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Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals

A. Martı́n Penda´s, Aurora Costales, and Vı´ctor Luaña
Departamento de Quı´mica Fı́sica y Analı´tica, Facultad de Quı´mica,

Universidad de Oviedo, E-33006 Oviedo, Spain
~Received 14 December 1995!

The topological theory of atoms in molecules is applied to periodic crystalline ionic systems. A systematic
investigation of the fundamental properties of the topology of the charge density in crystals is undertaken, and
several basic facts, peculiar to the solid state and not previously explored, to our knowledge, are put forward.
We also show how the theory allows us to define unambiguously very important concepts of solid-state theory,
like the coordination index or the coordination polyhedron of an ion in a solid. We particularize our results by
means of the detailed study of an example crystal, the rocksalt phase of LiI. It is shown that this crystal is best
described as made up of 18-fold-coordinated iodides and sixfold-coordinated lithiums, contrary to the usual
six-six description.@S0163-1829~97!09304-1#
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I. INTRODUCTION

A large part of our chemical and physical wisdom
based on the concept of interacting atoms or ions that mo
maintain their individuality when transferred among diffe
ent compounds, and that confer well-defined properties
materials. Quantum-mechanical pictures of isolated m
ecules or condensed phases, however, have traditionally
much less prone to such prevalent images of the chem
world, giving rise to the longly debated problem of how
recover atomic, ionic, or group behavior from quantum d
scriptions. So deeply rooted for the chemist or physicis
the need to partition physically every global system prope
into isolated contributions, that over the years hundreds
different recipes or models to perform this task have
peared in the literature. Of paramount importance is the
that most modern theories of bonding are based, in one
or another, on the partition of charge~or electronic density!
among the different nuclear centers under study, usually
means of Mulliken—i.e., projected density of states
solids—analyses. In this way, an important amount of
interpretative models of chemical behavior are based on c
cepts that are known to be very badly defined, and to g
answers extremely dependent on a whole hierarchy of
proximations. As an example, Mulliken populations depe
on the concept of orbital, and are therefore nonobjec
functions of the computational method used to obtain the

It should be clear from the preceding paragraph that
attempt to construct a firm theory of bonding that allows
to recover the empirical concept of an atom in a molec
must be based on a quantum mechanically well-defined
tition of physical space. In this way, the topological prop
ties of observables become central to the treatment. The
portance of the topology of several scalar fields in chemis
has been repeatedly put forward in recent years.1 Different
definitions of the basic topological space and its sets g
rise to different and complementary schemes. Howeve
we expect to recover the observed additivity of group pr
erties from our treatment, we are advocated to conside
topology that allows the generalizaton of quantum mecha
to open systems. Such a theory has been constructe
550163-1829/97/55~7!/4275~10!/$10.00
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Bader,2 considering the topology of the electron densi
Over the years it has proven to provide a sound foundatio
some of the most important phenomenological models
chemical bonding, like the valence shell electron pair rep
sion model,3 an improved version of the historical Lewis pa
model. It has also shown how quantum-mechanical elec
densities calculated at different approximation levels can
used to recover group or bond properties in excellent ag
ment with experiment.4

Unfortunately, Bader’s own background has condition
its diffusion stream mainly to molecular quantum chemist
and the theory has not achieved in condensed phases
development status found in molecular systems. There
good reasons, nevertheless, to undertake such a resear
the solid state. On the one hand, translational symmetry
opposed to rotational symmetry in the molecular enviro
ment, imposes severe restrictions on the type and numbe
critical points that a periodic scalar function, like the electr
density, may show. Moreover, the toroidal, boundless na
of the physical space, in which atoms are embedded i
perfectly periodic crystal, makes it necessary that the volu
associated with a given group of atoms remains finite. T
situation is extremely unusual in an isolated molecule, a
allows us to define geometrical concepts—i.e., atomic
group radii, group volumes, etc.—that, being necessarily
defined in normal molecules, may now be compared a
correlated with a vast amount of empirical or semiempiri
data. On the other hand, the connection between the a
batic electronic energy surface of the crystal ground state
its static thermodynamics opens the way to a study of
behavior of bonding properties with pressure and tempe
ture.

Through the years, several authors, including Bader h
self, have applied these ideas to crystalline solids, unco
ing many important facts about the topological features
the electron density in periodic systems. Some of these s
ies, particularly those of Eberhart and co-workers,5 focused
on metallic alloys, and have revealed interesting connecti
among macroscopic properties, like bulk moduli and elect
densities. Other ones, mainly addressed by Bader
co-workers,6 showed some of the formal features and ba
4275 © 1997 The American Physical Society
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shapes of electron densities in crystals that arise from
periodicity of space.

A systematic study of the complete topology of the ele
tron density in a periodic solid seems to be lacking. In t
work we will try to establish the main characteristics of t
topology of the electronic density in these systems. Our
cus will be addressed more toward the less-known in
atomic or intermolecular features than to the now we
understood intramolecular ones.2 Simple ionic systems seem
well suited for these purposes. The whole topological pict
is interionic in nature here. Moreover, the very concept
atomic radii was born when systematizing the x-ray latt
parameters obtained for the alkali halides. We have cho
perovskites and alkali halides as a starting point. Des
their extreme structural simplicity, we will show how the
hide a rich number of different topological structures th
evolve following purely geometrical criteria.

In this first paper we will present Bader’s theory in th
context of a periodic system, together with a detailed stu
of the topological properties of a prototypical alkali halid
The second paper will present an application of the gen
scheme presented here to the slightly more complex pe
skite structure compounds. A third paper in the series will
devoted to an analysis of the geometrical trends emerg
from a systematic study of the topology of the charge den
in the rocksalt phase of alkali halides. Finally, a fourth pa
will address the relation between topological and energ
properties, particularized to the case of the pressure-indu
B1 ~rocksalt! to B2 ~cesium chloride! phase transition of the
alkali halides, for which a detailedab initio study has previ-
ously been reported.7

The rest of the paper is organized as follows: In Sect
II we will introduce Bader’s theory, stating its main poin
and the usual terminology associated with it. We will th
study those features of the theory to be found only in
solid state, as well as the computational implementation
an original and efficient automatic procedure able to extr
the whole topology of a crystal without human interventio
Sec. III is devoted to a study of the topological picture o
prototypic alkali halide, the lithium iodide, in its rocksa
phase. Finally, we will give some conclusions and prospe
in Sec. IV.

II. FUNDAMENTALS

A. Bader’s atoms in molecules theory

Here we will provide a minimal set of the main results
the topological theory of atoms in molecules. A full, autho
tative account of the theory may be found in Refs. 2 and
and in the works cited therein. Our treatment closely follo
that found in Ref. 8.

It may be proven that in order to obtain a well-behav
quantum-mechanical description of an open region o
quantum system, the region must be bounded by a sur
whose flux of the gradient of the electron density vanish
Let us denote by the symbolV an open three-dimensiona
region in the physical space, and byS or SV its bidimen-
sional boundary. The previous condition is written as

¹r•n50 ~1!
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for every point inSV , n being the exterior normal vector t
the boundary surface.

The most important topological property of the char
density of an electronic system is the presence of maxim
the nuclear positions. Equation~1! allows us actually to par-
tition the physical space into nonoverlapping regions that
general, contain only one nucleus. In order to obtain a m
clear picture of the appearance of those regions, a few c
ments regarding the general features of the charge den
gradient vector field (¹r) are due. Every field line or trajec
tory of the field, thought of as creating a dynamical syste
has its origin (t→2`, a–limit! and its end (t→`,
v–limit, attractor! at critical points,¹r50W . Clearly, an enu-
meration and classification of the critical points of the field
an important step toward the topological identification of t
field. Four nondegenerate kinds of critical points are poss
in three dimensions: maxima, minima, first-kind sadd
points, and second-kind saddle points. Following Bader’s
tation, we classify them according to the~rank, signature!
convention. The rank is defined as the number of nonz
eigenvalues of the Hessian matrix of the charge density.
signature being the algebraic sum of the signs of the eig
values. Although the nuclei of a system introduce a cusp
the electronic density, nuclei are topologically identical
maxima or (3,23) critical points. Very few examples o
nonnuclear maxima have been found up to now. The ot
types of critical points are usually named with terms who
meaning will soon turn clear: (3,21) or bond point,
(3,11) or ring point, and (3,13) or cage point. The set o
points sharing a givenv limit is usually called the basin o
attraction of the final critical point. Only (3,23) points dis-
play three-dimensional basins of attraction. In the case o
nuclear maximum, the union of the nuclear point plus
basin of attraction is identified with the concept of ato
When considering a (3,21) point, the two trajectories origi-
nating from it have different nuclear attractors. We then s
that those two nuclei are bonded. The presence o
(3,21) critical point between every pair of bonded nuclei
in agreement with Slater’s image of chemical bonding, a
we refer the reader to the appropriate literature for furt
study.2 The network formed by the nuclei and their bonds
a connected graph, themolecular graph. When the molecular
graph displays a cycle, the system is said to have a ring.
found that a ring of bonds is also associated with a (3,11)
point, located somewhere in between the ringed nuclei.
nally, a set of noncoplanar rings may create a cavity hold
a cage~3,13! point in its interior.

This fully coherent picture of the topological structure
a molecular system is to be supplemented with the ac
procedures to obtain atomic or group properties. The ato
average value of an observableÔ is defined as the average o
the appropriate operator density over the basin of attrac
of the atom under consideration,2

OV5^Ô&V5E
V

rOdv. ~2!

The main result that may be proven from the above defi
tion lies in the additivity of atomic properties. The avera
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TABLE I. Symmetry of fixed point positions that assure the presence of a critical point.

System

Triclinic Ci(1̄)
Monoclinic C2h(2/m)
Orthorhombic D2(222) D2h(mmm)
Tetragonal C4h(4/m) D4(422) D2d(4̄2m) D4h(4/mmm)

Trigonal C3i(3̄) D3(32) D3d(3̄m)
Hexagonal C3h(6̄) C6h(6/m) D6(622) D3h(62m) D6h(6/mmm)

Cubic T(23) Th(m3) O(432) Td(4̄3m) Oh(m3̄m)
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value of an observable is given simply by the sum exten
over all the three-dimensional attractors of the system o
atomic contributions,

^Ô&5(
V

OV . ~3!

This result holds for both one- and two-electron operato
Group properties are immediately obtained after adding
properties of those atoms forming up the group of interes
is worth mentioning that the virial and other important phy
cal theorems hold within every basin. As it should follo
from this enumeration of properties, the partition of spa
based on Eq.~1! is a fundamental one rather than a comp
tational trick.

Let us finally notice that the molecular graph depen
parametrically on the nuclear coordinate variables. As
number of distinct molecular graphs that a particular sys
may exhibit is finite and discrete, we have essentially
tained a continuous to discrete mapping between the spa
nuclear configurations and the space of molecular gra
The set of points of the nuclear configuration space ass
ated to a given molecular graph is called astructure.9 When
the electron density of such a system rearranges as a co
quence of external or internal processes, the change of s
ture must be necessarily catastrophic, in Thom’s sense,10 and
it occurs through special degenerate graphs. We then h
not only a theory of structure but also ofmolecular change.

B. Ions „atoms… in crystals

1. Basic facts

The periodicity of a crystal lattice is the origin of a set
peculiarities in the topology of the charge density that
serves a more detailed analysis. In the first place, by me
of topological identification of equivalent lines and faces
any crystallographic cell, the electron density space dom
may be made homeomorphic toS3, the 3-torus. This fact
forces, on the one hand, the finiteness of every atomic ba
In this way, we may assign to every crystalline atom a p
fectly defined finite volume. These atomic volumes are ad
tive and fill the space. On the other hand, the existence
~3,13! critical points or cages, very unusual objects in is
lated small molecules, is here assured by the Weierst
theorem. Moreover, the existence of cage points also
forces the presence of ring points, and the latter, procee
d
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recursively, that of bond points. All four types of nul
gradient points of the electronic density must then be pres
in a periodic system.

Point-group symmetry has also an important role on
position of the critical points of a scalar function. Let u
consider, for example, a pureCn rotation axis that, without
loss of generality, will be supposed along thez axis. The
behavior of a scalar functionf under the rotation aboutCn is
such thatf (hW )5 f (RhW ), wherehW is the position of a point
referred to a suitable point of the rotation axis, and

R5S cosf sinf 0

2sinf cosf 0

0 0 1
D ~4!

is the rotation matrix of the axis,f52p/n being the rotation
angle. For a sufficiently smallhW vector, a first-order Taylor
expansion leads to the identity¹f (12R)•hW 50. If the rota-
tion angle is different from zero, the only nontrivial solutio
forces the gradient to be along the axis. According to th
any derivative of a scalar function in a direction perpendic
lar to the rotation axis is null by symmetry at any point alo
the axis. Similar, very simple arguments indeed, may be
plied to the other point-group symmetry elements.

Going further, certain combinations of symmetry el
ments at a given point assure a null gradient at that po
Table I shows the symmetry of such special positions thafix
a point. They may be easily obtained for each space group
we realize that they are nothing but those Wyckoff positio
having three fixed coordinates. It is also interesting to not
that all other special positions, though not directly ensur
the occurrence of a critical point, limit their possible locatio
strongly. One- and two-parameter special positions may
hibit a null gradient point at selected values of those para
eters, though, in many cases, the critical point may coinc
with actually fixed positions. Following these prescriptions
number of symmetry-related points may be found or bra
eted by inspection.

Another issue that must be addressed regards topolog
constraints over the particular number of critical poin
~CP’s! of each kind that may coexist in the lattice. When t
domain space of the charge density isR3, as in anin vacuo
molecule, the number of CP’s must satisfy the Euler
Poincare´-Hopf relation

n2b1r2c51, ~5!
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where n,b,r , and c refer to the total number of nuclea
bond, ring, and cage points, respectively. InS3, the 3-torus
space of crystal structures, however, the appropriate relat
are generally known as Morse relations~see Ref. 11 for a
rigorous presentation, or Ref. 12 for a nontechnical disc
sion!. They are well known in solid-state theory since t
introduction of van Hove singularities, though its first use
connection with the number of critical points of the electr
density in a crystal seems to be that found in Ref. 13. T
Morse equivalent to Eq.~5! is

n2b1r2c50, n>1, b>3, r>3, c>1. ~6!

Besides its theoretical importance, Morse relations are
tremely useful in order to accept or reject a set of CP’s wh
constructing an automatic search procedure, as we will s
below.

Periodicity also has another important consequence
has not yet been recognized. There exists a partition of sp
into three-dimensional regions surrounded by zero-flux s
faces that is thinner than the partition into atomic basins.
us define aprimary bundleas the set of trajectories of th
gradient field with commona and v limits or, in other
words, the bundle of trajectories starting at a minimum a
ending at a maximum. The boundary surface of a prim
bundle is, evidently, a zero-flux surface and, most imp
tantly, the division of space into primary bundles is the th
nest one possible. All CP’s must lie on the boundary o
primary bundle. The general structure of a nondegene
primary bundle is simple. It consists of one maximum, o
minimum and, let us say,n ring points andn bond points
joined together in a peculiar way: the maximum joins to
the bond points; every bond point joins, moreover, to t
ring points; and every ring point joins to the minimum and
two bond points. This scheme induces a homeomorph
between a primary bundle and a convex polyhedron. To e
CP we associate a vertex of the polyhedron, and an edg
every trajectory onto the surface of the bundle that conn
two CP’s. These polyhedra are easily seen to have 2n12
vertices, 2n faces, and 4n edges. They fulfill, thus, Eule
relation: faces1 vertices5 edges12. The most basic to-
pological structure of the crystal is, then, that of its distin
primary bundles, and of their interconnections.

Primary bundles are, however, not found in common
pological analyses of the electronic density. They are n
mally collected to introduce coarser partitions of space
which larger zero-flux-bounded regions are taken as the
mary objects of study. The usual practice has been to iden
those basic objects as the union of all the primary bund
sharing the same maximum. The interior of such an objec
nothing but the basin of attraction of the nucleus. All oth
critical points of the set of primary bundles defining t
atomic basin are found on the surface of the latter, defin
another mapping onto sets of polyhedra, the attraction
atomic polyhedra. The mapping is made in the followi
way: to each cage we associate a vertex of the polyhedro
each bond point a face that is physically its two-dimensio
basin of attraction; and to every ring point an edge that c
responds to its one-dimensional basin of attraction. In
way, an atomic polyhedron withm vertices is composed o
m primary bundles.
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The recognition of bundles as the intrinsic topologic
units that form up the crystal allows us to group them
gether in other ways, giving rise to fruitful, encouraging pe
spectives of the same realm. One immediate grouping re
is found by collecting all bundles sharing the same cage
form the topological basic object. This prescription is sy
metrical to the previous one with respect to the intercha
of basins of attraction by basins of repulsion: the set
points of the space sharing the samea limit. In this way, a
repulsion polyhedra has a minimum in its interior. In its su
face, nuclei define vertices; ring points and their tw
dimensional repulsion basins define faces; and bond po
and their one-dimensional repulsion basins define edges

Once attraction and repulsion basins and polyhedra h
been introduced, a very clear chemical image appears
every atomic species in the crystal we associate an attrac
or atomic polyhedron with as many faces as different bo
attached to the atom considered, giving rise to a continu
to discrete mapping between the set of possible nuclear
figurations and the set of topological polyhedra. Attracti
polyhedra are then to be interpreted as atomic shapes. O
other hand, repulsion polyhedra are directly associated to
bonding network of the structure, having vertices along bo
lines. Both visions complement each other. The object
definition of the number of bonds attached to a given at
that originates in the above arguments allows us to de
unambiguously concepts as important to solid state phy
and chemistry as the coordination index of an atom and
associated coordination polyhedron. In this sense, classi
tion schemes based upon such definitions acquire a w
founded status.

Primary bundles, finally, can be gathered together to fo
the topological equivalent to the Wigner-Seitz cell of t
crystal, recently introduced by Zou and Bader6 as the small-
est connected region of space bounded by a zero-flux
face, and exhibiting the translational and local point-gro
invariance of the crystal. Actual atomic or repulsion polyh
dra are difficult to visualize, as their computation impli
expensive calculations. The mapping among them and p
hedra, however, opens the question about the possibilit
finding planar polyhedra that approximate the actual shap
the topological polyhedra. It is easy to understand, for
ample, that the proximity polyhedron of an atom is a fir
order approximation of its atomic basin. A proximity poly
deron is defined as the region formed by the intersection
the set of semispaces that contain the nucleus of inte
generated by all the planes that perpendicularly bisect
lines connecting the nucleus with its neighbors; or, in oth
words, as the Wigner-Seitz cell of a hypothetical Brav
lattice containing one node at each nuclear position.

Proximity polyhedra~PP! of different atoms display the
full local point-group symmetry at the nuclear sites, sha
faces when considering neighboring nuclei, and fill the sp
without overlapping. These features are also characteristi
atomic basins, as commented above. It is easily proven
they are actually the atomic basins when the atoms of
lattice are all equal~i.e., in the case of metals!. If there exist
different species, however, different coordination indic
may appear, and the PP associated to each kind of atom
have to be obtained with respect to the coordination actu
exhibited and the relative distance from every bonded ne
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bor at which the bisecting planes are drawn. We name
PP’s in this case asweighted proximity polyhedra~WPP’s!.
Moreover, the atomic basins of the larger atoms will expa
with respect to their WPP’s, while the basins of the sma
will shrink. Along with this process, the planar faces of t
WPP may distort, and bumps appear. We will show th
actually, there exist crystals with mostly planar atomic fac
and crystals with striking features in their atomic shapes
any case, PP’s play an important role in the intuitive und
standing of atomic shapes.

From the topological polyhedra just defined, new illum
nating three-dimensional objects may be obtained by me
of the concept of Euclidean or geometrical duals. Give
polyhedron, another~its dual! is constructed associating t
each of its faces a vertex, and vice versa. Two vertices of
other polyhedron are joined by an edge if the correspond
faces in the original figure are adjacent. Two kinds of po
hedra arise using this prescription. In order to keep the
cussion as succinct as possible, we will only briefly consi
the duals of the attraction polyhedra. They must have a
tex per bond attached to the atom under consideration. If
locate these vertices at the nuclear position of the bon
atoms, we obtain a procedure to obtain the coordina
polyhedron of any atomic species. Sixfold coordination,
example, conduces to octahedralike coordination polyhe
~six corners, eight faces, 12 edges! and to cubelike atomic
shape polyhedra~eight corners, six faces, 12 edges!. It is also
interesting to note that when a change in the structure o
the electronic density leads to a change in the number or
of the CP’s of the system, all the polyhedra here defin
must undergo a similar change of type simultaneously.

2. Automatic search of critical points

From the above considerations, it stands clear that
topological structure of a modest mineralogical compoun
expected to be rather complex. If our aim is to analyze
whole topology of the crystal, rather than studying a parti
lar topological feature, we need an efficient method of fin
ing all CP’s.

We will start by assuming that input electron densit
have been obtained by means of any suitable procedure~i.e.,
some kind ofab initio calculations, or even high precisio
experimental data, see Ref. 14 for an interesting review
recent advances in this field!. We will also assume that first
and second-order spatial derivatives of the charge den
may be obtained to a given desired accurary. The mean
accomplish this task will vary according to the source of
data. Nuclear positions, as well as the crystal space gr
will be also supposed to be given.

Our procedure tries to reduce as much as possible the
of the search space. To do that, we first construct
Voronoi polyhedron of the Bravais lattice by means
Finney’s algorithm.15 Using symmetry information, it is
compacted to its irreducible wedge, or irreducible Wigne
Seitz zone~IWZ!. The IWZ is composed of one~or a small
number at worst! of irreducible tetrahedra~IWT!. When
there is more than one, the IWT’s share vertices, edges,
faces, and may be fused together to form an unique IWZ
else they may be left separated while keeping track of du
cate points. All nonequivalent special positions in the u
cell are found on the surface of the IWZ~or IWT’s!. Fixed
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points, or symmetry fixed CP’s, coincide with the vertices
the IWZ; one- and two-parameter special points, with
edges and faces. Finally, Wyckoff’s general positions of
lattice will be located in the inside of the IWZ.

Our algorithm proceeds as follows. We locate, as a fi
step, all nuclear and symmetry-fixed CP’s by examining
input crystallographic positions and the vertices of the IWT
The algorithm then looks for a CP of the charge density i
given l simplex ~segment, triangle, or tetrahedron whe
l51, 2, or 3!. A rather safe way to locate the CP is to sear
for a minimum ofu¹ru using a good multidimensional mini
mization scheme~like linear downhill simplex or Powell’s
method16!, and to check if this minimum achieves a nu
gradient to a required precision. We then proceed by ap
ing a slightly modified baricentric subdivision algorithm
each of thel simplices. A tree data structure is created co
taining one node per each simplex within a given IWT~4
corners1 6 edges1 4 faces1 1 tetrahedron5 15 nodes!.
The previously commented minimization routine is then us
to select one CP out of all the possible ones lying in
interior of the simplex associated to every node of the tree
another CP is found, a division of that simplex is done. T
division position is taken as the location of the CP ju
found, rather than as a geometric center of the simplex.
division is recursively repeated until no CP is found at
particular tree node. In this case, the node is end marked,
the algorithm proceeds with another node until all of the
have been end marked. Clearly, the method is finite and
hausts all possible CP’s. In order to avoid infinite loops d
to numerical inaccuracies, however, a maximum tree dept
enforced, so finiteness is guaranteed.

The above scheme has been implemented in aFORTRAN 77

~Ref. 17! code that receives externally computed charge d
sities and searches for the topological structure of the CP’
a crystal. At present, densities are supposed to be obta
throughab initio perturbed ion,18–20 calculations. The code
also contains a post-search analysis of the CP’s, that inclu
a Morse consistency test, a study of bonding relations in
case of bond points, and a symmetry classification of any
the CP’s found. With the help of this method, systema
investigations of both structural and energetic relations
crystal families are made feasible.

III. APPLICATION: B1 PHASE OF THE LiI CRYSTAL

We describe in this section how the general procedu
previously devised are particularized for a prototype syste
in this case the B1 phase of LiI. We will first briefly com
ment upon the computational scheme used to obtain the e
tron density.

A. Computational scheme

Ionic crystals, or generally, closed-shell interacting s
tems, are characterized by displaying a large number of p
sible crystal structures, from the very simple to the ve
complex ones. In every case, charge density is expelled
of bonding ~interatomic! regions and accumulates in th
ionic cores. As a consequence, all topological features ex
nuclear maxima positions are found at extremely low-den
locations. Well-resolved densities are then needed to iso
and relate all the independent CP’s successfully. Along
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line, we have chosen~as in our previous works! theab initio
perturbed ion methodaiPI,18–20 a quantum-mechanica
scheme extensively tested in several groups of ionic and
tially ionic solids. In brief, the method solves the Hartre
Fock ~HF! equations of the solid in a localized Fock spac
Many of the advantages of this scheme over canonical
proaches emanate from the localizing procedure. On the
hand, it allows us to use large, nearly HF basis sets to a
balancing problems. We have used here the multi-z exponen-
tial basis sets of Clementi and Roetti.21 On the other hand
the resulting local wave functions are very well suited
obtain good~perturbativelike! estimations of the correlation
energy correction to the HF energy.22

The electronic densities and crystal geometries that
taken as input in the topological analysis have been obta
by minimizing the electronic ground-state potential surfa
with respect to the only structural parameter characteriz
theB1 phase of LiI, thea lattice parameter. The theoretic
values obtained fora, the cohesive energy, and the isothe
mal zero-pressure bulk modulus (B0) are 4.359 Å, 728.0
kJ/mol, and 16.58 GPa, respectively, to be compared w
the experimental room temperature data, 4.259 Å, 763.6
mol, and 17.17 GPa.23 We will use only equilibrium theo-
retical results in what follows.

B. Topology

LiI crystallizes, at low temperatures and pressures, in
rocksalt phase, space groupFm3̄m. A summary of the Wy-
ckoff special positions for this group is shown in Table
Let us notice that there are four different fixed points. Tw
of them are occupied by the lithium~say position 4a) and
the iodine (4b) nuclei. It follows from the previous consid
erations that the two other fixed locations (8c and 24d) must
be true CP’s of the structure.

From Table II, it also becomes clear that all the relev
special positions in the crystal are contained in two selec
planes:@100# and @110#, for example. Contour density plot
of the charge density on both planes are shown in Fig. 1
should be taken into account that the density scale is lo
rithmic, and that the CP’s found by the automatic algorith
as well as the zero-flux surfaces projections, are supe

TABLE II. Special positions~in Wyckoff’s notation! for the
Fm3̄m group.

Multiplicity Wyckoff letter Symmetry Representant

192 l C1 (x,y,z)
96 k Cs (x,x,z)
96 j Cs (0,y,z)
48 i C2v ( 12,y,y)
48 h C2v (0,y,y)
48 g C2v (x, 14,

1
4)

32 f C3v (x,x,x)
24 e C4v (x,0,0)
24 d D2h (0,14,

1
4)

8 c Td ( 14,
1
4,

1
4)

4 b Oh ( 12,
1
2,

1
2)

4 a Oh (0,0,0)
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posed at the appropriate locations. Let us examine in de
several interesting facts that emerge from the figures.

In the first place, both the lithium and iodide ions a
remarkably spherical. If we remember that non-nuclear C
lie on the atomic surfaces, we observe that the lithium cat
shows a rather constant nucleus-CP distance~radius! along
different directions. Conversely, the iodide anion sho
small but significative deviations from sphericity, main
along the anion-anion contact direction. It is particula
clear from Fig. 1~b! that the iodides can be seen as forming
cubic close-packed structure in which the octahedral ho
are filled by the smaller lithium ions. This allows us to defi
an iodine radius from thea lattice parameters, as has be
repeatedly suggested in the literature.25 The strong anion-
anion contact shown here has important consequences o
stability and cohesive energy of theB1 phases of the alkal
halides, as we are going to discuss in depth in a subseq
paper.

In the second place, the charge-density plots show h
almost all the interatomic lines and surfaces deviate v
slightly from linearity or planarity, respectively. This mean
that the atomic surface will be very well approximated by t
WPP of the atom considered. Moreover, when bumps app
in the surfaces, it is the lithium which expands against
iodide. This fact is also consistent with our chemical int
ition that regards the large halide anions as much more
formable ~or polarizable! entities than the small alkali cat
ions.

In order to obtain all the CP’s and their exact location, t
automatic search code shows that the irreducible Wign
Seitz zone contains only one irreducible tetrahedra, being
vertices: (0,0,0), (12,0,0), (

1
4,0,

1
4), and (14,

1
4,

1
4), for example.

Its four corners are then, according to Table I, the fo
symmetry-fixed CP’s. Only four independent CP’s are fou
by the baricentric process. There are two different indep
dent CP’s for each of the four possible classes: nucle
bond, ring, and cage points. On the whole, a primitive
cell contains two nuclear points, 12 (616) bond points, 20
(1218) ring points, and 10 (218) cage points. As can be
immediately proved, these numbers fulfill the Morse re
tions, and constitute, therefore, a consistent set of CP’s
the crystal. Table III shows the specific positions, densiti
and computed gradient modules for all of them. First, it
important to notice that the charge densities vary eight ord
of magnitude from the value found at the iodide nucleus
that at the 8c cage, the absolute density minimum. Secon
by means of the automatic determination as well as by vis
inspection, the two bond points are found to bond differe
pairs of atoms. CP number 3 (24e) is a Li-I bond, while
symmetry-fixed CP number 4 (24d) is a I-I bond. No Li–Li
bond exists, meaning that the lithium has a sixfold coordi
tion, and the iodine a 18-fold~sixfold 1 12-fold! one. While
this is in contrast with traditional thinking, it is our opinino
that we should retain the topological 6-18 structure. We m
remark that, although the 24d point is necessarily a CP in
every alkali halide, by no means it is required to be a bo
point and, in fact, it is not in many alkali halides.

It is immediate to obtain the bonded radii of each i
from Table III: 0.9377 Å for the lithium, and 2.1448 o
2.1797 Å for the iodine along the I-I and I-Li directions
respectively. These values are in good agreement with S
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FIG. 1. Contour density plots of the charg
density scalar field in the LiIB1 crystal at its
theoretical equilibrium lattice parameter. lithium
is at (0,0,0), and iodine at (12,0,0).~a! Density on
the @100# plane.~b! Density on the@110# plane.
The isolines scale is logarithmic, in such a wa
that there are 50 contours between the abso
minimum and the absolute maximum. Critica
points and zero-flux surfaces limits have been s
perimposed with the following conventions: do
ted lines for surface limits, stars for nuclea
points, crosses for bond points, squares for ri
points, and triangles for cage points. The ax
labels stand for the appropriate crystallograph
direction, and the units used are also crystal
graphic.
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non and Prewitt’s radii, 0.9 and 2.06 Å,24 or with the theo-
retical values given by Adachi,25 0.95 and 2.07 Å . We em-
phasize that these data have been fully obtained from aab
initio point of view, and that thea lattice parameter has no
been fixed to the experimental value, as has been usual p
tice in previous investigations.25
ac-

Further insight concerning the spatial organization
CP’s may be obtained by following three different paths.
the first one, we examine the atomic attraction polyhedron
each ion to obtain a clear picture of the vertex-edge-f
relation previously defined. In the second one, the geome
cal arrangement of CP’s relative to the repulsion polyhed
and
ec-
TABLE III. LiI independent critical points. Positions in crystallographic units. Electronic densities
gradients in atomic units. The symbolsn, b, r , andc refer to nuclear, bond, ring, and cage points, resp
tively.

Number Symmetry Type Representant r u¹ru

1 4a n (0.000 00, 0.000 00, 0.000 00) 1.37223102

2 4b n (0.500 00, 0.000 00, 0.000 00) 1.05033105

3 24e b (0.152 10, 0.000 00, 0.000 00) 4.485831023 3.531028

4 24d b (0.250 00, 0.000 00, 0.250 00) 5.556731023 2.1310211

5 48h r (0.122 10, 0.000 00, 0.122 10) 2.311231023 1.131028

6 32f r (0.166 92, 0.166 92, 0.166 92) 2.140031023 1.031028

7 32f c (0.107 31, 0.107 31, 0.107 31) 1.690331023 4.131028

8 8c c (0.250 00, 0.250 00, 0.250 00) 1.446631023 1.4310212
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TABLE IV. Trace (¹2r), eigenvalues (e i), and normalized eigenvectors (Vx ,Vy ,Vz) of the Hessian
matrix of the charge density at non-nuclear critical points. All density data in atomic units.

Number b3 b4 r5 r6 c7 c8
¹2r 0.032 77 0.014 85 0.044 72 0.008 03 0.009 69 0.006 32

e1 20.004 73 20.026 95 20.001 58 20.000 98 0.002 78 0.002 11
Vx 0.000 00 0.000 00 1.000 00 20.577 35 0.408 25 0.577 35
Vy 0.707 11 0.707 11 0.000 00 20.577 35 0.408 25 0.577 35
Vz 0.707 11 20.707 11 0.000 00 0.577 35 0.816 50 0.577 35

e2 20.004 73 20.002 69 0.005 57 0.004 51 0.002 78 0.002 11
Vx 0.000 00 1.000 00 0.000 00 0.408 25 20.707 11 0.707 11
Vy 20.707 11 0.000 00 0.707 11 0.408 25 0.707 11 20.707 11
Vz 0.707 11 0.000 00 0.707 11 0.816 50 0.000 00 0.000 00

e3 0.042 23 0.014 79 0.014 79 0.004 51 0.004 12 0.002 11
Vx 1.000 00 0.000 00 0.000 00 20.707 11 20.577 35 0.408 25
Vy 0.000 00 0.707 11 20.707 11 0.707 11 20.577 35 0.408 25
Vz 0.000 00 0.707 11 0.707 11 0.000 00 0.577 35 20.816 50
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around each cage is studied. In the third one, the geomet
structure of CP’s around each nonequivalent CP is analy
All of these approaches are complementary, and need in
mation about the basins of attraction and repulsion of CP
As far as this last point is concerned, Table IV shows
eigenvalues and eigenvectors of the Hessian of the ch
density,H(r), at each of the non-nuclear CP’s of the cryst
We see, for example, that the basin of CP number 3~a Li-I
bond! is parallel to theyz plane in the proximities of the
bond. The bonding direction is simply thex axis and, there-
fore, the bond angle is 180°. Reasoning in a similar man
for the six bonds around a lithium atom@see the central atom
in Fig. 1~a!#, we can use intuition to obtain its WPP, th
turns out to be a slightly bumped regular cube. It is eas
verified that the cagec7 forms the eight vertices of the cub
and that there is a ringr5 at the very center of each of the 1
edges. The edges of the cube, viewed from its center,
straight lines parallel to the Cartesian axes~see the eigenvec
tor associated to the negative eigenvalue at ther5 point in
Table IV! that curve slightly inwards near the vertices. W
can convince ourselves of the truth of the last statement c
sidering the (0,0,0) lithium in the left-bottom part of Fig
1~a!. The nearest ring point, at (0.1221,0,0.1221), is at
center of an edge along they axis, and this edge ends at tw
cage points, situated above the figure’s plane
~0.1073,0.1073,0.1073! and (0.107 31,20.107 31,
0.107 31). The cages are, actually, nearer to theyz plane
than the rings. Similar arguments can be easily extende
the iodine atom. In this case, square faces are associat
each one of the six Li-I bonds along the~100! lines, and
perfectly hexagonal faces to the 12 I-I~110! bonds.
Figure 2~a! displays the ideal~planar faces! WPP’s for both
atoms, showing their mutual relation and the space-fill
property. Figure 2~b! presents the atomic basins obtain
from the actual wave function of the crystal. Let us noti
the great size difference between the iodine and the lith
atoms. It can be observed that the WPP’s are, in this cas
very good approximation to the atomic basins. The duals
this attraction polyhedra~the coordination polyhedra! are
al
d.
r-
s.
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now easy to find, and are shown in Fig. 3. The 18-fold c
ordination of the iodines yields the truncated cube show
while the sixfold bonding of the lithiums produces a mu
more familiar regular octahedron.

If the repulsion polyhedron, and not the WPP, is chos
as the root node of the analysis of the arrangement of CP
the crystal, spatial relations among them appear. From T
III, we see that there are two independent cage points:c
and 8c. We can use Fig. 2 to visualize its situation. Th
repulsion polyhedron of CP 7c is, for example, the triangula
pyramid formed up by the central lithium atom and th
three anions located at (1,1

2,
1
2),(

1
2,1,

1
2), and (12,

1
2,1). The 7c

point is situated along the height line of the pyramid
0.0594 crystallographic units from the base. It is easily ve
fied that the four faces of the pyramid are actually triangu
rings of bonds, and that all the edges~or bond paths! are
linear ~they are symmetry lines!. No bent bond stress the
arises. The faces are not all planar by symmetry, howe
and the base of the pyramid is slightly bumped. Its ring po
(r6) has a free parameter along one diagonal of the cu
unit cell. Were the base face of the pyramid absolutely p
nar, it would be situated at (23,

2
3,

2
3). Actually, its position is

~0.6669,0.6669,0.6669!, only 2.531024 crystallographic
units away from its ideal location. Ring stress is then neg
gible for this crystal. The other cage, 8c—a fixed point with
Td symmetry—lies at the center of the regular tetrahed
formed by the four anions of any of the eight little cub
forming the cubic unit cell. Its four faces are equivalent eq
lateral triangles of anion-anion bonds. The bonds network
this crystal is then a union of three-member rings of bon
~some isosceles triangles, some equilateral ones! surrounding
tetrahedral or pyramidal cages. Let us notice that the c
points of the crystal may be correlated with the concept
holesof a structure, the points inside a crystal where a h
ion or impurity is most likely to be found.

Finally, some information may be gained by examini
the distribution of CP’s around every CP. When applied
nuclear positions, it gives rise to the shell structure of
crystal, or to the radial distribution function of neighbor
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both extensively studied in the past. We will briefly describ
therefore, the shell structure of non-nuclear CP’s, and t
non-nuclear neighbors of nuclear points. It is easy to visu
ize the geometry of CP’s around a given one by using Fig.
For example, if we take thec8 point ~the tetrahedral holeof
the NaCl structure!, the first neighbors are the four centers o
the faces of its repulsion tetrahedron, followed by the fo
cages of the other kind situated tetrahedrically around it
the interior of the four pyramids, and by the six I-I bonds a

FIG. 2. ~a! Weighted proximity polyhedra for the LiI structure
onto the cubic unit cell. Lines correspond to Li-I and I-I bonds
Filled small dots correspond to I-I bond points, and hollow sma
dots to Li-I ones. In order to allow for a better view, the relativ
position of cations and anions has been inverted with respect to F
1. Large white spheres are iodide ions, and large black sphe
lithium cations. Note the space-filling property of the polyhedra.~b!
Attraction basins of I~left! and Li ~right!. The basins have been
rendered withGEOMVIEW ~Ref. 27!.
,
e
l-
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f
r
n
t

the centers of the edges forming its repulsion tetrahed
We must also stress the great density of CP’s in a crystal
their mutual proximity. In the case under study, the mi
mum distance between two different CP’s is 0.63 Å in t
r6-c7 case, which is a very small value and contributes
the intrinsic algorithmic difficulty of automatically finding
all CP’s. Even more illuminating about the CP proximity
the fact that in the list of neighbors of theb3 bond point, the
iodine nucleus is not among the first 20 neighbor she
around it.

C. Atomic properties

We will now present a very brief account of the resu
obtained when integrating some operators over the basi
attraction of an atom. A recent account of the basic theor
cal facts concerning these properties is given in Ref. 26.
will restrict ourselves here to the atomic charge and to
atomic volume of the two species in the LiI crystal and de
further considerations to other papers in this series.

The computational code we have constructed obtains
tomatically the atomic values of several operators by me
of a three-dimensional Gauss-Legendre numerical quadra
performed in a polar coordinate frame centered at each n
equivalent nuclear position in the crystal. The most diffic
part of the radial integration is the calculation of the boun
ary of the atomic basin at each value of the polar angles
it constitutes the limiting step of the algorithm. Convergen
tests are done by examining the total charge of the unit c
the total volume as compared to the crystallographical o
and the value of the integral of the Laplacian of the cha
density over atomic basins. This last value should ideally
zero by transforming the volume integral to a surface o
We have found total cell residual charge values arou
1024–1025 electrons as typical of usual integration grid
Symmetry is presently accounted for by directly introduci
the integration limits, but will be soon incorporated to int
grate automatically over the irreducible region of ea
atomic basin.

.
l

ig.
es

FIG. 3. Coordination polyhedra for the LiI structure onto th
cubic unit cell. Atomic positions are equivalent to those of Fig.
Note that now the polyhedra interpose each other.
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Using a quadrature of 70370370 points we have ob
tained the following values:QLi52QI50.970 13 a.u.,
VLi529.6191 bohr3 ~7.496% of total!, and VI5365.5213
bohr3 ~92.504% of total!. These values, situate the LiI as
highly ionic compound, and allows us to speak with con
dence ofions in a crystal.

IV. CONCLUSIONS

We have shown in this paper how Bader’s theory of
oms in molecules may be applied to periodic crystalline s
tems. Some specific facts emerging from the topological
ference betweenR3, the three-dimensional space of isolat
molecules, andS3, the three-dimensional manifold of a cry
tal, have been studied in detail. Symmetry has been show
impose stringent conditions on the location of critical poin
of the charge-density gradient field. An automatic algorith
for the location and analysis of critical points has been c
structed and used to exemplify the theoretical results.
.
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have also shown how the topology of the electron den
may be used to give a rigorous foundation to historical c
cepts like the index of coordination or the coordination po
hedron of an atom or ion in a solid. Several interesting m
pings between atoms and polyhedra have also b
examined, and applied to a LiI system. We think that there
room in solid-state thinking for the tools and concepts p
sented here, and that a judicious use of them will give rise
ways of correlating chemical behavior and chemical str
ture in solids. An attempt to present some of those findin
will be the purpose of the following parts of this work.
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