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Exact parameter relations and effective masses withinsp3 zinc-blende tight-binding models
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Working within the next-nearest-neighborsp3 zinc-blende model, we restrict the number of free tight-
binding parameters from 23 to 8 by directly inverting theG-, X-, andL-point energy expressions. In addition,
we solve for the parameter dependence of the~001! conduction- and valence-band masses and present opti-
mized parameter sets for GaAs, GaSb, AlAs, InAs, and InSb. The optimal parameters are incorporated in
energy-gap calculations for InAs/InxGa12xSb superlattices.@S0163-1829~97!07607-8#
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I. INTRODUCTION

Until fast first-principles band-structure algorithm
emerge providing energies and wave functions accu
enough for semiconductor device calculations, we must
sort to semiempirical models such as tight binding1–3 or
k•p.4,5 In these approaches we model the Hamiltonian ma
by introducing some set of unknown parameters, diagona
the matrix at various critical points or along particular dire
tions, and selectively compare the results with experime
data to determineconstraint equationsfor the empirical pa-
rameters. Naturally there is an inherent trade-off betw
model complexity—measured by the number of parame
and the dimension of the Hamiltonian matrix—and the nu
ber of constraints that can be satisfied. For quantum-well
superlattice device calculations6–9 it is most important to re-
produce the zone-center carrier masses and band gaps a
address real-space effects such as electric fields, strain
interface bonding. The tight-binding andk•p models
complement each other in treating these problems.

In k•p models the carrier masses are simple functions
the empirical parameters, spin-orbit effects are relativ
easy to incorporate, and closed-form expressions exist fo
parameters. But the models are only valid near the z
center—compromising their accuracy when applied to sh
period superlattices—and, in most incarnations, include o
the fcc lattice symmetry and cannot reveal the richer zin
blendecrystal structure. Tight-binding models, by contras
embed the full zinc-blende lattice symmetry in the solutio
and are valid throughout the Brillouin zone. The constra
equations relating the band energies atG, X, andL to the
overlap integrals take a simple form, but heretofore th
have not been inverted. If spin-orbit effects are introduced
order to accurately describe the valence band, the const
equations become more complicated. Perhaps the gre
impediment to successful tight-binding device calculation
that in all models the zone-center electron and holemasses
are complicated functions of the empirical parameters. C
sequently, the overlap integrals are often determined byad
hoc numerical fitting and the carrier masses are rar
correct.10

In this paper we invert the constraint equations for
550163-1829/97/55~7!/4353~7!/$10.00
te
e-

x
e
-
al

n
rs
-
d

d to
nd

f
y
all
e
t-
ly

s
t

y
in
int
est
s

n-

y

e

spinlesssp3 zinc-blende next-nearest-neighbor tight-bindi
model and derive the exact dependence of the~001! zone-
center conduction- and valence-band masses on the t
binding parameters. This allows us to reduce the numbe
independent empirical parameters from 23 to 8, and
exploit the reduction to optimize the tight-binding param
eters for many III-V compounds. The new parameters rep
duce the electron and heavy-hole masses, as well as
critical point energies at theG, X, andL points. We incor-
porate these parameters in band-gap calculations
InAs/InxGa12xSb superlattices.

II. FITTING PROCEDURE

A. Critical point energies

Notations for the critical points, definitions of the empir
cal parameters, and matrix elements of the tight-bind
Hamiltonian have been given previously in Ref. 11, subj
to the corrections in our Appendix. Closed-form expressio
for manyG, X, andL energies also have been given and a
repeated below for convenience:

E~G
1v
c !5 1

2 ~A1B!6A@~A2B!/2#21P5
2, ~1!

E~G
15v
c!5 1

2 ~C1D !6A@~C2D !/2#21P8
2, ~2!

E~X
3v
c !5 1

2 ~E1F !6A@~E2F !/2#21P7
2, ~3!

E~X
1v
c!5 1

2 ~G1H !6A@~G2H !/2#21P6
2, ~4!

E~X
5v
c!5 1

2 ~ I1J!6A@~ I2J!/2#21P9
2, ~5!

E~L
3v
c!5 1

2 ~K1L !6A@~K2L !/2#21@~P81P9!/2#2. ~6!

Here the upper~lower! sign is for the conduction-~valence-!
band states and the abbreviationsA–L aredefinedin terms
of the overlap integrals as

A[P113P18, B[P213P19, ~7!

C[P312P141P10, D[P412P151P11, ~8!
4353 © 1997 The American Physical Society
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E[P22P19, F[P322P141P10, ~9!

G[P12P18, H[P422P151P11, ~10!

I[P32P10, J[P42P11, ~11!
e
a

e
ee
A

d

K[P31P12, L[P41P13. ~12!

The remainingL-point energiesE(L1v), E(L2v), E(L1c),
andE(L2c) are the eigenvalues of the matrix
3
P1

1

2&
~12 i !P5 2)P20 2

)

2&
~12 i !P6

1

2&
~11 i !P5 P2

)

2&
~11 i !P7 )P21

2)P20 2
)

2&
~12 i !P7 P322P12

1

2&
~11 i !~P822P9!

)

2&
~11 i !P6 )P21

1

2&
~12 i !~P822P9! P422P13

4 ~13!
e-

gn
sults.

cal

al.

ly
and cannot be expressed in closed form.
Equations~1!–~6! contain the essential physics of th

tight-binding model. Most of these energy assignments
forced by the band ordering and degeneracy, butE(X

1v
c ) and

E(X
3v
c ) are not. Our semiarbitrary choices in Eqs.~3! and~4!

~which are consistent with previous calculations2,3! force the
lower energyE(X1v) to depend onP6[4Esx~0.5, 0.5, 0.5!01
and the upper energyE(X3v) to depend onP7[4Esx~0.5,
0.5, 0.5!10. In diamond structures these energies are deg
erate, but in zinc-blende structures the difference betw
the anion and cation potential breaks this symmetry.
other expressions~1!, ~2!, ~5!, and ~6! are symmetric with
respect to the anions and cations.

After settling on Eqs.~1!–~6! we can pairwise invert them
to determineA–L solely in terms of the experimental ban
energies and the driving parametersP5–P9 . The results are

A5SG17ADG1
22P5

2, B5SG16ADG1
22P5

2, ~14!

C5SG157ADG15
2 2P8

2, D5SG156ADG15
2 2P8

2, ~15!

E5SX37ADX3
22P7

2, F5SX36ADX3
22P7

2, ~16!

G5SX17ADX1
22P6

2, H5SX16ADX1
22P6

2, ~17!

I5SX57ADX5
22P9

2, J5SX56ADX5
22P9

2, ~18!

K5SL37ADL3
22S P81P9

2 D 2,
L5SL36ADL3

22S P81P9

2 D 2, ~19!

where we have introduced the notation

SG1[
1
2 @E~G1c!1E~G1v!#, DG1[

1
2 @E~G1c!2E~G1v!#,

~20!
re

n-
n
ll

SG15[
1
2 @E~G15c!1E~G15v!#, DG15[

1
2 @E~G15c!2E~G15v!#,

~21!

A ~22!

SL3[
1
2 @E~L3c!1E~L3v!#, DL3[

1
2 @E~L3c!2E~L3v!#.

~23!

In Eqs. ~14!–~19! we are forced to break the symmetry b
tween anions and cations by choosingsignsin each equation
pair and therefore consigningA,B orB,A, etc.; we choose
the upper signs for all pairs. Although a few other si
choices give reasonable bands, most give nonsensical re

OnceA–L are fixed byP5–P9 and the critical point en-
ergies, it is simple to invert Eqs.~7!–~12! to determine
P1–P4 , P10–P15, P18, andP19 solely in terms of empirical
data and the driving parametersP5–P9 . Thus we set

P15~A13G!/4, P25~B13E!/4, ~24!

P35~C1F12I !/4, P45~D1H12J!/4, ~25!

P105~C1F22I !/4, P115~D1H22J!/4, ~26!

P1252~C1F12I24K !/4, P1352~D1H12J24L !/4,
~27!

P145~C2F !/4, P155~D2H !/4, ~28!

P185~A2G!/4, P195~B2E!/4 ~29!

and immediately reduce the model from 23 to 11 empiri
parameters. It is important to remember that Eqs.~7!–~12!
and~24!–~29! contain no physics: they are purely notation

B. „001… effective masses

To fit the ~001! effective masses we must analytical
diagonalize the Hamiltonian in a neighborhood ofG and dif-
ferentiate twice with respect tokz to get the curvature. Upon
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examining the Hamiltonian matrix along the~001! direction,
wherek5~0,0,kz!, we find that it splits into two 434 blocks.
One block couples theus0&, us1&, upz0&, and upz1& states and
yields nondegenerate eigenvalues for allkz . Therefore, this
block gives the four nondegenerate bands: the lowerG15v
band, the lowerG15c band, theG1v band, and theG1c ~con-
duction! band; we fit the zone-center~001! curvature of the
G1c band to the electron effective mass. The other 434 block
couples theupx0&, upx1&, upy0&, and upy1& states and gives
doubly degenerate eigenvalues for allkz . Therefore these
energies correspond to the two doubly degenerate bands
upperG15c band and the upperG15v band. Since the mode
omits spin-orbit effects theG15v band does not split into
heavy-, light-, and split-off-hole states. Instead all three
lence bands are degenerate atG, and as we move ink space
from G to X these split into a nondegenerateG15v lower band
ith

se
the

-

and a doubly degenerateG15v upper band.~If spin-orbit cou-
pling were included the upperG15v band would break degen
eracy away fromG and split into heavy- and light-hole
states.! But we can only fit our doubly degenerateG15v band
to onecurvature atG, and since the heavy-hole band is typ
cally the highest-energy band in device structures we fit
upper valence band to match the~001! heavy-hole mass.

It is difficult to obtain the conduction-band dispersio
analytically since the fourth-order characteristic polynom
for the us0&, us1&, upz0&, and upz1& block does not factor.
Therefore, we calculate the conduction-band structure n
G1c to second order inkz by perturbation theory. The calcu
lation is somewhat tedious, requiring a basis change to
diagonalize the block atG, and after differentiating the
second-order dispersion we obtain
4\2

a0
2mc

~001! 52P18~11cosuu!2P19~12cosuu!2P5sinuu /4

1
@sin12u l~P7sin

1
2uu14P16cos

1
2uu!1cos12u l~P6cos

1
2uu14P17sin

1
2uu!#

2

@A1B1~A2B!/cosuu#2@D1C1~D2C!/cosu l #

1
@cos12u l~P7sin

1
2uu14P16cos

1
2uu!2sin12u l~P6cos

1
2uu14P17sin

1
2uu!#

2

@A1B1~A2B!/cosuu#2@D1C2~D2C!/cosu l #
, ~30!
hen

le-
wherea0 is the conventionalunit cell lattice constant~i.e.,
a055.65 Å for GaAs!, A–D remain defined by Eqs.~7! and
~8!, and the anglesuu andul are defined by

cosuu[
A2B

A~A2B!214P5
2
, sinuu[

2P5

A~A2B!214P5
2
,

~31!

cosu l[
D2C

A~D2C!214P8
2
, sinu l[

2P8

A~D2C!214P8
2
.

~32!

We should emphasize that Eq.~30! is valid forall choices of
P1–P23; the variablesA–D are merely abbreviations. If we
actually chooseA–D in accordance with Eqs.~14! and~15!,
then we can simplify Eq.~30! further by replacing the
denominators of the second and third terms w
2[E(G1c)2E(G15c)] and 2[E(G1c)2E(G15v)], respectively.
Note that the mass depends onP16 andP17 as well as the
driving parametersP5–P8 .

The dispersion relations for theupx0&, upx1&, upy0&, and
upy1& block, on the other hand, can be expressed in clo
form for all kz as

E~0,0,kz!5
A81B8

2
6AS A82B8

2
D 21C821D82, ~33!

with
d

A85P31P14@11cos~ 1
2kza0!#1P10cos~

1
2kza0!, ~34!

B85P41P15@11cos~ 1
2kza0!#1P11cos~

1
2kza0!, ~35!

C85sin~ 1
4kza0!P9 , ~36!

D85cos~ 1
4kza0!P8 . ~37!

Differentiating Eq.~33! twice with respect tokz and taking
the appropriate root gives the valence-band mass, and w
we substitute Eqs.~14!–~29! we obtain the remarkably
simple expression

4\2

a0
2mhh

~001! 5@E~G15v!2SX5#/21@P8
21P9

2

12A~DG15
2 2P8

2!~DX5
22P9

2!#/~4DG15!.

~38!

Therefore the~001! valence-band mass dependsonly on P8,
P9, and the critical point energies, provided that all supp
mental constraints~14!–~29! are followed. Solving Eq.~38!
for P9 in terms ofP8 gives

P9
25x22DG15

2 1P8
222A~DG15

2 1DX5
22x!~DG15

2 2P8
2!,
~39!

where
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TABLE I. Optimized tight-binding parameters.

Parameter GaAs GaSb AlAs InAs InSb

P1 29.081 91 28.828 99 27.649 84 29.531 58 28.732 26
P2 22.376 29 23.408 29 21.094 55 23.662 47 23.590 52
P3 21.374 69 20.695 70 20.699 42 20.444 92 20.490 99
P4 7.123 85 5.422 82 6.866 14 6.036 27 4.644
P5 26.146 27 25.537 07 26.138 97 25.731 23 24.869 33
P6 2.794 74 2.289 51 4.391 86 2.662 04 2.530
P7 4.624 75 4.082 26 4.083 82 4.240 65 3.751
P8 20.225 82 20.565 43 20.223 38 20.110 24 20.337 89
P9 4.129 59 4.268 07 4.241 85 4.229 98 3.921
P10 0.365 47 0.133 28 20.087 32 0.405 13 0.221 90
P11 24.149 31 23.054 16 24.451 75 22.940 78 22.430 31
P12 0.680 23 0.148 41 0.739 56 0.034 67 20.063 08
P13 22.244 39 21.590 53 22.498 47 21.271 02 20.875 52
P14 0.510 13 0.326 70 0.396 70 0.021 24 0.151
P15 0.822 21 0.572 68 1.071 97 0.705 91 0.563
P16 21.442 01 21.216 11 21.711 45 21.044 03 20.950 95
P17 0.509 43 0.344 65 0.932 94 0.087 24 0.374
P18 0.048 23 0.004 30 20.223 94 0.072 10 20.154 54
P19 0.094 24 0.345 89 0.244 08 0.235 25 0.437
P20 0.054 94 0.232 71 1.279 61 0.192 87 0.563
P21 0.697 42 0.461 70 20.822 16 0.473 85 0.109 71
P22 0 0 0 0 0
P23 0 0 0 0 0
r-
-

e

x[2DG15FSX52E~G15v!1
8\2

a0
2mhh

~001!G . ~40!

We chooseP9.0 in accordance with two-center binding a
guments.
III. RESULTS

EvaluatingP1–P4 , P10–P15, P18, andP19 in accordance
with Eqs.~14!–~19! and~24!–~29! constrains the band struc
ture to fit E(L3v), E(L3c), and all of theG andX energies
exactly; fixingP9 with Eq. ~39! forces the exact heavy-hol
TABLE II. Resulting critical point energies~measured in eV! and masses~measured inm0!; mc andmhh
result from the parameters in Table I whilemc

a andmhh
a result from the parameters in Ref. 11.

GaAs GaSb AlAs InAs InSb

E(G1v) 212.550 212.000 211.658 212.690 211.710
E(G15v) 0.000 0.000 20.004 0.000 0.000
E(G1c) 1.519 0.813 2.974 0.418 0.235
E(G15c) 4.630 3.605 4.569 4.390 3.375
E(X1v) 29.830 29.330 29.417 210.200 29.200
E(X3v) 26.880 26.760 25.545 26.640 26.430
E(X5v) 22.940 22.490 21.967 22.470 22.345
E(X1c) 2.030 1.720 2.262 2.280 1.710
E(X3c) 2.380 1.790 2.626 2.660 1.830
E(X5c) 12.473 10.138 12.672 10.547 8.707
E(L1v) 210.600 210.170 210.075 210.920 29.950
E(L2v) 26.830 26.250 25.529 26.230 25.920
E(L3v) 21.310 21.225 20.749 21.260 21.200
E(L1c) 1.820 1.220 2.756 1.530 1.030
E(L3c) 5.495 4.510 5.157 5.420 4.415
mc 0.067 0.042 0.154 0.022 0.0137
mhh 0.353 0.286 0.422 0.345 0.278
mc

a 0.214 0.089 1.172 0.037 0.0264
mhh

a 0.341 0.235 0.563 0.338 0.208

aReference 11.
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FIG. 1. GaAs band structure.

FIG. 2. GaSb band structure.

FIG. 3. AlAs band structure.
mass. SinceP22 and P23 do not appear in any constrain
equations we set them both to zero, leaving us with ei
independent parameters—P5–P8 , P16, P17, P20, and
P21—that we vary to fitE(L1v), E(L2v), E(L1c), and the
conduction-band effective mass.12 @We were unable to fit
E(L2c): forcing its correct value distorted the bands.# For
GaAs, GaSb, InAs, and InSb this approach worked qu
well, and we fit the conduction-band masses to with
0.001m0 and the nonanalyticL-point energies to within 0.1
meV.13 For AlAs, unfortunately, this fitting scheme alway
produced an offset valence-band maximum along theS di-
rection that was;100 meV above theG-point value. By
relaxing our constraints, and incurring;10 meV errors at
the critical points, we reduced the undesirable maximum
;50 meV. Although this offset valence band makes our
rameter set unsuitable for~011! AlAs valence-band calcula
tions, the Al0.30Ga0.70As bands, more relevant for hetero
structure calculations, are valid. All parameters, energy ga
and effective masses are presented in Tables I and II, and
band structures obtained from our new parameters~solid
lines! and the original parameters~dotted lines, from Ref. 11!
are shown in Figs. 1–5. Clearly the new parameter set g
much greater conduction-band curvature, while both sets
quite similar atG, X, andL. TheK-point energy differences

FIG. 4. InAs band structure.

FIG. 5. InSb band structure.
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result because the original parameter set was fitted pse
potential calculations there, while the new parameters w
not.

We have also illustrated the differences between the
and new parameters by incorporating both sets in ene
band-gap calculations for strained~InAs!n/~InxGa12xSb!n su-
perlattices grown on GaSb substrates. The calculations
performed as described in Ref. 14, and we present result
the new parameters~solid lines! and the original parameter
~dotted lines! in Fig. 6. As expected, the new parameter
gives substantially different results and agrees more clo
with 838 k•p calculations, such as those reported in Re
14 and 15.

IV. CONCLUSION

By inverting the critical point energy constraints and fi
ting the effective masses we ensure more accurate bands
G and reduce the number of free tight-binding parame
from 23 to 8. These improvements let us calculate supe
tice band gaps more accurately, but suchoptical properties
can be calculated more easily within thek•p model since
they are dominated by thezone-centerband structure. The
real advantages of the zinc-blende tight-binding mo
emerge when addressing full-zone effects, such asG to X
tunneling, and full-band transport calculations16,17could ben-
efit from our parameters in Table I. These parameters co
be improved further by fitting the satellite valley nearX to
the measured effective mass. We could also improve
valence-band description by repeating the entire fitting p
cedure for the spin-dependent tight-binding model. Unfor
nately, many of the critical point energies and effecti
masses cannot be obtained from the spin-dependent Ha
tonian in closed form, making them much more difficult
fit.

FIG. 6. Calculated band gapsEg and cutoff wavelengths
l5\c/Eg of strained ~InAs!n/~InxGa12xSb!n superlattices grown
on GaSb substrates. The solid lines use the parameters in Ta
the dotted lines use the parameters in Ref. 11.
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APPENDIX

Certain expressions in Ref. 11 should be corrected as
lows:

^px0upy0&524Exy~110!0S1S224iExy~011!0S3~C12C2!,
~A1!

^s0upz0&524Esx~011!0S1S214iEsx~110!0S3~C11C2!,
~A2!

^s1upz0&524Esx~0.5,0.5,0.5!10g3* , ~A3!

^px0upz0&524Exy~110!0S1S324iExy~011!0S2~C12C3!,
~A4!

^py0upz0&524Exy~110!0S2S324iExy~011!0S1~C22C3!,
~A5!

^s1upx1&54Esx~011!1S2S314iEsx~110!1S1~C21C3!,
~A6!

^px1upy1&524Exy~110!1S1S214iExy~011!1S3~C12C2!,
~A7!

^s1upz1&54Esx~011!1S1S214iEsx~110!1S3~C11C2!,
~A8!

^px1upz1&524Exy~110!1S1S314iExy~011!1S2~C12C3!,
~A9!

^py1upz1&524Exy~110!1S2S314iExy~011!1S1~C22C3!,
~A10!

g05cos~pkx/2!cos~pky/2!cos~pkz/2!

2 i sin~pkx/2!sin~pky/2!sin~pkz/2!, ~A11!

E~G15c!5FC1D

2 G1H FC2D

2 G21P8
2J 1/2, ~A12!

E~G15v!5FC1D

2 G2H FC2D

2 G21P8
2J 1/2. ~A13!

Note that in Ref. 11, and hence in this appendix,k is
implicitly measured in units of 2p/a0, wherea0 is thecon-
ventional unit cell lattice constant~i.e., a055.65 Å for
GaAs!. In the rest of this paper we measurek in angstroms
andexplicitly denote anya0 dependence.
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