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Coherent and dissipative dc transport in quasi-one-dimensional systems
of coupled polyaniline chains
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~Received 22 July 1996; revised manuscript received 24 September 1996!

We present numerical studies on the conductance of coupled polyaniline chains. Our investigation is based
on a tight-binding Hamiltonian, which comprises the description of the single polymer chains as well as
interchain interactions. Phase-breaking processes are included in the Hamiltonian via imaginary self-energy
corrections within the Green’s-function formalism describing the system. The variation of these self-energies
allows one to describe the transport over the full range in between the coherent and dissipative regimes. In the
coherent limit we observe a transition from exponential to power-law localization upon increasing the size of
the cross section of the quasi-one-dimensional systems. This behavior is all the more pronounced, the smaller
the disorder in the specimen is. Upon introducing dissipation into the system we can identify metallic, insu-
lating, and critical samples of polyaniline. These observations are consistent with recent experimental results,
which characterize polyaniline-camphor sulfonic acid as a system at the metal-insulator transition.
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I. INTRODUCTION

It is well known that protonation of the emeraldine for
of polyaniline~PANI! raises the conductivity of the polyme
up to 10 orders of magnitude and leads to a phase segr
tion into conducting and insulating domains. Whereas
some PANI-Cl samples these domains seem to consis
single polymer chains,1 recent experiments2 suggest the ex-
istence of three-dimensional~3D! conducting islands consist
ing of coupled protonated emeraldine chains for polyanili
camphor sulfonic acid~PANI-CSA!. In the former case, the
sudden turning on of the Curie component of the param
netic susceptibility atT550 K indicates low-temperature po
laron localization on the chain. At even lower temperatur
two polarons may combine, forming spinless bipolarons
they are in sufficient proximity,3 leading to a change of th
behavior of the temperature-dependent susceptibility be
T510 K.4 Both processes are consequences of Peierls di
tions, the first one being induced by changes in the s
density, the second one being caused by rearrangementp
bonds.

In this paper, we focus on the transport properties of cr
talline PANI. In contrast to 1D PANI, crystalline sample
exhibit significant interactions between the individual cha
that stabilize the polymer against Peierls transitions4 and fur-
thermore prevent the electrons from 1D localization due
disorder effects. Because of the alignment of the orde
polymer chains in oriented samples, crystalline PANI is
typical example for a highly anisotropic~quasi-1D! disor-
dered system. We calculate the conductance of crysta
PANI samples in the coherent limit as well as under
influence of dissipative processes, thus providing two to
for the characterization of electronic transport in the po
mer.

There is an ongoing debate about whether a bipola
550163-1829/97/55~7!/4231~7!/$10.00
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lattice or a polaronic structure is linked to the metallic r
gime in PANI.5,6 A few years ago, some theoretical works7–9

were published that focus on the transport properties of p
tonated emeraldine in the 1D bipolaron model. In this a
proach, bipolarons are considered as random dimer defec
an otherwise ordered lattice. Such defects lead to resona
of perfect transmission in the energy spectrum, indicating
existence of isolated metallic states within a finite-siz
sample. Recent investigations have shown that the inte
symmetry of such defects is not even a necessary conditi10

for the occurrence of such transmission peaks.
The constriction concerning the size of the sample is v

important and often leads to confusion in the literature.
pointed out in Refs. 11 and 12, the transmission spectrum
random dimer models exhibits so-called cluster-core regio
For energies outside these regions, resonance states d
exponentially as in a purely random chain and therefore
be referred to as Azbel resonances.13 Inside a cluster core
resonance states decay only algebraically, and if the Fe
energy falls within this region, the conductance is sign
cantly large. But as such a cluster region gets narrower
narrower when the length of the chain is increased, rand
dimer chains do not exhibit a metal-insulator transition in t
infinite length limit. Therefore we doubt that such a mod
can explain the high conductivities achieved in large crys
line polymer samples.

More detailed investigations on the conduction mec
nism of the bipolaronic structure have shown that a band
opens at the Fermi energy in the ordered system.14 However,
if the bipolarons are randomly distributed along the polym
chain, the density of states is produced at the Fermi leve
band broadening. Thus, the authors of Ref. 14 conclude
disorder effects play an essential role in the conduct
mechanism of PANI, leading to a high conductivity. Th
assumption certainly has its validity with respect to small
4231 © 1997 The American Physical Society



w
N

of
1
h

1D
-
m
d
in

I
l
te

-

s
th

en
re
am
in
ol
be

is
ce

d
e
he

oly-
hich
itly

e-
the
cent
ring
n’s-
dc

y
he

cor-
ia-
for
ar
fects
ys-

led

.
TB
ters

1.

e
ent-

re
B

4232 55R. HEY, F. GAGEL, M. SCHREIBER, AND K. MASCHKE
structures as in dilute systems15 or substituted PANI
derivatives,6 where interchain diffusion is suppressed. Ho
ever, as mentioned above its application to quasi-1D PA
samples is highly doubtful.16

Crystalline regions of PANI are formed by arrays
weakly coupled polymer chains. As pointed out in Refs.
and 18, there is strong experimental evidence for a hig
stable ordered polaron lattice~see Fig. 1! in such regions.
Thus it is generally assumed that the ordered polaron form
PANI is responsible for the high conductance of quasi-
protonated emeraldine,19 and we restrict ourselves to the in
vestigation of the transport properties of coupled syste
composed of this PANI structure. The effect of various kin
of defects on the conductance of isolated 1D PANI cha
will be discussed in a forthcoming paper.

The electronic structures of different forms of PAN
chains have been widely studied.19,20 As described in detai
in Ref. 21, we use these results to derive the parame
needed for the description of the polymer chains within
tight-binding ~TB! model. In this picture, the polymer back
bone with its rings and nitrogen bridges is simplified as
linear chain of fictitious orbitals corresponding to the ring
Each orbital can be characterized by its TB parameters,
is to say its site energy and its transfer matrix elements
neighboring sites. These transfer energies differ for differ
nitrogen bridges. In this way a polymer chain can be rep
sented by a respective TB matrix, which contains the par
eters of the single orbitals that build up the chain. Us
suitable TB parameters, the band structure of the single p
mer strands in the vicinity of the Fermi energy can
reproduced.21

We point out that our model Hamiltonian should be d
tinguished from local bond-length descriptions as introdu
in Refs. 8, 10, and 22, which are suitable for small 1D~oli-
gomer! systems. In this paper we use a more coarse mo
which enables us to calculate the transport properties of r
tively large samples of coupled polymer chains. Nevert

FIG. 1. Protonated emeraldine in the polaron-lattice structu
VN , VP, VPN, andVNP indicate transfer elements in the 1D T
model.
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less, the TB parameters we use to describe the single p
mer chains are based on band-structure calculations, w
take geometrical details on the bond-length scale explic
into account.20

In addition to the 1D TB model, interchain transfer el
ments are introduced, which couple the lattice sites of
single chains weakly to nearest-neighbor sites on adja
chains. On the basis of this approach we derive the scatte
coefficients of the coupled-chain system using a Gree
function method, which are then used to calculate the
conductance within the multichannel Landauer-Bu¨ttiker
approach.23 A similar approach has been made b
Stafström24 for doped polyacetylene on the basis of t
transfer-matrix method in the limit of coherent transport.

As described by D’Amato and Pastawski,25 dissipative
processes can be included by an imaginary self-energy
rection in the Green’s function of the system. As the var
tion of this parameter allows us to describe the transport
arbitrary dissipation, it can be identified with a nonline
temperature scale. We use this approach to study the ef
of finite temperature on the transport properties of the s
tem.

II. THE MODEL

As depicted in Fig. 2, we consider a system of coup
protonated emeraldine chains. In this example, we haveMN
525 transport channels andLMN lattice sites in the system
The individual chains are described by respective 1D
lattices. According to Ref. 21, we choose the TB parame
as listed in Table I.EB is the site energy of the~benzenoid!
lattice sites, the transfer elementsVN and VP between
nearest-neighbor sites as well asVNP andVPN between next-
nearest-neighbor sites in the chain are illustrated in Fig.26

TABLE I. TB parameters of the single PANI chains and of th
semi-infinite leads connecting the respective sample to the curr
driving electron reservoirs.

TB
parameter @eV#

Site EB 27.64
energies E0 27.5

Nearest-neighbor
transfer elements

VN 10.73
VP 10.7
V 11.0

Next-nearest-neighbor VPN5VNP 20.07
transfer element

.

s, weak
FIG. 2. PANI in the model of coupled polymer chains. The thick lines represent the single PANI chains. Between these chain
interactions exist, represented by the transfer elementsVEE ~end-to-end coupling, broken lines! andV' ~lateral coupling, dotted lines!.
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FIG. 3. Model of a single PANI chain. The 1D array~indicated by the rectangular box! of sites~depicted as squares! corresponds to a
thick line in Fig. 2, beginning at an arbitrary lattice sitek and consisting ofK2k11 lattice sites in the case shown here. The broken li
on either side of the chain represent either end-to-end couplings or couplings of the chain to semi-infinite leads at the faces of th
In order to introduce dissipation, the lattice sites are connected to electron reservoirs via additional side channels~which are not shown in
Fig. 2 for convenience!.
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Interchain coupling is accounted for by introducing trans
elementsV' between nearest-neighbor sites on adjac
chains in other transport channels~lateral interchain cou-
pling!. As the cross section of the considered system is c
sen to be a square lattice~see Fig. 2!, each lattice site in the
system is connected either to 2, 3, or 4 sites in the neigh
ing transport channels, depending on its position in the s
tem. Furthermore, sites located at the ends of a chain
additionally coupled to the nearest-neighbor sites of the
jacent chain in the same transport channel~end-to-end cou-
pling VEE!.

In the present study, we use the Landauer-Bu¨ttiker
theory23 to calculate the conductance of the coupled PA
chain systems. As usual in this approach, we connect
sample on either side to a respective electron reservoir
perfectly conducting semi-infinite leads~not shown in Fig. 2
for convenience!. The chemical potentials of the electron re
ervoirs are chosen to bemL ~mR! on the left-hand side~right-
hand side! of the system, respectively. The conditionmL.mR
defines a voltage drop from the left-hand side to the rig
hand side, giving rise to a net electronic current through
system.

Dissipative processes can be introduced by connecting
lattice sites to respective additional electron reservoirs
side channels~see Fig. 3!.25 As these reservoirs only serve
randomize the phase of the electrons, the net current into
side channels must be zero. Thus for each electron lea
the system via such a side channel another one is scat
back into the sample. As the phases of the electrons ente
and leaving the system are not correlated, such an event
responds to a dissipative scattering process.

The scattering probabilities needed to evaluate the
rents in the single channels~and thus the conductance of th
system! are calculated within the framework of a Green
function method27 as follows. Neglecting the transfer ele
ments in the polymer system, the influence of the se
infinite leads connecting the sample to the bias-defin
electron reservoirs on the site energies at the faces of
quasi-1D system can be accounted for by the self-ene
function25
r
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S5
E2E0

2
2 i FV22SE2E0

2 D 2G1/2, ~1!

whereE0 denotes the site energy andV the transfer elemen
in the leads. HereE is the energy of the incoming electron

A side channel at a lattice siten gives rise to a self-energy
functionSD comprising the influence of dissipation.SD is of
the same type asS; the parametersE0 and V in Eq. ~1!
merely have to be replaced by the site energyED(n) and the
transfer elementVD(n) in the side chain at lattice siten,
respectively. For convenience, we restrict ourselves to c
stant values ofED andVD along the system throughout th
paper: ED(n)[ED and VD(n)[VD . ChoosingED to be
equal to the energyE of the incoming electron, one obtains
purely imaginary damping2iVD as a self-energy correctio
to the respective site energy25 and the parameterVD controls
the strength of inelastic scattering. Thus the approach u
here is fully equivalent with the introduction of a finite life
time of electrons in a given state as discussed by McLenn
Lee, and Datta.27 ~In Ref. 27, the authors used the Kadano
Baym formalism28 in order to derive exactly this paramete
VD as a function of temperature within a many-particle a
proach.! Consequently, the matrix elements of the Gree
functionG0 at the~isolated! lattice sites at the faces of th
system where one obtains self-energy corrections due to
eral chains and semiinfinite leads read

G0~n,m!

5
dnm

E2EB1 iVD2~E2E0!/21 iAV22~E2E0!
2/4

, ~2!

and in the bulk of the system where one obtains solely c
tributions due to the lateral chains they read

G0~n,m!5
dnm

E2EB1 iVD
. ~3!

Due to the neglect of the transfer elements between the
n andm of the system, the matrixGI 0 is diagonal. These
transfer elements can be introduced27 via the Dyson equation
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FIG. 4. ^ln g& as a function of lnL for sys-
tems of the extension 3333L, 4343L, 5353L,
and 6363L ~from bottom to top! and an average
length ^ l &5100 of the single chains,VEE,V'

P@0 eV, 0.08 eV#.
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(1I 2GI 0VI )GI
R5GI 0 , whereVI denotes the matrix of the trans

fer elements. The retarded Green’s function matrixGI R con-
tains the probability amplitudes for the propagation of
electron between theLMN sites of the system. The transmi
sion probabilities in the single channels can be derived
multiplying the respective squared absolute values ofGI R

with the group velocities of the corresponding side chann
and semi-infinite leads.29 If we number the side channels lik
the lattice sites withk,k851,...,LMN and the transpor
channels on the left-hand side~right-hand side! by
i51,...,MN ( j5LMN2MN11,...,LMN), these transmis-
sion probabilities read

pji5uGR~ j ,i !u24V2 sin2~qa!, ~4!

pjk
D5uGR~ j ,k!u24V sin~qa!VD , ~5!

pk8k
D

5uGR~k8,k!u24VD
2 . ~6!

Choosing the same index number for the side channels
the semi-infinite leads at the faces of the system simpli
the notation. Transmission probabilities involving dissipat
side channels are distinguished by the superscript D.

The dimensionless conductance~normalized to the num-
ber of transport channels! of the coupled polymer system i
then given by

g5
1

MN S (
i

(
j
pj i1(

k
xk(

j
pjk
D D . ~7!

The chemical potentialsxk at the lattice sitesk are obtained
from the current conservation condition:30

05
h

2e
I k5(

i
pki
D ~mk2mL!1(

j
pk j
D ~mk2mR!

1(
k8

pkk8
D

~mk2mk8!, k51,...,LMN. ~8!

Usingmk5mR1xk(mL2mR! andmL2mRÞ0, Eq.~8! can be
written in the form

(
i
pki
D5xkS (i pki

D1(
j
pk j
D1(

k8
pkk8
D D 2(

k8
xk8pkk8

D ,

k51,...,LMN. ~9!
y

ls

nd
s

Thus we obtain a linear system of equations for the deter
nation of thexk .

To summarize the numerical solution procedure, we p
ceed as follows. First we set up theGI 0 matrix @Eqs.~2! and
~3!# and introduce transfer interactions between neighbor
lattice sites via the Dyson equation. We thus obtain the s
tering probabilities~4!–~6!, which can be used to determin
the chemical potentialsxk at the single lattice sites of th
system by solving the respective inhomogeneous linear
tem of Eq.~9!. The conductanceg is fully determined by the
chemical potentials and the transmission probabilities of
system@see Eq.~7!#.

III. NUMERICAL RESULTS

A. Coherent limit

In this section we present numerical results for the c
ductance of coupled PANI chain systems. Figure 4 showg
as a function of the system lengthL. The configurational
average^ln g& is taken over 100 systems.~Because of its
self-averaging properties, we use^ln g& and not ln̂g&.31! As
in this example the position of the end-to-end couplings
randomly distributed~subject to the restriction that the min
mum chain length allowed is 10 lattice sites! and the transfer
elementsVEE and V' between the single chains are tak
from a uniform distribution, these ensembles comprise t
types of disorder, which we will refer to as chain-leng
disorder and interchain disorder, respectively.

One can clearly observe that systems with a cross sec
of 333 sites essentially show 1D behavior. This behav
becomes more and more pronounced as the length of
system is increased. On the contrary, an increase of the c
section suppresses this behavior and one obtains a n
linear dependence of^ln g& on lnL. We thus conclude tha
there is a transition from exponential to power-law localiz
tion upon increasing the cross section of quasi-1D PANI s
tems. Such a power-law dependence was proposed by
and Thouless32 to describe a region of intermediate behav
between metallic and localized states.

This feature becomes even more pronounced upon res
tion to chain-length disorder. Figure 5 shows data for
same ensemble of systems as in Fig. 4; all the transfer
ments between the single chains are now equal. This ch
corresponds to highly ordered, crystalline PANI sampl
Additionally, data for the ensemble with the largest cro
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FIG. 5. ^ln g& as a function of lnL for the
same ensemble of systems as in Fig. 4, but w
constant interchain interactions:VEE5V'50.04
eV ~full lines!. The broken line shows the cas
6363L with ^ l &5200.
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section and a longer average chain length are included.
ure 5 shows in comparison with Fig. 4 that the power-l
dependence of̂ln g& on lnL is the more pronounced th
smaller the amount of disorder and the greater the ave
length of the single chains. Consequently the power-law
ponent a, determined from these conductance d
~^ln g&5ln L2a1const! is largest in the case of combine
chain-length disorder and interchain disorder~a'0.93! and
smaller in the case of restriction to chain-length disord
a'0.85 ~0.64! for an average single-chain length of 10
~200! lattice sites.

We wish to point out that for a fixed cross section t
system should always exhibit exponential localization in
case ofL→`. In quasi-1D systems it is the competition b
tween the size of the cross section and the system lengL
that determines the character of localization. Thus the pow
law dependence can only be observed if the system leng
sufficiently small in comparison to the cross section. Su
systems can be related to~experimentally accessible!
samples of coupled PANI chains of finite spatial extensio

The results presented in this section are clearly in cont
to the results for polyacetylene obtained by Stafstro¨m24,33on
the basis of an approach very similar to the one used in
work. For certain polyacetylene samples, his numerical
culations yielded an increase of the conductance with
system length in the regime ofL<1000 lattice sites. In our
model we cannot expect such behavior, because the tr
mission probability of the~perfectly ordered! single PANI
chains is almost 1~see Ref. 21! ~small deviations from this
value are due to contact resistances! so that the disorder in
troduced by the coupling of the single chains to a quasi-
system can only reduce the transmission probability and c
sequently the conductance decays with increasing sys
size.

B. Effects of finite temperature

In this section, we focus on the dependence of the tra
port properties of quasi-1D PANI samples on dissipat
processes. Experiments by Reghuet al.34 concerning the
temperature dependence of the resistivity characterize PA
CSA as a system at the metal-insulator transition. Using
logarithmic derivative of the conductivitys, the authors de-
fine an activation energy
ig-
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W~T!5
D ln s~T!

D ln T
, ~10!

which can be used to identify metallic, insulating, and cr
cal samples of PANI-CSA. Insulatingd-dimensional systems
obey Mott’s law s(T)}exp@2(T0/T)

g# with g51/~11d!,
which leads to an activation energy

WI~T!5
1

g S T0T D g

. ~11!

Consequently, such insulating systems are characterized
straight line with slope2g in a lnW–ln T diagram.34 Ac-
cording to Larkin and Khmel’nitskii,35 the resistivity of criti-
cal systems follows a power-law behaviorr(T)}T2b, which
leads to a temperature-independent activation energy

WC5b. ~12!

Metallic samples exhibit a linear dependence of lnW on lnT
with positive slope.34

In the framework of this paper, we cannot draw any co
clusions about the exponents because we use a nonl
temperature scale rather then an explicit temperature de
dence. ~The introduction of such an explicit temperatu
scale is computationally too expensive in the case
quasi-1D systems. In a forthcoming paper we will use
approach suggested by McLennan, Lee, and Datta27 in order
to introduce an explicit temperature dependence of the c
ductance for 1D PANI.! Therefore we cannot expect a line
dependence of lnW as a function of lnT. Instead we focus
on the dependence of the conductance onVD to distinguish
qualitatively between metallic, insulating, and critical beha
ior.

Figure 6 shows the dependence of the conductance on
inelastic scattering strength. The upper curve in Fig. 6 sho
a metallic specimen, because the conductance is strongly
caying with growingVD . The lower curve characterizes
sample in the insulating regime, where the conductivity
creases with the dissipation strength for smallVD . The curve
in the middle depicts a~with respect to theVD scale! critical
system, as can be seen from the linear dependence of lng on
ln VD . Thus our results show that the transport behavior
coupled PANI chain systems is extremely sensitive to
specific sample configuration. Using the same average le
of the individual chains and the same~average! value for the
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FIG. 6. g(VD! for three PANI samples of ex-
tension 3333L, ^ l &5100 andVEE5V'50.04
eV using ~a! a logarithmic and~b! a double-
logarithmic scale.
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interchain transfer elements, we obtain sample realizat
with qualitatively different transport behavior. Whether su
a sample is metallic, critical, or insulating is determined
the electronic interference pattern, which constitutes a fing
print of the microscopic details of the specimen.

IV. CONCLUSIONS

In this paper, we have presented numerical studies on
conductance of quasi-1D PANI systems. We have used
methods to investigate the nature of electron localization
do
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these systems. On the one hand, by averaging lng over an
ensemble of 100 samples we observe a transition from ex
nential to power-law localization upon increasing the s
tem’s cross section relative to the system length in the
herent limit. This behavior can be interpreted as
indication for the existence of a critical region between
sulating and metallic states. On the other hand, the dep
dence of the conductance on the strength of dissipation
plays metallic, critical, and insulating behavior for speci
sample realizations, respectively. Thus in accordance w
recent experiments36 our numerical studies indicate tha
doped PANI can form systems at the metal-insulator ph
boundary.
.
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