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Coherent and dissipative dc transport in quasi-one-dimensional systems
of coupled polyaniline chains
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We present numerical studies on the conductance of coupled polyaniline chains. Our investigation is based
on a tight-binding Hamiltonian, which comprises the description of the single polymer chains as well as
interchain interactions. Phase-breaking processes are included in the Hamiltonian via imaginary self-energy
corrections within the Green’s-function formalism describing the system. The variation of these self-energies
allows one to describe the transport over the full range in between the coherent and dissipative regimes. In the
coherent limit we observe a transition from exponential to power-law localization upon increasing the size of
the cross section of the quasi-one-dimensional systems. This behavior is all the more pronounced, the smaller
the disorder in the specimen is. Upon introducing dissipation into the system we can identify metallic, insu-
lating, and critical samples of polyaniline. These observations are consistent with recent experimental results,
which characterize polyaniline-camphor sulfonic acid as a system at the metal-insulator transition.
[S0163-18297)07307-4

[. INTRODUCTION lattice or a polaronic structure is linked to the metallic re-
gime in PANI>® A few years ago, some theoretical wofks

It is well known that protonation of the emeraldine form were published that focus on the transport properties of pro-
of polyaniline (PANI) raises the conductivity of the polymer tonated emeraldine in the 1D bipolaron model. In this ap-
up to 10 orders of magnitude and leads to a phase segregaroach, bipolarons are considered as random dimer defects in
tion into conducting and insulating domains. Whereas inan otherwise ordered lattice. Such defects lead to resonances
some PANI-Cl samples these domains seem to consist aff perfect transmission in the energy spectrum, indicating the
single polymer chain$ recent experimentssuggest the ex- existence of isolated metallic states within a finite-sized
istence of three-dimension@D) conducting islands consist- sample. Recent investigations have shown that the internal
ing of coupled protonated emeraldine chains for polyanilinessymmetry of such defects is not even a necessary contfition
camphor sulfonic acidPANI-CSA). In the former case, the for the occurrence of such transmission peaks.
sudden turning on of the Curie component of the paramag- The constriction concerning the size of the sample is very
netic susceptibility al =50 K indicates low-temperature po- important and often leads to confusion in the literature. As
laron localization on the chain. At even lower temperaturespointed out in Refs. 11 and 12, the transmission spectrum of
two polarons may combine, forming spinless bipolarons, ifrandom dimer models exhibits so-called cluster-core regions.
they are in sufficient proximity,leading to a change of the For energies outside these regions, resonance states decay
behavior of the temperature-dependent susceptibility belovexponentially as in a purely random chain and therefore can
T=10 K. Both processes are consequences of Peierls distobe referred to as Azbel resonané2dnside a cluster core,
tions, the first one being induced by changes in the spimesonance states decay only algebraically, and if the Fermi
density, the second one being caused by rearrangement ofenergy falls within this region, the conductance is signifi-
bonds. cantly large. But as such a cluster region gets narrower and

In this paper, we focus on the transport properties of crysnarrower when the length of the chain is increased, random
talline PANI. In contrast to 1D PANI, crystalline samples dimer chains do not exhibit a metal-insulator transition in the
exhibit significant interactions between the individual chainsinfinite length limit. Therefore we doubt that such a model
that stabilize the polymer against Peierls transitfare fur-  can explain the high conductivities achieved in large crystal-
thermore prevent the electrons from 1D localization due tdine polymer samples.
disorder effects. Because of the alignment of the ordered More detailed investigations on the conduction mecha-
polymer chains in oriented samples, crystalline PANI is anism of the bipolaronic structure have shown that a band gap
typical example for a highly anisotropi@uasi-1D disor-  opens at the Fermi energy in the ordered systehowever,
dered system. We calculate the conductance of crystalling the bipolarons are randomly distributed along the polymer
PANI samples in the coherent limit as well as under thechain, the density of states is produced at the Fermi level by
influence of dissipative processes, thus providing two tooldand broadening. Thus, the authors of Ref. 14 conclude that
for the characterization of electronic transport in the poly-disorder effects play an essential role in the conduction
mer. mechanism of PANI, leading to a high conductivity. This

There is an ongoing debate about whether a bipolaroassumption certainly has its validity with respect to small 1D
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TABLE |I. TB parameters of the single PANI chains and of the

Z‘;'\ / Vip=Ven H \ semi-infinite leads connecting the respective sample to the current-
4 Iy driving electron reservoirs.
N N
- B
N

) ) parameter [eV]
H H
Wy Site Eg —7.64

energies Eo -75
L . . Vy +0.73
FIG. 1. Protonated emeraldine in the polaron-lattice structureNearest-neighbor Vv 107
VN, Vp, Vpn, andVyp indicate transfer elements in the 1D TB transfer elements P ’
model. . v +1.0
Next-nearest-neighbor Vpn=Vnp —0.07

structures as in dilute systeMisor substituted PAN| Uansfer element

derivatives® where interchain diffusion is suppressed. How-

ever, as mentioned above its application to quasi-1D PANI i )
samples is highly doubtfdf less, the TB parameters we use to describe the single poly-

Crystalline regions of PANI are formed by arrays of Mer chains are based_ on band-structure calculations, \_/vhich
weakly coupled polymer chains. As pointed out in Refs. 17f[ake geomet(r)|cal details on the bond-length scale explicitly
and 18, there is strong experimental evidence for a highly"© accoy_nt’-. , ,
stable ordered polaron lattigsee Fig. 1 in such regions. In addition to the 1D TB model, interchain transfer ele-
Thus it is generally assumed that the ordered polaron form dgients are introduced, which couple the lattice sites of the
PANI is responsible for the high conductance of quasi-1DSingle chains weakly to nearest-neighbor sites on adjacent
protonated emeraldind,and we restrict ourselves to the in- chains. On the basis of this approach we derive the scattering
vestigation of the transport properties of coupled system§Cefficients of the coupled-chain system using a Green’s-
composed of this PANI structure. The effect of various kindsfunction method, which are then used to calculate the dc

of defects on the conductance of isolated 1D PANI chainé:onduc'[""r;Ce within the multichannel Landauetier
will be discussed in a forthcoming paper. fi‘F’prO‘?_‘di-4 A similar approach has been made by
The electronic structures of different forms of PAN| Stafstran™ for doped polyacetylene on the basis of the
chains have been widely studit¥O As described in detail transfer-mat.rix method in the limit of coheren_t t_ranqurt.
in Ref. 21, we use these results to derive the parameters AS described by D'Amato and Pastawskidissipative
needed for the description of the polymer chains within aProcesses can be included by an imaginary self-energy cor-
tight-binding (TB) model. In this picture, the polymer back- rection in the Green'’s function of the system. As the varia-
bone with its rings and nitrogen bridges is simplified as alion of this parameter allows us to describe the transport for
linear chain of fictitious orbitals corresponding to the rings.rbitrary dissipation, it can be identified with a nonlinear
Each orbital can be characterized by its TB parameters, thigMperature scale. We use this approach to study the effects
is to say its site energy and its transfer matrix elements t&f finite temperature on the transport properties of the sys-
neighboring sites. These transfer energies differ for differentéM-
nitrogen bridges. In this way a polymer chain can be repre-
sented by a respective TB matrix, which contains the param-
eters of the single orbitals that build up the chain. Using
suitable TB parameters, the band structure of the single poly- As depicted in Fig. 2, we consider a system of coupled
mer strands in the vicinity of the Fermi energy can beprotonated emeraldine chains. In this example, we haie
reproduced? =25 transport channels ahdV N lattice sites in the system.
We point out that our model Hamiltonian should be dis-The individual chains are described by respective 1D TB
tinguished from local bond-length descriptions as introducedattices. According to Ref. 21, we choose the TB parameters
in Refs. 8, 10, and 22, which are suitable for small - as listed in Table IEg is the site energy of thébenzenoid
gomeyp systems. In this paper we use a more coarse modelattice sites, the transfer element4, and Vp between
which enables us to calculate the transport properties of relazearest-neighbor sites as well\dgp, andVpy between next-
tively large samples of coupled polymer chains. Neverthenearest-neighbor sites in the chain are illustrated in Fi§. 1.

Il. THE MODEL

FIG. 2. PANI in the model of coupled polymer chains. The thick lines represent the single PANI chains. Between these chains, weak
interactions exist, represented by the transfer elemégtdend-to-end coupling, broken lineandV, (lateral coupling, dotted lings
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FIG. 3. Model of a single PANI chain. The 1D arréindicated by the rectangular bpaf sites(depicted as squaresorresponds to a
thick line in Fig. 2, beginning at an arbitrary lattice skeaind consisting oK —k+ 1 lattice sites in the case shown here. The broken lines
on either side of the chain represent either end-to-end couplings or couplings of the chain to semi-infinite leads at the faces of the system.
In order to introduce dissipation, the lattice sites are connected to electron reservoirs via additional side chhiohetse not shown in
Fig. 2 for convenience

1/2

, @

Interchain coupling is accounted for by introducing transfer E-E, .
elementsV, between nearest-neighbor sites on adjacent 3= 2 I V2—(
chains in other transport channdlateral interchain cou-
pling). As the cross section of the considered system is chowhereE, denotes the site energy aNdthe transfer element
sen to be a square latti¢see Fig. 2, each lattice site in the in the leads. Her& is the energy of the incoming electron.
system is connected either to 2, 3, or 4 sites in the neighbor- A side channel at a lattice sitegives rise to a self-energy
ing transport channels, depending on its position in the sysfunction comprising the influence of dissipatioby, is of
tem. Furthermore, sites located at the ends of a chain afiée same type a&; the parameter&, and V in Eq. (1)
additionally coupled to the nearest-neighbor sites of the admerely have to be replaced by the site eneggyn) and the
jacent chain in the same transport chanfezid-to-end cou- transfer elemen¥/p(n) in the side chain at lattice site,
pling Vep). respectively. For convenience, we restrict ourselves to con-
In the present study, we use the LandauétiBer Stantvalues ofp andVp along the system throughout this

theory® to calculate the conductance of the coupled PANIPaPer: Ep(n)=Ep and Vp(n)=Vp. ChoosingE, to be

chain systems. As usual in this approach, we connect th§dual to the energi of the incoming electron, one obtains a
sample on either side to a respective electron reservoir Vigurely Imaginary damping 1V, as a self-energy correction

perfectly conducting semi-infinite leadsot shown in Fig. 2 to the respective site ener ’éy&md_the parametéf;, controls
) . ) the strength of inelastic scattering. Thus the approach used
for convenienck The chemical potentials of the electron res-

ervoirs are chosen to be, () on the left-hand sidéright- here is fully equivalent with the introduction of a finite life-

. . - time of electrons in a given state as discussed by McLennan,
hand sidgof the system, respectively. The conditipni™ur | ge and Dattd’ (In Ref. 27, the authors used the Kadanoff-

defines a voltage drop from the left-hand side to the rightg,ym formalismi® in order to derive exactly this parameter

hand side, giving rise to a net electronic current through thQ/D as a function of temperature within a many-particle ap-

system. proach) Consequently, the matrix elements of the Green’s
Dissipative processes can be introduced by connecting thginction G, at the (isolated lattice sites at the faces of the

lattice sites to respective additional electron reservoirs viagystem where one obtains self-energy corrections due to lat-
side channelésee Fig. 32° As these reservoirs only serve to eral chains and semiinfinite leads read

randomize the phase of the electrons, the net current into the

side channels must be zero. Thus for each electron leavinG,(n,m)

the system via such a side channel another one is scattered

back into the sample. As the phases of the electrons entering Snm

and leaving the system are not correlated, such an event cor- E—Eg+iVp— (E—Eo)/2+i V2= (E—Eg) %4’
responds to a dissipative scattering process.

The scattering probabilities needed to evaluate the curand in the bulk of the system where one obtains solely con-
rents in the single channefand thus the conductance of the tributions due to the lateral chains they read
system are calculated within the framework of a Green'’s-
function method’ as follows. Neglecting the transfer ele- Snm
ments in the polymer system, the influence of the semi- GO(”’m)ZM'
infinite leads connecting the sample to the bias-defining
electron reservoirs on the site energies at the faces of thBue to the neglect of the transfer elements between the sites
quasi-1D system can be accounted for by the self-energg and m of the system, the matriG, is diagonal. These
functiorf® transfer elements can be introduteda the Dyson equation

E—Eq\?
2

@

()
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251 FIG. 4. (Ing) as a function of IrL for sys-
234 tems of the extension’@3XL, 4x4XL, 5X5XL,
and 6x6XL (from bottom to top and an average
-3.5 1 length (1)=100 of the single chainsVge,V,

[0 eV, 0.08 e\l

<In(g)>

4

In(L)

(1-G,V)GR=G,, whereV denotes the matrix of the trans- Thus we obtain a linear system of equations for the determi-
fer elements. The retarded Green’s function maBfkcon-  nation of they .

tains the probability amplitudes for the propagation of an To summarize the numerical solution procedure, we pro-
electron between theM N sites of the system. The transmis- ceed as follows. First we set up tk& matrix [Egs.(2) and
sion probabilities in the single channels can be derived by3)] and introduce transfer interactions between neighboring
multiplying the respective squared absolute valuesG6f lattice sites via the Dyson equation. We thus obtain the scat-
with the group velocities of the corresponding side channelsering probabilities4)—(6), which can be used to determine
and semi-infinite lead® If we number the side channels like the chemical potentialg, at the single lattice sites of the
the lattice sites withk,k’=1,...LMN and the transport system by solving the respective inhomogeneous linear sys-
channels on the left-hand sidéright-hand sidg by  tem of Eq.(9). The conductancg is fully determined by the
i=1,...MN (j=LMN—-MN+1,... LMN), these transmis- chemical potentials and the transmission probabilities of the

sion probabilities read system[see Eq(7)].
p;i=|GR(j.i)|24V? sir(qa), (4)
IIl. NUMERICAL RESULTS
pﬁ<: |GR(j,k)[?4V sin(qa)Vp, ©) A. Coherent limit
pE,k=|GR(k’,k)|24V§,. (6) In this section we present numerical results for the con-

ductance of coupled PANI chain systems. Figure 4 shgws
Choosing the same index number for the side channels aras a function of the system length The configurational
the semi-infinite leads at the faces of the system simplifieaverage(in g) is taken over 100 system¢Because of its
the notation. Transmission probabilities involving dissipativeself-averaging properties, we uda g) and not Ifg).3}) As
side channels are distinguished by the superscript D. in this example the position of the end-to-end couplings is
The dimensionless conductang®rmalized to the num- randomly distributedsubject to the restriction that the mini-
ber of transport channelef the coupled polymer system is mum chain length allowed is 10 lattice sitesd the transfer

then given by elementsVge and V, between the single chains are taken
from a uniform distribution, these ensembles comprise two
1 t f disord hich ill refer t hain-length
_ L ) D ypes of disorder, which we will refer to as chain-leng
9= VN 2,: EJ: p,.+§k: Xk}j: Pik |- @) disorder and interchain disorder, respectively.

One can clearly observe that systems with a cross section
The chemical potentialg, at the lattice site& are obtained of 3x3 sites essentially show 1D behavior. This behavior
from the current conservation conditidh: becomes more and more pronounced as the length of the
system is increased. On the contrary, an increase of the cross
section suppresses this behavior and one obtains a nearly
linear dependence dfn g) on InL. We thus conclude that
there is a transition from exponential to power-law localiza-
D _ _ tion upon increasing the cross section of quasi-1D PANI sys-
+% P (= )y k=1 LMN. ® tems. Such a power-law dependence was proposed by Last
i and Thoules¥ to describe a region of intermediate behavior
Using wc= urt xi(uL —pe) and u —pur#0, EQ.(8) can be  panyeen metallic and localized states.

h
0= 5 k=22 Pl )+ 20 Plj(mc 1)

written in the form This feature becomes even more pronounced upon restric-
tion to chain-length disorder. Figure 5 shows data for the

2 P2 = xi E kai+2 kaj+2 pEk, > Xk’pEk’ , same ensemble of systems as in Fig. 4; all the transfer ele-

i i i K’ K/ ments between the single chains are now equal. This choice

corresponds to highly ordered, crystalline PANI samples.
k=1,...LMN. (99  Additionally, data for the ensemble with the largest cross
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/30 -2 1 FIG. 5. {Ing) as a function of IrL for the
‘_E ” same ensemble of systems as in Fig. 4, but with
v constant interchain interaction¥ge=V, =0.04
34 eV (full lines). The broken line shows the case
6x6xL with (1)=200.
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In(L.)
section and a longer average chain length are included. Fig- A In o(T)
ure 5 shows in comparison with Fig. 4 that the power-law WD =—Fx7nT (10

dependence oflng) on InL is the more pronounced the

smaller the amount of disorder and the greater the averagihich can be used to identify metallic, insulating, and criti-
length of the single chains. Consequently the power-law excal samples of PANI-CSA. Insulatirdrdimensional systems
ponent @, determined from these conductance dataPPeY Mott's law o(T)xexd —(To/T)’] with y=1/(1+d),
((In g)=In L "“+cons} is largest in the case of combined Which leads to an activation energy

chain-length disorder and interchain disorder0.93 and y

smaller in the case of restriction to chain-length disorder: W(T)=— (—0) . (1
a~0.85 (0.64 for an average single-chain length of 100 AT

(200 lattice sites. Consequently, such insulating systems are characterized by a

We wish to point out that for a fixed cross section thestraight line with slope—y in a INnW—InT diagram®* Ac-
system should always exhibit exponential localization in thecording to Larkin and Khmel'nitskit> the resistivity of criti-
case ofL—. In quasi-1D systems it is the competition be- cal systems follows a power-law behavjg(T) < T~#, which
tween the size of the cross section and the system ldngth leads to a temperature-independent activation energy
that determines the character of localization. Thus the power-
law dependence can only be observed if the system length is We=8. (12)

sufficiently small in comparison to the cross section. Such\jetaliic samples exhibit a linear dependence oMron In T
systems can be related téexperimentally accessible i positive slopé

samples of coupled PANI chains of finite spatial extension. |+'the framework of this paper, we cannot draw any con-
The results presented in this section are clegrly |n3contra%|usionS about the exponents because we use a nonlinear
to the results for polyacetylene obtained by Stafsfft">on  amperature scale rather then an explicit temperature depen-
the basis of an approach very similar to the one used in thi§ence, (The introduction of such an explicit temperature
WOI‘k: For certain polyacetylene samples, his numenc_al calgegle is computationally too expensive in the case of
culations yielded an increase of the conductance with thﬁuasi-lD systems. In a forthcoming paper we will use an
system length in the regime &f<1000 lattice sites. In our approach suggested by McLennan, Lee, and Bhitteorder
model we cannot expect such behavior, because the rang; iniroduce an explicit temperature dependence of the con-
mission probability of the(perfectly ordereisingle PANI 4, ctance for 1D PAN). Therefore we cannot expect a linear
chains is almost 1see Ref. 2] (small deviations from this jependence of I as a function of IAT. Instead we focus
value are due to contact resistanjces that the disorder in- 4 the dependence of the conductancevignto distinguish

troduced by the coupling of the single chains to a quasi-10,,jitatively between metallic, insulating, and critical behav-
system can only reduce the transmission probability and cong,.

sequently the conductance decays with increasing system g re 6 shows the dependence of the conductance on the

Size. inelastic scattering strength. The upper curve in Fig. 6 shows
a metallic specimen, because the conductance is strongly de-
caying with growingVp. The lower curve characterizes a
sample in the insulating regime, where the conductivity in-
In this section, we focus on the dependence of the transzreases with the dissipation strength for srivgjl. The curve
port properties of quasi-1D PANI samples on dissipativein the middle depicts &with respect to th&/ scalg critical
processes. Experiments by Regktial3* concerning the system, as can be seen from the linear dependencegafin
temperature dependence of the resistivity characterize PANIn V. Thus our results show that the transport behavior of
CSA as a system at the metal-insulator transition. Using theoupled PANI chain systems is extremely sensitive to the
logarithmic derivative of the conductivity, the authors de- specific sample configuration. Using the same average length
fine an activation energy of the individual chains and the sarfeveragé value for the

B. Effects of finite temperature
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interchain transfer elements, we obtain sample realizationd1€Se Systems. On the one hand, by averagirggduer an

with qualitatively different transport behavior. Whether such€nSémble of 100 samples we observe a transition from expo-
a sample is metallic, critical, or insulating is determined by€ntial to power-law localization upon increasing the sys-
the electronic interference pattern, which constitutes afingetI-em S cross section fe'a“"_e to the system length in the co-
print of the microscopic details of the specimen, _her_ent_ limit. This _behaV|0r can _be mterpreted as an
indication for the existence of a critical region between in-
sulating and metallic states. On the other hand, the depen-
dence of the conductance on the strength of dissipation dis-
IV. CONCLUSIONS plays metallic, critical, and insulating behavior for specific
sample realizations, respectively. Thus in accordance with
In this paper, we have presented numerical studies on theccent experiment® our numerical studies indicate that
conductance of quasi-1D PANI systems. We have used twdoped PANI can form systems at the metal-insulator phase

methods to investigate the nature of electron localization irboundary.
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