sign is for the conductionvalence}

that in all models the zone-center electron and hosses  hand states and the abbreviatiohsL are definedin terms
are complicated functions of the empirical parameters. Congpf the overlap integrals as

sequently, the overlap integrals are often determinecdy

hoc numerical fitting and the carrier masses are rarely A=P;+3Pi5, B=P,+3Pyq, @)
correct®®
In this paper we invert the constraint equations for the C=P3+2Py+Pyg, D=P,+2P5+Pyy, (8
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EEPZ_Plg, FEP3_2P14+P10, (9) KEP3+P12, LEP4+P13. (12)
G=P;—Pi5, H=P,—2P;5+Pyy, (10

The remainingL-point energiesE(L,,), E(L,,), E(L1c),
I=P3—Pj, J=P,—Py3, (11) andE(L,.) are the eigenvalues of the matrix
|
[ P ! (1-HP V3P v3 (1-HP -
—(1—i — ——(1-i
' 23 5 20 23 6
L 1+i)p P v 1+i)P V3P
%( i)Ps 2 ﬁ( i)P; 21
(13
V3P v3 (1-i)P P;—2P ! (1+i)(Pg—2Py)
— 20 _—— —1 37 2 - I -
V3 ! ! 2v2 B
V3 . .
ﬁ(lﬁLl)Pe V3Py E(l—l)(Ps—Zpg) P4—2Py3

and cannot be expressed in closed form.

Equations(1)—(6) contain the essential physics of the

3T5=3[E(T15)+E(T15,)], AF15E%[E(F15c)—E(F15U()2]1a)

tight-binding model. Most of these energy assignments are

forced by the band ordering and degeneracy,Et(L)(lc) and
E(Xsc) are not. Our semiarbitrary choices in E¢3). and(4)

(which are consistent with previous calculatidRsforce the
lower energyE(X,,) to depend orPg=4E,(0.5, 0.5, 0.5,
and the upper energi(Xs,) to depend onP,=4E,(0.5,

(22

SLg=3[E(Ls) +E(Lg,)], ALz=3[E(Lsc)—E(Ls,)].
(23

In Egs. (14)—(19) we are forced to break the symmetry be-

0.5, 0.9,0. In diamond structures these energies are degerfween anions and cations by choossignsin each equation
erate, but in zinc-blende structures the difference betweeRair and therefore consignirg<B or B<A, etc.; we choose
the anion and cation potential breaks this symmetry. Alithe upper signs for all pairs. Although a few other sign

other expressiongl), (2), (5), and (6) are symmetric with
respect to the anions and cations.

After settling on Eqs(1)—(6) we can pairwise invert them
to determineA—L solelyin terms of the experimental band
energies and the driving paramet&s—P4. The results are

A=3T,%JAT?-PZ, B=3TI;+AT?-PZ, (14
C=3T;5% VAT 2~ P3, D=3Ti5* JAT%-P2, (15
E=SX;7 VAX3—P2, F=3Xy+JAX2- P2, (16)
G=3X,7 JAX;-P§, H=3X;=AX{-Pj, 17
|=SXsF VAXZ— P2, J=3Xg+JAXZ-P?, (18)
K=SLs7 \/ALg— PS;PQ 2,

L=SLa+ \/ALg— szpg 2, (19

where we have introduced the notation

3T1=3[E(l'10) +E(I'y,)], AT=3[E(I'10)—E(T'y,)],

(20

choices give reasonable bands, most give nonsensical results.

OnceA-L are fixed byPs—P4 and the critical point en-
ergies, it is simple to invert Eq97)—(12) to determine
P,—Py4, P1g—P1s5 Pig, andPg solely in terms of empirical
data and the driving parametdPg—Pg. Thus we set

P,=(A+3G)/4, P,=(B+3E)/4, (29
P;=(C+F+21)/4, P,=(D+H+2J)/4, (25
Pio=(C+F-=21)/4, Py;;=(D+H-23)/4, (26

Pi,=—(C+F+21—4K)/4, Piy=—(D+H+2J—4L)/4,

(27)
P14:(C_F)/4, P15:(D_H)/4, (28)

and immediately reduce the model from 23 to 11 empirical
parameters. It is important to remember that E@$-(12)
and(24)—(29) contain no physics: they are purely notational.

B. (001) effective masses

To fit the (001) effective masses we must analytically
diagonalize the Hamiltonian in a neighborhoodloénd dif-
ferentiate twice with respect g, to get the curvature. Upon



55 EXACT PARAMETER RELATIONS AND EFFECTIE . . . 4355

examining the Hamiltonian matrix along tf@01) direction, and a doubly degeneralgs, upper band(If spin-orbit cou-
wherek=(0,0k,), we find that it splits into two %4 blocks.  pling were included the uppét;s, band would break degen-
One block couples thésy), |sy), |p,o), and|p,;) states and eracy away fromI" and split into heavy- and light-hole
yields nondegenerate eigenvalues forkgll Therefore, this  states. But we can only fit our doubly degenerdtgs, band

block gives the four nondegenerate bands: the lol¥g;  to onecurvature af’, and since the heavy-hole band is typi-

band, the lowell’;5; band, thel';, band, and thd’;; (con-  cally the highest-energy band in device structures we fit this
I';¢ band to the electron effective mass. The otheAblock It is difficult to obtain the conduction-band dispersion

couples thelpyo), [Px1), [Pyo), @nd|[pyy) states and gives nantically since the fourth-order characteristic polynomial
doubly degenerate eigenvalues for kjl. Therefore these for the |so) |S0): |Pyo)s and |p,.) block does not factor.

3”83'195 C%gﬁgpggg :ﬁethj tvg dogk;lr)]/ ddegiizzr?ri '?Qg;: tH‘?werefore, we calculate the conduction-band structure near
PPETT 15 PPel15, ' I',. to second order ik, by perturbation theory. The calcu-

omits spin-orbit effects thd';;, band does not split into lation is somewhat tedious, requiring a basis change to first
heavy-, light-, and split-off-hole states. Instead all three va- » req 9 9

lence bands are degeneratd’aand as we move ik space diagonalize the block al’, and after differentiating the
from I to X these split into a nondegeneratg, lower band second-order dispersion we obtain

412
——oop = — P1g(1+costy) — P1o(1—cosy) — Pssing, /4
apMe
[sin 6,( P4sing 6,+ 4P, 4c0s: 6,,) + coss 6,( Pgcoss 6, + 4P sink 6,) 1>
[A+B+(A—B)/cosf,]-[D+C+(D—C)/co¥]
[cos} 6,(P,sing 6,+ 4P 4c0S; 6,) — sins 6, ( Pscoss 6, + 4P, sin3 6,,) ]2
[A+B+(A-B)/cosh,]-[D+C—(D—-C)/cos,] ' (30
|
wherea, is the conventionalunit cell lattice constanti.e., A’ =P4+ Py 1+ cos bk,a0)]+ P1cos tk,a,), (34)

a,=5.65 A for GaA3, A-D remain defined by Eq$7) and
(8), and the angleg, and § are defined by
B’ =P,+Pd 1+cog 5k,a0)]+ P1ic08 5k,8,), (35

A-B 2P
oY= ————, Siy=—, " —aipy L
J(A—B)2+4p? J(A—B)?+4p2 C'=sinzkA0)Ps, (36
3D
D' =cog 7k,a0)Psg. 37
D-C 2Pg _ _— , . ,
cos, = sing, = Differentiating Eq.(33) twice with respect tk, and taking

V(D—-C)%+ 4p§' the appropriate root gives the valence—.band mass, and when
(32 we substitute Eqs(14)—(29) we obtain the remarkably
simple expression

J(D-C)2+4p2’

We should emphasize that E§O0) is valid for all choices of

P,—P,s the variablesA—D are merely abbreviations. If we 442

actually choosé\—D in accordance with Eq$14) and(15), ——oo7 =[E(I'15,) — 2 Xs1/2+[P5+ P}

then we can simplify Eq.30) further by replacing the oMhn

genominators of the second and third terms with +2\/(AF§5— Pg)(AXE— PS)]/(4AT15).
[E(I's0)— E(T 15)] and 2[E(I';) — E(T';5,)], respectively.

Note that the mass depends Brs and P, as well as the (39

driving parameter$s—Pg.

The dispersion relations for the,o), |px1). |Pyo), and
Ipy1) block, on the other hand, can be expressed in close
form for all k, as

A’ +B’ \/ A —B'
E(0,0k,) = +
( 2) > >

with where

Therefore thg001) valence-band mass depermdy on Pg,

89, and the critical point energies, provided that all supple-
mental constraint$14)—(29) are followed. Solving Eq(38)

for Py in terms of Pg gives

2
+C'24D’2, (33  Pe=x—2AZg+Pi—2\(AT s+ AXE— x) (AT T~ P%(), )
39
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TABLE |. Optimized tight-binding parameters.

Parameter GaAs GaSb AlAs InAs InSb
P, -9.08191 —8.828 99 —7.649 84 —9.53158 —8.732 26
P, —2.376 29 —3.408 29 —1.094 55 —3.662 47 —3.590 52
Pa —-1.374 69 —0.695 70 —0.699 42 —0.444 92 —0.490 99
P4 7.123 85 5.422 82 6.866 14 6.036 27 4.644 59
Ps —6.146 27 —5.537 07 —6.138 97 —5.73123 —4.869 33
Ps 2.794 74 2.28951 4.391 86 2.662 04 2.530 17
P+ 4.624 75 4.082 26 4.083 82 4.240 65 3.751 28
Pg —0.225 82 —0.565 43 -0.223 38 -0.110 24 —0.337 89
Pg 4.129 59 4.268 07 4.241 85 4.229 98 3.921 00
Pio 0.365 47 0.133 28 —0.087 32 0.405 13 0.221 90
P11 —4.149 31 —3.054 16 —4.45175 —2.94078 —2.430 31
P 0.680 23 0.14841 0.739 56 0.034 67 —0.063 08
P13 —2.244 39 —1.59053 —2.498 47 —-1.27102 —0.87552
Pia 0.51013 0.326 70 0.396 70 0.021 24 0.151 63
Pis 0.822 21 0.572 68 1.07197 0.70591 0.563 27
Pis —1.442 01 —-1.216 11 —1.711 45 —1.044 03 —0.950 95
P17 0.509 43 0.344 65 0.932 94 0.087 24 0.374 90
Pis 0.048 23 0.004 30 -0.223 94 0.072 10 —0.154 54
Pio 0.094 24 0.345 89 0.244 08 0.235 25 0.437 13
P2 0.054 94 0.23271 1.27961 0.192 87 0.563 23
Py 0.697 42 0.461 70 —0.822 16 0.473 85 0.10971
P,y 0 0 0 0 0
Pys 0 0 0 0 0

%2 IIl. RESULTS
(40)

X=2AT 15 2Xs—E(T'15,) + azm(9o |° EvaluatingP,—P,, P;—P15 P15, andP,4in accordance

with Egs.(14)—(19) and(24)—(29) constrains the band struc-

We choosePy>0 in accordance with two-center binding ar- ture to fit E(L5,), E(L3.), and all of thel’ and X energies

guments.

exactly; fixing Pg with Eq. (39) forces the exact heavy-hole

TABLE Il. Resulting critical point energiemeasured in e)and masseémeasured immg); m. andmy,,

result from the parameters in Table | white.? and m,,2 result from the parameters in Ref. 11.

GaAs GaSb AlAs InAs InSb
E(Ty,) —12.550 —12.000 —11.658 —12.690 -11.710
E(T15,) 0.000 0.000 —-0.004 0.000 0.000
E(T1c) 1.519 0.813 2.974 0.418 0.235
E(T15) 4.630 3.605 4.569 4.390 3.375
E(X4,) —9.830 —9.330 -9.417 —10.200 —9.200
E(Xa,) —6.880 —6.760 —5.545 —6.640 —6.430
E(Xs,) —2.940 —2.490 —1.967 —2.470 —2.345
E(X1e) 2.030 1.720 2.262 2.280 1.710
E(X3c) 2.380 1.790 2.626 2.660 1.830
E(Xsc) 12.473 10.138 12.672 10.547 8.707
E(Ly,) —10.600 —-10.170 —-10.075 —-10.920 —9.950
E(L,,) —6.830 —6.250 —-5.529 —6.230 —-5.920
E(Ls,) —-1.310 -1.225 —-0.749 —-1.260 —1.200
E(Lyc) 1.820 1.220 2.756 1.530 1.030
E(L3c) 5.495 4.510 5.157 5.420 4.415
m. 0.067 0.042 0.154 0.022 0.0137
Mpn 0.353 0.286 0.422 0.345 0.278
mg? 0.214 0.089 1.172 0.037 0.0264
Mpd 0.341 0.235 0.563 0.338 0.208

8Reference 11.
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FIG. 1. GaAs band structure.

FIG. 2. GaSb band structure.

FIG. 3. AlAs band structure.

Energy (eV)

FIG. 4. InAs band structure.

mass. SinceP,, and P,; do not appear in any constraint
equations we set them both to zero, leaving us with eight
independent parameterd2s—Pg, P, P17, Py, and

P, —that we vary to fitE(L,,), E(L,,), E(Ly.), and the
conduction-band effective ma¥s[We were unable to fit
E(L,.): forcing its correct value distorted the bandBor
GaAs, GaSbh, InAs, and InSb this approach worked quite
well, and we fit the conduction-band masses to within
0.00dm, and the nonanalytit -point energies to within 0.1
meV 13 For AlAs, unfortunately, this fitting scheme always
produced an offset valence-band maximum alongXhei-
rection that was~100 meV above thd'-point value. By
relaxing our constraints, and incurringl0 meV errors at
the critical points, we reduced the undesirable maximum to
~50 meV. Although this offset valence band makes our pa-
rameter set unsuitable f¢011) AlAs valence-band calcula-
tions, the A} ;Ga 7AS bands, more relevant for hetero-
structure calculations, are valid. All parameters, energy gaps,
and effective masses are presented in Tables | and Il, and the
band structures obtained from our new parametsmdid
lines) and the original parametegdotted lines, from Ref. 11

are shown in Figs. 1-5. Clearly the new parameter set gives
much greater conduction-band curvature, while both sets are
quite similar atl’, X, andL. TheK-point energy differences

Energy (eV)

A r A X UK z r

FIG. 5. InSb band structure.
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o 2 APPENDIX
w 15 O
Certain expressions in Ref. 11 should be corrected as fol-
310 lows:
s
] (Pxol Pyo) = = 4Exy(110)S, S, — 4iE,(011)4S5(C, — Cp),

0 (A1)
2 4 6 8 10 12 14 16

n (Monolayers)

(SolP20) = —4Esx(011)0S; S, + 4iE(110)0S3(C1+ Cy),

FIG. 6. Calculated band gapE, and cutoff wavelengths (A2)

A=fic/Eq of strained (InAs),/(In,Ga _,Sh), superlattices grown
on GaSb substrates. The solid lines use the parameters in Table I; <Sl|p20>: _4ESX(()_5,0_5,0,51093c , (A3)
the dotted lines use the parameters in Ref. 11.

<px0| sz> == 4Exy(110)08183_ 4i Exy(O]-l)OSZ(Cl_ Cs),
(A4)

result because the original parameter set was fitted pseudo-
potential calculations there, while the new parameters were<
not.

We have also illustrated the differences between the old
and new parameters by incorporating both sets in energy (SilPx1)=4Esx(011)1S,S;+4iEs(110);S,(C,+ Ca),
band-gap calculations for strainddAs),/(In,Ga, _,Sb), su- (A6)
perlattices grown on GaSb substrates. The calculations are
performed as described in Ref. 14, and we present results fofpyi|py1) = —4Eyy(110:S;S,+4iE(011);S;(C,— Cy),
the new parametersolid lineg and the original parameters (A7)
(dotted lineg in Fig. 6. As expected, the new parameter set
gives substantially different results and agrees more closely (S1]pp1) =4E4,(011),S;,S,+ 4iE,(110),S;5(C,+C»),
with 8X8 k-p calculations, such as those reported in Refs. (A8)
14 and 15.

PyolP20) = = 4Exy(110)0S,S3— 4iE,(011)(S;(C,— Ca),
(A5)

<px1| pzl> == 4Exy(110)18153+ 4i Exy(011)ls2(cl_ C(?A)é)

IV. CONCLUSION |
, . . _ , _ (Py1|pa)=—4E;(110),S,S;3+4iE,(011);S,(C,—Cy),
By inverting the critical point energy constraints and fit- PyalPas) Y 1525 Y S (Aslo)

ting the effective masses we ensure more accurate bands near
I' and reduce the number of free tight-binding parameters _
from 23 to 8. These improvements let us calculate superlat- go= cog mk,/2)cod mk,/2)cog 7k,/2)

tice band gaps more accurat_ely, but swgdtical prope(ties —i sin(k,/2)sin(k,/2)sin(7k,/2),  (All)
can be calculated more easily within thkep model since
they are dominated by theone-centetband structure. The

real advantages of the zinc-blende tight-binding model _|c+Db C-DJ? 2 vz

emerge when addressing full-zone effects, such ae X Elise) = 3 +H 7 | TP (AL2)
tunneling, and full-band transport calculatiéh¥ could ben-

efit from our parameters in Table I. These parameters could C+D c-D12 112

be improved further by fitting the satellite valley ne&rto E(I'y5)= — H + pg (A13)
the measured effective mass. We could also improve the 2 2

valence-band description by repeating the entire fitting pro-

cedure for the spin-dependent tight-binding model. UnfortuNote that in Ref. 11, and hence in this appendix,s

nately, many of the critical point energies and effectiveimplicity measured in units of 2a,, wherea, is the con-

masses cannot be obtained from the spin-dependent Hamitentional unit cell lattice constanti.e., a,=5.65 A for

tonian in closed form, making them much more difficult to GaAs. In the rest of this paper we measilkén angstroms
fit. andexplicitly denote anya, dependence.
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