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The linear optical response of semiconductors has been studied beyond the density-functional thedry with
initio pseudopotentials and the random-phase approximation. Effects of the macroscopic local fields and the
microscopic exchange-correlation interaction are included in the description of the optical spectra. Quasipar-
ticle corrections to the single-particle energies have been added in the polarization function. Numerical calcu-
lations are performed for the group-IV materials Si, SiC, and diamond as model substances. In the static limit
and in the low-frequency region, corrections due to the local fields reduce the dielectric function, whereas
inclusion of the exchange-correlation interaction enhance the oscillator strengths. In the high-energy region
these effect have a more complex character, and the signs of the relevant corrections change in dependence on
the photon energy. The effects considered strongly modify the plasmon resonance in the energy-loss function.
The results obtained are discussed in comparison with theoretical and experimental data available.
[S0163-182607)05907-9

I. INTRODUCTION lows. Section Il contains a brief summary of the theory of
the macroscopic dielectric function. Computational details
In the past few years, a number of highly accurate calcuare outlined in Sec. Ill. The results are discussed and com-
lations of optical and dielectric properties of semiconductorgpared with those of other authors or experiments in Sec. IV.
have appeareti® In general they are based on the Section V contains a summary and conclusions.
independent-particle approximation [often called the

random-phase approximatiofiRPA)] and a first-principles Il. MACROSCOPIC DIELECTRIC FUNCTION
description of the electronic and atomic structure in the ) ) o _ )
framework of the density-functional theofPFT) (Ref. 10 A. Relation to microscopic dielectric function

in the local-density approximatiofLDA).** In some cases  According to Adlef and Wise? the macroscopic dielec-
partially exchange-correlatiofXC) effects have been taken tric function,=™(q; »), that governs the optical properties of
into  account. The independent-quasiparticléQP) g crysta® may be directly related to the zeroth element of
approximatiof!? has been also introduced. First attermipts the ~ inverse of the microscopic  dielectric  matrix
have been made to go beyond the RPA considering XC colz(q+G,q+ G’; w), whereq denotes a vanishing wave vec-
rections. Local'ﬁeldLF) eﬁ:ect§’9 due to the atomic struc- tor with directiona’ andG, andG’ represent elements of the
ture of the matter influence the resulting optical spectra. Ifteciprocal Bravais lattice of the crystal. The zeroth element
earlier works in the fielf~'°(and references thergifocal-  of the inverse dielectric matrix is influenced by the off-
field and excitonic effects have already been discussed on thfagonal elements of the dielectric matiThey are due to
basis of the empirical-pseudopotential method or expansionge |attice periodicity and generate “umklapp” processes in
Of the eigenfunctions in terms Of |Oca|ized 0I’bita|S. In Con'the die'ectric response. They are genera”y referred to as
trast to the discussion of complete optical spectra, the influ«gcal-field effects.”*8 31 \We define these LF effects more
ence of local-field effects has been more extensively disexactly as the discrepancy betwee¥(q; w) and the zeroth
cussed in the case of dielectric properties, in_particular fogjement of the dielectric matrix, lim.o(a,9; ).

the macroscopic electronic dielectric constant 20-28 The microscopic dielectric matrixs(q+G,q+G': o)

In the present paper the influence of local-field effects agg directly related to the polarization fu,nction
well as of exchange-correlation effects beyond the RPA isp(q+ G,q+G’;w) of the system under consideration. It
studied in detail for optical spectra of semiconductors. Insgntains the irreducible diagrams of the proper part of the
addition we discuss XC self-energy effeéfé,i.e., quasipar- two-particle Green functiof?
ticle (QP) shifts of the electron and hole DFT-LDA energies.
As model substances the group-IV materials diam¢@y
silicon (Si), and silicon carbidgSiC) crystallizing in dia-
mond or zinc-blende structures are considered. SiC allows If XC effects on the longitudinal response are not ne-
the study of the interplay of partially ionic bonding and the glected, e.g. within the DFT or DFT-LDA, the polarization
effects under consideration. The paper is organized as fofunction P appears instead that of independent parti€lgs

B. Exchange-correlation effects
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It can be easily provéd™*>**%*hat the expression for in- contributions, LF effects should reduce the resi,q; w)

teracting particles takes the form of the diagonal approximation. Second, when the kernel
Kxc is taken within the DFT-LDA, the XC effects only in-
P(q+G,q+G';0)= 2, I'(q+G,q+G"; w) fluence the LF corrections. The result of the diagonal ap-
G proximatione(q,q; w) is not influenced.

" . The limit g— 0 can be explicitly performed in expressions
XPo(q+G",q+Ghw), (1) (1)—(3) using the relatiof
where the matrix” is related to the vertex function of the
system. The inverse matrix is given as (ck|vlvk)

ig-x N\ — ,
<Ck|e |Uk > hqec(k)—ev(k) 5k-k ’

4
where the velocity operator=i/A[H,x]_ belonging to the
single-particle HamiltonianH is introduced. Since the
XKxc(q+G",q+G"j0). (2)  Hamiltonian has the formal structuté=p%/2m+V,+V,,
where the total potentia¥ =V, +V,,, is divided into a local

I Yq+G,q+G";0)=8g.6:— > Po(q+G,q+G";w)
GH

The kernelKyc in this equation describes the XC effects

taken into the two-particle function beyond the RPA. Within (1) and a nonlocal (nl) part, the velocity operatacannot be
the DFT it may be represented in real space b)/eplaced by the momentum opera@im. Rather a correc-

Kyc=6%Exc/(8ndn’), with the electron density(x) and tion term~V,, appears. Typical or_igins of such nonlocglities
the total XC energfEc .22 Practically the same result fol- are the nonlocal pseudopotentials used to describe the

. . . 7 .
lows within the so-called time-dependent Iocal-densitye_lec’[ron'_Ion Intgractloﬁ. Here .B|OCh mtt_agrals of exponen-
tial functions with the Bloch eigenfunctioriak) belonging

{o the bandindex, the wave vectok from the Brillouin
zone (BZ), and the single-particle energy,(k) are intro-
duced. Within the DFT-LDA treatmetft!! of the electronic
structure e,(k) and [nk) are solutions of the Kohn-Sham
equations. For the considered semiconductors, the Bloch
states will be taken to have occupancies ofcOnduction
bandsn=c) or 1 (valence bands=v).

The important elements of the dielectric matrix containing
The g—0 limit is required to obtain the macroscopic di- the g dependence may be rewritten by means of relatin
electric function for optical applications. This limit has to be what can be interpreted as a transformation from a longitu-

taken with care to keep the correct analytical properties oflinal to a transverse electromagnetic perturbatiafor
this function and the underlying inverse dielectric matfix. g—0, the head element results into

This may be reached by the direct diagonalization of the

dielectric matrix. The procedure for the zeroth element, £(0,0;0)=0-&(w)-q, (5)
which is of interest here, has been described by Pick, Cohen, )

and Martin® As a result the longitudinal macroscopic di- with the tensor elementsi,(=x,y,z) resulting from the
electric function is derived to be matrix-element displacement in the polarization function for
independent particles. Neglecting for simplicity the XC ef-
fects for a moment, the wing elements follow in the form

diagonal part is constant. This LDA behavior is, generally
speaking, incorrect. Howevefxc always appears in a prod-
uct PgKxc. Thus theq dependence dP, damps the small-
g contributions, although more slowly than in real systems.

C. Optical limit

MG )=lim{e(q,q0)— > &(q,Gw)

q—0 G,G'(#0) |G|
s(q,G;w)ZdWW(G;w),
XS YG,G";0)e(G,qw) !, 3) q
where S™1 is the inverse of the lower-right submatrix of s(G,q;w)=%W*(G;—w)ﬁ, (6)

e(q+G,g+G’;w) corresponding to nonzero reciprocal-

lattice vectorsG and G'#0, the so-called “body” of the with (j=x,y,2)
dielectric matrix2® This submatrix is always an analytical

function ofq, even afg=0. Therefore, the limij— 0 can be 16me’h
taken from the very beginning. The same holds partially for W;(G;w)= W
the “wing” elementse(q,G;w) and ¢(G,q;w) of the di-

electric matrix. However, their remaining wave-vector de- (Ck|eiG'X|vk)<vk|vj|Ck)

pendence and the wave-vector dependence of the “head” sz: CE [e(K)—e,(K)P—72(w+in)?
£(0,9; w) of the matrix govern the analytic properties of the e ’
macroscopic dielectric function. The second term on the (7)

right-hand side represents the local-field corrections to th¢=C tiv. the lonaitudinal ic dielectric func-
macroscopic dielectric function, whereas the first term corre-; onsequently, the longitudinal macroscopic dielectric func
sponds to the response in a nearly homogeneous systeﬂgn transforms into

Representationi3) allows two important conclusions. First,

M/A- — A M A
assuming that the diagonal elements give rise to the main € (q,w)—Q'f (©)-3, ®
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TABLE I. Convergence ot., including local-field effects as well as nonlocality of the velocity operator
as a function of the number of conduction bamdlss. The XC effects are omitted. For comparison values
without LF effects Ncg=176) and experimental valug¢Ref. 41 are also listed.

Material  NOLF Ncg=16 Ncg=56 Ncg=76 Ncg=96 Ngg=116 Ngg=176 Expt.

Si 14.29 12.42 11.91 11.83 11.81 11.80 11.80 11.7
SiC 7.77 6.86 6.76 6.69 6.65 6.63 6.63 6.7
C 6.72 5.92 5.81 5.78 5.76 5.75 5.74 5.7
with the macroscopic optical tensor index-dependent quasiparticle shifts beyond the scissors-
operator approximation were discussed by us in detail in Ref.
" |G| e . 6. The wave functions are identified with those obtained
eij(w)=gjj(w)— Z mwi(e,w)s (G,G"w) from the DFT-LDA. Consequently, the optical transition ma-
GG (#0) trix elements are fixed at the corresponding values. The dy-
XW (G5 — w). (99  namical effects on the spectral distributions of the excited

electrons and holes are neglected. Only the DFT-LDA ener-
The relation of the macroscopic dielectric function in ex- gies in the spectra are replaced by such energies shifted by
pression(8) to the second-rank tenseM(w) indicates that Wwave-vector- and band-index-dependent many-body correc-
we have indeed introduced the longitudinal function. Thelions Aq(k). These corrections vary remarkably. For in-
tensore™(w) also determines the transverse dielectric func-Stance, for SiC we observe a considerable variation. In the
tion e-_s’\"(w)~e, with a unit vectore=e(q)L q. For cubic upper valence banda(k) vares from 0.0 eV Tg) t(.)
- . M/ N M . about 1.4 eV X4, L4). The shifts of the lower conduction
crystals the tensor is diagonad;j(w)=e"(w)di;, With  panqs with about 1.4 eV are rather independent. The varia-
equal components independent of the choice of the Cartesigp)ns are only of the order of 0.1 eV. However, for the higher

coordinate system. C_onseq_uently, _the macroscopi_c longitudisgnquction bandsXs, L,) there is an increase to about 2.0
nal and transverse dielectric functions are equal in the limit,y, (or more at the zone boundaries

. . _ M . .
of vanishing photon wave vectofSande..="(0) defines The XC effect of the electron-electron interaction is de-

the macroscopic electronic dielectric constant of the systeny.inad within the LDA. where the XC energac(n) per

electron is replaced by that of a homogeneous electron gas.

Ill. TECHNICAL DETAILS More precisely the Ceperley-Alder schefhés used in a
parametrization by Perdew and Zund®This parametriza-
tion is also the starting point for the determination of the XC

The electronic-structure calculations underlying the com+esponse kerneKyc. This approximate kernel is applied
putations of the optical properties are based on thehroughout the paper, i.e., also in the case of the calculations
DFT-LDA.* The electron-ion interaction is treated by norm- where QP effects are described by wave-vector- and band-
conservingab initio, fully separable pseudopotentials in the index-dependent shifts.
Kleinman-Bylander forni® They are based on relativistic
all-electron calculations for the free atoms by solving the
Dirac equation self-consistently. As model systems we con-
sider silicon- and carbon-based crystals. The C potentials are A crucial point of the calculations concerns the number of
softened by careful choosing of the core rdfliThe elec- conduction band$cg and the rankNg of the microscopic
tronic wave functions are expanded in terms of plane waveglielectric matrix taken into account. The convergence prop-
The energy cutoffs for the plane-wave expansion are chosegrties of the head, wing, and body elements with increasing
to 15, 34, and 42 Ry for silicofSi), silicon carbide(SiC), Ncg are rather different. The reason of the different conver-
and diamond(C). They are sufficient for converged total- gence properties is related to the different dependences on
energy and lattice-constant calculations. The total-energy ophe band structur For example, in the static case it nearly
timizations give rise to theoretical cubic lattice constants ofholds that e(q+G,q+G';0)~[e.(k)—€,(k)]™" with
a=10.227 a.u. for Sia=8.109 a.u. for SiC, anda=6.681 v=3 (2;1 for G=G'=0 (G=0, G'#0 or G#0, G'=0;
a.u. for C. They are used, although they slightly underestiG,G’ #0). Consequently, the convergence is determined by
mate the experimental onésand, hence, somewhat enlarge the body elements. Small numbers of conduction bands, e.g.,
the DFT-LDA transition energies. We also study the influ-Ncg=4, which give already a reasonable frequency depen-
ence of many-body QP effects. Thereby we usually overdence in the diagonal ca8avre insufficient. This is clearly
come the scissors-operator approximatiéii??* The QP  shown by Table | for the macroscopic dielectric constant
corrections to the DFT-LDA eigenvalues are computede... Many more bands are needed. In the computations of
within the GW approximation for the XC self-enerffyac-  the frequency dependences, we use numbigs=176 (Si,
cording to a simplified scheme developed by Cappellini andsiC, C), which give converged results.
co-workers??~*4 Using the numerical input described above  The influence of the size of the dielectric matrix that has
corresponding shift values have been published for Si antb be inverted is indicated in Fig. 1 for the macroscopic
diamond in Ref. 6, and for SiC in Ref. 44. The problemsdielectric constant. In the corresponding calculation for C,
accompanying the inclusion of wave-vector- and bandSiC, and Si, we included sets @& vectors through(000),

A. Electronic band-structure calculation

B. Convergence
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; | tion. It should be reduced to the smallest possible part, for
instance to the irreducible part of the BIBZ), i.e., xth part

of the BZ in the fcc case under consideration. This is in
general not possible. Since the matexq+G,q+G';w)

has the symmetry of the little groug, of the wave vector

d, the degree of the BZ-integration reduction dependsj.on
To achieve maximum computational efficiency, we make
full use of the symmetry under consideration.

5 ‘ 4 = ‘ Critical points of the IBZ integration concern the dense of
the k-point mesh and the type of the integration. It has been
proved previously®?>?that, in the calculation of the static
dielectric constant, a good convergence is achieved by the
use of a relatively small numbé\y, of speciakk points. Typi-

cal numbersN, are not very much larger than 10. However,
calculating the whole spectra of Ré(w) and ImeM(w),
many more points are need&dThe reason is that the anti-
symmetric part of a matrix elemest,(q+G,q+G’;w) is

] proportional to a Dirac’'ss function in the energy. Daling,
van Haeringen, and Fafidolve this problem by combining

1 the special-point technique with a continued-fraction expan-
sion of the polarization function. We apply a combination of

7 | A1y (a)
o, (200 an3)

‘oo

81 ’ ®)

Macroscopic dielectric constant €

ol T ] the linear tetrahedron methdf,and a special-point tech-
A © nique for thek-space integration. Because of the smallness
. ‘ of the wing and body elements of the dielectric matrix, the
e 0 40 60 80 10 requirements for their accuracy are considerably lower than
Number of reciprocal lattice vectors in the case of th&6=G’'=0 element. The most important

diagonal head contributions;(w) are calculated within the
tetrahedron method. More strictly speaking, their imaginary
vectors taken into account. Circlédotted ling: including the pure parts are integrated by means of this method, vyherea§ the
effect of local-field corrections; dotsolid line): the effect of the real _parts are then obtqlned via a.Kramers-Kromg reI_at|on.
XC kernelKyc is included in addition. The involved frequency integration is performed numerically
using discrete frequencies in a distance of 1 meV. We have
(111), (200, (220, (113, (222), (400, and (133, respec- showrf that N, =89 is sufficient in the IBZ of the fcc BZ.
tively. This means that the maximum matrix size consideregor the wing and body elements we use 235 spdciabints
is Ng=289. From Fig. 1 we conclude that a reasonable conwjithin the IBZ. To smooth the resulting spectra a Lorentzian
vergence is already obtained for a restriction utuectors  proadening ofp=0.1 eV [cf. expression(7)] is introduced.
of the type(113), independently of the inclusion of the XC \ye have checked that the results obtained with special-point
kernel in addition to the LF effects or not. The limitation to ,,mbers N.<44 are not sufficient. The spectra reveal
G .\/e.ctors shortgr than th@22)- ones corresponds to are- changes with increasinfyl, in the high-frequency region.
striction to the fifth-nearest-neighbor shell in the remprocalThe use ofN, =235 for the calculation of the off-diagonal

Bral/als lattice. The rank of the. matrix n thls_case ISeIements of the dielectric matrix seems to be a reasonable
Ng=59. Calculating only., , Baroni and Restd considered .
Sompromise.

up to 181 reciprocal-lattice vectors. However, here we hav
to calculate complete spectra, including absorption contribu-
tions. Thus, in order to make the computational time toler-

FIG. 1. Macroscopic dielectric constast,=¢™(0) for dia-
mond (a), silicon carbide(b), and silicon(c) vs the number ofc

able, the optical functions are evaluated with the mentioned IV. RESULTS AND DISCUSSION
restriction. . - . .
- . A F d d f dielect t
The sufficient numbeNcg of conduction bands depends requen_cy ependence o mlcrOSCOp.'C ¢ .ec ne m_a X
on the reciprocal-lattice vectof8 included in the dielectric The off-diagonal elements of the dielectric matrix repre-

matrix. Baldereschi and Tos&ftialready discussed that the sent the local-field effects. Important examples for wing and
large G,G' components of the dielectric matrix are domi- body matrix elements are represented in Fig. 2 for silicon.
nated by Bloch integrals connecting the valence bands t@hey amount to roughly a few percent of the values of the
high-lying conduction bands. Hybertsen and Létieon- G=G’'=0 elemenf In the w=0 case one finds 4% for the
cluded thatNcg must be on the order of double the size of wing G=(000),G’=(111), and 10% for the diagonal body
the _rank of the considered dielectric matrix to achieve: NUelementG=(111), G’ =(111). These values are generally
merical convergence of all the elements of the matrix torequced for higher frequencies. The effect of the off-diagonal
within a few percent. Our choice Mcz=176 andNg=59  pody elements is usually one order of magnitude smaller.
indicates a similar conclusion. The influence of the off-diagonal body elemenfsf.
G=(111) andG’'=(200)] is therefore rather limited. For
discussion of the main LF effects the transformation matrix

A crucial point of the explicit numerical calculations of in expression (3) may be nearly replaced by
the macroscopic dielectric function concerns the BZ integraS™1(G,G’;w) = dg.¢' /¢(G,G"; w).

C. Brillouin-zone integration
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TABLE II. Influence of LF and XC effects on the macroscopic
dielectric constant .. . Starting point is the diagonal approximation.
Successively the effects discussadnong them also wave-vector-
and band-index-dependent QP shifiave been included. For com-
parison experimental valuéRef. 41 are given.

Material diagonal +LF +LF+XC +LF+XC+QP Expt.

Si
SiC
C

14.29
7.77
6.79

11.80
6.63
574

12.74
6.84
6.03

10.85
5.88
5.36

11.7
6.7
5.7

energy in the GW approximation beyond the DFT-LDA in-
duces a further dramatic reduction. The reduction of the
static dielectric constant due to the self-energy corrections
has been reported for ifor diamond, and for Si¢? The
resulting values are below the experimental ones. This hap-
pens although the wave-vector- and band-index-dependent
QP corrections of the band energies are scaled down accord-
ing to a procedure described in Sec. IV C. The necessity for
such a remarkable reduction is already observed by Levine

0.0 0.0

-0.2

0 10 20 30 40 025
Photon energy (eV)

10 20 30 40
Photon energy (eV)

and Allan? bringing the calculated values, close to the
experimental ones. The reason is, at the very least, a puzzle.

The frequency-dependent changks™(w) induced by

LF and XC effects in the macroscopic optical functions are

represented in Fig. 3. In general, the influence of the XC
FIG. 2. One wing, diagonal body, and off-diagonal body ele-€ffects is remarkably smaller than that of the local fields.
ment of the symmetrized dielectric matrix of silicon vs photon en- This is understandable from the fact that the influence of the

ergy. The limitq—0||[ 100] is considered.

XC kernel vanishes with the neglect of the LF. However, in

contrast to the static case, where the XC inclusion reduces

The small-frequency argument fails somewhat in the re-
gion of high photon energiebw. Figure 2 indicates in the
silicon case that fofi w=20 eV the head and wing elements
practically vanish, whereas the diagonal body element makes
a finite contribution. However, according to expressi@n
the effect on the LF contributions to the macroscopic dielec-
tric function remains small, since their magnitude is limited
by the wing elements. This is clearly demonstrated in Fig. 3,
where the LF contribution to the macroscopic dielectric
function is plotted. One observes the well-known reduction
of its real part in the static limit. However, the most impor-
tant changes appear in the spectral region of the strongest
optical transitions. They can be positive or negative. Conse-
guently, no clear rules about the influence of LF corrections
may be derived for the frequency region above the absorp-
tion edge. More in detail, the changes in this region exhibit
an oscillator character. The oscillator frequencies may be
related to characteristic optical transitions. In the silicon
case, they are defined by that of tBg(Ey), E,, and E;
transitions. In the SiQC) spectra one observes big changes
close to the position of the main peaks in the absorption
spectra related t&, andE; (E,).°

B. LF and XC effects in the macroscopic dielectric function

In the static limit the influence of the effects under dis-
cussion are represented in Table Il. LF effects strongly re-
duce the dielectric constant evaluated within the diagonal

Real part

10 |

0

5

-20

4 6

2
Photon energy (eV)

c ol €
5 | |
N \/ VT Vo
4 8 12 16 4 8 12 16
SiC = SiC
| §~ 10 .
e
; S
£
SRVATLY ¥
S
! : -10
4 8 12

-20

4 6

2
Photon energy (eV,

approximation by about 20%. When the XC kernel is also FIG. 3. Local-field(solid line) and exchange-correlatiddotted
included, this reduction is partially lifted. It amounts only line) contributions to the macroscopic dielectric function vs photon
roughly 13%. The inclusion of the single-particle XC self- energy for the three materials C, SiC, and Si.
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FIG. 4. Macroscopic dielectric function of diamond vs photon FIG. 5. As Fig. 4, but for silicon carbide.

energy. Dashed line: without LF and XC effe¢tmly G=G'=0

elemeny; solid line: with LF and XC effects; dotted line: with LF  with LF but not showh The net effect including the LF and
and XC effects but shifted by wave-vector- and band-index-XC amounts roughly to only 60% of the pure LF influence
dependent QP corrections. using the RPA expression for the polarization function.

The comparison of the spectra for C, SiC, and Si make it
the LF effects, the sign of the XC effect varies with the €vident that the LF and XC effects show only weakly pro-
photon energy and is not clearly related to that of the LFnounced chemical trends with the averaged size of the atoms,
effects. In the low-energy range, the signs of the real parts ghe localization of the wave functions, or the averaged den-
A&eM(w) induced by LF and XC effects are different. In the Sity of the electrons. The strongest LF and XC effects appear
region of the main absorption peaks the situation of LF andOr silicon, whereas their relative influence is slightly re-
XC effects is not unique. Whereas in the Si case the xcduced, changing to diamond. This result is in agreement with
kernel strengthens the LF effects, the LF and XC influence§alier calculations for Si and 8 A simple explanation of
are nearly opposite for the stronger bonded materials SiC arif#is trend arises from expressi(8). Assuming that the mag-

C. In the high-energy range, where direct optical transitiondlitude of the wing and body elements of the dielectric matrix
expire, the effect of the XC kernel is negligible in the real

part as well as the imaginary part of the dielectric function. ‘ '
Positive and negative variations of the oscillator strengths
occur in the imaginary parts due to local fields. In general,
there is a reductiorfincrease below (above the main ab-
sorption peaks. The XC kernel acts only for photon energies
close to the main absorption, and reduces the LF effects on
average.

The macroscopic dielectric functions resulting for C, SiC,
and Si are plotted versus photon energy in Figs. 4, 5, and 6
within different approximations: without LF and XC effects,
with LF and XC effects, and with LF and XC effects but
using QP eigenvalues instead of DFT-LDA ones. Curves,
which represent LF effects separately, are not shown. The
main effect can already be seen from the plots, including LF
effects and the XC kernel. The nonlocality LF and many-
body XC effects have practically no influence on the peak
positions, but give rise to remarkable renormalizations of the
oscillator strengths. Compared with =G’ =0 element
of the dielectric function, the LF effects reduce the oscillator
strength ineM(w) in the spectral region below the main s . s
absorption peaks. On the other hand, the inclusion of the XC Photon energy (eV)
kernel reduces the LF effects in this region. The correspond-
ing curves lie in between those fe(w) andeM(w) (only FIG. 6. As Fig. 4, but for silicon.

Imaginary part

Real part
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; ‘ ‘ ‘ ; ‘ A=0.47 (Si), 0.84(SiC), andA=0.40 eV (C). The reason
for this observation is not very clear. One posssible reason
could be related to excitonic effects which increase with the
localization of the electronic states in the considered mate-
rial. We mention that similarly small scissors operators have
been found to bring the calcuations ef into agreement
with experiment

A general feature of the theoretical spectra for the imagi-
nary part is that the overestimation of the intensity of the
E, peak, i.e., the high-energy peak indfi(w), is reduced
by the LF effects in the case of Si and C. This maximum is
not more so sharply peaked as without LF and XC effects.
However, the shoulder at the low-energy side of the theoreti-
cal spectra ImM(w) is not enhanced. Only the inclusion of
the Coulomb attraction between the electron and hole is ex-
pected to enhance the oscillator strengths in this spectral re-
gion drastically. In the case of SiC the double peak in the Im
eM(w) spectrum is related to optical transitions other than
E; andE,, due to the narrowing of conduction and valence
bands around th¥ point in the Brillouin zoné.In principle,
after inclusion of LF and XC effects the same happens as in
the case of Si and C. It is obvious that, in the case of silicon
. . and diamond, LF or LF and XC or LF, XC, and QP effects
4 6 do not really improve the agreement of the theoretical spec-
tra with measurement data. This holds especially for the low-

FIG. 7. Macroscopic dielectric function of diamond, silicon car- energydEl Pﬁak in the |ma;]g|nary p.a”’ Whllc.h IS a_d.dltlonalll)_/f
bide, and silicon vs photon energy. Solid lines: calculated resultéOWere with respect to the experimental intensities. To ift

including LF, XC, and QP effects; dotted lines: experimental resultgDis discrepancy, the inC|USion_ of excitonic effects is ”eeo_'ed-
for Si (Ref. 48, SiC (Ref. 49 and diamondRef. 50. On the other hand, the reduction of the strength of the high-

energy E, peak seems to bring the theoretical absorption
gpectrum more in agreement with experiment. The agree-
ment with theory and experiment will be better in the high-
gnergy region, whereas it will be lower on the low-energy
ide of the main peak around 8 eV.
In the case of the reflectivity spectra shown in Fig. 8, the
agreement between theory and experiment is better than in
the case of the dielectric function. This holds especially for
the spectral shape, but also for the absolute values of the
reflectivity for Si, SiC(comparing with results of Ref. 49

C. Comparison with experiment only), and C, omitting the QP corrections. When the QP
In Fig. 7 the macroscopic dielectric functions of C, SicC, shifts are included the main peaks in the theoretical and ex-

and Si are calculated within the DFT-LDA but including LF, Perimental reflectivity spectra fall together. However, a re-
XC, and QP effects' and are Compared with experimentdﬂuction Of the reﬂeCtiVity appears at the IOW'energy Side Of
data‘}g_so The theoretica| Spectra are Sh|fted toward |Owerthe main peakS. The reason is the automatic reduction of the
energies to bring the experimental and theoretical real partgal part of the macroscopic dielectric function in this region.
closer together. For this purpose, the calculated QP shiftne may speculate that, after inclusion of the electron-hole
A, (k) are replaced byA-A,(k), with scaling factors Coulomb attraction, this failure could be lifted.

A=0.2(C), 0.45(SiC), and 0.5(Si). This rescaling reduces
the effect of the wave-vector- and band-index-dependent
quasiparticle shifts calculated for Si, SiC, and"¥ Consid-
ering the comparison of theoretical and experimental optical In Fig. 9 we present the results for the electron energy
spectra over a wide range of photon energies, one can cotess (EEL) function (—Im[1/eM(w)]) for C, SiC, and Si.
clude that the QP effect is overestimated for the most imporThe spectra have been obtained within the approach de-
tant optical transition, e.gE; andE, in Si and C, in contrast scribed in Sec. Il. Influences of LF and XC effects, as well as
to electron-hole pair excitations near the fundamental indiquasiparticle corrections of the Kohn-Sham energies on the
rect energy gap. Using the positions of the zero in the reablasma resonances, are also shown. The influence of the non-
parts of the macroscopic dielectric function in order to defindocal contribution to the optical transition operator due to the
averaged scissors operataks one derives from the wave- nonlocality of the pseudopotentifis not indicated in Fig. 9.
vector- and band-index-dependent QP corrections valueBhe calculated energy position of the volume plasmons are
A=0.95(Si), 1.65(SiC), and 2.65 eV(C). However, aver- presented in Table Il in comparison with available experi-
aged scissors operators being necessary only amount mental results. We find that the use of the momentum opera-
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scales with the electron density according to the generalize
f-sum rule®! the local-field corrections are proportional to
this density. However, the density is weighted by the invers
average gap of the system. As a consequence of the interpl:§§'}j
of the two factors, the net effect of the local fielts LF
combined with XC effects is absolutely and relatively
weaker in the materials with stronger bonds.

D. Energy-loss function
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FIG. 8. Comparison of theoretical reflectivity curvgisick solid
lines: including LF, XC, and QP effects; thin solid lines: without
LF, XC, and QP effectswith measured one&otted line$ for Si
(Ref. 48, SiC (1) (Ref. 51, SiC (2) (Ref. 52, and C(Ref. 53.

FIG. 9. Electron-energy-loss function for diamond, silicon car-
bide, and silicon vs loss energy. Bold solid lines: without LF, XC,
and QP effects; thin solid lines: with LF effects, dashed lines: with
LF and XC effects; dotted lines: with LF, XC, and QP effects.

. . . Experimental datécircles are taken from Refs. 5@5i) and 55(C).
tor p/m instead of the fullv operator in the calculations of Xper ircles ) ©

the polarization functioficf. Eq.(4)] produces large errors in
EEL spectra as compared with experimental data. Withou

the inclusion of nonlocality effects, the spectral position Ofcreased. The incorporation of QP correction moves the EEL

the maximum of the EEL function is found at highéy curves toward higher energies, in disagreement with experi-
about 1 eV energies, and the amplitude of the plasma resoy ent. However, the reduction of the broadening of the

nance occurs higher by at least factors 2 or 3 than expecte 2SMa. resonance somewhat improves aareement with ex-
from experiment. The reasons for these findings are errord P 9

made in the calculations of the oscillator strengths, and, as %e.”me’.“?' datdsee Fig. 9. Th_e effectg described are quali-
A . tative similar on all the materials studied by us, and are most
consequence, the violation of tfiesum rule by neglection of

the nonlocality of the total Hamiltonian. The changes arepromlnent for Si.
most pronounced in the case of silicon. This point was stud-
ied in more detail in Ref. 6 for the case of the dielectric V. CONCLUSIONS

function itself. . . '
After inclusion of the nonlocal contribution to the velocity e have studied the influence of local-field effects and

operator, the intensity and spectral position of the maximungXchange-correlation corrections beyond the RPA on the op-
of the EEL function approach experimental values, at leastic@! properties of group-IV materials in the framework of an
for Si and C, where such data are available. Local-field ef@P initio density-functional method. We find thét these
fects strengthen this trend. As it follows from the Fig. 9,

influence of the local fields leads to reduction of the inten- TABLE lll. Dependencies of the energiés eV) of the volume
sity, broadening, and shifts of the plasma resonance curves fjasmons on LF and XC effects as well as on wave-vector- and
particular on the low-energy side. However, changes in thgand_-lndex'-dependent_ QP correctnong in $| cubic Sl_C and diamond.
intensities and broadenings are overestimated. Unfortunate?famng paint is the diagonal approximation. Experimental values
the spectral position of the EEL function moves somewhaf'© aken from Refs. 56iC and Sj and 55(C).

toward higher energies as compared as with the experiment@lateriall
position (see Table Ill. We mention that our results for

he position of the maximum is improved, whereas the in-
ensity of the losses at the low-energy side is futher in-

diagonal +LF +LF+XC +LF+XC+QP Expt.

plasma resonance in Si agree reasonably with those reportexl 17.28 17.17 17.05 17.69 16.9
in Ref. 4, where a similar approach has been used. Inclusiogic 2371 22.71 22.54 23.83 22.1
of XC moves the curves slightly toward lower energies, andc 3411 32.50 32.41 32.89 32.0

somewhat enhances the intensity of the plasma resonance
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effects do not shift the prominent peak positions in Imnear to the onset of the absorption, we suggest that excitonic
e"(w) and the zeros in R&'(w), and that(ii) agreement of effects have also to be included in tab initio calculations.
theory and experiment may be improved in the high-energyrhe dynamical treatment of the electron-hole attraction could
regions above thé&,; peaks. However, on the low-energy be also a step toward explaining why renormalizations of the
side the agreement between theoreticak'tw) spectra quasiparticle strengths do not play practically any role.
with experimental findings will be poorer after inclusion of
these effects. We found a weakly pronounced chemical
trend. With rising eIeptron Iocalizatipn the influence of LF ACKNOWLEDGMENTS
and XC decreases slightly. Concerning the energy-loss spec-
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