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Optical functions of semiconductors beyond density-functional theory
and random-phase approximation
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The linear optical response of semiconductors has been studied beyond the density-functional theory withab
initio pseudopotentials and the random-phase approximation. Effects of the macroscopic local fields and the
microscopic exchange-correlation interaction are included in the description of the optical spectra. Quasipar-
ticle corrections to the single-particle energies have been added in the polarization function. Numerical calcu-
lations are performed for the group-IV materials Si, SiC, and diamond as model substances. In the static limit
and in the low-frequency region, corrections due to the local fields reduce the dielectric function, whereas
inclusion of the exchange-correlation interaction enhance the oscillator strengths. In the high-energy region
these effect have a more complex character, and the signs of the relevant corrections change in dependence on
the photon energy. The effects considered strongly modify the plasmon resonance in the energy-loss function.
The results obtained are discussed in comparison with theoretical and experimental data available.
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I. INTRODUCTION

In the past few years, a number of highly accurate cal
lations of optical and dielectric properties of semiconduct
have appeared.1–6 In general they are based on th
independent-particle approximation7–9 @often called the
random-phase approximation~RPA!# and a first-principles
description of the electronic and atomic structure in
framework of the density-functional theory~DFT! ~Ref. 10!
in the local-density approximation~LDA !.11 In some cases
partially exchange-correlation~XC! effects have been take
into account. The independent-quasiparticle~QP!
approximation3,12 has been also introduced. First attemp3

have been made to go beyond the RPA considering XC
rections. Local-field~LF! effects8,9 due to the atomic struc
ture of the matter influence the resulting optical spectra
earlier works in the field13–19 ~and references therein!, local-
field and excitonic effects have already been discussed on
basis of the empirical-pseudopotential method or expans
of the eigenfunctions in terms of localized orbitals. In co
trast to the discussion of complete optical spectra, the in
ence of local-field effects has been more extensively
cussed in the case of dielectric properties, in particular
the macroscopic electronic dielectric constant«` .

20–28

In the present paper the influence of local-field effects
well as of exchange-correlation effects beyond the RPA
studied in detail for optical spectra of semiconductors.
addition we discuss XC self-energy effects,6,24 i.e., quasipar-
ticle ~QP! shifts of the electron and hole DFT-LDA energie
As model substances the group-IV materials diamond~C!,
silicon ~Si!, and silicon carbide~SiC! crystallizing in dia-
mond or zinc-blende structures are considered. SiC all
the study of the interplay of partially ionic bonding and t
effects under consideration. The paper is organized as
550163-1829/97/55~7!/4343~10!/$10.00
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lows. Section II contains a brief summary of the theory
the macroscopic dielectric function. Computational deta
are outlined in Sec. III. The results are discussed and c
pared with those of other authors or experiments in Sec.
Section V contains a summary and conclusions.

II. MACROSCOPIC DIELECTRIC FUNCTION

A. Relation to microscopic dielectric function

According to Adler8 and Wiser9 the macroscopic dielec
tric function,«M(q̂;v), that governs the optical properties o
a crystal,29 may be directly related to the zeroth element
the inverse of the microscopic dielectric matr
«(q1G,q1G8;v), whereq denotes a vanishing wave vec
tor with directionq̂, andG, andG8 represent elements of th
reciprocal Bravais lattice of the crystal. The zeroth elem
of the inverse dielectric matrix is influenced by the o
diagonal elements of the dielectric matrix.30 They are due to
the lattice periodicity and generate ‘‘umklapp’’ processes
the dielectric response. They are generally referred to
‘‘local-field effects.’’4,8,9,31We define these LF effects mor
exactly as the discrepancy between«M(q̂;v) and the zeroth
element of the dielectric matrix, limq→0«(q,q;v).

The microscopic dielectric matrix«(q1G,q1G8;v)
is directly related to the polarization functio
P(q1G,q1G8;v) of the system under consideration.
contains the irreducible diagrams of the proper part of
two-particle Green function.32

B. Exchange-correlation effects

If XC effects on the longitudinal response are not n
glected, e.g. within the DFT or DFT-LDA, the polarizatio
functionP appears instead that of independent particlesP0.
4343 © 1997 The American Physical Society
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4344 55V. I. GAVRILENKO AND F. BECHSTEDT
It can be easily proved4,21,25,33,34that the expression for in
teracting particles takes the form

P~q1G,q1G8;v!5(
G9

G~q1G,q1G9;v!

3P0~q1G9,q1G8;v!, ~1!

where the matrixG is related to the vertex function of th
system. The inverse matrix is given as

G21~q1G,q1G8;v!5dG–G82(
G9

P0~q1G,q1G9;v!

3KXC~q1G9,q1G8;v!. ~2!

The kernelKXC in this equation describes the XC effec
taken into the two-particle function beyond the RPA. With
the DFT it may be represented in real space
KXC5d2EXC /(dndn8), with the electron densityn(x) and
the total XC energyEXC .

21,25Practically the same result fol
lows within the so-called time-dependent local-dens
approximation.3,35 Within the DFT-LDA the kernel is local
in real space, and does not depend on the frequency
diagonal part is constant. This LDA behavior is, genera
speaking, incorrect. However,KXC always appears in a prod
uct P0KXC . Thus theq dependence ofP0 damps the small-
q contributions, although more slowly than in real system

C. Optical limit

The q→0 limit is required to obtain the macroscopic d
electric function for optical applications. This limit has to b
taken with care to keep the correct analytical properties
this function and the underlying inverse dielectric matrix36

This may be reached by the direct diagonalization of
dielectric matrix. The procedure for the zeroth eleme
which is of interest here, has been described by Pick, Co
and Martin.36 As a result the longitudinal macroscopic d
electric function is derived to be

«M~ q̂;v!5 lim
q→0

H «~q,q;v!2 (
G,G8~Þ0!

«~q,G;v!

3S21~G,G8;v!«~G8,q;v!J , ~3!

where S21 is the inverse of the lower-right submatrix o
«(q1G,q1G8;v) corresponding to nonzero reciproca
lattice vectorsG andG8Þ0, the so-called ‘‘body’’ of the
dielectric matrix.25 This submatrix is always an analytica
function ofq, even atq50. Therefore, the limitq→0 can be
taken from the very beginning. The same holds partially
the ‘‘wing’’ elements «(q,G;v) and «(G,q;v) of the di-
electric matrix. However, their remaining wave-vector d
pendence and the wave-vector dependence of the ‘‘he
«(q,q;v) of the matrix govern the analytic properties of th
macroscopic dielectric function. The second term on
right-hand side represents the local-field corrections to
macroscopic dielectric function, whereas the first term co
sponds to the response in a nearly homogeneous sys
Representation~3! allows two important conclusions. Firs
assuming that the diagonal elements give rise to the m
y
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contributions, LF effects should reduce the result«(q,q;v)
of the diagonal approximation. Second, when the ker
KXC is taken within the DFT-LDA, the XC effects only in
fluence the LF corrections. The result of the diagonal
proximation«(q,q;v) is not influenced.

The limit q→0 can be explicitly performed in expression
~1!–~3! using the relation6

^ckueiq–xuvk8&5\q
^ckuvuvk&

ec~k!2ev~k!
dk–k8, ~4!

where the velocity operatorv5 i /\@H,x#2 belonging to the
single-particle HamiltonianH is introduced. Since the
Hamiltonian has the formal structureH5p2/2m1Vl1Vnl ,
where the total potential,V5Vl1Vnl , is divided into a local
( l ) and a nonlocal (nl) part, the velocity operatorv cannot be
replaced by the momentum operatorp/m. Rather a correc-
tion term;Vnl appears. Typical origins of such nonlocalitie
are the nonlocal pseudopotentials used to describe
electron-ion interaction.37 Here Bloch integrals of exponen
tial functions with the Bloch eigenfunctionsunk& belonging
to the bandindexn, the wave vectork from the Brillouin
zone ~BZ!, and the single-particle energyen(k) are intro-
duced. Within the DFT-LDA treatment10,11 of the electronic
structureen(k) and unk& are solutions of the Kohn-Sham
equations. For the considered semiconductors, the B
states will be taken to have occupancies of 0~conduction
bandsn5c) or 1 ~valence bandsn5v).

The important elements of the dielectric matrix containi
theq dependence may be rewritten by means of relation~4!
what can be interpreted as a transformation from a long
dinal to a transverse electromagnetic perturbation.6 For
q→0, the head element results into

«~q,q;v!5q̂•«I ~v!•q̂, ~5!

with the tensor elements (i , j5x,y,z) resulting from the
matrix-element displacement in the polarization function
independent particles. Neglecting for simplicity the XC e
fects for a moment, the wing elements follow in the form

«~q,G;v!5q̂
uGu
uqu

W~G;v!,

«~G,q;v!5
uqu
uGu

W* ~G;2v!q̂, ~6!

with ( j5x,y,z)

Wj~G;v!5
16pe2\

uGuV

3(
k

(
c,v

^ckueiG–xuvk&^vkuv j uck&
@ec~k!2ev~k!#22\2~v1 ih!2

.

~7!

Consequently, the longitudinal macroscopic dielectric fun
tion transforms into

«M~ q̂;v!5q̂•«M~v!•q̂, ~8!
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TABLE I. Convergence of«` including local-field effects as well as nonlocality of the velocity opera
as a function of the number of conduction bandsNCB . The XC effects are omitted. For comparison valu
without LF effects (NCB5176) and experimental values~Ref. 41! are also listed.

Material No LF NCB516 NCB556 NCB576 NCB596 NCB5116 NCB5176 Expt.

Si 14.29 12.42 11.91 11.83 11.81 11.80 11.80 11.
SiC 7.77 6.86 6.76 6.69 6.65 6.63 6.63 6.7
C 6.72 5.92 5.81 5.78 5.76 5.75 5.74 5.7
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with the macroscopic optical tensor

« i j
M~v!5« i j ~v!2 (

G,G8~Þ0!

uGu
uG8u

Wi~G;v!S21~G,G8;v!

3Wj* ~G8;2v!. ~9!

The relation of the macroscopic dielectric function in e
pression~8! to the second-rank tensor«I

M(v) indicates that
we have indeed introduced the longitudinal function. T
tensor«I

M(v) also determines the transverse dielectric fu
tion e•«I

M(v)•e, with a unit vectore5e(q)'q̂. For cubic
crystals the tensor is diagonal,« i j

M(v)5«M(v)d i j , with
equal components independent of the choice of the Carte
coordinate system. Consequently, the macroscopic longit
nal and transverse dielectric functions are equal in the li
of vanishing photon wave vectors,29 and«`5«M(0) defines
the macroscopic electronic dielectric constant of the syst

III. TECHNICAL DETAILS

A. Electronic band-structure calculation

The electronic-structure calculations underlying the co
putations of the optical properties are based on
DFT-LDA.38 The electron-ion interaction is treated by norm
conserving,ab initio, fully separable pseudopotentials in th
Kleinman-Bylander form.39 They are based on relativisti
all-electron calculations for the free atoms by solving t
Dirac equation self-consistently. As model systems we c
sider silicon- and carbon-based crystals. The C potentials
softened by careful choosing of the core radii.40 The elec-
tronic wave functions are expanded in terms of plane wav
The energy cutoffs for the plane-wave expansion are cho
to 15, 34, and 42 Ry for silicon~Si!, silicon carbide~SiC!,
and diamond~C!. They are sufficient for converged tota
energy and lattice-constant calculations. The total-energy
timizations give rise to theoretical cubic lattice constants
a510.227 a.u. for Si,a58.109 a.u. for SiC, anda56.681
a.u. for C. They are used, although they slightly undere
mate the experimental ones,41 and, hence, somewhat enlarg
the DFT-LDA transition energies. We also study the infl
ence of many-body QP effects. Thereby we usually ov
come the scissors-operator approximation.3,6,12,24 The QP
corrections to the DFT-LDA eigenvalues are compu
within theGW approximation for the XC self-energy24 ac-
cording to a simplified scheme developed by Cappellini a
co-workers.42–44. Using the numerical input described abo
corresponding shift values have been published for Si
diamond in Ref. 6, and for SiC in Ref. 44. The problem
accompanying the inclusion of wave-vector- and ba
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index-dependent quasiparticle shifts beyond the sciss
operator approximation were discussed by us in detail in R
6. The wave functions are identified with those obtain
from the DFT-LDA. Consequently, the optical transition m
trix elements are fixed at the corresponding values. The
namical effects on the spectral distributions of the exci
electrons and holes are neglected. Only the DFT-LDA en
gies in the spectra are replaced by such energies shifte
wave-vector- and band-index-dependent many-body cor
tions Dn(k). These corrections vary remarkably. For i
stance, for SiC we observe a considerable variation. In
upper valence bandsDn(k) varies from 0.0 eV (G15) to
about 1.4 eV (X1, L1). The shifts of the lower conduction
bands with about 1.4 eV are rather independent. The va
tions are only of the order of 0.1 eV. However, for the high
conduction bands (X5, L1) there is an increase to about 2
eV ~or more! at the zone boundaries.

The XC effect of the electron-electron interaction is d
scribed within the LDA, where the XC energyeXC(n) per
electron is replaced by that of a homogeneous electron
More precisely the Ceperley-Alder scheme45 is used in a
parametrization by Perdew and Zunger.46 This parametriza-
tion is also the starting point for the determination of the X
response kernelKXC . This approximate kernel is applie
throughout the paper, i.e., also in the case of the calculat
where QP effects are described by wave-vector- and ba
index-dependent shifts.

B. Convergence

A crucial point of the calculations concerns the number
conduction bandsNCB and the rankNG of the microscopic
dielectric matrix taken into account. The convergence pr
erties of the head, wing, and body elements with increas
NCB are rather different. The reason of the different conv
gence properties is related to the different dependence
the band structure.20 For example, in the static case it near
holds that «(q1G,q1G8;0);@ec(k)2ev(k)#

2n with
n53 ~2;1! for G5G850 (G50, G8Þ0 or GÞ0, G850;
G,G8Þ0). Consequently, the convergence is determined
the body elements. Small numbers of conduction bands,
NCB54, which give already a reasonable frequency dep
dence in the diagonal case,6 are insufficient. This is clearly
shown by Table I for the macroscopic dielectric consta
«` . Many more bands are needed. In the computations
the frequency dependences, we use numbersNCB5176 ~Si,
SiC, C!, which give converged results.

The influence of the size of the dielectric matrix that h
to be inverted is indicated in Fig. 1 for the macroscop
dielectric constant. In the corresponding calculation for
SiC, and Si, we included sets ofG vectors through~000!,
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4346 55V. I. GAVRILENKO AND F. BECHSTEDT
~111!, ~200!, ~220!, ~113!, ~222!, ~400!, and ~133!, respec-
tively. This means that the maximum matrix size conside
is NG589. From Fig. 1 we conclude that a reasonable c
vergence is already obtained for a restriction up toG vectors
of the type~113!, independently of the inclusion of the XC
kernel in addition to the LF effects or not. The limitation
G vectors shorter than the~222! ones corresponds to a re
striction to the fifth-nearest-neighbor shell in the recipro
Bravais lattice. The rank of the matrix in this case
NG559. Calculating only«` , Baroni and Resta

23 considered
up to 181 reciprocal-lattice vectors. However, here we h
to calculate complete spectra, including absorption contri
tions. Thus, in order to make the computational time tol
able, the optical functions are evaluated with the mentio
restriction.

The sufficient numberNCB of conduction bands depend
on the reciprocal-lattice vectorsG included in the dielectric
matrix. Baldereschi and Tosatti20 already discussed that th
largeG,G8 components of the dielectric matrix are dom
nated by Bloch integrals connecting the valence bands
high-lying conduction bands. Hybertsen and Louie25 con-
cluded thatNCB must be on the order of double the size
the rank of the considered dielectric matrix to achieve
merical convergence of all the elements of the matrix
within a few percent. Our choice ofNCB5176 andNG559
indicates a similar conclusion.

C. Brillouin-zone integration

A crucial point of the explicit numerical calculations o
the macroscopic dielectric function concerns the BZ integ

FIG. 1. Macroscopic dielectric constant«`5«M(0) for dia-
mond ~a!, silicon carbide~b!, and silicon~c! vs the number ofG
vectors taken into account. Circles~dotted line!: including the pure
effect of local-field corrections; dots~solid line!: the effect of the
XC kernelKXC is included in addition.
d
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l

e
-
-
d

to
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tion. It should be reduced to the smallest possible part,
instance to the irreducible part of the BZ~IBZ!, i.e., 1

48th part
of the BZ in the fcc case under consideration. This is
general not possible. Since the matrix«(q1G,q1G8;v)
has the symmetry of the little groupgq of the wave vector
q, the degree of the BZ-integration reduction depends onq.
To achieve maximum computational efficiency, we ma
full use of the symmetry under consideration.

Critical points of the IBZ integration concern the dense
thek-point mesh and the type of the integration. It has be
proved previously,20,23,25that, in the calculation of the stati
dielectric constant, a good convergence is achieved by
use of a relatively small numberNk of specialk points. Typi-
cal numbersNk are not very much larger than 10. Howeve
calculating the whole spectra of Re«M(v) and Im«M(v),
many more points are needed.15 The reason is that the ant
symmetric part of a matrix element«A(q1G,q1G8;v) is
proportional to a Dirac’sd function in the energy. Daling
van Haeringen, and Farid4 solve this problem by combining
the special-point technique with a continued-fraction exp
sion of the polarization function. We apply a combination
the linear tetrahedron method,47 and a special-point tech
nique for thek-space integration. Because of the smallne
of the wing and body elements of the dielectric matrix, t
requirements for their accuracy are considerably lower t
in the case of theG5G850 element. The most importan
diagonal head contributions« j j (v) are calculated within the
tetrahedron method. More strictly speaking, their imagin
parts are integrated by means of this method, whereas
real parts are then obtained via a Kramers-Kronig relati
The involved frequency integration is performed numerica
using discrete frequencies in a distance of 1 meV. We h
shown6 that Nk589 is sufficient in the IBZ of the fcc BZ.
For the wing and body elements we use 235 special-k points
within the IBZ. To smooth the resulting spectra a Lorentzi
broadening ofh50.1 eV @cf. expression~7!# is introduced.
We have checked that the results obtained with special-p
numbers Nk<44 are not sufficient. The spectra reve
changes with increasingNk in the high-frequency region
The use ofNk5235 for the calculation of the off-diagona
elements of the dielectric matrix seems to be a reason
compromise.

IV. RESULTS AND DISCUSSION

A. Frequency dependence of microscopic dielectric matrix

The off-diagonal elements of the dielectric matrix repr
sent the local-field effects. Important examples for wing a
body matrix elements are represented in Fig. 2 for silic
They amount to roughly a few percent of the values of
G5G850 element.6 In thev50 case one finds 4% for th
wing G5(000),G85(111), and 10% for the diagonal bod
elementG5(111), G85(111). These values are general
reduced for higher frequencies. The effect of the off-diago
body elements is usually one order of magnitude smal
The influence of the off-diagonal body elements@cf.
G5(111) andG85(200)# is therefore rather limited. Fo
discussion of the main LF effects the transformation ma
in expression ~3! may be nearly replaced b
S21(G,G8;v)5dG–G8 /«(G,G8;v).
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The small-frequency argument fails somewhat in the
gion of high photon energies\v. Figure 2 indicates in the
silicon case that for\v*20 eV the head and wing elemen
practically vanish, whereas the diagonal body element ma
a finite contribution. However, according to expression~3!
the effect on the LF contributions to the macroscopic diel
tric function remains small, since their magnitude is limit
by the wing elements. This is clearly demonstrated in Fig
where the LF contribution to the macroscopic dielect
function is plotted. One observes the well-known reduct
of its real part in the static limit. However, the most impo
tant changes appear in the spectral region of the stron
optical transitions. They can be positive or negative. Con
quently, no clear rules about the influence of LF correctio
may be derived for the frequency region above the abs
tion edge. More in detail, the changes in this region exh
an oscillator character. The oscillator frequencies may
related to characteristic optical transitions. In the silic
case, they are defined by that of theE1(E08), E2, and E18
transitions. In the SiC~C! spectra one observes big chang
close to the position of the main peaks in the absorpt
spectra related toE0 andE1 (E2).

6

B. LF and XC effects in the macroscopic dielectric function

In the static limit the influence of the effects under d
cussion are represented in Table II. LF effects strongly
duce the dielectric constant evaluated within the diago
approximation by about 20%. When the XC kernel is a
included, this reduction is partially lifted. It amounts on
roughly 13%. The inclusion of the single-particle XC se

FIG. 2. One wing, diagonal body, and off-diagonal body e
ment of the symmetrized dielectric matrix of silicon vs photon e
ergy. The limitq→0uu@100# is considered.
-

es

-

,

n

est
e-
s
p-
it
e

s
n

-
al
o

energy in the GW approximation beyond the DFT-LDA i
duces a further dramatic reduction. The reduction of
static dielectric constant due to the self-energy correcti
has been reported for Si,3 for diamond, and for SiC.22 The
resulting values are below the experimental ones. This h
pens although the wave-vector- and band-index-depen
QP corrections of the band energies are scaled down acc
ing to a procedure described in Sec. IV C. The necessity
such a remarkable reduction is already observed by Lev
and Allan,3 bringing the calculated values«` close to the
experimental ones. The reason is, at the very least, a pu

The frequency-dependent changesD«M(v) induced by
LF and XC effects in the macroscopic optical functions a
represented in Fig. 3. In general, the influence of the
effects is remarkably smaller than that of the local field
This is understandable from the fact that the influence of
XC kernel vanishes with the neglect of the LF. However,
contrast to the static case, where the XC inclusion redu

-
-

TABLE II. Influence of LF and XC effects on the macroscop
dielectric constant«` . Starting point is the diagonal approximatio
Successively the effects discussed~among them also wave-vector
and band-index-dependent QP shifts! have been included. For com
parison experimental values~Ref. 41! are given.

Material diagonal 1LF 1LF1XC 1LF1XC1QP Expt.

Si 14.29 11.80 12.74 10.85 11.7
SiC 7.77 6.63 6.84 5.88 6.7
C 6.79 5.74 6.03 5.36 5.7

FIG. 3. Local-field~solid line! and exchange-correlation~dotted
line! contributions to the macroscopic dielectric function vs phot
energy for the three materials C, SiC, and Si.
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4348 55V. I. GAVRILENKO AND F. BECHSTEDT
the LF effects, the sign of the XC effect varies with th
photon energy and is not clearly related to that of the
effects. In the low-energy range, the signs of the real part
D«M(v) induced by LF and XC effects are different. In th
region of the main absorption peaks the situation of LF a
XC effects is not unique. Whereas in the Si case the
kernel strengthens the LF effects, the LF and XC influen
are nearly opposite for the stronger bonded materials SiC
C. In the high-energy range, where direct optical transitio
expire, the effect of the XC kernel is negligible in the re
part as well as the imaginary part of the dielectric functio
Positive and negative variations of the oscillator streng
occur in the imaginary parts due to local fields. In gene
there is a reduction~increase! below ~above! the main ab-
sorption peaks. The XC kernel acts only for photon energ
close to the main absorption, and reduces the LF effects
average.

The macroscopic dielectric functions resulting for C, S
and Si are plotted versus photon energy in Figs. 4, 5, an
within different approximations: without LF and XC effect
with LF and XC effects, and with LF and XC effects b
using QP eigenvalues instead of DFT-LDA ones. Curv
which represent LF effects separately, are not shown.
main effect can already be seen from the plots, including
effects and the XC kernel. The nonlocality LF and man
body XC effects have practically no influence on the pe
positions, but give rise to remarkable renormalizations of
oscillator strengths. Compared with theG5G850 element
of the dielectric function, the LF effects reduce the oscilla
strength in«M(v) in the spectral region below the ma
absorption peaks. On the other hand, the inclusion of the
kernel reduces the LF effects in this region. The correspo
ing curves lie in between those for«(v) and «M(v) ~only

FIG. 4. Macroscopic dielectric function of diamond vs phot
energy. Dashed line: without LF and XC effects~only G5G850
element!; solid line: with LF and XC effects; dotted line: with LF
and XC effects but shifted by wave-vector- and band-ind
dependent QP corrections.
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with LF but not shown!. The net effect including the LF and
XC amounts roughly to only 60% of the pure LF influen
using the RPA expression for the polarization function.

The comparison of the spectra for C, SiC, and Si mak
evident that the LF and XC effects show only weakly pr
nounced chemical trends with the averaged size of the ato
the localization of the wave functions, or the averaged d
sity of the electrons. The strongest LF and XC effects app
for silicon, whereas their relative influence is slightly r
duced, changing to diamond. This result is in agreement w
earlier calculations for Si and C.14,15A simple explanation of
this trend arises from expression~3!. Assuming that the mag
nitude of the wing and body elements of the dielectric mat

-

FIG. 5. As Fig. 4, but for silicon carbide.

FIG. 6. As Fig. 4, but for silicon.
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scales with the electron density according to the general
f -sum rule,31 the local-field corrections are proportional
this density. However, the density is weighted by the inve
average gap of the system. As a consequence of the inte
of the two factors, the net effect of the local fields~or LF
combined with XC effects! is absolutely and relatively
weaker in the materials with stronger bonds.

C. Comparison with experiment

In Fig. 7 the macroscopic dielectric functions of C, Si
and Si are calculated within the DFT-LDA but including LF
XC, and QP effects, and are compared with experime
data.48–50 The theoretical spectra are shifted toward low
energies to bring the experimental and theoretical real p
closer together. For this purpose, the calculated QP s
Dn(k) are replaced byA•Dn(k), with scaling factors
A50.2 ~C!, 0.45 ~SiC!, and 0.5~Si!. This rescaling reduce
the effect of the wave-vector- and band-index-depend
quasiparticle shifts calculated for Si, SiC, and C.6,44 Consid-
ering the comparison of theoretical and experimental opt
spectra over a wide range of photon energies, one can
clude that the QP effect is overestimated for the most imp
tant optical transition, e.g.,E1 andE2 in Si and C, in contrast
to electron-hole pair excitations near the fundamental in
rect energy gap. Using the positions of the zero in the r
parts of the macroscopic dielectric function in order to defi
averaged scissors operatorsD, one derives from the wave
vector- and band-index-dependent QP corrections va
D50.95 ~Si!, 1.65 ~SiC!, and 2.65 eV~C!. However, aver-
aged scissors operators being necessary only amoun

FIG. 7. Macroscopic dielectric function of diamond, silicon ca
bide, and silicon vs photon energy. Solid lines: calculated res
including LF, XC, and QP effects; dotted lines: experimental res
for Si ~Ref. 48!, SiC ~Ref. 49! and diamond~Ref. 50!.
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D50.47 ~Si!, 0.84 ~SiC!, andD50.40 eV ~C!. The reason
for this observation is not very clear. One posssible rea
could be related to excitonic effects which increase with
localization of the electronic states in the considered ma
rial. We mention that similarly small scissors operators ha
been found to bring the calcuations of«` into agreement
with experiment.3

A general feature of the theoretical spectra for the ima
nary part is that the overestimation of the intensity of t
E2 peak, i.e., the high-energy peak in Im«M(v), is reduced
by the LF effects in the case of Si and C. This maximum
not more so sharply peaked as without LF and XC effec
However, the shoulder at the low-energy side of the theor
cal spectra Im«M(v) is not enhanced. Only the inclusion o
the Coulomb attraction between the electron and hole is
pected to enhance the oscillator strengths in this spectra
gion drastically. In the case of SiC the double peak in the
«M(v) spectrum is related to optical transitions other th
E1 andE2, due to the narrowing of conduction and valen
bands around theX point in the Brillouin zone.6 In principle,
after inclusion of LF and XC effects the same happens a
the case of Si and C. It is obvious that, in the case of silic
and diamond, LF or LF and XC or LF, XC, and QP effec
do not really improve the agreement of the theoretical sp
tra with measurement data. This holds especially for the lo
energyE1 peak in the imaginary part, which is additional
lowered with respect to the experimental intensities. To
this discrepancy, the inclusion of excitonic effects is need
On the other hand, the reduction of the strength of the hi
energyE2 peak seems to bring the theoretical absorpt
spectrum more in agreement with experiment. The agr
ment with theory and experiment will be better in the hig
energy region, whereas it will be lower on the low-ener
side of the main peak around 8 eV.

In the case of the reflectivity spectra shown in Fig. 8, t
agreement between theory and experiment is better tha
the case of the dielectric function. This holds especially
the spectral shape, but also for the absolute values of
reflectivity for Si, SiC ~comparing with results of Ref. 49
only!, and C, omitting the QP corrections. When the Q
shifts are included the main peaks in the theoretical and
perimental reflectivity spectra fall together. However, a
duction of the reflectivity appears at the low-energy side
the main peaks. The reason is the automatic reduction of
real part of the macroscopic dielectric function in this regio
One may speculate that, after inclusion of the electron-h
Coulomb attraction, this failure could be lifted.

D. Energy-loss function

In Fig. 9 we present the results for the electron ene
loss ~EEL! function „2Im@1/«M(v)#… for C, SiC, and Si.
The spectra have been obtained within the approach
scribed in Sec. II. Influences of LF and XC effects, as well
quasiparticle corrections of the Kohn-Sham energies on
plasma resonances, are also shown. The influence of the
local contribution to the optical transition operator due to t
nonlocality of the pseudopotentials6 is not indicated in Fig. 9.
The calculated energy position of the volume plasmons
presented in Table III in comparison with available expe
mental results. We find that the use of the momentum op

ts
s
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tor p/m instead of the fullv operator in the calculations o
the polarization function@cf. Eq.~4!# produces large errors in
EEL spectra as compared with experimental data. With
the inclusion of nonlocality effects, the spectral position
the maximum of the EEL function is found at higher~by
about 1 eV! energies, and the amplitude of the plasma re
nance occurs higher by at least factors 2 or 3 than expe
from experiment. The reasons for these findings are er
made in the calculations of the oscillator strengths, and,
consequence, the violation of thef -sum rule by neglection o
the nonlocality of the total Hamiltonian. The changes a
most pronounced in the case of silicon. This point was st
ied in more detail in Ref. 6 for the case of the dielect
function itself.

After inclusion of the nonlocal contribution to the veloci
operator, the intensity and spectral position of the maxim
of the EEL function approach experimental values, at le
for Si and C, where such data are available. Local-field
fects strengthen this trend. As it follows from the Fig.
influence of the local fields leads to reduction of the inte
sity, broadening, and shifts of the plasma resonance curve
particular on the low-energy side. However, changes in
intensities and broadenings are overestimated. Unfortuna
the spectral position of the EEL function moves somew
toward higher energies as compared as with the experime
position ~see Table III!. We mention that our results fo
plasma resonance in Si agree reasonably with those rep
in Ref. 4, where a similar approach has been used. Inclu
of XC moves the curves slightly toward lower energies, a
somewhat enhances the intensity of the plasma resona

FIG. 8. Comparison of theoretical reflectivity curves~thick solid
lines: including LF, XC, and QP effects; thin solid lines: witho
LF, XC, and QP effects! with measured ones~dotted lines! for Si
~Ref. 48!, SiC ~1! ~Ref. 51!, SiC ~2! ~Ref. 52!, and C~Ref. 53!.
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The position of the maximum is improved, whereas the
tensity of the losses at the low-energy side is futher
creased. The incorporation of QP correction moves the E
curves toward higher energies, in disagreement with exp
ment. However, the reduction of the broadening of t
plasma resonance somewhat improves agreement with
perimental data~see Fig. 9!. The effects described are qual
tative similar on all the materials studied by us, and are m
prominent for Si.

V. CONCLUSIONS

We have studied the influence of local-field effects a
exchange-correlation corrections beyond the RPA on the
tical properties of group-IV materials in the framework of a
ab initio density-functional method. We find that~i! these

FIG. 9. Electron-energy-loss function for diamond, silicon ca
bide, and silicon vs loss energy. Bold solid lines: without LF, X
and QP effects; thin solid lines: with LF effects, dashed lines: w
LF and XC effects; dotted lines: with LF, XC, and QP effec
Experimental data~circles! are taken from Refs. 54~Si! and 55~C!.

TABLE III. Dependencies of the energies~in eV! of the volume
plasmons on LF and XC effects as well as on wave-vector-
band-index-dependent QP corrections in Si cubic SiC and diam
Starting point is the diagonal approximation. Experimental valu
are taken from Refs. 54~SiC and Si! and 55~C!.

Material diagonal 1LF 1LF1XC 1LF1XC1QP Expt.

Si 17.28 17.17 17.05 17.69 16.9
SiC 23.71 22.71 22.54 23.83 22.1
C 34.11 32.50 32.41 32.89 32.0



Im

rg
y

of
ic
F
pe
v

us
rg
n
n
tic

w
i.

onic

uld
the

ni
We

ter
ti-
B.
p-

nd

55 4351OPTICAL FUNCTIONS OF SEMICONDUCTORS BEYOND . . .
effects do not shift the prominent peak positions in
«M(v) and the zeros in Re«M(v), and that~ii ! agreement of
theory and experiment may be improved in the high-ene
regions above theE1 peaks. However, on the low-energ
side the agreement between theoretical Im«M(v) spectra
with experimental findings will be poorer after inclusion
these effects. We found a weakly pronounced chem
trend. With rising electron localization the influence of L
and XC decreases slightly. Concerning the energy-loss s
tra, we state that incorporation of LF and XC effects impro
the agreement between theory and experiment.

The influence of quasiparticle corrections is checked
ing wave-vector- and band-index-dependent self-ene
shifts. We observe an obvious remarkable overestimatio
these shifts. To bring the peak position in theoretical a
experimental spectra closer together smaller quasipar
shifts are needed.

In order to bring theoretical absorption spectra in the lo
energy region closer together with measured line shapes,
lid

R

ev

e

y

al

c-
e

-
y
of
d
le

-
e.,

near to the onset of the absorption, we suggest that excit
effects have also to be included in theab initio calculations.
The dynamical treatment of the electron-hole attraction co
be also a step toward explaining why renormalizations of
quasiparticle strengths do not play practically any role.
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