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lons in crystals: The topology of the electron density in ionic materials. I. Fundamentals
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The topological theory of atoms in molecules is applied to periodic crystalline ionic systems. A systematic
investigation of the fundamental properties of the topology of the charge density in crystals is undertaken, and
several basic facts, peculiar to the solid state and not previously explored, to our knowledge, are put forward.
We also show how the theory allows us to define unambiguously very important concepts of solid-state theory,
like the coordination index or the coordination polyhedron of an ion in a solid. We particularize our results by
means of the detailed study of an example crystal, the rocksalt phase of Lil. It is shown that this crystal is best
described as made up of 18-fold-coordinated iodides and sixfold-coordinated lithiums, contrary to the usual
six-six description[S0163-18207)09304-]

I. INTRODUCTION Bader? considering the topology of the electron density.
Over the years it has proven to provide a sound foundation to

A large part of our chemical and physical wisdom is some of the most important phenomenological models of
based on the concept of interacting atoms or ions that mostlghemical bonding, like the valence shell electron pair repul-
maintain their individuality when transferred among differ- sion modef an improved version of the historical Lewis pair
ent compounds, and that confer well-defined properties tanodel. It has also shown how quantum-mechanical electron
materials. Quantum-mechanical pictures of isolated moldensities calculated at different approximation levels can be
ecules or condensed phases, however, have traditionally beesed to recover group or bond properties in excellent agree-
much less prone to such prevalent images of the chemicahent with experimerit.
world, giving rise to the longly debated problem of how to  Unfortunately, Bader's own background has conditioned
recover atomic, ionic, or group behavior from quantum de-ts diffusion stream mainly to molecular quantum chemistry,
scriptions. So deeply rooted for the chemist or physicist isand the theory has not achieved in condensed phases the
the need to partition physically every global system propertydevelopment status found in molecular systems. There are
into isolated contributions, that over the years hundreds ofjood reasons, nevertheless, to undertake such a research in
different recipes or models to perform this task have apthe solid state. On the one hand, translational symmetry, as
peared in the literature. Of paramount importance is the facbpposed to rotational symmetry in the molecular environ-
that most modern theories of bonding are based, in one wayent, imposes severe restrictions on the type and number of
or another, on the partition of charger electronic densily  critical points that a periodic scalar function, like the electron
among the different nuclear centers under study, usually bgensity, may show. Moreover, the toroidal, boundless nature
means of Mulliken—i.e., projected density of states inof the physical space, in which atoms are embedded in a
solids—analyses. In this way, an important amount of theperfectly periodic crystal, makes it necessary that the volume
interpretative models of chemical behavior are based on corassociated with a given group of atoms remains finite. This
cepts that are known to be very badly defined, and to givesituation is extremely unusual in an isolated molecule, and
answers extremely dependent on a whole hierarchy of apallows us to define geometrical concepts—i.e., atomic or
proximations. As an example, Mulliken populations dependgroup radii, group volumes, etc.—that, being necessarily ill
on the concept of orbital, and are therefore nonobjectivelefined in normal molecules, may now be compared and
functions of the computational method used to obtain themcorrelated with a vast amount of empirical or semiempirical

It should be clear from the preceding paragraph that anglata. On the other hand, the connection between the adia-
attempt to construct a firm theory of bonding that allows usbatic electronic energy surface of the crystal ground state and
to recover the empirical concept of an atom in a moleculats static thermodynamics opens the way to a study of the
must be based on a quantum mechanically well-defined pabehavior of bonding properties with pressure and tempera-
tition of physical space. In this way, the topological proper-ture.
ties of observables become central to the treatment. The im- Through the years, several authors, including Bader him-
portance of the topology of several scalar fields in chemistnself, have applied these ideas to crystalline solids, uncover-
has been repeatedly put forward in recent yédpifferent  ing many important facts about the topological features of
definitions of the basic topological space and its sets givéhe electron density in periodic systems. Some of these stud-
rise to different and complementary schemes. However, ifes, particularly those of Eberhart and co-workefecused
we expect to recover the observed additivity of group prop-on metallic alloys, and have revealed interesting connections
erties from our treatment, we are advocated to consider among macroscopic properties, like bulk moduli and electron
topology that allows the generalizaton of quantum mechanicdensities. Other ones, mainly addressed by Bader and
to open systems. Such a theory has been constructed lop-workers® showed some of the formal features and basic
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shapes of electron densities in crystals that arise from théor every point inSg,, n being the exterior normal vector to
periodicity of space. the boundary surface.

A systematic study of the complete topology of the elec- The most important topological property of the charge
tron density in a periodic solid seems to be lacking. In thisdensity of an electronic system is the presence of maxima at
work we will try to establish the main characteristics of thethe nuclear positions. Equatiofl) allows us actually to par-
topology of the electronic density in these systems. Our fotition the physical space into nonoverlapping regions that, in
cus will be addressed more toward the less-known intergeneral, contain only one nucleus. In order to obtain a more
atomic or intermolecular features than to the now well-clear picture of the appearance of those regions, a few com-
understood intramolecular ongSimple ionic systems seem ments regarding the general features of the charge density
well suited for these purposes. The whole topological picturgradient vector field{p) are due. Every field line or trajec-
is interionic in nature here. Moreover, the very concept oftory of the field, thought of as creating a dynamical system,
atomic radii was born when systematizing the x-ray latticehas its origin {— —«, a-limit) and its end {(—o,
parameters obtained for the alkali halides. We have choseg_jimit, attractoy at critical points,Vp= 0. Clearly, an enu-

perovskites and alkali halides as a starting point. Despitgneration and classification of the critical points of the field is
their extreme structural simplicity, we will show how they an jmportant step toward the topological identification of the
hide a rich number of different topological structures thatfie|d. Four nondegenerate kinds of critical points are possible
evolve following purely geometrical criteria. _ in three dimensions: maxima, minima, first-kind saddle
In this first paper we will present Bader’s theory in the points, and second-kind saddle points. Following Bader’s no-
context of a periodic system, together with a detailed StUantion, we classify them according to tiieank, signaturg
of the topological properties of a prototypical alkali halide. convention. The rank is defined as the number of nonzero
The second paper will present an application of the generagligenvalues of the Hessian matrix of the charge density. The
scheme presented here to the slightly more complex perowignature being the algebraic sum of the signs of the eigen-
skite structure compounds. A third paper in the series will b&/a|yes. Although the nuclei of a system introduce a cusp in
devoted to an analysis of the geometrical trends emerginghe electronic density, nuclei are topologically identical to
from a systematic study of the topology of the charge densitynaxima or (3:-3) critical points. Very few examples of
in the rocksalt phase of alkali halides. Finally, a fourth papet,gnnuclear maxima have been found up to now. The other
will address the relation between topological and energetitt:ypeS of critical points are usually named with terms whose
properties, particularized to the case of the pressure—inducqﬂeanmg will soon turn clear: (3,1) or bond point,
B1 (r_ocksall to B2 (c_esium chlqridéph_a}se transition of the (3,+1) or ring point, and (3¢ 3) or cage point. The set of
alkali halides, for which a detaileab initio study has previ- points sharing a give limit is usually called the basin of
ously been reportefl. attraction of the final critical point. Only (3,3) points dis-

The rest of the paper is organized as follows: In Sectioryay three-dimensional basins of attraction. In the case of a
Il'we will introduce Bader’s theory, stating its main points ,,clear maximum, the union of the nuclear point plus its

and the usual terminology associated with it. We will thenpagin of attraction is identified with the concept of atom.
study those features of the theory to be found only in theyhen considering a (3;1) point, the two trajectories origi-

solid state, as well as the computational implementation ofating from it have different nuclear attractors. We then say
an original and efficient automatic procedure able to extracfy5t those two nuclei are bonded. The presence of a

the whole topology of a crystal without human intervention.(3’_ 1) critical point between every pair of bonded nuclei is
Sec. Il is devoted to a study of the topological picture of aj, 5greement with Slater's image of chemical bonding, and
prototypic alkali halide, the lithium iodide, in its rocksalt \ye refer the reader to the appropriate literature for further
phase. Finally, we will give some conclusions and prospectgy,qy2 The network formed by the nuclei and their bonds is
in Sec. V. a connected graph, teolecular graph When the molecular
graph displays a cycle, the system is said to have aring. Itis
found that a ring of bonds is also associated with a-(13)
point, located somewhere in between the ringed nuclei. Fi-
A. Bader's atoms in molecules theory nally, a set of noncoplanar rings may create a cavity holding
fa cage(3,+3) point in its interior.

This fully coherent picture of the topological structure of

Il. FUNDAMENTALS

Here we will provide a minimal set of the main results o
the topological theory of atoms in molecules. A full, authori-

tative account of the theory may be found in Refs. 2 and 82 Molecular system is to be supplemented with the actual
and in the works cited therein. Our treatment closely followsPr0c€dures to obtain atomic or group properties. The atomic

that found in Ref. 8. average value of an observal@eis defined as the average of
It may be proven that in order to obtain a well-behavedthe appropriate operator density over the basin of attraction
quantum-mechanical description of an open region of @f the atom under consideratién,
guantum system, the region must be bounded by a surface
whose flux of the gradient of the electron density vanishes.
Let us denote by the symbé} an open three-dimensional ng=<6>g=f podv. )
region in the physical space, and Byor S its bidimen- Q
sional boundary. The previous condition is written as

The main result that may be proven from the above defini-
Vp-n=0 (1)  tion lies in the additivity of atomic properties. The average
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TABLE |. Symmetry of fixed point positions that assure the presence of a critical point.

System

Triclinic ci(1)

Monoclinic Con(2/m)

Orthorhombic D,(222) D,,(mmm

Tetragonal Can(4/m) D,(422) D,q(42m) D n(4/mmm)

Trigonal Cai(3) D3(32) D3qa(3m)

Hexagonal C3n(6) Cgn(6/m) Dg(622) D3 (62m) Den(6/mmm)
Cubic T(23) Th(m3) 0(432) T4(43m) On(m3m)

value of an observable is given simply by the sum extendedecursively, that of bond points. All four types of null-
over all the three-dimensional attractors of the system of itgradient points of the electronic density must then be present
atomic contributions, in a periodic system.
Point-group symmetry has also an important role on the
position of the critical points of a scalar function. Let us
<6>:2 0,. 3) consider, for ex_ampl_e, a pure, rotation axis that,_without
Q loss of generality, will be supposed along theaxis. The
behavior of a scalar functiohunder the rotation abo@,, is

This result holds for both one- and two-electron operatorssuch thatf (h)=f(Rh), whereh is the position of a point
Group properties are immediately obtained after adding théeferred to a suitable point of the rotation axis, and
properties of those atoms forming up the group of interest. It

is worth mentioning that the virial and other important physi- cosp sing O
cal theorems hold within every basin. As it should follow —sing cosp O
from this enumeration of properties, the partition of space R= (4)
based on Eq(l) is a fundamental one rather than a compu- 0 0 1

tational trick.
Let us finally notice that the molecular graph dependss the rotation matrix of the axigy=2/n being the rotation

parametrically on the nuclear coordinate variables. As th%ngle. For a sufficiently smali vector, a first-order Taylor

number of distinct molecular graphs that a particular SySter%xpansion leads to the identif(1—R)- F=0. If the rota-

may exhibit is finite and discrete, we have essentially obs, n angle is different from zero, the only nontrivial solution
tained a continuous to discrete mapping between the space 7 9 : ' Y . )
orces the gradient to be along the axis. According to this,

nuclear configurations and the space of molecular graphs. L 2 T .
9 P grap any derivative of a scalar function in a direction perpendicu-

The set of points of the nuclear configuration space assoc . g /
P g R ar to the rotation axis is null by symmetry at any point along

ated to a given molecular graph is callegtaucture® When e axis. Similar. verv simple arauments indeed. mav be ap-
the electron density of such a system rearranges as a conée.— :  Very P 9 » may P

guence of external or internal processes, the change of stru —'eéjot.ﬁ th]? rot:]heerr %(Zﬂgaroggnfgwggtg ec:?ns]err:i;etr cle-
ture must be necessarily catastrophic, in Thom’s s&hard Ing 1u ' : inatl y y

it occurs through special degenerate graphs. We then ha ents at a given point assure a null gradient "’.‘t. that point.
not only a theory of structure but also wfolecular change able | shows the symmetry of such special positionsfikat
a point They may be easily obtained for each space group of

we realize that they are nothing but those Wyckoff positions

B. lons (atoms) in crystals having three fixed coordinates. It is also interesting to notice
that all other special positions, though not directly ensuring
the occurrence of a critical point, limit their possible location

The periodicity of a crystal lattice is the origin of a set of strongly. One- and two-parameter special positions may ex-
peculiarities in the topology of the charge density that de-hibit a null gradient point at selected values of those param-
serves a more detailed analysis. In the first place, by meargfers, though, in many cases, the critical point may coincide
of topological identification of equivalent lines and faces inwith actually fixed positions. Following these prescriptions, a
any crystallographic cell, the electron density space domaifnumber of symmetry-related points may be found or brack-
may be made homeomorphic &), the 3-torus. This fact eted by inspection.
forces, on the one hand, the finiteness of every atomic basin. Another issue that must be addressed regards topological
In this way, we may assign to every crystalline atom a perconstraints over the particular number of critical points
fectly defined finite volume. These atomic volumes are addi{CP’s) of each kind that may coexist in the lattice. When the
tive and fill the space. On the other hand, the existence ofomain space of the charge densityR% as in anin vacuo
(3,+3) critical points or cages, very unusual objects in iso-molecule, the number of CP’s must satisfy the Euler or
lated small molecules, is here assured by the Weierstrag¥oincareHopf relation
theorem. Moreover, the existence of cage points also en-
forces the presence of ring points, and the latter, proceeding n—b+r—-c=1, (5)

1. Basic facts
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where n,b,r, and c refer to the total number of nuclear, The recognition of bundles as the intrinsic topological
bond, ring, and cage points, respectively.S% the 3-torus units that form up the crystal allows us to group them to-
space of crystal structures, however, the appropriate relationgether in other ways, giving rise to fruitful, encouraging per-
are generally known as Morse relatiotsee Ref. 11 for a spectives of the same realm. One immediate grouping recipe
rigorous presentation, or Ref. 12 for a nontechnical discusis found by collecting all bundles sharing the same cage to
sion). They are well known in solid-state theory since theform the topological basic object. This prescription is sym-
introduction of van Hove singularities, though its first use inmetrical to the previous one with respect to the interchange
connection with the number of critical points of the electrongf pasins of attraction by basins of repulsion: the set of

density in a crystal seems to be that found in Ref. 13. Th%oints of the space sharing the samdimit. In this way, a

Morse equivalent to Eq5) is repulsion polyhedra has a minimum in its interior. In its sur-
face, nuclei define vertices; ring points and their two-
n—b+r—c=0, n=1, b=3, r=3, c=1. (6) dimensional repulsion basins define faces; and bond points
and their one-dimensional repulsion basins define edges.
Besides its theoretical importance, Morse relations are ex- Once attraction and repulsion basins and polyhedra have
tremely useful in order to accept or reject a set of CP’s wherbeen introduced, a very clear chemical image appears. To
constructing an automatic search procedure, as we will showvery atomic species in the crystal we associate an attraction
below. or atomic polyhedron with as many faces as different bonds
Periodicity also has another important consequence thaittached to the atom considered, giving rise to a continuous
has not yet been recognized. There exists a partition of spage discrete mapping between the set of possible nuclear con-
into three-dimensional regions surrounded by zero-flux surfigurations and the set of topological polyhedra. Attraction
faces that is thinner than the partition into atomic basins. Lepolyhedra are then to be interpreted as atomic shapes. On the
us define gorimary bundleas the set of trajectories of the other hand, repulsion polyhedra are directly associated to the
gradient field with commomr and w limits or, in other  bonding network of the structure, having vertices along bond
words, the bundle of trajectories starting at a minimum andines. Both visions complement each other. The objective
ending at a maximum. The boundary surface of a primaryefinition of the number of bonds attached to a given atom
bundle is, evidently, a zero-flux surface and, most importhat originates in the above arguments allows us to define
tantly, the division of space into primary bundles is the thin-unambiguously concepts as important to solid state physics
nest one possible. All CP’s must lie on the boundary of aand chemistry as the coordination index of an atom and its
primary bundle. The general structure of a nondegeneratassociated coordination polyhedron. In this sense, classifica-
primary bundle is simple. It consists of one maximum, onetion schemes based upon such definitions acquire a well-
minimum and, let us sayp ring points andn bond points founded status.
joined together in a peculiar way: the maximum joins to all  Primary bundles, finally, can be gathered together to form
the bond points; every bond point joins, moreover, to twothe topological equivalent to the Wigner-Seitz cell of the
ring points; and every ring point joins to the minimum and tocrystal, recently introduced by Zou and Batlas the small-
two bond points. This scheme induces a homeomorphisrest connected region of space bounded by a zero-flux sur-
between a primary bundle and a convex polyhedron. To eacface, and exhibiting the translational and local point-group
CP we associate a vertex of the polyhedron, and an edge favariance of the crystal. Actual atomic or repulsion polyhe-
every trajectory onto the surface of the bundle that connectdra are difficult to visualize, as their computation implies
two CP’s. These polyhedra are easily seen to hawe 2  expensive calculations. The mapping among them and poly-
vertices, 2 faces, and A edges. They fulfill, thus, Euler hedra, however, opens the question about the possibility of
relation; faces+ vertices= edges+2. The most basic to- finding planar polyhedra that approximate the actual shape of
pological structure of the crystal is, then, that of its distinctthe topological polyhedra. It is easy to understand, for ex-
primary bundles, and of their interconnections. ample, that the proximity polyhedron of an atom is a first-
Primary bundles are, however, not found in common to-order approximation of its atomic basin. A proximity poly-
pological analyses of the electronic density. They are noréderon is defined as the region formed by the intersection of
mally collected to introduce coarser partitions of space irthe set of semispaces that contain the nucleus of interest,
which larger zero-flux-bounded regions are taken as the prigenerated by all the planes that perpendicularly bisect the
mary objects of study. The usual practice has been to identiflines connecting the nucleus with its neighbors; or, in other
those basic objects as the union of all the primary bundlesvords, as the Wigner-Seitz cell of a hypothetical Bravais
sharing the same maximum. The interior of such an object ifattice containing one node at each nuclear position.
nothing but the basin of attraction of the nucleus. All other Proximity polyhedra(PP of different atoms display the
critical points of the set of primary bundles defining the full local point-group symmetry at the nuclear sites, share
atomic basin are found on the surface of the latter, definindaces when considering neighboring nuclei, and fill the space
another mapping onto sets of polyhedra, the attraction owithout overlapping. These features are also characteristic of
atomic polyhedra. The mapping is made in the followingatomic basins, as commented above. It is easily proven that
way: to each cage we associate a vertex of the polyhedron; they are actually the atomic basins when the atoms of the
each bond point a face that is physically its two-dimensionalattice are all equafi.e., in the case of metalslf there exist
basin of attraction; and to every ring point an edge that cordifferent species, however, different coordination indices
responds to its one-dimensional basin of attraction. In thigsnay appear, and the PP associated to each kind of atom will
way, an atomic polyhedron wit vertices is composed of have to be obtained with respect to the coordination actually
m primary bundles. exhibited and the relative distance from every bonded neigh-
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bor at which the bisecting planes are drawn. We name thpoints, or symmetry fixed CP’s, coincide with the vertices of
PP’s in this case aweighted proximity polyhedraVPP’y.  the IWZ; one- and two-parameter special points, with its
Moreover, the atomic basins of the larger atoms will expandedges and faces. Finally, Wyckoff's general positions of the
with respect to their WPP’s, while the basins of the smalledattice will be located in the inside of the IWZ.
will shrink. Along with this process, the planar faces of the  Our algorithm proceeds as follows. We locate, as a first
WPP may distort, and bumps appear. We will show thatstep, all nuclear and symmetry-fixed CP’s by examining the
actually, there exist crystals with mostly planar atomic facesnput crystallographic positions and the vertices of the IWTs.
and crystals with striking features in their atomic shapes. IriThe algorithm then looks for a CP of the charge density in a
any case, PP’s play an important role in the intuitive undergiven | simplex (segment, triangle, or tetrahedron when
standing of atomic shapes. I=1, 2, or 3. A rather safe way to locate the CP is to search
From the topological polyhedra just defined, new illumi- for a minimum of|Vp| using a good multidimensional mini-
nating three-dimensional objects may be obtained by meansization schemelike linear downhill simplex or Powell's
of the concept of Euclidean or geometrical duals. Given anethod®), and to check if this minimum achieves a null
polyhedron, anothefits dua) is constructed associating to gradient to a required precision. We then proceed by apply-
each of its faces a vertex, and vice versa. Two vertices of thithg a slightly modified baricentric subdivision algorithm to
other polyhedron are joined by an edge if the correspondingach of thd simplices. A tree data structure is created con-
faces in the original figure are adjacent. Two kinds of poly-taining one node per each simplex within a given IWAT
hedra arise using this prescription. In order to keep the diseorners+ 6 edges+ 4 faces+ 1 tetrahedros 15 nodes
cussion as succinct as possible, we will only briefly considefThe previously commented minimization routine is then used
the duals of the attraction polyhedra. They must have a vero select one CP out of all the possible ones lying in the
tex per bond attached to the atom under consideration. If wenterior of the simplex associated to every node of the tree. If
locate these vertices at the nuclear position of the bondednother CP is found, a division of that simplex is done. The
atoms, we obtain a procedure to obtain the coordinatiomlivision position is taken as the location of the CP just
polyhedron of any atomic species. Sixfold coordination, forfound, rather than as a geometric center of the simplex. The
example, conduces to octahedralike coordination polyhedrdivision is recursively repeated until no CP is found at a
(six corners, eight faces, 12 edgemd to cubelike atomic particular tree node. In this case, the node is end marked, and
shape polyhedréeight corners, six faces, 12 edgdsis also  the algorithm proceeds with another node until all of them
interesting to note that when a change in the structure or ihave been end marked. Clearly, the method is finite and ex-
the electronic density leads to a change in the number or typausts all possible CP’s. In order to avoid infinite loops due
of the CP’s of the system, all the polyhedra here definedo numerical inaccuracies, however, a maximum tree depth is
must undergo a similar change of type simultaneously. enforced, so finiteness is guaranteed.
The above scheme has been implementedrdRTRAN 77
2. Automatic search of critical points (Ref. 17 code that receives externally computed charge den-

From the above considerations. it stands clear that th&iti€s and searches for the topological structure of the CP’s in

topological structure of a modest mineralogical compound i CTysStal. At present, densities are supposed to be obtained

e . 8—20 .
expected to be rather complex. If our aim is to analyze théhroughab initio perturbed ior?~# calculations. The code

whole topology of the crystal, rather than studying a particu-also contains a post-search analysis of the CP’s, that includes

lar topological feature, we need an efficient method of find-2 MOrse consistency test, a study of bonding relations in the
ing all CP's. case of, bond points, and a symmetry classification of any_of
We will start by assuming that input electron densitiest® CP’s found. With the help of this method, systematic
have been obtained by means of any suitable proce(ere mvesngatlo_n_s of both structur.al and energetic relations in
some kind ofab initio calculations, or even high precision c'ystal families are made feasible.
experimental data, see Ref. 14 for an interesting review on
recent advances in this figldVe will also assume that first-
and second-order spatial derivatives of the charge density L . _
may be obtained to a given desired accurary. The means to W€ describe in this section how the general procedures
accomplish this task will vary according to the source of thePréviously devised are particularized for a prototype system,
data. Nuclear positions, as well as the crystal space groug} this case the B1 phase of Lil. We will first briefly com-
will be also supposed to be given. ment upon the computational scheme used to obtain the elec-
Our procedure tries to reduce as much as possible the sifEn density.
of the search space. To do that, we first construct the
Voronoi polyhedron of the Bravais lattice by means of
Finney's algorithm™> Using symmetry information, it is lonic crystals, or generally, closed-shell interacting sys-
compacted to its irreducible wedge, or irreducible Wigner—tems, are characterized by displaying a large number of pos-
Seitz zongIWZ). The IWZ is composed of on@r a small  sible crystal structures, from the very simple to the very
number at worst of irreducible tetrahedrdlWT). When  complex ones. In every case, charge density is expelled out
there is more than one, the IWT’s share vertices, edges, aref bonding (interatomig¢ regions and accumulates in the
faces, and may be fused together to form an unique IWZ, oionic cores. As a consequence, all topological features except
else they may be left separated while keeping track of duplinuclear maxima positions are found at extremely low-density
cate points. All nonequivalent special positions in the unitlocations. Well-resolved densities are then needed to isolate
cell are found on the surface of the IW@r IWT’s). Fixed and relate all the independent CP’s successfully. Along this

Ill. APPLICATION: B1 PHASE OF THE Lil CRYSTAL

A. Computational scheme
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TABLE II. Special positions(in Wyckoff's notation for the  posed at the appropriate locations. Let us examine in detail

Fm3m group. several interesting facts that emerge from the figures.

— In the first place, both the lithium and iodide ions are
Multiplicity ~ Wyckoff letter ~ Symmetry ~Representant remarkably spherical. If we remember that non-nuclear CP’s
192 | c, (x.y,2) lie on the atomic surfaces, we observe t.hat theilithium cation
96 K C. (X,%,2) shows a ra.lther' constant nucleus-CP Q|st§(mad|us? along
96 i C. (Oy,2) different d|r_ect_|c_Jns._ Conve_rs_ely, the iodide anion sh_ows
48 i C,, y.y) small but 3|g_n|f|cat|_ve deV|at|ons_ fror_n sphe_r|C|ty, malnly
48 h C,, (0y.y) along the anion-anion conta_ct direction. It is part|cu_larly
48 g c, (x.2 3 clea}r from Fig. 1b) that the |od|_des can be seen as forming a
32 ; Cg” (XX.X) cublg: close-packed structure in whlch_the octahedral h_oles
4 o c v (X’ 0’ 0) are_ﬂllc_ad by th_e smaller I|th|um_ ions. This allows us to define
y ‘ D4v (oilll) an iodine radius from t.ha Iattu;e parameters, as has. been

2h 11 repeatedly suggested in the literatéteThe strong anion-
8 ¢ T (H'i‘) anion contact shown here has important consequences on the
4 b On (2.2.2) stability and cohesive energy of ti&l phases of the alkali
4 a On (0,0,0) halides, as we are going to discuss in depth in a subsequent
paper.

. . _ o In the second place, the charge-density plots show how
line, we have chosefas in our previous workgheab initio  almost all the interatomic lines and surfaces deviate very
perturbed ion methodaiP!,'*"*° a quantum-mechanical glightly from linearity or planarity, respectively. This means
scheme extensively tested in several groups of ionic and pathat the atomic surface will be very well approximated by the
tially ionic solids. In brief, the method solves the Hartree-\wpp of the atom considered. Moreover, when bumps appear
Fock (HF) equations of the solid in a localized Fock space.in the surfaces, it is the lithium which expands against the
Many of the advantages of this scheme over canonical agodide. This fact is also consistent with our chemical intu-
proaches emanate from the localizing procedure. On the ongon that regards the large halide anions as much more de-

hand, it allows us to use large, nearly HF basis sets to avoighrmable (or polarizabl¢ entities than the small alkali cat-
balancing problems. We have used here the nfudtiponen-  jons.

tial basis sets of Clementi and RoéttiOn the other hand, In order to obtain all the CP’s and their exact location, the
the resulting local wave functions are very well suited togutomatic search code shows that the irreducible Wigner-
obtain good(perturbativelikg estimations of the correlation Seitz zone contains only one irreducible tetrahedra, being the
energy correction to the HF energfy. vertices: (0,0,0), £,0,0), (3,0,5), and (,3,3), for example.
The electronic densities and crystal geometries that args four corners are then, according to Table I, the four
taken as input in the topological analysis have been obtainegymmetry_ﬁxed CP’s. Only four independent CP’s are found
by minimizing the electronic ground-state potential surfacepy the baricentric process. There are two different indepen-
with respect to the only structural parameter characterizinglent CP’s for each of the four possible classes: nuclear,
the B1 phase of Lil, thea lattice parameter. The theoretical hond, ring, and cage points. On the whole, a primitive Lil
values obtained foa, the cohesive energy, and the isother-ce|| contains two nuclear points, 12 €6) bond points, 20
mal Zero-pressure bulk modquB(() are 4.359 A, 728.0 (12+ 8) ring points, and 10 (2— 8) cage points_ As can be
kd/mol, and 16.58 GPa, respectively, to be compared withmmediately proved, these numbers fulfill the Morse rela-
the experimental room temperature data, 4.259 A, 763.6 k3{ons, and constitute, therefore, a consistent set of CP’s for
mol, and 17.17 GP& We will use only equilibrium theo- the crystal. Table Il shows the specific positions, densities,
retical results in what follows. and computed gradient modules for all of them. First, it is
important to notice that the charge densities vary eight orders
of magnitude from the value found at the iodide nucleus to
that at the 8 cage, the absolute density minimum. Second,
Lil crystallizes, at low temperatures and pressures, in théyy means of the automatic determination as well as by visual
rocksalt phase, space groBpn3m. A summary of the Wy- inspection, the two bond points are found to bond different
ckoff special positions for this group is shown in Table II. pairs of atoms. CP number 3 (@4is a Li-l bond, while
Let us notice that there are four different fixed points. Twosymmetry-fixed CP number 4 (&% is a I-I bond. No Li—Li
of them are occupied by the lithiufsay position 4) and  bond exists, meaning that the lithium has a sixfold coordina-
the iodine (4) nuclei. It follows from the previous consid- tion, and the iodine a 18-fol(sixfold + 12-fold) one. While
erations that the two other fixed locationsc(&nd 241) must  this is in contrast with traditional thinking, it is our opininon
be true CP’s of the structure. that we should retain the topological 6-18 structure. We must
From Table II, it also becomes clear that all the relevantremark that, although the @4point is necessarily a CP in
special positions in the crystal are contained in two selectedvery alkali halide, by no means it is required to be a bond
planes:[100] and[110], for example. Contour density plots point and, in fact, it is not in many alkali halides.
of the charge density on both planes are shown in Fig. 1. It It is immediate to obtain the bonded radii of each ion
should be taken into account that the density scale is logdrom Table Ill: 0.9377 A for the lithium, and 2.1448 or
rithmic, and that the CP’s found by the automatic algorithm,2.1797 A for the iodine along the I-I and I-Li directions,
as well as the zero-flux surfaces projections, are superinrespectively. These values are in good agreement with Shan-

B. Topology
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non and Prewitt’s radii, 0.9 and 2.06 & or with the theo-
retical values given by Adacfr,0.95 and 2.0 A . We em-

tice in previous investigatiorfs.
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FIG. 1. Contour density plots of the charge
density scalar field in the LiB1 crystal at its
theoretical equilibrium lattice parameter. lithium
is at (0,0,0), and iodine al%(0,0).(a) Density on
the [100] plane.(b) Density on the[110] plane.
The isolines scale is logarithmic, in such a way
that there are 50 contours between the absolute
minimum and the absolute maximum. Critical
points and zero-flux surfaces limits have been su-
perimposed with the following conventions: dot-
ted lines for surface limits, stars for nuclear
points, crosses for bond points, squares for ring
points, and triangles for cage points. The axes
labels stand for the appropriate crystallographic
direction, and the units used are also crystallo-
graphic.

Further insight concerning the spatial organization of

CP’s may be obtained by following three different paths. In

phasize that these data have been fully obtained fromban the first one, we examine the atomic attraction polyhedron of
initio point of view, and that the lattice parameter has not each ion to obtain a clear picture of the vertex-edge-face
been fixed to the experimental value, as has been usual praelation previously defined. In the second one, the geometri-
cal arrangement of CP’s relative to the repulsion polyhedron

TABLE Ill. Lil independent critical points. Positions in crystallographic units. Electronic densities and
gradients in atomic units. The symbais b, r, andc refer to nuclear, bond, ring, and cage points, respec-

tively.

Number Symmetry Type Representant p |Vp|

1 4a n (0.000 00, 0.000 00, 0.000 00) 1.37220°

2 4b n (0.500 00, 0.000 00, 0.000 00) 1.05030°

3 24e b (0.152 10, 0.000 00, 0.00000)  4.48580 3 3.5x10°8
4 24d b (0.250 00, 0.000 00, 0.25000)  5.556I10°°  2.1x10 !
5 48h r (0.122 10, 0.000 00, 0.12210)  2.32420°° 1.1x10°8
6 3 r (0.166 92, 0.166 92, 0.166 92)  2.140m0 3 1.0x10°8
7 32 c (0.107 31, 0.107 31, 0.10731)  1.69030°°  4.1x10°8
8 8c c (0.250 00, 0.250 00, 0.250 00) 1.44660 %  1.4x10 %2
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TABLE IV. Trace (V2p), eigenvalues &), and normalized eigenvector¥(,V,,V,) of the Hessian
matrix of the charge density at non-nuclear critical points. All density data in atomic units.

Number b3 b4 r5 ré c7 c8

V2p 0.03277 0.014 85 0.044 72 0.008 03 0.009 69 0.006 32
€ —0.004 73 —0.026 95 —0.001 58 —0.000 98 0.002 78 0.002 11
Vy 0.000 00 0.000 00 1.00000 -0.57735 0.408 25 0.577 35
Vy 0.707 11 0.707 11 0.00000 —0.57735 0.408 25 0.577 35
V, 0.707 11 -0.707 11 0.000 00 0.577 35 0.816 50 0.577 35
€ —0.004 73 —0.002 69 0.005 57 0.004 51 0.002 78 0.002 11
Vy 0.000 00 1.000 00 0.000 00 0.40825 -0.70711 0.707 11

Vy —-0.707 11 0.000 00 0.707 11 0.408 25 0.70711 -0.707 11

V, 0.707 11 0.000 00 0.707 11 0.816 50 0.000 00 0.000 00
€3 0.042 23 0.014 79 0.014 79 0.004 51 0.004 12 0.002 11
Vy 1.000 00 0.000 00 0.00000 -—0.70711 —0.577 35 0.408 25

Vy 0.000 00 0.707 11 —-0.707 11 0.707 11 —0.577 35 0.408 25

\% 0.000 00 0.707 11 0.707 11 0.000 00 0.57735 —-0.816 50

N

around each cage is studied. In the third one, the geometricabw easy to find, and are shown in Fig. 3. The 18-fold co-
structure of CP’s around each nonequivalent CP is analyzeardination of the iodines yields the truncated cube shown,
All of these approaches are complementary, and need infowhile the sixfold bonding of the lithiums produces a much
mation about the basins of attraction and repulsion of CP’smore familiar regular octahedron.

As far as this last point is concerned, Table IV shows the If the repulsion polyhedron, and not the WPP, is chosen
eigenvalues and eigenvectors of the Hessian of the charges the root node of the analysis of the arrangement of CP’s in
density,H(p), at each of the non-nuclear CP’s of the crystal.the crystal, spatial relations among them appear. From Table
We see, for example, that the basin of CP numbéa 8i-I1 Ill, we see that there are two independent cage points: 7
bond is parallel to theyz plane in the proximities of the and &. We can use Fig. 2 to visualize its situation. The
bond. The bonding direction is simply ttxeaxis and, there- repulsion polyhedron of CPc7is, for example, the triangular
fore, the bond angle is 180°. Reasoning in a similar mannepyramid formed up by the central lithium atom and thea
for the six bonds around a lithium atdisee the central atom three anions located at ¢13),(3,1,3), and 3,3,1). The &

in Fig. 1(a)], we can use intuition to obtain its WPP, that point is situated along the height line of the pyramid at
turns out to be a slightly bumped regular cube. It is easily0.0594 crystallographic units from the base. It is easily veri-
verified that the cage7 forms the eight vertices of the cube, fied that the four faces of the pyramid are actually triangular
and that there is a rings at the very center of each of the 12 rings of bonds, and that all the edgés bond paths are
edges. The edges of the cube, viewed from its center, adeear (they are symmetry lingsNo bent bond stress then
straight lines parallel to the Cartesian axsse the eigenvec- arises. The faces are not all planar by symmetry, however,
tor associated to the negative eigenvalue atrthepoint in  and the base of the pyramid is slightly bumped. Its ring point
Table 1V) that curve slightly inwards near the vertices. We (r6) has a free parameter along one diagonal of the cubic
can convince ourselves of the truth of the last statement corunit cell. Were the base face of the pyramid absolutely pla-
sidering the (0,0,0) lithium in the left-bottom part of Fig. nar, it would be situated at(%,3). Actually, its position is
1(a). The nearest ring point, at (0.1221,0,0.1221), is at thé0.6669,0.6669,0.6669 only 2.5<10 4 crystallographic
center of an edge along tlyeaxis, and this edge ends at two units away from its ideal location. Ring stress is then negli-
cage points, situated above the figure’s plane agible for this crystal. The other cage¢-8-a fixed point with
(0.1073,0.1073,0.1073  and (0.107 315-0.107 31, T4 symmetry—lies at the center of the regular tetrahedron
0.107 31). The cages are, actually, nearer totheplane  formed by the four anions of any of the eight little cubes
than the rings. Similar arguments can be easily extended twrming the cubic unit cell. Its four faces are equivalent equi-
the iodine atom. In this case, square faces are associated lageral triangles of anion-anion bonds. The bonds network in
each one of the six Li-l bonds along tl&00) lines, and this crystal is then a union of three-member rings of bonds
perfectly hexagonal faces to the 12 I{110 bonds. (some isosceles triangles, some equilateral psi@sounding
Figure Za) displays the idealplanar facesWPP’s for both  tetrahedral or pyramidal cages. Let us notice that the cage
atoms, showing their mutual relation and the space-fillingooints of the crystal may be correlated with the concept of
property. Figure @) presents the atomic basins obtainedholesof a structure, the points inside a crystal where a host
from the actual wave function of the crystal. Let us noticeion or impurity is most likely to be found.

the great size difference between the iodine and the lithium Finally, some information may be gained by examining
atoms. It can be observed that the WPP’s are, in this case,the distribution of CP’s around every CP. When applied to
very good approximation to the atomic basins. The duals ofiuclear positions, it gives rise to the shell structure of the
this attraction polyhedrdthe coordination polyhedyaare  crystal, or to the radial distribution function of neighbors,
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FIG. 3. Coordination polyhedra for the Lil structure onto the
(a) cubic unit cell. Atomic positions are equivalent to those of Fig. 2.
Note that now the polyhedra interpose each other.

the centers of the edges forming its repulsion tetrahedron.
We must also stress the great density of CP’s in a crystal and
their mutual proximity. In the case under study, the mini-
mum distance between two different CP’s is 0.63 A in the
r6-c7 case, which is a very small value and contributes to
the intrinsic algorithmic difficulty of automatically finding

all CP’s. Even more illuminating about the CP proximity is
the fact that in the list of neighbors of tf3 bond point, the
iodine nucleus is not among the first 20 neighbor shells
around it.

C. Atomic properties

We will now present a very brief account of the results
obtained when integrating some operators over the basin of
attraction of an atom. A recent account of the basic theoreti-
cal facts concerning these properties is given in Ref. 26. We
will restrict ourselves here to the atomic charge and to the

(b) atomic volume of the two species in the Lil crystal and defer

further considerations to other papers in this series.

FIG. 2. (a) Weighted proximity polyhedra for the Lil structure The computational code we have constructed obtains au-
onto the cubic unit cell. Lines correspond to Li-l and I-l bonds. tomatically the atomic values of several operators by means
Filled small dots correspond to I-1 bond points, and hollow smallof a three-dimensional Gauss-Legendre numerical quadrature
dots to Li-I ones. In order to allow for a better view, the relative performed in a polar coordinate frame centered at each non-
position of cations and anions has been inverted with respect to Figquivalent nuclear position in the crystal. The most difficult
1. Large white spheres are iodide ions, and large black sphergsart of the radial integration is the calculation of the bound-
lithium cations. Note the space-filling property of the polyhedoa. ary of the atomic basin at each value of the polar angles and
Attraction basins of I(left) and Li (right). The basins have been it constitutes the limiting step of the algorithm. Convergence
rendered withseomview (Ref. 27. tests are done by examining the total charge of the unit cell,

the total volume as compared to the crystallographical one,
both extensively studied in the past. We will briefly describe,and the value of the integral of the Laplacian of the charge
therefore, the shell structure of non-nuclear CP’s, and theéensity over atomic basins. This last value should ideally be
non-nuclear neighbors of nuclear points. It is easy to visualzero by transforming the volume integral to a surface one.
ize the geometry of CP’s around a given one by using Fig. 2We have found total cell residual charge values around
For example, if we take the8 point(thetetrahedral holeof ~ 10%-10° electrons as typical of usual integration grids.
the NaCl structurg the first neighbors are the four centers of Symmetry is presently accounted for by directly introducing
the faces of its repulsion tetrahedron, followed by the fourthe integration limits, but will be soon incorporated to inte-
cages of the other kind situated tetrahedrically around it irgrate automatically over the irreducible region of each
the interior of the four pyramids, and by the six I-I bonds atatomic basin.
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Using a quadrature of 070X 70 points we have ob- have also shown how the topology of the electron density
tained the following values:Q,;=—-Q,=0.97013 a.u.,, may be used to give a rigorous foundation to historical con-
V|;=29.6191 boht (7.496% of total, and V,=365.5213 cepts like the index of coordination or the coordination poly-
bohr® (92.504% of total These values, situate the Lil as a hedron of an atom or ion in a solid. Several interesting map-
highly ionic compound, and allows us to speak with confi-pings between atoms and polyhedra have also been
dence ofions in a crystal examined, and applied to a Lil system. We think that there is

room in solid-state thinking for the tools and concepts pre-
sented here, and that a judicious use of them will give rise to
IV. CONCLUSIONS ways of correlating chemical behavior and chemical struc-

We have shown in this paper how Bader’s theory of at-turé in solids. An attempt to present some of those findings
oms in molecules may be applied to periodic crystalline sysWill be the purpose of the following parts of this work.
tems. Some specific facts emerging from the topological dif-
ference betweeR?, the three-dimensional space of isolated
molecules, an&®, the three-dimensional manifold of a crys-
tal, have been studied in detail. Symmetry has been shown to We are grateful to the Centro de IGalo Cientfico of the
impose stringent conditions on the location of critical pointsUniversidad de Oviedo for computational facilities. Financial
of the charge-density gradient field. An automatic algorithmsupport from the Spanish Direcci@General de Investigagio
for the location and analysis of critical points has been conCientfica y Tecnica (DGICYT), Project No. PB93-0327, is
structed and used to exemplify the theoretical results. Welso acknowledged.
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